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1 Introduction7

Research on Monero and similar systems has established the vital importance of constructing a decoy selection8

algorithm that closely resembles the real spend age distribution. A sample of researchers’ conclusions and recom-9

mendations follows:10

As we have seen the current [2017] sampling strategy for mix-ins fails drastically in preventing temporal11

analysis. There are two possible strategies towards mitigating the ensuing risks: (a) mimic users’12

spending behavior or, (b) force mix-ins to be picked according to some “unknown” distribution.13

- [Kumar et al., 2017]14

We have provided evidence that the strategy by which Monero mixins are sampled [circa 2017] results in15

a different time distribution than real spends, significantly undermining the untraceability mechanism.16

To correct this problem, the mixins should ideally be sampled in such a way that the resulting time17

distributions match.18

- [Möser et al., 2018]19

The mixin sampling distribution has since been replaced with a gamma distribution (from [Möser et al., 2018])20

fitted to the empirical spend-time distribution. Our results show that these sampling distribution changes21

have made a significant impact in reducing the accuracy of the guess-newest heuristic.22

- [Ye et al., 2020]23

[A mimicking decoy selection algorithm’s] anonymity depends on how well Ŝ [the decoy selection al-24

gorithm] estimates S [the real spend age distribution]....It is therefore reasonable to expect that if the25

mimicking sampler has access to the true source distribution S, its anonymity should be close to optimal.26

In the following, we give an [sic] evidence that this is the case.27

- [Ronge et al., 2021]28

The problem of creating a decoy selection algorithm that minimizes the usefulness of timing information to an29

adversary was recognized by the Monero Research Lab very early [Mackenzie et al., 2015]:30

One solution to this problem is to determine a non-uniform method of choosing transaction outputs31

for ring signatures; choose transaction outputs based on their age such that the probability that these32

outputs are chosen for a ring signature is inversely related to the probability that they have been33

spent already. This would suggest that we, the developers of Monero, must estimate the probability34

distribution governing the age of transaction outputs.35
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A reliable estimator of the real spend age probability distribution has been elusive. [Möser et al., 2018] estimated36

the distribution based on partial knowledge of real spends obtained from other de-anonymization techniques. The37

introduction of RingCT and other improvements to Monero have rendered the de-anonymization techniques of38

[Möser et al., 2018] ineffective ([Ye et al., 2020], [Vijayakumaran, 2021]). Therefore, an updated and improved es-39

timate would require an estimator to use only the fully anonymized ring data on the Monero blockchain.40

In this document I lay out such an estimator and justify it in a fairly rigorous manner.41

Part I42

Undisclosed Portion [Withheld]43
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Part II44

Disclosed Portion45

2 Plain English Explanation of the Problem46

2.1 Timing Metadata in Monero Transactions47

Through great effort, Monero researchers and software developers have been able to conceal most information about48

transactions even though all Monero nodes share the blockchain database itself. However, transactions still contain49

some information that distinguishes them from one another.50

One key piece of information embedded in each Monero transaction is the time that it was confirmed in a mined51

block. Timestamps are an inherent property of blockchain-based cryptocurrencies. The timestamp ensures that52

coins are not double-spent.53

Each Monero transaction creates at least two outputs, which are amounts of Monero that can be spent in a54

subsequent transaction. When a user that has received an output wishes to spend it, the wallet software he or she55

uses will include that output in the set of outputs within the ring signature. Monero’s current ring size is 16, so56

there will be 15 decoy outputs listed in the ring and 1 real spend output.57

Table 1: Ring Members of Transaction 8bc3b73e48881d48cd69f1bf82a06b6a7b94bfd0dbf85edac535dab9270a305b

