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Abstract

The data-driven modern era has enabled the collection of large amounts of biomedical and clinical data. DNA microarray gene
expression datasets have mainly gained significant attention to the research community owing to their ability to identify diseases
through the “bio-markers" or specific alterations in the gene sequence that represent that particular disease (for example, different
types of cancer). However, gene expression datasets are very high-dimensional, while only a few of those are “bio-markers". Meta-
heuristic-based feature selection effectively filters out only the relevant genes from a large set of attributes efficiently to reduce
data storage and computation requirements. To this end, in this paper, we propose an Altruistic Whale Optimization Algorithm
(AltWOA) for the feature selection problem in high-dimensional microarray data. AltWOA is an improvement on the basic Whale
Optimization Algorithm. We embed the concept of altruism in the whale population to help efficient propagation of candidate
solutions that can reach the global optima over the iterations. Evaluation of the proposed method on eight high dimensional
microarray datasets reveals the superiority of AltWOA compared to popular and classical techniques in the literature on the same
datasets both in terms of accuracy and the final number of features selected. The relevant codes for the proposed approach are
available publicly at https://github.com/Rohit-Kundu/AltWOA.

Keywords: Feature Selection, Evolutionary meta-heuristic, Altruism, Cancer Detection, Gene Expression, Microarray Data

1. Introduction

The technological advancements in the modern world have
led to revolutionary changes in data acquisition techniques.
This, in turn, has also led to the presence of redundant or mis-
leading data, which sometimes degrade the performance of a
learning model. Further, along with the “curse of dimension-
ality" [1], such a large number of attributes in a dataset tend
to overfit machine learning models. One such domain is the
analysis of high-dimensional microarray datasets of gene ex-
pression, which helps identify the genes responsible for cancer.
Cancer is caused by the irregular mutation of genes (in most
cases, the TP53 gene is missing or damaged). This can lead to
uncontrolled cell replication forming tumors that might spread
to other organs (malignancy) and impair their regular function-
ing.

Gene expression datasets generally contain information of
more genes than there are tissue samples available. Hence, for
the pathologists to extract information on the genetics of the
disease (like cancer), it is required to sift out only the relevant
genes from the data. However, only a few of these genes from a
dataset consisting of thousands of genes are relevant to the can-
cer diagnosis. Feature selection is a concept in machine learn-
ing that aims to eliminate redundancy from the feature space

∗Corresponding author

by selecting an optimal subset of features. However, exhaus-
tive search for an optimal feature set requires ‘(2No. o f f eatures)’
evaluations, making it an NP-hard problem. Thus intelligent
approaches have been devised for selecting the optimal subset
while being computationally efficient.

Feature selection techniques can be broadly categorized into
the following classes:

(a) Filter Methods: These methods use the intrinsic properties
of the data to select the optimal feature subset without us-
ing any learning algorithm in its crux. These methods are
computationally much more efficient than the other two
categories. Examples of such techniques are the method
of Pasi Luukka [2], and the Relief feature selection algo-
rithm [3].

(b) Wrapper Methods: Such methods use a learning algorithm
in its core to evaluate possible feature subsets and evolve
to an optimal solution through multiple iterations. Exam-
ples of such methods are Whale Optimization Algorithm
(WOA) [4], and the Binary Bat Algorithm [5].

(c) Embedded Methods: These methods perform the feature
selection while model training, i.e., the feature selection
and the classification, are performed simultaneously. Ex-
amples of such methods are CS-SVM [6], and the process
by Guyon et al. [7].

Amongst the three feature selection techniques mentioned
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Figure 1: Workflow of the proposed method - AltWOA
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above, the filer methods are generally the simplest ones but of-
ten fail to outperform wrapper methods. On the other hand, in
embedded methods, it is sometimes difficult to find a suitable
combination of wrapper and filter methods. Hence in this paper,
we propose an improved version of a popular wrapper method
called WOA proposed by Mirjalili et al. [4], wherein we embed
the concept of altruism in the whale population. The intuition
behind using an altruism technique is that for some mediocre
fitness solutions, maybe a candidate that is not "fit" enough to
be selected in the population pool of the next generation might
evolve into a promising solution if allowed to propagate further
through the iterations. Thus, a fitter solution might sacrifice
itself to allow a candidate with the potential to be an optimal
solution in the future to propagate. Furthermore, this study has
designed a metric to determine which solution has “potential"
and which can be sacrificed, based on the correlation of the
features, i.e., a solution with more diverse features selected is
allowed to propagate. The proposed method, called Altruis-
tic Whale Optimization Algorithm or AltWOA, shows better
predictive capability than most existing state-of-the-art meth-
ods when evaluated on eight publicly available gene expression
datasets. The highlighting points of the presented research are
as follows:

1. With the availability of more and more data in this infor-
mation technology era, feature selection becomes an im-
portant stream of data engineering for optimizing informa-
tion storage. Our paper addresses this problem by using an
evolutionary optimization algorithm by selecting only the
relevant features (genes) for classification.

2. In DNA microarray gene expression datasets, the infor-
mation from thousands of genes is available, but only a
handful of them are relevant to identifying the disease.
Thus, Feature Selection is critical in this paradigm, allow-
ing clinicians to locate the important genes, the mutations
of which cause disease. Such information help researchers
devise strategies to prevent and cure diseases occurring
from unwanted gene mutations.

3. Meta-heuristics are popularly used for feature selection
due to their success in solving several optimization prob-
lems. However, according to the “No Free Lunch" the-
orem, no one algorithm can find the optima in all prob-
lems. Thus, we have developed the AltWOA algorithm
for addressing the gene subset selection problem in DNA
microarray data.

4. The concept of altruism in the traditional WOA algo-
rithm allows candidate solutions, who currently possess
mediocre fitness but have the potential to travel to opti-
mal solutions, to thrive through the iterations at the cost of
other, less potent solutions.

5. The proposed algorithm is tested on eight high-
dimensional microarray datasets and is shown to perform
better than existing popular meta-heuristics on the gene
selection problem in DNA microarray data, justifying the
efficacy of the proposed approach.

The rest of the paper has been organized as follows: Section 2
surveys the literature outlining the development of feature se-

lection methods in gene expression datasets. Section 3 explains
in detail the proposed method for feature selection. Section 4
evaluates the proposed AltWOA method on eight popular pub-
licly available gene expression datasets. Finally, Section 5 con-
cludes the findings from this research.

2. Related Work

The ability to acquire a large amount of data in this era is
a double-edged sword. While on the one hand, it allows us to
analyze features more robustly, on the other hand, storage of
such large amounts of data and processing them becomes in-
creasingly difficult. Thus, dimensionality reduction techniques
become more critical as it discards irrelevant features without
compromising the performance of the learner. Feature subset
selection using exhaustive search is an NP-hard problem. Thus
several intelligent optimization frameworks have been proposed
in the literature to select an optimal subset with far less com-
putational cost. Solving optimization problems using meta-
heuristics [8] has become increasingly popular due to its ability
to efficiently search for a global optimum. A comprehensive
literature survey on the popular metaheuristics used in the liter-
ature in various domains of application is tabulated in Table 1.

