
RockX ETH2.0 Liquid Staking Explained

RockX Team

August 17, 2022

Abstract

Staking, a cryptoeconomic primitive that allows participants to earn yield in exchange for
locking tokens, has taken center stage over the past two years. Under a Proof of Stake consensus
mechanism, instead of using computational power, validators lock (“stake”) a certain amount of
the network’s native cryptoasset as collateral, thus becoming eligible to create new blocks. In
return, they earn inflationary rewards and transaction fees.

1 Introduction

1.1 What is Proof of Stake?

Proof of Stake is the consensus protocol utilised in Ethereum 2.0 (ETH2). The consensus protocol
helps everyone to know what transactions have been processed and in what order, which is known as
validation.

ETH2 currently has a Proof of Stake (PoS) chain called the Beacon Chain, which is faster, more
energy efficient and more decentralised than the current consensus protocol Ethereum is utilising (Proof
of Work). Users deposit ETH and provide an Ethereum node to perform the required validation. As a
reward for providing the node, the Beacon Chain gives node operators additional ETH on top of their
deposits. These rewards are minted in return for helping secure the network.

1.2 What is liquid staking?

It is clear that PoS chains will be an integral part of the future of crypto, and become the foundation
layer of which DeFi and metaverses will be built on.

However, PoS comes with some drawbacks for those wanting to participate directly as validators:
It requires technical know-how to set up and operate a node and the required 32 · ETH deposit

are significant barriers for regular token holders to participate in PoS validation. Staked tokens are
locked up and become illiquid assets. In order to solve these issues, liquid staking protocols were born.
Liquid staking abstracts the depositing of tokens from running a validator node.

In exchange for their tokens, depositors receive a representative (uniETH) token from the protocol
which is a claim on the tokens they have staked.

1.3 What is uniETH?

uniETH represents the staked ETH plus all future staking rewards. uniETH does not grow in quantity
over time but instead, grows in value, i.e. 1 ·uniETH becomes worth increasingly more than 1 ·ETH.
If you deposit 1 ·ETH initially, then your 1 ·uniETH = 1 ·ETH, however after receiving some rewards
and the total claim you have is 1 · ETH + 0.2 · ETH rewards, then your 1 · uniETH = 1.2 · ETH.

1.4 How are staking rewards distributed?

As all the ETH deposited through this protocol is pooled together to provide the 32 · ETH for each
node, the node will receive the rewards and automatically distribute it across all staking participants
based on how much ETH they staked of the 32 ·ETH total, i.e. if you staked 3.2 ·ETH you will receive
10% of each reward. Each time rewards are distributed (every block), they will be added to the initial
stake amount, eventually compounding future earnings as more nodes are added, while immediately
increasing the value of the uniETH tokens representing each stake.

1



1.5 What should I stake with RockX instead of staking directly to ETH2?

RockX removes several drawbacks that exist with Proof of Stake on ETH2. The Beacon Chain requires
a minimum deposit of at least 32 · ETH. RockX will allow anyone to earn rewards on any amount
of ETH deposited with us. When depositing ETH on the Beacon Chain, users are required to have
technical knowledge of interacting with smart contracts. RockX handles all interaction with the Beacon
Chain for our users. The Beacon Chain will also require users who make deposits to be technically
proficient at running Ethereum nodes, keeping their own node online and secure 24/7. RockX provides
this service for our users.

As ETH2 is being rolled out in several phases. We are currently in phase 1, the merge, and
depositing now means your deposit is locked until phase 2 arrives, which could very well still be a long
time away. With RockX you instantly get uniETH when depositing and do not need to be locked with
us. uniETH can be held, traded, or sold at any time, providing our users with instant liquidity on
their staked ETH.

1.6 What is the staking period for uniETH?

The staking period to redeem the underlying ETH with uniETH will only be confirmed once ETH2
goes into phase 2. However, you will instantly receive uniETH when you deposit ETH and you will
still gain staking rewards over time as your uniETH will increase in value as your rewards are added to
your initial stake. uniETH can also be sold and traded on various DEXs and CEXs if there is liquidity
available for the trade.