Output Public Key Block Number Block Timestamp
033a3d4b817bfaba6472f249fdb0dc6b00ecfe20983cea5e608fe5e679b0d23b 2666408 2022-07-13 13:27:42
866c4cf39af3e8785cbda21a9cbaa120424df76d5d05518d3ec888b94acf4c2b 2683943 2022-08-06 20:03:35
c8c3f8660776fad9dee0dd9bd6a3e02f52ba5e4b4785419db7a4131f1d1aa1ff 2692667 2022-08-19 02:10:18
ca2f709c371c21a8ab33cddab4b593c24dd52b0ca9e4835ddcbcf17f0b38e8c7 2696371 2022-08-24 06:06:50
1f11eb618ad7bb9a26a436af1190532c3744d0c0c3b335b6d3fd65b0a9911585 2697585 2022-08-25 21:24:57
6cd9e83b9f75e44a00310aec8935954a23bcdfa34c4fb5aa5e177212fd45ce95 2698303 2022-08-26 22:06:16
9ab87cffbc8eb76a0affbc9d004967ba1ca1ab008ebe68444d687a5d5a1cb145 2698869 2022-08-27 15:36:55
52ae53b9b67316c932db550c386fa7092952d65f9a9d52e261dcb0f6ccba78c0 2699496 2022-08-28 12:52:01
19357e641d525fd001945d87829045e3ac6ad829ca92c90b729f152e7dc86b4a 2699840 2022-08-29 00:34:55
2bcdc2b0b656cefeced925cbe122ecc0bb3d83bf61dfa0ac5a6c96a586ea0560 2699843 2022-08-29 00:39:49
56672f13802cca5363cd5def25c9af4be5ad2e625401d6381568902dca5b0b35 2700102 2022-08-29 09:31:16
bbae1b9ca63e017d030e295a5c9f92ed13152c82a32fdc10458912b9e0fc4e1a 2700241 2022-08-29 14:12:24
cc94142537e87fb36713c84c2bf8465bde03f442d155391025e078bac2154cef 2700606 2022-08-30 02:04:45
dda4c8f4c51b387e03b5ce97b187a5cbb4fbc03ea622c62de5afb698f0351215 2700755 2022-08-30 06:59:12
846717c3b56dcf2c87a92b71890fdde13c72081d8d7e40ddbcba2e82d866c063 2700908 2022-08-30 12:10:55
6241dc9af536fd23584c11b6a9c84c9fd692fc5dbc9326741db6dde3f05832e2 2700918 2022-08-30 12:33:33

Source: https://xmrchain.net/tx/8bc3b73e48881d48cd69f1bf82a06b6a7b94bfd0dbf85edac535dab9270a305b

The timestamp of all of those outputs in a ring is available to anyone running a full Monero node or even58

someone who knows how to use a web-based Monero block explorer. Table 1 contains an example of a ring with59

the time stamps of each ring member. Timing information is not the only data that is available to external60

observers of the Monero blockchain, but the timing data presents special challenges. Over a year, there will be61

about 30 · 24 · 365 = 262, 800 different timestamps (each timestamp corresponding to a unique block on the Monero62

blockchain). Since the number of timestamp values is so large compared to the number of decoys, timing information63

can help an anti-privacy adversary possibly narrow down which ring member is the real spend.64

Other types of data on the blockchain cannot take so many values in practice. The number of outputs of a65

transaction are limited to 16. Currently the maximum number of inputs of a transaction is about 146, but in practice66

https://xmrchain.net/tx/8bc3b73e48881d48cd69f1bf82a06b6a7b94bfd0dbf85edac535dab9270a305b
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the vast majority of transactions have fewer than 5 inputs.1 Therefore, the amount of information contained in67

timestamp data dwarfs the information from the number of inputs or outputs of a transaction. Transaction fee68

and the tx_extra field in theory could have many distinguishing values. In practice, the “official” reference wallet69

software allows users to set one of only 4 fee priority levels and restricts the format of data in the tx_extra field.70

The difference between the timing data and other types of observable data in a Monero transaction is similar to71

the difference between data on a person’s birth date and race. Birth date reveals much more information than race72

since it can take so many values. Race can only be a pretty limited set of values. For an in-depth discussion of73

metadata available to Monero blockchain observers, see [Krawiec-Thayer et al., 2021].74