Every species uses a different strategy in hunting and/or mi-
gration. Animals have evolved for millions of years to their
current form, where their foraging habits are optimal, leading
to a stable population. Thus, studying their behaviors in na-
ture has led to the emergence of optimization algorithms that
mathematically try to mimic their schemes. The success of
such formulations in a wide range of problems, using consid-
erably fewer resources, has led to their popularity as a research
field, where newer strategies are being devised in recent times.
Classical optimization algorithms like the Genetic Algorithm
(GA) [27] proposed and Particle Swarm Optimization (PSO)
[47] have been extensively used in several domains.

However, regardless of the viability of such classical algo-
rithms, they cannot provide optimal solutions for all kinds of
optimization problems that researchers need to deal with, as
pointed out by the No Free Lunch Theorem [62]. Thus, a
range of novel optimization algorithms has also been proposed
in the recent literature, mimicking animal behavior, swarm in-
telligence, or physical phenomena, each having its own set of
diverse characteristics. Some recent meta-heuristics based on
animal behavior include the Chimp Optimization Algorithm by
Khishe et al. [63], and Harris Hawks Optimization by Hei-
dari et al. [64]. Mayfly Algorithm by Zervoudakis et al. [42],
and Salp Swarm Algorithm by Mirjalili et al. [65] are swarm
intelligence-based algorithms. Archimedes Optimization Algo-
rithm by Hashim et al. [66] and Solar System Optimization by
Zitouni et al. [67] are based on physical phenomena. Arith-
metic Optimization Algorithm by Abualigah et al. [68], and
Sine-Cosine Algorithm by Mirjalili et al. [57] are Mathematics-
inspired algorithms. These algorithms have shown their effi-
cacy by achieving benchmark results in various domains of re-
search where optimization is found very crucial. Applications
of these algorithms on various such domains are shown in Ta-
ble 1. Applications of more optimization algorithms of all time
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Table 1: Tabular representation of the application domains of different optimization algorithms popularly used in the literature.

Optimization Algorithm Applications

WOA [4]

1. Kaveh et al. [9]- Sizing optimization problems of truss and frame structures (Mechanical Engineering)
2. Oliva et al. [10]- Parameter estimation in photovoltaic cells (Electrical Engineering)

3. Aljarah et al. [11]- Optimizing weights and biases in ANNs (Computer Science)
4. Abdel et al. [12]- Permutation flow shop scheduling problem (Fluid Mechanics)

BBA [5]

1. Gupta et al. [13]- Classification of white blood cells (Biomedical)
2. Kang et al. [14]- Fault diagnosis for low-speed rolling element bearing failures (Electrical Engineering)

3. Tripathi et al. [15]- Credit scoring of applicants (Finance Industry)
4. Basetti et al. [16]- Optimal Phasor measurement units placement (Power System Monitoring)

CS [17]

1. Yang et al. [18]- Welded beam design problem (Mechanical Engineering)
2. Vazquez et al. [19]- Training Spiking Neural Networks (Artificial Intelligence)

3. Yildiz et al. [20]- Selection of optimal machine parameters in milling operations (Machinery Industry)
4. Tein et al. [21]- Nurse management system (Medical and Hospital Industry)

EO [22]

1. Abdel-Basset et al. [23]- Solar photovoltaic parameter estimation (Electrical Engineering)
2. Wunnava et al. [24]- Multilevel thresholding (Softcomputing)

3. Abdul et al. [25]- Multi dimensions operation of hybrid AC/DC grids (Power Systems)
4. Dey et al. [26]- Speech Emotion Recognition (Signal Processing)

GA [27]

1. Shin et al. [28]- Bankruptcy prediction modeling (Finance Industry)
2. Srivastava et al. [29]- Software Testing (Software Industry)

3. Wang et al. [30]- Calibrating conceptual rainfall-runoff models (Water Resources Research)
4. Norouzi et al. [31]- Optimization of wireless sensor networks (Electronics Industry)

GSA [32]

1. Shaw et al. [33]- Combined economic and emission dispatch problem (Power Systems)
2. Mondal et al. [34]- Minimize the emission of nitrogen oxides and fuel cost (Energy Systems)

3. Hatamlou [35]- Data clustering (Data Mining)
4. Pelusi et al. [36]- Parameter optimization of ANNs (Artificial Intelligence)

HS [37]

1. Lee et al. [38]- Structural design optimization (Mechanical Engineering)
2. Ayvaz et al. [39]- Identification of groundwater parameter structure (Water Management System)

3. Panchal et al. [40]- Therapeutic medical physics (Biomedical)
4. Yazdi et al. [41]- Biped locomotion (Robotics)

MA [42]

1. Kadry et al. [43]- Image multi-level-thresholding (Artificial Intelligence)
2. Wei et al. [44]- Optimization of Fuel Cell (Fluid Mechanics)

3. Hassan et al. [45]- Parameter Estimation of Single-Phase Transformer (Electrical Engineering)
4. Liu et al. [46]- Wind speed forecasting (Energy Systems)

PSO [47]

1. Fan et al. [48]- Load forecasting (Power Systems)
2. Godio et al. [49]- Optimization of electromagnetic geophysical data (Applied Geophysics)

3. Rudek et al. [50]- Skull prosthesis modelling (Medicine)
4. Li et al. [51]- UWB antenna design (Electronics Industry)

RDA [52]

1. Zitar et al. [53]- Optimizing Complex functions (Mathematics)
2. Balashunmugaraja et al. [54]- Provacy preservation in cloud (Business Applications)
3. Nguyen et al. [55]- Pervasive wireless sensor networks (Data Transmission Security)

4. Renuka et al. [56]- Controlling Traffic in Internet of Vehicles (Internet of Things)

SCA [57]

1. Gupta et al. [58]- Train multilayer perceptrons (Artificial Intelligence)
2. Das et al. [59]- Short-term hydrothermal scheduling (Energy Systems)

3. Reddy et al. [60]- Solve profit-based unit commitment problem (Economics)
4. Sahu et al. [61]- Optimized Fractional-order PID controller in photovoltaics (Electrical Engineering)
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in various domains can be found in the paper of Li et al.[69].
Moreover, some good surveys on these algorithms are also per-
formed such as Yazdani et al.[70] have surveyed evolutionary
optimization algorithms, Singh et al. [71] did the same on so-
cial media networks, work of Khandija et al. [72] is based on
recent advancements of meta-heuristic algorithms and so on.

Hybrid feature selection methods are also being used in the
literature to combine the salient features of two or more meta-
heuristics. Such algorithms have higher chances of avoiding
getting stuck at local optima and exploiting the search space
more effectively. Chattopadhyay et al. [73] used an improved
Golden Ratio Optimizer, and Yan et al. [74] used a Memetic bi-
nary Coral Reef Optimization algorithm embedded with Sim-
ulated Annealing (SA) for feature selection. Lopez-Garcia
et al. [75] developed the Genetic Algorithm Cross-Entropy
(GACE) algorithm, which is an ensemble classification tech-
nique [76, 77, 78] based on feature partitioning for imbalanced
data classification. Dey et al. [26] hybridized the Golden Ra-
tio Optimizer with the Equilibrium Optimizer, and Al-Thanoon
et al. [79] proposed a hybrid of Particle Swarm Optimiza-
tion with the Dragonfly algorithm. Shukla et al. [80] inte-
grated the Teaching Learning-Based Optimization algorithm
with the Gravitational Search Algorithm for feature selection
on biomedical datasets. However, hybrid meta-heuristics are
computationally much costlier than a single global optimization
algorithm, which may be challenging to apply in the practical
field with resource constraints.