1.7 What is the minimum deposit?

RockX gives everyone the opportunity to earn rewards on any amount of ETH, as we do not have a min-
imum. We do recommend a deposit of at least 0.01 ·ETH to make your transaction worthwhile. When
you stake ETH, you will receive uniETH, which gains rewards over time based on the performance of
our nodes on the Beacon Chain.

1.8 What is the maximum deposit?

There is no limit on the amount of ETH you can stake with RockX on ETH2. The more ETH you
stake, the more rewards you will receive.

2 RockX uniETH staking algorithm

2.1 Terminology

ETH 1 · ETH ≡ 1018

TotalSupply current total supply of uniETH, the total supply of uniETH is proportional to total
ETH staked.

TotalStaked total staked to validators.

TotalDebts total unpaid debts, generated from redeemFromValidators(), awaiting to be paid by
turning off validators and debt clearance procedure.

TotalPending pending ETH to be staked.

RewardDebts the remaining ETH from debt clearance procedure.

UserRevenue overall net revenue which belongs to all uniETH holders.

ReportedValidators latest reported active validators.

ReportedValidatorBalance latest reported overall balance of active validators.

RecentEthersMoved the amount this contract receives recently from validators.

2



register
validators

mint

delegation

push
rewards

redeem

claim

validators
exit

Figure 1: Lifecycle of RockX Staking Contract.

CurrentReserve overall assets under management, given as:

CurrentReserve = TotalPending+TotalStaked+UserRevenue−TotalDebts−RewardDebts

Exchange Ratio Defined as symbol ρ of uniETH to ETH, given as:

ρ =

{
TotalSupply

CurrentReserve CurrentReserve ∈ (0,+∞)

1 CurrentReserve = 0
(1)

normally: ρ ≤ 1.0

managerFeeShare share of the manager fee, represented as 1 in 1000, managerFeeShare ∈ [0, 1000]

In the sections below, we’ll explain the details of liquid staking from a user’s perspective.

2.2 Stake ETH to mint uniETH

A user calls function mint() with a specific amount of ethersToStake ETH to mint uniETH, in
each function call, we have:

Theorem 2.1.
minteduniETH := ρ · ethersToStake

TotalSupply = TotalSupply′ +minteduniETH

TotalPending = TotalPending′ + ethersToStake

Users receives minteduniETH token of uniETH if mint() succeeds. uniETH is a standard ERC-
20 compliant contract issued only by RockX staking contract. Besides redeeming for the staked ETH
through our smart contract, uniETH can also be traded on DEXs as long as there is sufficient liquidity
on DEXs.

The general rule forminting and redeeming is: keep the exchange ratio - ρ invariant, if ρ changes
during minting and redeeming process, users can arbitrage.

Proof. To prove ρ invariant and irrelevant of ETH to stake, for CurrentReserve ∈ (0,+∞):

ρ =
TotalSupply

CurrentReserve
=

TotalSupply′ + ρ′ · ethersToStake
CurrentReserve′ + ethersToStake

as by definition:

3



ρ′ =
TotalSupply′

CurrentReserve′

we have:

ρ =
CurrentReserve′ · ρ′ + ρ′ · ethersToStake

CurrentReserve′ + ethersToStake
=

ρ′ · (CurrentReserve′ + ethersToStake)

CurrentReserve′ + ethersToStake

finally:

ρ = ρ′

2.3 Initiating depositing into ETH2 offical contract

At any time TotalPending has more than 32 ·ETH, the contract manager can call stake() function
to stake the ETH into Ethereum 2.0 staking contract. As a result, ETH in TotalPending moves to
TotalStaked and keeps TotalPending less than 32 · ETH, we will calculate the changes as follows:

Lemma 2.2.

ethersToDeposit := ⌊TotalPending′

32ETH
⌋ · 32ETH

The ETH to deposit to ETH2 official contract is bounded to N · 32ETH as above, we define the
depositing process as:

Theorem 2.3.
TotalPending = TotalPending′ − ethersToDeposit

TotalStaked = TotalStaked′ + ethersToDeposit

In depositing process 2.3, ρ is kept invariant as CurrentReserve does not change, as:

CurrentReserve := · · ·+(TotalPending′− ethersToDeposit)+ (TotalStaked′+ ethersToDeposit)

= · · ·+ TotalPending′ + TotalStaked′ (2)

2.3.1 Timing

The timing for calling stake() contract function mainly considers maximising capital efficiency, if we
stake prematurely, the cost for running a single validator is way too expensive. On the flipside, if we
are slow to stake, the deposited ETH does not generate rewards during the period prior to it being
staked in the official ETH2 staking contract. Hence, there is a need to build an off-chain program
to provide a seamless and comprehensive solution for staking, allowing maximum capital efficiency on
assets while earning cryptonative yields.

2.4 Redeeming staked ETH from official RockX smart contract

Users call contract function redeemFromValidators() with a specific amount of ethersToRedeem
ETH expected to redeem, the amount uniETH to be burnt is exactly to N · 32ETH worth of uniETH,
then we have:

Theorem 2.4.
burneduniETH := ρ · ethersToRedeem

TotalSupply = TotalSupply′ − burneduniETH

TotalDebts = TotalDebts′ + ethersToRedeem

4



Redeeming(or Unstaking) works as by turning off validators, waiting for the validators to be offline
and returning the staked ETH to the contract. It’s a time-consuming asynchronous process. The
benefit from redeeming directly from this contract is that there’s no slippage which you may face in a
CEX or DEX. However as this process takes time, you have to be patient. Once the ETH is returned,
you’ll be notified1 to claim it.

ρ is also invariant and irrelevant of ETH to unstake.
Note: redeeming function will only be available after ETH2.0 merged.

2.5 How ETH return to this contract from validators?

At current, Ethereum 2.0 withdrawals are not like normal transactions. Instead, they are system
level transactions that update an account’s balance without a transaction in or out. In our contract
implementation, we use accountedBalance to track explicit ETH in and out from contract functions,
and compare accountedBalance with this.balance, the difference is the ETH rewards2 returned
from validators. We utilise variable RecentEthersMoved to track this difference:

RecentEthersMoved = accountedBalance− this.balance

Ethers moves from contract to validators, or vice versa, here we define: RecentEthersMoved is
the ETH moved from validators =⇒ contract. The balancing syncing is done in syncBalance()

2.6 Stopping validators for debt clearance

Whenever a validator is stopped by a node operator, the ETH are supposed to return to this contract
due to the setting of withdrawal credentials in depositing 3, once the ETH returned, the oracle
calls validatorStopped() function, along with the following parameters:

valueStopped The ETH sent-back from validators to the liquid staking contract.

validatorStopped The count of stopped validators.

Suppose:

valueStopped ≥ amountUnstaked

and meanwhile, ETH in validators has been transferred to contract and RecentEthersMoved has
been updated as explained in section:2.5:

RecentEthersMoved = RecentEthersMoved′ + valueStopped

If we do not have slashing, then we can deduce from the parameters that:

Lemma 2.5.
amountUnstaked := 32 · ETH · validatorStopped

incrRewardDebt := valueStopped− amountUnstaked

and, we use the 2 varaibles above to update the following variables:

Theorem 2.6.
RewardDebts = RewardDebt′ + incrRewardDebt

TotalPending = TotalPending′ + incrRewardDebt

+Max{0, amountUnstaked− TotalDebts} (3)

TotalStaked = TotalStaked′ − amountUnstaked

1available on web staking portal, https://unieth.rockx.com/
2Here we suppose nobody transfers ETH to this contract intentional or unintentional, if this happens, the contract

treat the ETH as rewards, shared by all uniETH holders
3Initiating depositing into ETH2 offical contract

5

https://unieth.rockx.com/


2.7 Calculating rewards

Rewards are aggregated on a daily basis, and will be reflected from the decrease in exchange ratio-ρ,
meaning you receive more ETH back.