2.2 Decoys Must Be Credible75

The core challenge of decoys is intuitive: Like decoys in all contexts, a decoy only serves its purpose if — to observers76

— it looks like the real thing. Unfortunately, previous versions of Monero did a poor job of selecting decoys that77

looked like the real thing. According to one estimate, 80 percent of Monero transactions prior to February 201778

could be traced simply by guessing that the youngest ring member was the real spend because selected decoys79

tended to be much older than the real spends ([Möser et al., 2018]). Monero’s decoy selection algorithm has been80

changed in recent years to correct flaws found by existing research, but there is still a lot of room for improvement.81

To explain the problem I will use the extreme case of what can happen if a given real spend has zero decoys82

nearby in the timestamp distribution. Monero’s actual decoy selection algorithm does not suffer from this extreme83

flaw, but it serves its purpose as an introduction to the issue.84

Figure 1: Adequate Decoy Selection Algorithm

Image designed by ACK-J (https://github.com/ack-j)

The height of the blue shape in Figure 1 represents the probability that the decoy selection algorithm selects85

outputs as decoys from certain blockchain time stamps. Younger outputs are more likely to be selected as decoys86

since younger outputs are also more likely to be the real spends. Since there is a high probability that a decoy (red87

circle) could be selected from the same time interval as the real spend (orange), it is difficult for an anti-privacy88

adversary to deduce that the orange circle is the real spend.89

1See discussion: https://libera.monerologs.net/monero-dev/20220526
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Figure 2 shows what would happen if the decoy selection algorithm were severely defective. There is a portion90

of the age distribution that the decoy selection algorithm will never select from. The height of the blue shape is91

zero at that interval. In this hypothetical, the fact that no decoy would be selected in that interval would be known92

by an anti-privacy adversary since the decoy selection algorithm is written into Monero’s public open source code,93

at least for Monero wallets that are open source. Therefore, there would be a 100 percent probability that the ring94

member selected in that interval was the real spend. This particular transaction would be 100 percent traceable.95

To repeat, this is the extreme case that does not happen in practice. The current decoy selection algorithm is not96

severely defective like this hypothetical example, but it has significant shortcomings.97

Figure 2: Defective Decoy Selection Algorithm

Image designed by ACK-J (https://github.com/ack-j)

The ideal decoy selection algorithm would select decoys from every point on the age distribution in exact98

proportion to the real spends. For a ring size of 16, this ideal algorithm would provide 15 decoys of “camouflage”99

on top of every real spend across the entire age distribution. In ideal circumstances, such an algorithm would100

not give any hint about the real spend to an anti-privacy adversary. The best an adversary could do is random101

guessing about the real spend, which would only achieve a success rate of 1/16 = 6.25%. The “defective” algorithm102

described above provided zero decoys in a certain age interval, which would lead to full traceability of transactions103

that spend outputs that were a certain age. Monero’s current decoy selection algorithm lies somewhere between the104

two extremes of ideal and severely defective. The goal of OSPEAD is to move the decoy selection algorithm much105

closer to the ideal shape.106

3 The Solution107

The goal of OSPEAD is to use a special type of mathematical function called a parametric probability density108

function to match the real spend age distribution as closely as possible. The close match will provide about 15109

decoys for every real spend along nearly every interval of the age distribution. The match cannot be perfect, however.110

Parametric probability density functions can only serve as an approximation of complex real human behavior.111

There are only a limited number of decoys available per ring. Therefore, if more decoy “camouflage” is moved112

from section A to section B on the age distribution, users who happen to spend outputs of an age that falls into113
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section A will experience a reduction in privacy; users spending from section B will experience an increase in privacy.114

Therefore with the imperfect parametric probability distribution functions there is an unavoidable trade-off. The115

terms of the trade-off can be made precise mathematically, but the correct choice of trade-off is a judgment call.116