WOA proposed by Mirjalili et al. [4] is based upon the for-
aging pattern of humpback whales. Since introduction, it has
been successfully applied in several domains like mechanical
engineering, electronics, etc. For example, Kaveh et al. [9]
used the WOA for optimization of frame and truss problems,
Oliva et al. [10] developed an improved WOA for parameter
estimation in photovoltaic cells, and Aljarah et al. [11] used the
WOA for optimizing connection weights in artificial neural net-
works. Variants of WOA have also been proposed in the litera-
ture to enhance the optimization capability of the basic WOA.
For example, Mafarja et al. [81] embedded the Simulated An-
nealing (SA) as a local search method in the WOA for feature
selection applications, Kaur et al. [82] developed the Chaotic
WOA, wherein chaotic maps have been embedded in the WOA
population to improve its exploratory capability. Bozorgi et al.
[83] proposed the Improved WOA, wherein they hybridized the
WOA with Differential Evolution for better exploration of the
search space. Recently, Gharehchopogh et al. [84] conducted a
comprehensive survey on the WOA, its improvements, and its
applications. Thus, the scalability of WOA as found in the lit-
erature has led us to modify the algorithm further to increase its
capabilities and extend it to the gene selection problem in DNA
microarray datasets.

Optimization algorithms have been used extensively for fea-
ture selection in gene microarray datasets. Baliarsingh et
al. [85] developed a Weighted Chaotic Grey Wolf Optimizer
method where they used a weighted chaotic map of multiple
filter methods to guide the GWO algorithm for gene selection
and classification of DNA microarray data. Bommert et al.
[86] evaluated the efficacy of 22 filter methods in feature se-

lection and classification of high dimensional microarray data.
Baliarsingh et al. [87] proposed a hybrid of SA and Rao al-
gorithm, and Alzaqebah et al. [88] proposed a memory-based
Cuckoo Search algorithm for feature selection in gene expres-
sion datasets. GÜÇKIRAN et al. [89] evaluated two filter-
based feature selection methods- Relief and LASSO coupled
with Support Vector Machines (SVM), Multilayer Perceptron,
and Random Forest classifiers. Koushik et al. [90] proposed a
framework of feature selection on the gene expression datasets
using Elastic Net and SVM. In addition to this, Begum et al.
[91] have come up with a Fuzzy Preference-Based Rough Set
algorithm for biomarkers on gene expression data. Moreover,
Ghosh et al. [92] implemented a Recursive Memetic Algorithm
for the gene selection task. Almugren et al. [93] conducted
a comprehensive survey on hybrid feature selection methods
for classification tasks on gene expression datasets. Another
experimental study on benchmark microarray data with Filter
Ranking Methods is done by Ghosh et al. [94]. Also ensemble
feature selection approaches [95, 96, 97, 98] have also become
very popular among researchers for detecting various diseases
from microarray data. Such as, Abeel et al. [99] developed an
ensemble-based feature selection method for cancer detection
by identifying the biomarkers wherein they used a recursive
procedure and a backward elimination strategy to remove fea-
tures iteratively. Besides, a unique statistical learning method
called the “Resampling method" for the same purpose is pro-
posed by James et al. [100]. Though there are several meth-
ods available which experimented on microarray dataset, it is
to be noted that proper benchmarking of any algorithms in such
datasets is considered as a very important fact. It is because, the
efficacy of a software-based approach in Bioinformatics signif-
icantly depends on the problem which is being addressed and
the dataset chosen for manifesting that. Proving the biological
significance of the outcomes of the computer based algorithms
is very important to be applied the same in practical purposes.
In doing so, various issues arise which are mentioned by Aniba
et al. [101]. Also, Mangul et al. [102] showed systematic ap-
proaches for benchmarking omics computational tools, whereas
Weber et al. [103] mentioned some important guidelines for the
same.

Inspired by the need for feature selection in gene expres-
sion datasets for efficient storage and computation and by the
efficacy of WOA in various optimization problems in differ-
ent application domains, in this paper, we propose a novel
feature selection method, called AltWOA, for the selection of
non-redundant features from high dimensional gene expression
datasets. The flowchart showing the overall pipeline of the pro-
posed AltWOA algorithm is shown in Figure 1.

3. Proposed Method

This section describes the methodology developed in this
study for feature selection in high-dimensional gene expression
datasets. First, we describe Pasi Luukka’s filter-based feature
ranking algorithm [2] which has been used to select the top 300
genes from the dataset. Then we describe the AltWOA algo-
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rithm, which is applied to this reduced feature set to select the
optimal feature subset.

3.1. Method of Pasi Luukka

The algorithm of Pasi Luukka et al. [2] is a fuzzy entropy-
based feature selection algorithm that is used in this paper for
initial dimension reduction of the feature space. After that,
the reduced feature set is fed to the AltWOA for further opti-
mization. Pasi Luukka et al. [2] used fuzzy entropy measures
and similarity classifiers for feature selection and classification
tasks.

The entropy measures can frequently define the variations
between the fuzzy set and nicely described crisp set. Now the
measures of fuzzy entropy are defined as in Equation 1, where
the term µa(xi) is the ith fuzzy value in the expression.

E(a) = −

n∑
i=1

(µa(xi)logµa(xi) + (1− µa(xi))log(1− µa(xi))) (1)

This fuzzy entropy measure is similar to the measure of
fuzziness of the fuzzy set and calculates global deviations from
ordinary sets. That is, if a set M0 is a crisp set, then the entropy
of that set would be 0, and the maximum element of ordering
can be 0.5.

In this process, one ideal vector veci is created, by which the
ith class is represented. Although these ideal vectors are gener-
ated from sample sets belonging to ith class, these can be user-
defined as well. After defining the vectors veci, the similarities
between test samples and the ideal vectors are calculated. The
similarity value determines which class the test sample belongs
to. Ideally, suppose a specific test sample is classified to a par-
ticular class. In that case, the similarity value between that test
sample and the ideal vectors belonging to that class should be
equals to 1. Otherwise, the similarity value should be 0. For
calculating similarities with the ideal vectors, we get m sim-
ilarities, where m is the number of features. Here, the fuzzy
entropy measures are used for the relevance measurement of
the features. Following the entropy calculation (E1) given in
Equation 1, higher entropy values are achieved with similari-
ties close to 0.5, and lower entropy values are obtained while
similarities are high. Based on this, the features with the high-
est entropy are found by calculating the similarities between the
ideal feature vector and the sample vector. Thus, the previously
mentioned assumption further concludes that the features with
higher entropy do not contribute much to deviation among dif-
ferent classes, and features with the lowest entropy values are
considered more informative.