5 10 15

pu
sh
B
ea
co
n(
32
· E
T
H
)

pu
sh
B
ea
co
n(
32
.1
· E
T
H
)

pu
sh
B
ea
co
n(
32
.3
· E
T
H
)

pu
sh
B
ea
co
n(
32
.6
· E
T
H
)

An oracle service running offchain will push overall alive validators balance periodically, there’re 2
things pushBeacon() do to update the reward:

2.7.1 Adjusting reward base

Firstly, pushBeacon will check if any new validators has gone alive, the reward base will be adjusted to
align to the newly staked ETH plus previously reported validators balance ETH, the reward base is
defined as the reference point to compare to current balance, and it’ll be updated in each consecutive
pushBeacon() call with current aliveBalance.

0 1 2 3

32

32.2

32.4

32.6

32.8

33

rebase

rebase

rebase

pushBeacon counts

et
h
er
s

reward base
alive balance

Given:

aliveValidator The count of validators alive

we have:

Theorem 2.7.

RewardBase = ReportedV alidatorBalance+Max{0, aliveV alidator−ReportedV alidators}·32·ETH

2.7.2 Reward distribution

Normally ETH will either stay in contract or validators, hence the overall assets under management
or TVL is as follows:

TV L := ethersInContract+ ethersInV alidators

During calculation of rewards changes, we only consider the balance change in alive validators, we
can assume if the equation satisfies:

aliveBalance+RecentEthersMoved ≥ RewardBase

then positive rewards have generated, we formalise the formula as below, given:

6



aliveBalance The balance of current alive validators

we have:

Theorem 2.8.

r := Max{0, aliveBalance+RecentEthersMoved−RewardBase}

UserRevenue = UserRevenue′ + r · (1000−managerFeeShare)

1000

RecentEthersMoved = 0

ReportedV alidators = aliveV alidator

ReportedV alidatorBalance = aliveBalance

As RecentEthersMoved will only be counted during reward distribution, the variable will be
reset to 0 at the end of each pushBeacon() call. The exchange ratio - ρ will go down by the change
of UserRevenue, which allows uniETH holders to get back more ETH when redeems.

2.7.3 Manager’s Fee Withdrawal

Withdrawal before ETH2.0 merge is still not implemented yet, but here is the general process:
As withdrawal credentials has set to the contract address, to withdraw the manager’s fee

from validators, the manager MUST submit a request of withdrawal from the contract. Once the ETH
arrive, the manager can claim them.

The key issue here is, does manager’s withdrawal affects the calculation of rewards, as aliveBalance
has reduced? The simple answer is - NO. The ETH moves from validators to the contract is accounted
in RecentEthersMoved. It won’t be an issue as long as RecentEthersMoved is accounted for, to
make sure this happens, we’ll call syncBlanace() to update RecentEthersMoved each time manager
withdraws.

2.8 Slashing

Slashing is when a large portion of a validator’s stake is removed from the network. This usually
happens when a validator breaks the rules that are designed to prevent attacks on the network. Being
slashed means that the validator will be forced to exit the beacon chain at some point in the future,
receiving penalties until it does so.

Nobody expects slashing, but when it happens, the contract MUST handle it. Basically, users will
face a sudden change of exchange ratio - ρ, in our implementation we made a tiny modification to
handle this situation in pushBeacon() and validatorSlashedStop()

2.8.1 Handling slashing in validatorSlashedStop()

Given:

remainingEthers The ETH left after slashing

slashedAmount The ETH slashed

slashedValidators The count of slashed validators.

we have:

Theorem 2.9.
TotalPending = TotalPending′ + remainingEthers

TotalStaked = TotalStaked′ − 32 · ETH · slashedV alidators

RecentSlashed = RecentSlashed′ + slashedAmount

ρ will have a sudden changed due to the change of TotalPending and TotalStaked as:

ρ =
TotalSupply

CurrentReserve− 32 · ETH · slashedV alidators+ remainingEthers

7



2.8.2 Modification of rewards calculation in pushBeacon()

Theorem 2.10.

r := Max{0, aliveBalance+RecentEthersMoved+RecentSlashed−RewardBase}

UserRevenue = UserRevenue′ + r · (1000−managerFeeShare)