Given that the “correct” trade-off is a judgment call, OSPEAD involves a procedure to obtain the best decoy117

selection algorithm under several different sets of criteria. Once these candidate algorithms are determined, a single118

best algorithm will be selected though a judgment call. In the next section I describe the proposed sets of criteria:119

privacy impoverishment, economic welfare, inequality minimization, worst-case-scenario minimization, Maximum120

Likelihood Estimation, and maximize resistance to a specific attack.121

4 Criteria for Best Fit122

At first glance constructing fD(x), the probability density function (PDF) of the decoy selection algorithm, appears123

to be a standard problem: Extract the real spend age distribution fS(x) “data” through some method and then124

fit some distribution to it in order to form fD(x). Typically in applied statistical work, “fitting some distribution”125

would be done via nonparametric means or Maximum Likelihood Estimation (MLE) for a parametric approach.126

Since we are setting aside nonparametric methods in the short term, MLE may see like the way forward.127

I would argue instead that what we confront here is not actually a standard problem, despite appearances. An128

MLE approach, which is the approach taken in [Möser et al., 2018], may make sense if what we are interested in129

is conducting hypothesis tests on the parameters of parametric distribution families, a typical scientific exercise.130

In fact, MLE is quite good at that task, assuming certain crucial assumptions are met, since asymptotically it is131

usually guaranteed to achieve minimum variance among unbiased estimators.132

What we are trying to do here with construction of fD(x) has little to do with conducting hypothesis tests,133

however. Most statistical methods are interested in separating statistical signal from noise. What we are trying to do134

is quite the opposite: merge the signal (real spends) and noise (decoys) so that even a determined and sophisticated135

statistician cannot distinguish them. We are not trying to minimize variance in fitting fD(x) to fS(x). Rather, we136

are trying to minimize risk to user privacy. We are trying to minimize traceability of Monero transactions. This137

goal requires us to be more creative in our approach.138

In general, our goal is to “cover” every age interval with 15 decoys for every real spend that comes from that139

interval. A user who spends from a point of the age distribution that is not covered by at least 15 decoys experiences140

a privacy deficit. A user who spends from a point of the age distribution that is covered by more than 15 decoys141

has a surplus of decoys. To approach the ideal of all users being protected by a single-hop anonymity set of 16,142

we can move these decoys from the surplus at particular age x values to the x values with deficits. I will build143

OSPEAD around the idea of minimizing this privacy deficit for all x, defined as h(x) = max {0, fS(x)− fD(x)}. I144

also include a symmetric option: hsym(x) = |fS(x)− fD(x)| as a possible minimization objective.145

To justify my proposed methodology, I will quote extensively from the second edition of Statistical Inference by146

George Casella & Roger L. Berger ([Casella & Berger, 2002]). In the book’s preface, the authors write, “The purpose147

of this book is to build theoretical statistics (as different from mathematical statistics) from the first principles of148

probability theory....The book is intended for first-year graduate students majoring in statistics or in a field where149

a statistics concentration is desirable.” As far as I can tell, it is widely used for that purpose, at least within150

economics. For example, the first course in the econometrics sequence of MIT’s economics doctoral program uses151

the book as its primary textbook.2 Therefore, in my view the book is authoritative enough to lean on in justifying152

my proposed approach.153

I will begin by quoting from pages 348–350:154

2https://ocw.mit.edu/courses/economics/14-381-statistical-method-in-economics-fall-2018/syllabus/
Other economics doctoral programs likely do as well, but we cannot know for sure since many of them keep their syllabi hidden behind
student login screens.

https://ocw.mit.edu/courses/economics/14-381-statistical-method-in-economics-fall-2018/syllabus/
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7.3.4 Loss Function Optimality155

Our evaluations of point estimators have been based on their mean squared error performance. Mean156

squared error is a special case of a function called a loss function. The study of the performance, and157

the optimality, of estimators evaluated through loss functions is a branch of decision theory.158

After the data X = x are observed, where X ∼ f(x|θ), θ ∈ Θ, a decision regarding θ is made. The set of159

allowable decisions is the action space, denoted by A. Often in point estimation problems A is equal to160

Θ, the parameter space, but this will change in other problems (such as hypothesis testing—see Section161

8.3.5).162

The loss function in a point estimation problem reflects the fact that if an action a is close to θ, then163

the decision a is reasonable and little loss is incurred. If a is far from θ, then a large loss is incurred.164

The loss function is a nonnegative function that generally increases as the distance between a and θ165

increases. If θ is real-valued, two commonly used loss functions are166

absolute error loss, L(θ, a) = |a− θ|,

and167

squared error loss, L(θ, a) = (a− θ)2.