For example, let us consider there are ‘x’ number of sam-
ples, ‘ f ’ number of features, and ‘c’ number of classes. After
calculating the similarities, the samples are sorted based on the
similarity values in the form of a matrix, which has the dimen-
sion of xc × f . The fuzzy entropy measures summed by xc
values are calculated for each feature in the matrix. After that,
the features with the largest fuzzy entropy value are detected
and removed from the entire feature set.

3.2. Whale Optimization Algorithm
WOA [4] is a swarm-intelligence-based meta-heuristic algo-

rithm that is developed for addressing complex, continuous op-
timization problems. As the name suggests, the hunting be-
havior of humpback whales is the root idea behind this opti-
mization algorithm. Like other nature-inspired optimization al-
gorithms, in WOA, every candidate solution is considered an
agent, i.e., whale, which updates its role to reach closer to the
prey throughout the iterations. The candidate whales follow
certain typical processes to conduct search operations to locate
the prey and then attack the prey. In the first method, the whales
encircle the prey, and in the second mechanism, the whales cre-
ate bubble nets to capture the prey. The search space explo-
ration takes place while the whales look for the prey and exploit
the hunt area during the attack.

3.2.1. Encircling Prey
In real cases, humpback whales have evocative knowledge

about the exact location of the prey. However, inside the multi-
dimensional solution space, the location of the ideal candidate
solution is not known. Consequently, the final position of the
prey (subsequently determined with the aid of the candidate
Whales) is taken into consideration as a solution. The iterative
process of approaching the global optima goes by elaborating
and defining the first and so far the best search agent and, after
that, updating the positions of other search agents towards the
optima. The following mathematical expressions illustrate the
above phenomena.

~P(n + 1) = ~P∗(n) − ~a · ~d (2)

where ~d is the weighted distance between the position vec-
tor of the best solution obtained so far and the current position
vector. The mathematical expression of ~d is given as follows-

~d = | ~c · ~P∗(n) − ~P(n) | (3)

In equations Equation 2 and Equation 3, ~P∗ is the position
vector of the best solution obtained prior to this iteration. Here,
the position vector with (∗) in superscript denotes the positions
of best solutions. The ~a and ~c are the coefficient vectors. It is
to be noted that the position, ~P∗ gets updated in every iteration
in case some better candidate solution is found. The following
equations are used to calculate the coefficient vectors ~a and ~c.

~a = 2~m · ~R − ~m (4)

~c = 2~R (5)

In Equation 4, the ~m, a vector with variable absolute values,
decreases from 2 to 0 over the iterations, and the ~R is a random
vector that has values within 0 and 1. Now in every iteration,
the positions of different candidate solutions around the best so-
lution get updated by appropriate adjustments of the coefficient
vectors ~a and ~c. The advantage of the random vector ~R is that
it can reach any position within the permissible critical points
in the search space directly. Therefore, using Equation 2, every
position vector can update its positions to get closer to the best
solution.
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3.2.2. Bubble-net attacking method
In the Bubble-net attacking method or the exploitation phase,

two different approaches are taken to formulate the mathemat-
ical model of the attacking. These two approaches are the
shrinking encircling mechanism and the spiral updating posi-
tion.

In the case of the shrinking encircling mechanism, the ~m of
Equation 4 is lowered and results in narrows the ranges for ~d
as well. In other words, ~d is a random value in the interval
of [-m, m], where m is lowered from 2 to 0. The value ‘a’
can also define the updated position of a search agent within
the original position and the position of the best agent of the
current iteration.

On the other hand, in the latter mechanism, initially, the dis-
tance between the whale (P,Q) and the prey (P

′

,Q
′

) is calcu-
lated. Here position vectors having the (′) in superscript denote
the locations of prey. The spiral-based equation fitted into the
general trajectory of the movement is meant to follow the helix-
shaped movement of Humpback whales. The mathematical ex-
pression is given below:

~P(n + 1) = ~D · ebl · cos(2πl) + ~P∗(n) (6)

where b and l are constants for the logarithmic spiral shape
and a random number lie in the range of [-1, 1] respectively.
The ~D is the absolute distance between the prey and the whale,
that is

~D = | ~P∗(n) − ~P(n)| (7)

The humpback whales simultaneously swim across the prey
along a spiral-shaped course, and the movement is also found
within a shortening circle. To simulate this behavior, a proba-
bility (pr) threshold of 50% is considered for choosing between
a spiral model or a shortening encircling mechanism to update
the whale’s position in the optimization process. Mathemati-
cally, it can be represented by Equation 8.

~P(n + 1) =

 ~P∗(n) − ~a · ~d i f pr < 0.5
~D · ebl · cos(2πl) + ~P∗(n) i f pr ≥ 0.5

(8)

3.2.3. Exploration with WOA
The variation of ~a vector controls the exploration phase of the

WOA. Due to the uncertain position of the whales, the search
is a bit random. Therefore, ~a can be used with random values
greater than 1 or less than 1 for mobilizing search agent on the
way to circulate some distance away from a reference whale.
Unlike the exploitation phase, in the exploration phase, the po-
sition of the search agent is upgraded based on a randomly se-
lected search agent and not the best agent. Mathematically,

~D = | ~Pr − ~P| (9)

and,
~P(n + 1) = ~Pr − ~a · ~d (10)

where Pr is the randomly selected search agent, chosen for up-
gradation of the position of the current search agent.

3.2.4. WOA for Feature Selection
It is to be noted that WOAis proposed to solve continuous

optimization problems. Therefore, to convert the algorithm and
make it suitable for feature selection tasks, it is needed to map
the continuous search of WOA to binary search. A Sigmoid
function is used as a transfer function which is given by-

F(m) =
1

1 + e−m (11)

Additionally, the fitness function used to evaluate a candi-
date solution ‘C’ of dimension ‘D’ in the population is given
by Equation 12, where ‘acc(C)’ is the classification accuracy
for the candidate solution and ‘FS (C)’ is the number of fea-
tures selected by the candidate solution C. The fitness function
is the weighted sum of the accuracy and the fraction of features
not selected by the candidate solution. Thus the optimization
problem is the maximization of the fitness function. The value
of the weight α is set as 0.7 through extensive experiments in
this study.

f itness(C) = α × acc(C) + (1 − α) ×
D − FS (C)

D
(12)

3.3. Altruism
Altruism means sacrificing oneself for the sake of others. In

the context of an optimization algorithm, some of the individ-
uals in the population will be sacrificed to give a chance for
evolution to some other individuals, which, otherwise, would
have been eliminated due to lower fitness. The intuition be-
hind using such a technique is that there may be cases where
an individual who currently has a decent fitness value has the
potential to evolve into a promising solution through the itera-
tions if given a chance without eliminating it through elitism.
However, to give such a solution a chance to evolve, another
individual with a fitness value close or same as the prior needs
to be dropped from the solution pool through some evaluation
criteria, for example, checking the average correlation of the el-
ements selected by the two individuals. The proposed altruism
scheme used such an approach which is explained below.