1000

RecentEthersMoved = 0

RecentSlashed = 0

ReportedV alidators = aliveV alidator

ReportedV alidatorBalance = aliveBalance

You may think it’s a bit strange that we include RecentSlashed to rewards accumulating, just
remember, ρ has already been changed, and aliveBalance has been decreased by slashedAmount,
at the moment of slashing, we can say:

r := Max{0, (aliveBalance′ − slashedAmount)

+RecentEthersMoved+ slashedAmount−RewardBase} (4)

3 DAO Governance

The DAO token currently not completed yet, the supposed scenario is to vote on the key parameters
of staking contract, such as:

Manager’s Fee Setting to vote to change manager’s fee percentage

Qualified Validators Registration to vote on validator keys proposed by other institutions, or to
remove a validator.

Granting Roles to vote to grant specific roles to account addresses, like: ORACLE ROLE, REG-
ISTRY ROLE, MANAGER ROLE, PAUSER ROLE

Upgrading Contract to vote to upgrade staking contract implementation, in case of critical issues
or external

ETH2 Phase Change to vote to switch to another phase of ETH2.0, which will enable redeeming
such as.

The current staking contract has been implemented to be upgradable, using transparent proxy.

4 Conclusion

RockX ETH2.0 Liquid Staking gives everyone the opportunity to earn rewards on any amount of ETH,
and gains rewards over time based on the performance of our nodes on the Beacon Chain. Allowing
retail users to participate in ETH2.0 network maintainence works like Inclusive Financial system in
real world. Besides stakers has the ability to hedge their uniETH tokens to avoid losing money.

The overall design of this liquid staking protocol treats funds security as a core goal when utilising
the fund to earn rewards. The source code and architecture has already been open-sourced to the
public.

8



A Balance Sheet Demo

Initial Stage:
User A Stakes 32
ETH

ASSETS ETH LIABILITY uniETH

User A Deposit 32 User A uniETH 32
Total Assets 32 Total Liability 32
SwapRatio 1

Stage 1:
Got 0.32 ETH Re-
wards

ASSETS ETH LIABILITY uniETH

User A Deposit 32 User A uniETH 32
Mining Rewards 0.32
Total Assets 32.32 Total Liability 32
SwapRatio 1.01

Stage 2:
User B Stakes 64
ETH

ASSETS ETH LIABILITY uniETH

User A Deposit 32 User A uniETH 32
User B Deposit 64 User B uniETH 63.36633663
Mining Rewards 0.32
Total Assets 96.32 Total Liability 95.36633663
SwapRatio 1.01

Stage 3:
User B transfer 32
uniETH to User C

ASSETS ETH LIABILITY uniETH

User A uniETH 32
User B uniETH 31.36633663
User C uniETH 32

Total Assets 96.32 Total Liability 95.36633663
SwapRatio 1.01

Stage 4:
User A unstakes
equivalent 32 ETH
value of uniETH

ASSETS ETH LIABILITY uniETH

Before Redeeming 96.32 User A uniETH 32
User B uniETH 31.36633663
User C uniETH 32

User A Redeems -32 User A Burned -31.68316832
Total Assets 64.32 Total Liability 63.68316831
SwapRatio 1.01

9



B Architecture Overview

10


	Introduction
	What is Proof of Stake?
	What is liquid staking?
	What is uniETH?
	How are staking rewards distributed?
	What should I stake with RockX instead of staking directly to ETH2?
	What is the staking period for uniETH?
	What is the minimum deposit?
	What is the maximum deposit?

	RockX uniETH staking algorithm
	Terminology
	Stake ETH to mint uniETH
	Initiating depositing into ETH2 offical contract
	Timing

	Redeeming staked ETH from official RockX smart contract
	How ETH return to this contract from validators? 
	Stopping validators for debt clearance
	Calculating rewards
	Adjusting reward base
	Reward distribution
	Manager's Fee Withdrawal

	Slashing
	Handling slashing in validatorSlashedStop()
	Modification of rewards calculation in pushBeacon()


	DAO Governance
	Conclusion
	Balance Sheet Demo
	Architecture Overview