Both of these loss functions increase as the distance between θ and a increases, with minimum value168

L(θ, θ) = 0. That is, the loss is minimum if the action is correct. Squared error loss gives relatively more169

penalty for large discrepancies, and absolute error loss gives relatively more penalty for small discrep-170

ancies. A variation of squared error loss, one that penalizes overestimation more than underestimation,171

is172

L(θ, a) =

{
(a− θ)2 if a < θ

10(a− θ)2 if a ≥ θ.
(1)

A loss that penalizes errors in estimation more if θ is near 0 than if |θ| is large, a relative squared error173

loss, is174

L(θ, a) =
(a− θ)2

|θ|+ 1
.

Notice that both of these last variations of squared error loss could have been based instead on ab-175

solute error loss. In general, the experimenter must consider the consequences of various176

errors in estimation for different values of θ and specify a loss function that reflects these177

consequences. [my emphasis]178

In a loss function or decision theoretic analysis, the quality of an estimator is quantified in its risk179

function; that is, for an estimator δ(x) of θ, the risk function, a function of θ, is180

R(θ, δ) = EθL(θ, δ(X)). (2)

At a given θ, the risk function is the average loss that will be incurred if the estimator δ(x) is used.181

Since the true value of θ is unknown, we would like to use an estimator that has a small value of R(θ, δ)182

for all values of θ. This would mean that, regardless of the true value of θ, the estimator will have a183

small expected loss. If the qualities of two different estimators, δ1 and δ2, are to be compared, then they184

will be compared by comparing their risk functions, R(θ, δ1) and R(θ, δ2). If R(θ, δ1) < R(θ, δ2) for all185

θ ∈ Θ, then δ1 is the preferred estimator because δ1 performs better for all θ. More typically, the two186

risk functions will cross. Then the judgment as to which estimator is better may not be so clear-cut.187

The risk function for an estimator δ is the expected loss, as defined in (2). For squared error loss, the188

risk function is a familiar quantity, the mean squared error (MSE) that was used in Section 7.3.1. There189

the MSE of an estimator was defined as MSE(θ) = Eθ(δ(X)− θ)2, which is just EθL(θ, δ(X)) = R(θ, δ)190

if L(θ, a) = (a− θ)2. As in Chapter 7 we have that, for squared error loss,191
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R(θ, δ) = Varθ δ(X) + (Eθδ(X)− θ)2 = Varθ δ(X) + (Biasθ δ(X))2.

This risk function for squared error loss clearly indicates that a good estimator should have both a small192

variance and a small bias. A decision theoretic analysis would judge how well an estimator succeeded193

in simultaneously minimizing these two quantities.194

It would be an atypical decision theoretic analysis in which the set D of allowable es-195

timators was restricted to the set of unbiased estimators, as was done in Section 7.3.2.196

[my emphasis] Then, minimizing the risk would just be minimizing the variance. A decision theoretic197

analysis would be more comprehensive in that both the variance and bias are in the risk and will be198

considered simultaneously. An estimator would be judged good if it had a small, but probably nonzero,199

bias combined with a small variance.200

The text then goes into several specific examples of risk analysis and then briefly explores risk within a Bayesian201

framework. What does Section 7.3.2 (page 334), referenced above, say?202

7.3.2 Best Unbiased Estimators203

As noted in the previous section, a comparison of estimators based on MSE considerations may not204

yield a clear favorite. Indeed, there is no one “best MSE” estimator. Many find this troublesome or205

annoying, and rather than doing MSE comparisons of candidate estimators, they would rather have a206