For computing the final population after the altruism oper-
ation, the whole pool of individuals is taken as input, i.e., the
individuals from the previous generation and new individuals
generated through the WOA evolutionary operations are to-
gether taken as input. So, if the population size of the WOA
is set as N, then the input to the altruism operator becomes 2N.
In other words, the elitism operation, where the N most fit in-
dividuals from this 2N sized population pool were selected, is
now replaced by the altruism operator. The number of altruis-
tic individuals, i.e., the number of individuals to be sacrificed
for the benefit of others, is pre-set as a hyperparameter to the
proposed AltWOA method. Let A denote that value.

Since the altruism operation is used on individuals with
medium-ranged fitness values, a set of best-fit solutions is kept
intact (i.e., no altruism is applied). The number of such solu-
tions is I = N − A.

Now, from the remaining 2N− I individuals, the top 2A num-
ber of individuals is considered. The primary altruism function

8

Jo
urn

al 
Pre-

pro
of



will be applied to these 2A individuals. We will evaluate these
solutions in pairs, and after the altruism operation, we will se-
lect only A number of individuals from these 2A individuals.
So, previously, I solutions were kept intact, and now A solu-
tions are selected. Therefore, the final population size becomes
I + A = N, and thus the algorithm is coherent.

Let us now consider the operation which will select A in-
dividuals from the mediocre set of 2A solutions. The 2A so-
lutions are first grouped in pairs: each solution is selected and
paired up with the most “similar" solution. The similarity index
(S I) between a pair of candidate solutions C1 and C2 having fit-
ness values A1 and A2 respectively is defined by Equation 13,
where HD denotes the Hamming distance between C1 and C2.
The Hamming distance HD(C1,C2) between the two binary en-
coded candidate solutions is the number of positions where the
elements are different, i.e., positions where C1 is 1, C2 is 0 and
vice versa. ε1 and ε2 are minimal values added to the denomi-
nator to handle cases where the denominator becomes 0 giving
an error. The proposed work sets the weighting factor β experi-
mentally to 0.3.

S I(β,C1,C2, A1, A2) =
β

HD(C1,C2) + ε1
+

1 − β
|A1 − A2| + ε2

(13)

The two candidate solutions are more closely related when
the S I value is high. Thus, concerning the solution C1, the
paired solution C2 is selected as the one with the highest sim-
ilarity index from the pool of (2A − I) solutions. Now, out of
these two solutions, one will be sacrificed for the sake of the
other. The criteria for selecting the sacrificial solution is de-
fined by a correlation score metric (CS Mm) for the candidate
solution Cm as shown in Equation 14.

CS Mm = α × S CCavg(Cm) + (1 − α) × PCCavg(Cm) (14)

S CCavg and PCCavg represent the average value of Spear-
man’s Correlation Coefficient (SCC) and Pearson’s Correlation
Coefficient (PCC) for the features selected. The SCC and PCC
values for the entire feature set are computed at the offset of
the algorithm, each of which is a D × D matrix, where D rep-
resents the dimensionality of the feature set. Now, for comput-
ing the S CCavg(Cm) for candidate solution Cm which has, say,
d number of features selected, the corresponding d × d matrix
are sifted out from the entire SCC matrix, i.e., the SCC val-
ues for the features that have been selected in the Cm solution
forms this d × d matrix. Then the average value of this ma-
trix is calculated, which is denoted by S CCavg(Cm). Following
a similar workflow, the PCCavg(Cm) is computed. Thus, these
two values are summed with weights to generate the correlation
score CS Mm. A lower correlation score identifies the candidate
solution to have the potential for improvement through evolu-
tion. This is because a smaller correlation value is indicative
of higher feature importance, and a high correlation represents
redundancy. Thus, between a pair of candidate solutions, say
C1 and C2, the one with a lower CS M value is selected to be in
the population pool, and the other is eliminated.

PCC for feature x and label y, denoted by PCCx is given
by Equation 15, where cov(X,Y) represents the covariance be-
tween feature set X and labels Y , and the variances of distribu-
tions X and Y are given by σx and σy respectively.

PCCx =
cov(X,Y)
σxσy

(15)

SCC is a non-parametric measure of the rank correlation be-
tween variables and is defined as the PCC between rank vari-
ables. SCC tries to assess how well a monotonic function can
be used to describe the relationship between two variables. Un-
like the Pearson’s correlation which assesses the linear rela-
tionship, the SCC analyses the monotonic relationship between
variables. For a feature set of size n, the attributes Xi, and la-
bels Yi are converted to ranks rXi , rYi and the Spearman rank RS

is computed by Equation 16, where cov(rXi , rYi ) represents the
covariance of rXi and rYi , and the standard deviations of rXi and
rYi are denoted respectively by σrX and σrY .

RS =
cov(rX , rY )
σrXσrY

(16)

Despite the apparent similarities between the PCC and SCC
measures, there are some fundamental differences. An SCC of
1 is obtained when the two comparable attributes, whose rela-
tionship may not be linear, are monotonically related. However,
this does not ensure a PCC of 1. SCC is less sensitive to strong
outlier data points than PCC since the covariance limits the out-
lier value to its rank in the SCC computation. SCC and PCC
only perform similarly when the data under consideration have
no prominent outliers and roughly follow an elliptical distribu-
tion in the feature space. Such cases are ideal and do not gener-
ally occur in real-world datasets. Thus, since the PCC and SCC
compute the correlation between variables in distinct ways, the
weighted average of these two measures is a robust computa-
tion of the correlation between the features selected and thus
has been selected in the proposed method.

The flowchart of the AltWOA is shown in Figure 1. Note
that the CS Mm value is not dependent on the classification ac-
curacy or the number of features selected by the candidate so-
lution (and thus independent of the fitness parameter, which is
a weighted sum of accuracy and fraction of features selected).
It is only determined by the intrinsic properties of the features
that have been selected by the candidate solution Cm. Thus an
individual with a higher fitness value may get discarded due to
a high value of CS Mm. The pseudo-code for the altruism oper-
ation is shown in Algorithm 1.

3.4. Computational complexity

In general, it is considered that wrapper-based feature se-
lection algorithms have the highest computational complexity
compared to other types of feature selection algorithms. There-
fore, it is crucial to be aware of the computational complexity
while proposing a wrapper feature selection algorithm.