“recommended” one.207

The reason that there is no one “best MSE” estimator is that the class of all estimators is too large a208

class. (For example, the estimator θ̂ = 17 cannot be beaten in MSE at θ = 17 but is a terrible estimator209

otherwise.) One way to make the problem of finding a “best” estimator tractable is to limit the class of210

estimators. A popular way of restricting the class of estimators, the one we consider in this section, is211

to consider only unbiased estimators.212

If W1 and W2 are both unbiased estimators of a parameter θ, that is, EθW1 = EθW2 = θ, then their mean213

squared error are equal to their variances, so we should choose the estimator with the smaller variance.214

If we can find an unbiased estimator with uniformly smallest variance—a best unbiased estimator—then215

our task is done.216

[Casella & Berger, 2002] then go on to give a formal definition of best unbiased estimator — also known as uniform217

minimum variance unbiased estimator (UMVUE) — in Definition 7.3.7 and then give the Cramér–Rao Lower Bound218

(CRLB) in Theorem 7.3.9 and Corollary 7.3.10. Corollary 7.3.15 is also useful. The gist of the discussion is that219

certain unbiased estimators of a parameter θ (the text uses the notation τ(θ), with τ being some continuous function220

of θ, in order to be more general) of a distribution f(x|θ) may achieve the lowest variance possible in this setting:221

the Cramér–Rao Lower Bound (CRLB).222

Now I will move on to examining Maximum Likelihood Estimation (MLE) in this entire context. First I will223

reference the definition of asymptotic variance from [Casella & Berger, 2002], page 471. Let kn be some normalizing224

constant.225

Definition 10.1.9 For an estimator Tn, suppose that kn(Tn − τ(θ)) → n(0, σ2) in distribution. The226

parameter σ2 is called the asymptotic variance or variance of the limit distribution of Tn.227

I also need their definition of asymptotic efficiency to make my point:228

Definition 10.1.11 A sequence of estimators Wn is asymptotically efficient for a parameter τ(θ) if229 √
n [Wn − τ(θ)] → n [0, v(θ)] in distribution and230

v(θ) =
[τ ′(θ)]

2

Eθ

((
∂
∂θ log f (X|θ)

)2) ;
that is, the asymptotic variance of Wn achieves the Cramér–Rao Lower Bound.231
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Finally, we come to one of the primary reasons MLE is so popular in applied statistical work:232

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X1, X2, ...., be iid f(x|θ), let θ̂ denote233

the MLE of θ, and let τ(θ) be a continuous function of θ. Under the regularity conditions in Miscellanea234

10.6.2 on f(x|θ) and, hence L(θ,x) [this expression, the likelihood function, is defined in Theorem 10.1.6235

as L(θ|x) =
∏n

i=1 f(xi|θ) ],236

√
n
[
τ(θ̂)− τ(θ)

]
→ n [0, v(θ)] ,

where v(θ) is the Cramér–Rao Lower Bound. That is, τ(θ̂) is a consistent and asymptotically efficient237

estimator of τ(θ).238

Later, at the top of page 477, [Casella & Berger, 2002] make this comment:239

Since the MLE is typically asymptotically efficient, another estimator cannot hope to beat its asymptotic240

variance. However, other estimators may have other desirable properties (ease of calculation, robust-241

ness to underlying assumptions [my emphasis]) that make them desirable. In such situations, the242

efficiency of the MLE becomes important in calibrating what we are giving up if we use an alternative243

estimator.244

245

246

Let us break down what [Casella & Berger, 2002] are saying in these passages, and how they relate to OSPEAD.247

They set up a framework for decision-making based on statistical analysis. Loss functions, decision theory, and risk248

functions are the main elements of this framework. They then discuss some of the most common loss functions,249

Mean Squared Error (MSE) being one of them. I note in passing that they discuss a “variation” on MSE in equation250

(1) that bears some resemblance to my privacy deficit notion, defined as h(x) = max {0, fS(x)− fD(x)}, in that it251

is asymmetric in penalization of under- and over-estimation of some quantity.252

Minimizing MSE for estimates of a particular parameter θ is a fair goal for statistical analyses whose purpose253

is to conduct traditional hypothesis tests regarding the true value of θ in line with the Popperian falsification254

paradigm of science. Lower MSE generally would lead to higher statistical power and therefore greater ability to255

avoid Type II error in hypothesis tests. [Casella & Berger, 2002] write, “In general, the experimenter must consider256

the consequences of various errors in estimation for different values of θ and specify a loss function that reflects257

these consequences.” By minimizing bias and variance explicitly, MSE — as a loss function — performs well in258

avoiding the Type I and Type II error consequences in null hypothesis testing and therefore MSE often makes sense259

to use as a loss function in scientific hypothesis testing.260

[Casella & Berger, 2002] go further and observe, “It would be an atypical decision theoretic analysis in which261

the set D of allowable estimators was restricted to the set of unbiased estimators, as was done in Section 7.3.2.”262

As I highlighted, MLE typically has lowest variance, asymptotically, among estimators with zero bias. Therefore,263

restricting ourselves to MLE in tackling the problem before us — construction of the PDF for the decoy selection264

algorithm — would likely seem ill-advised to [Casella & Berger, 2002], since the class of unbiased estimators might265

not be suitable.266

Note also that maximum likelihood estimators are point estimators for the particular θ parameters of PDFs. In267

theory, the estimated θ̂ will yield the corresponding theoretical distributions that fit the target empirical distributions268

well, although only under the assumption that the empirical distribution being fitted exactly equals the chosen269

theoretical PDF. There is no guarantee that variance — or bias for that matter — for the distribution itself will270

be small when using MLE to fit the wrong theoretical PDF to an empirical distribution. Given the fact that we271

are interested in the whole distributions themselves, i.e. fS(x) and fD(x), and not just parameters of parametric272



4 CRITERIA FOR BEST FIT 10

distributions, the justification for using MLE in this setting is even weaker. In just a moment I will convert the273

problem of fitting distributions into a parametric one, so that the true problem is better illustrated.274

275

276

Until now I have dealt with fS(x) and fD(x) as if they were probability density functions, i.e. as if the domain277

of the functions were continuous. However, in reality they are probability mass functions, i.e. the domain of the278

functions are discrete. The real spend age distributions are only meaningful in terms of the discrete blocks on the279

blockchain, since miners can arrange valid transactions within a block in any order they choose. We can leverage280

this fact for the following analysis.281

Define a set of parameters θ as follows:282

θ = {θ1, θ2, ..., θN} = {fS(1), fS(2), ..., fS(N)}

So θ1 is the value of fS(x) when x = 1, i.e. the first-available block that an output can be spent in. θN refers to283

the first block where RingCT outputs appeared. My definition here is not completely rigorous, since the blockchain284

is lengthening constantly, and therefore the number of elements of θ is increasing by the hour.285

What we wish to estimate is θ — every element of it. Or, more specifically, we wish to construct some fD(x)286

such that fD(xi) is “close” — in some sense to be defined shortly — to each θi, for every i. With a nonparametric287

approach, we may be able to tackle each element θi individually, more or less. With a parametric approach, we288

cannot hope to do so. Therefore, we must establish some overall metric, or metrics, of “success”. In other words,289

we must define and justify a set L of loss functions. This is our first task. Our second task is to define a set D of290

allowable estimators.291

In equation (2), [Casella & Berger, 2002] defined the risk function as R(θ, δ) = EθL(θ, δ(X)). For the time292

being, we will assume that θ is deterministic and therefore the risk function equals the loss function. The θ is293

actually stochastic — it changes over time as user spending patterns change over time — which will be dealt with294

in Section 7 Dynamic Risk and Forecasting.295

There are some similarities between the Differential Privacy framework and Monero’s ring signature privacy296

model. Differential Privacy seeks a balance between the desire to perform statistical analysis on private data and297