In the case of AltWOA, there are three parameters which are
to be considered for computing the computational complexity
of the algorithm. These are: number of iterations (i), population
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Algorithm 1 Pseudo code for the Altruism operation
Input:
Population P of dimension 2N × D
SCC score matrix “S CC" of dimension D × D
PCC score matrix “PCC" of dimension D × D
Number of altruistic individuals: A
Output:
Final population Palt of dimension N × D

Initialize empty N × D matrix for Palt

Add best-fit I = N − A individuals in Palt

Select the next 2A individuals from the altruism pool.
Group pairs of individuals according to similarity index
(Equation 13)

for every group pair do
Calculate CS M1 and CS M2 for the two individuals C1
and C2 in the current group pair using Equation 14

if CS M1 ≤ CS M2 then
Add C1 to Palt

else
Add C2 to Palt

end if
end for

size (p) and number of altruistic individuals (a). Now in each
iteration, algorithm iterates over the population size and the al-
truistic individuals for once only, therefore the complexity in
one iteration (it) is

O(it) = O(p) + O(a) (17)

Therefore, for a total of i number of iterations the total com-
putational complexity of the AltWOA algorithm would be

O(A) = O(i) · O(it) (18)

that is,
O(A) = Ω(i) · [O(p) + O(a)] (19)

4. Results and Discussion

This section assesses the proposed framework by perform-
ing several experiments and comparisons with some existing
methods. To estimate the reliability of the proposed AltWOA
method more robustly, we report accuracy values obtained from
the method on several datasets and evaluate the model based on
other evaluating parameters such as precision, recall, and F1-
score. The mathematical expressions of the mentioned evalua-
tion metrics for multi-class classification problem are given by
Equations 20, 21, 22 and 23, where Mi j is an element of confu-
sion matrix at ith row and jth column.

Accuracyi =

∑
i Mii∑

i
∑

j Mi j
(20)

Precisioni =

∑
i Mii∑

i
∑

j M ji
(21)

Recalli =

∑
i Mii∑
j Mi j

(22)

F1 − S corei =
2

1
Precisioni

+ 1
Recalli

(23)

To assess the performance of a model thoroughly, all of the
accuracy, precision, recall, and F1-score play a significant role.
The accuracy gives the overall idea about the performance of a
mathematical model, whereas, for class-wise performance, pre-
cision and recall are essential. Moreover, the accuracy often
fails to estimate a model’s performance while significant class
imbalance is present in the dataset. Therefore the F1-score is
taken into account.

4.1. Description of Datasets Used

To analyze the performance of the proposed method, we
use eight high dimensional DNA microarray gene expression
datasets, both binary class and multi-class. The description
of the datasets is provided in Table 2. Except for the dataset
by Christensen et al. [105], Leukemia [109] and DLBCL
[111] the other five datasets are used for detecting cancer. The
Christensen [105] dataset is a general-purpose gene expression
dataset used to capture any kind of abnormalities, the Leukemia
[109] dataset consists of genes for identifying leukemia, and the
DLBCL (Diffuse Large B-Cell Lymphoma) [111] dataset is for
identifying lymphoma. Alon [104], Gravier [106], and DLBCL
[111] datasets are binary class, while Christensen [105], Khan
[107] Sorlie [108], Leukemia [109], and 11_Tumors[110] are
multi-class datasets. Evaluation of these varied datasets gives
a more robust measure of the efficacy of the proposed feature
selection approach.

4.2. Implementation

This section discusses the results obtained by performing var-
ious experiments using AltWOA on the eight different microar-
ray datasets, which eventually comprehensively estimates the
classification ability, robustness, and reliability of AltWOA. To
achieve that, the meta-heuristic algorithm AltWOA is evaluated
on a scale of different evaluation metrics such as accuracy, pre-
cision, recall, and F1-score. In this work, to avoid any biasness
in the dataset which might occur during the feature selection
process of high-dimensional data [112] we have performed 5-
fold cross-validation on each of the mentioned datasets, and all
the results reported are the average of 5 folds. In this case, we
should note that all the experiments of different folds are mu-
tually exclusive and independent of each other for a particular
dataset. Therefore, there is no overlap or dependency between
two different folds of a dataset.

Moreover, the test data remains completely unseen to the Alt-
WOA during the whole feature selection process. That is, dur-
ing the iterative evaluation of the AltWOA, it deals with only
the training data. At the end of the feature selection process,
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(a) Alon [104] (b) Christensen [105] (c) Gravier [106]

(d) Khan [107] (e) Sorlie [108] (f) Leukemia [109]

(g) 11_Tumors [110] (h) DLBCL [111]

Figure 2: Convergence plots obtained by the proposed AltWOA feature selection algorithm on the microarray gene expression datasets used in this study: (a)Alon
[104] (b) Christensen [105] (c) Gravier [106] (d) Khan [107] (e) Sorlie [108] (f) Leukemia [109] (g) 11_Tumors [110] and (h) DLBCL [111].
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Table 2: Description of the DNA microarray datasets used in this study. SRBCT: Small Round Blue Cell Tumor, DLBCL: Diffuse Large B-Cell Lymphoma

Dataset Samples Genes Classes Disease
Alon [104] 62 2000 2 Colon Cancer

Christensen [105] 217 1413 3 N/A
Gravier [106] 168 2905 2 Breast Cancer
Khan [107] 63 2308 4 SRBCT (Cancer)
Sorlie [108] 85 456 5 Breast Cancer

Leukemia [109] 72 7129 2 Leukemia
11_Tumors [110] 174 12534 11 Carcinoma

DLBCL [111] 77 5470 2 Lymphoma

Table 3: Results obtained by the proposed method on the gene expression microarray datasets used in this study.

Dataset Accuracy Precision Recall F1-Score No. of Features Selected
Alon [104] 1.0000 1.0000 1.0000 1.0000 21

Christensen [105] 1.0000 1.0000 1.0000 1.0000 2
Gravier [106] 0.9412 0.9510 0.9412 0.9461 44
Khan [107] 1.0000 1.0000 1.0000 1.0000 25
Sorlie [108] 1.0000 1.0000 1.0000 1.0000 35

Leukemia [109] 1.0000 1.0000 1.0000 1.0000 30
11_Tumors [110] 1.0000 1.0000 1.0000 1.0000 37

DLBCL [111] 1.0000 1.0000 1.0000 1.0000 22

the AltWOA outputs the binary encoded candidate solution pos-
sessing the best fitness value. After that, the original feature set
is reduced to the lower-dimensional optimal feature subset. The
classifier (SVM in our case) is trained on the training samples
with the feature subset selected by AltWOA and then evaluated
on the test data. The results obtained by the AltWOA algo-
rithm on the eight datasets are depicted in Table 3. We can
observe from the table that impressive results are obtained on
all eight datasets using the proposed framework. Except for
Gravier, 100% is obtained for all four evaluation metrics on
other datasets. Besides, the number of genes selected using
this framework is also significantly less. The convergence plots
obtained by the proposed AltWOA algorithm are shown in Fig-
ure 2.

Moreover, for further estimation, we also report the ROC
curves obtained by AltWOA on all eight datasets as Figure 3.
It is evident that except for the 11_Tumors and the Alon
datasets, Area Under the Curves (AUCs) of all classes of all
other datasets are either exactly 1.0 or very near to 1.0. For
the 11_Tumors dataset, 7 out of 10 classes have high AUC,
and only three classes report moderate AUC resulting in quite
promising micro-average ROC of 90% and macro-average ROC
of 92%. Similar results are observed for the Alon dataset as
well. Though the AUCs are not exactly 100% but are very near
to that. Therefore, the overall performance of the proposed al-
gorithm based on ROC curves can be considered quite promis-
ing. Hence, obtained results confirm the reliable performance
of the AltWOA on all of the datasets considered in this study
for evaluation.

It is to be noted that the proposed method is implemented us-
ing the Python3 programming language with several data sci-
ence and machine learning-based in-built packages available.

The most significant packages among them are Scikit-learn,
Pandas, and Numpy. Among these, Pandas is used to read the
data from table form (in our case, it is a .csv) file, and Numpy
is used for regulating the flow of data over generation strictly
in array format. The role Scikit-learn is versatile– from calcu-
lating the fitness of a candidate solution to obtaining final con-
fusion matrices, every statistical and predictive task has been
performed with the aid of this package. The codes have been
executed on a machine having 8 GB RAM and Intel i5, the pro-
cessor with Operating System as Windows.

4.3. Hyperparameters Tuning

The multi-staged algorithmic complexity of the proposed
AltWOA method consists of some essential hyperparameters
that affect the classification results noticeably. One such hy-
perparameter is the number of altruistic individuals of the algo-
rithm, i.e., the number of candidate solutions that go through
altruism to generate a more prolific population. While per-
forming several experiments, this hyperparameter comes out to
be very important since the slight variation of this parameter
causes significant changes in the results. The variation of classi-
fication accuracies, fitness, and percentage of features selected
concerning the number of altruistic individuals on all eight mi-
croarray datasets are depicted in Figure 4. We can observe that
the variation in fitness and accuracies show a pattern. Initially,
it increases, and at a particular maximum value is achieved,
and after that, it starts decreasing and flattens after some point.
Just the opposite is observed for the case of the number of fea-
tures selected. Therefore, this indicates that the optimal value
of this hyperparameter is somewhere between left and right ex-
tremums, and for all of the cases, this is found to be 10%.
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(a) Alon [104] (b) Christensen [105]

(c) Gravier [106] (d) Khan [107]

(e) Sorlie [108] (f) Leukemia [109]

(g) 11_Tumors [110] (h) DLBCL [111]

Figure 3: ROC curves obtained by the proposed AltWOA method on the datasets used in this study: (a)Alon [104] (b) Christensen [105] (c) Gravier [106] (d) Khan
[107] (e) Sorlie [108] (f) Leukemia [109] (g) 11_Tumors [110] and (h) DLBCL [111].
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(a) Alon [104] (b) Christensen [105]

(c) Gravier [106] (d) Khan [107]

(e) Sorlie [108] (f) Leukemia [109]

(g) 11_Tumors [110] (h) DLBCL [111]

Figure 4: Performance comparison with respect to the percentage of altruistic individuals (a hyperparameter) in the AltWOA on the eight gene expression datasets:
(a)Alon [104] (b) Christensen [105] (c) Gravier [106] (d) Khan [107] (e) Sorlie [108] (f) Leukemia [109] (g) 11_Tumors [110] and (h) DLBCL [111]. Population
size for the experiments here have been set to 100.
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(a) Alon [104] (b) Christensen [105]

(c) Gravier [106] (d) Khan [107]

(e) Sorlie [108] (f) Leukemia [109]

(g) 11_Tumors [110] (h) DLBCL [111]

Figure 5: Performance comparison with respect to the population size in the AltWOA on the eight gene expression datasets: (a)Alon [104] (b) Christensen [105] (c)
Gravier [106] (d) Khan [107] (e) Sorlie [108] (f) Leukemia [109] (g) 11_Tumors [110] and (h) DLBCL [111]. Percentage of altruistic individuals for the experiments
here have been set to 10%.
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Figure 6: Comparison of performance of the proposed algorithm by varying the hyperparameter α used in Equation 12.

Figure 7: Comparison of performance of the proposed algorithm by varying the hyperparameter β used in Equation 13.
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Another significant hyperparameter is the number of ran-
domized populations initialized before the optimization begins,
and this is a critical hyperparameter for all optimization algo-
rithms. The Figure 5 shows the variation of the accuracy, fit-
ness, and the number of features selected for final classification
on all eight datasets. We can observe that we can find no cru-
cial pattern from the resultant plots, but the variation can be
seen clearly. However, we can see that an initial population
size of 100 produces good results in all three parameters for all
the datasets. Therefore, to maintain uniformity, we have con-
sidered the initial population of the AltWOA as 100, and for
all further experiments discussed next, the initial population is
fixed at a value of 100.

In addition to these, in this robust study, values of two more
hyperparameters are also determined by performing exhaustive
experimentation. These two hyperparameters are the α used in
the fitness equation in Equation 12 and the β used in the calcu-
lation of the similarity index in Equation 13. Figure 6 shows the
comparison of the performance by varying the hyperparameter
α. We can note that the performance peaks at α = 0.7, and thus,
this value has been set for all experiments. Similarly, Figure 7
shows the comparison of the performance by varying the hy-
perparameter β. In this case, we can note that the performance
peaks at β = 0.3, and thus, it has been set as the value of β for
all experiments.

4.4. Comparison with state-of-the-art

In order to assess the classification ability of AltWOA in a
more robust way, some popular wrapper-based feature selection
algorithms have also been evaluated on the mentioned datasets
and a comparative study is made based on the results. The al-
gorithms which have been chosen for comparison are:

1. Binary Bat Algorithm (BBA) by Mirjalili et al. [5]
2. Cuckoo Search (CS) by Yang et al. [17]
3. Equilibrium Optimizer (EO) by Faramarzi et al. [22]
4. Genetic Algorithm (GA) by Holland et al. [27]
5. Gravitational Search Algorithm (GSA) by Rashedi et al.

[32]
6. Harmony Search (HS) by Geem et al. [37]
7. Mayfly Algorithm (MA) by Zervoudakis et al. [42]
8. Particle Swarm Optimization (PSO) by Kennedy et al.

[47]
9. Red Deer Algorithm (RDA) by Fathollahi et al. [52]

10. Sine-Cosine Algorithm (SCA) by Mirjalili et al. [57]
11. Basic WOA by Mirjalili et al. [4]

It is to be noted that the Optimization Algorithms (OAs)
choices are not made randomly. The GA, HS, and PSO are old
though prevalent optimization algorithms, which can compete
with any optimization algorithms of recent times. On the other
hand, the rest of the algorithms are comparatively recently de-
veloped and have become very popular due to their outstanding
performance in various domains. The classification accuracy
and number of features selected for the final feature set of all
these algorithms along with AltWOA are reported in Figure 8.

Note that, for all of these optimization algorithms, the ratio of
initial feature compression using Pasi Luukka algorithms has
been made fixed such that fair comparative experiments can be
conducted among them.

Results reported in Figure 8 clearly show that the proposed
AltWOA not only achieves the highest classification accuracies
among all the other algorithms but also uses the lowest number
of features for final classification in all eight gene expression
microarray datasets. Along with AltWOA, the GA, the PSO,
and the EO perform better than the other algorithms. On av-
erage, although the accuracies achieved by GA are sufficiently
high, the number of features selected for final classification is
also noticeably higher than that of others. The other algorithms
also achieved promising results except for the RDA and the CS.
SCA is found to be achieving outstanding classification accu-
racy. Although similar to GA, the dimension of the final feature
set obtained from SCA is significantly larger than AltWOA.
Therefore, considering the overall performances of these algo-
rithms, we can conclude that, AltWOA performs superior to
other algorithms chosen for comparison.

4.5. Convergence plots
The convergence plots are considered reasonable measures

to estimate the performance of an optimization algorithm. In
this study, we have reported two types of convergence plots on
all eight datasets. One is the fitness variation over the iterations,
and the other is the variation of the number of features selected
over the iterations.

As mentioned in the previous section, the fitness of a candi-
date solution depends on the accuracy and the number of fea-
tures selected by that particular candidate solution. A higher
fitness value indicates a better candidate solution. On the other
hand, the primary objective of the algorithm is to reduce the fea-
ture set dimension for a particular dataset. Therefore, ideally,
the fitness should increase over the iterations, and the number of
features selected should decrease over the iterative learning pro-
cess. Although, in reality, the monotonically increasing curve
is never obtained, instead the curve gets saturated after a cer-
tain number of iterations. The point of saturation can vary from
dataset to dataset for a particular algorithm. Similar characteris-
tics are observed from the convergence plots of AltWOA while
evaluated on the datasets used in this study. The convergence
plots obtained by the AltWOA methods on all eight microarray
datasets are shown in Figure 2. As a whole, it can be observed
that the AltWOA method follows the ideal characteristic, and
for all the cases, the saturation is obtained very fast (within ten
iterations). Therefore, it ensures the fast converging capabil-
ity of the proposed framework, which reduces the computation
cost of the overall method.

4.6. Computation Time
Since we have proposed a wrapper-based feature selection

algorithm, it is imperative to observe the computation time of
the algorithm. We have performed a comparative study of the
total computation times taken by the different feature selection
algorithms on 20 iterations. The times taken by all the meta-
heuristics on the eight datasets used in this study are reported in
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(a) Alon [104] (b) Christensen [105]

(c) Gravier [106] (d) Khan [107]

(e) Sorlie [108] (f) Leukemia [109]

(g) 11_Tumors [110] (h) DLBCL [111]

Figure 8: Comparison of different optimization algorithms for feature selection on the microarray datasets used in this study: (a)Alon [104] (b) Christensen [105]
(c) Gravier [106] (d) Khan [107] (e) Sorlie [108] (f) Leukemia [109] (g) 11_Tumors [110] and (h) DLBCL [111].

Table 4: Comparison of the computation time (in seconds) of the AltWOA and popular meta-heuristics in literature, over 20 iterations.

Dataset Computation Time (s)
AltWOA WOA BBA CS EO GA GSA HS MA PSO RDA SCA

Alon [104] 10.37 9.31 9.71 10.67 12.23 11.53 11.34 9.88 12.20 10.12 9.72 8.34
Christensen [105] 19.36 18.44 18.80 21.12 15.47 15.05 18.35 21.76 18.86 20.64 16.88 17.60

Gravier [106] 23.63 18.03 25.30 25.81 24.53 20.59 26.43 26.29 26.17 20.01 19.05 23.16
Khan [107] 20.45 16.51 11.15 15.94 14.23 14.02 11.03 15.88 15.02 11.92 14.06 12.86
Sorlie [108] 13.42 9.60 11.55 13.25 13.85 15.53 11.16 13.49 13.98 14.16 12.17 11.38

Leukemia [109] 41.53 39.39 38.35 39.21 38.17 38.06 38.06 39.90 39.87 39.54 38.54 38.44
11_Tumors [110] 262.98 260.01 271.47 259.62 250.24 262.35 253.41 267.78 261.23 252.15 255.46 257.91

DLBCL [111] 563.02 561.34 564.35 563.29 564.25 566.59 563.42 568.82 568.50 567.31 565.04 566.83
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Table 4. We can observe that the time taken by the AltWOA is
slightly higher than some of the fast converging algorithms such
as WOA, RDA, and SCA. The extra altruism operation running
on top of the traditional WOA takes this excess time. How-
ever, the difference between the total computation time over the
20 iterations is not significant, although the AltWOA performs
significantly better than the traditional WOA algorithm, making
this small margin of increase in computation time worthwhile.

4.7. Feature Selection Stability

Stability in feature selection [113, 114, 96] has become a vi-
tal parameter measuring the strength of optimization algorithms
in recent times. The stability of the genes selected by optimiza-
tion algorithms may help clinicians for better diagnosis as such
genes possess some unique characteristics due to which the al-
gorithms select these. For example, in the case of cancer de-
tection from microarray gene expression data, it is found that
only a few biomarkers are present in the entire gene expres-
sion dataset. Hence, if a meta-heuristic-based feature selection
algorithm identifies such biomarkers, it would be helpful for
the medical experts for proper diagnosis of the disease. An al-
gorithm’s stability in feature selection is usually measured by
checking the overlap of features selected over multiple indepen-
dent runs of the meta-heuristic. This work assesses the feature
selection stability using the Jaccard Index (JI) between pairs of
best-fit solutions over 20 independent runs of the AltWOA over
the datasets. That is, 20 best-fit solutions are stored. The pair-
wise overlap is computed (the percentage of places where both
solutions have selected a feature, i.e., ‘1’ in the binary encoded
solution). Such a pairwise JI computation of the best-fit solu-
tions yields a matrix of pairwise stability values, which is then
averaged over to calculate the stability index for the AltWOA.

Table 5 tabulates the results obtained on computing the sta-
bility indices of the various meta-heuristics on the eight mi-
croarray datasets used in this study. We can observe that the
proposed feature selection model, AltWOA, behaves more con-
sistently and shows its stability which is more profound than
the other popular algorithms used for comparison in this study.
The difference in the stability indices is especially pronounced
on datasets like Alon [104], Sorlie [108] and DLBCL [111].

5. Conclusion and Future Directions

Redundancy is bound to creep in in this data-driven world
where many attributes are freely available. Thus, feature se-
lection, a fundamental paradigm of machine learning, is used
to optimize storage requirements by eliminating redundancy in
data and sifting out only the relevant attributes. Such meth-
ods are crucial for gene expression datasets, where thousands
of genes are available, but only a few genes are relevant to the
disease under study.

The proposed feature selection algorithm, called AltWOA,
has been tested on eight high-dimensional DNA microarray
datasets. The performances obtained have been compared to
several popularly used meta-heuristics found in the literature,
revealing the superiority of the proposed method. In this paper,

we have developed an improved version of WOA wherein we
have embedded the concept of altruism in its population. We
aim to enhance the altruism mechanism by using concepts dif-
ferent from our own as future work. Also, the possibility of
extending the proposed method to the multi-objective scenario
might be intriguing.

In the future, we can also check the viability of the proposed
method on various modalities of datasets which may contain
both RNA and DNA sequences. There the model may be es-
timated on either of RNA or DNA sequence dataset, and can
be validated on the other dataset. In addition to that a proper
benchmarking of the proposed AltWOA can also be done as
future extension of present work.
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Highlights 
 

- DNA datasets have mainly gained significant attention to the research community. 

- They are very high-dimensional, while only a few of those are “bio-markers". 

- To solve this problem, it is used the Altruistic Whale Optimization Algorithm 

- It effectively filters out only the relevant genes from a large set of attributes. 

- Our method reveals its superiority compared to popular and classical techniques in the 

literature. 
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