the need to protect individuals from discovery of their private information. Monero seeks to maximize privacy298

of users, but is constrained by reasonable limits on ring size. I looked through the Differential Privacy literature299

for some criteria for fitting a decoy selection algorithm. In general there are utility-based criteria for resolving300

the balance between statistical analysis and user privacy for each user, but there is not yet a way to resolve our301

problem([Hsu et al., 2014]). Our problem is different in that a particular ring size is fixed, and then trade-offs302

between users need to be determined.303

In “Research Roadmap for an Overhaul of Monero’s Mixin Selection Algorithm”, which I submitted to Monero’s304

Vulnerability Response Process in 2021, I wrote:305

How do we construct fM (x) [the decoy selection algorithm] for best overall privacy if we restrict ourselves306

to parametric distributions, and therefore cannot achieve fS(x) ≈ fM (x) for all values of x? Well, it307

depend [sic] on how we define “best”. Below are six approaches. I have the mathematical definitions of308

these worked out in my head, but they are not written here:309

310

1) Privacy impoverishment311

2) Economic welfare312

3) Inequality minimization313

4) Worst-case-scenario minimization314

5) Maximum Likelihood Estimation315
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6) Maximize resistance to a specific attack316

317

Now that a set of objective functions have been defined, one could imagine optimizing these objective318

functions in a numerical optimization procedure where each parametric distribution family with support319

of [0,∞) is permuted over 1-6 above.320

These objective functions are the loss functions in the framework of [Casella & Berger, 2002]. Many of them are321

forms of minimum divergence estimators ([Maji et al., 2019]). Just two more bits of housekeeping before I can322

mathematically define these 1-6 loss functions. First, to be consistent with the notation of [Casella & Berger, 2002],323

define fD(xi) ≡ ai.324

Second, we must think about how to give weight to each θi. Do we give equal weight to every θi? That would325

mean that outputs years old would be given the same importance as outputs just a few minutes or hours old.326

Weighting the loss function by the value of θi seems more reasonable since that would, in effect, give each spent327

output equal importance. However, we are trying to protect the privacy of people, not outputs.328

Say that User A re-spends outputs frequently, and so has real spends that are in the thick portion of fS(x).329

Say that User B re-spends outputs infrequently, and therefore has real spends that are in the thin portion of fS(x).330

Furthermore, User A would be able to generate more transactions than User B simply because of rapidly re-spending331

outputs. Therefore, only weighting the loss function by the value of θi would (maybe unfairly) give more importance332

to User A than User B, just due to the way that the mathematics work out. The way forward is not exactly clear.333

I think it could make sense to try several intermediate weighting schemes.334

First, my recommendation is to only give weight to elements of θ when there is a privacy deficit, i.e. when335

h(x) = max {0, fS(x)− fD(x)} is nonzero. Later we will use 1{x}, the indicator function, for this part of the336

weighting scheme, or the min {x} operator, depending on the context.3 For comparison purposes, I will also include337

the symmetric counterpart hsym(x) = |fS(x)− fD(x)| that seeks to avoid privacy surpluses as much as it seeks to338

avoid privacy deficits. To allow for multiple intermediate weighting schemes, define this weight function:339

w(θi, λ) = λθi + (1− λ) 1
N (3)

Thus, when λ = 1, w(θi, λ) is fully weighted by the value of θi. When λ = 0, w(θi, λ) gives equal weight to each340

θi. Tentatively, let λ = {0, 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, 1}.341

Now we are ready to define the set L of loss functions.342

4.1 Privacy impoverishment343

To me, the privacy deficit formulation is somewhat reminiscent of a poverty line. Below a certain defined threshold344

individuals are considered to be impoverished. In the case of a standard poverty indicator, there is some poverty345

line z defined by a researcher or government entity. In the case of Monero user privacy, the corresponding “poverty346

line” would be fS(x), which is different for every x.347

The Foster–Greer–Thorbecke (FGT) indices are a family of widely-used poverty indicators. They are defined as348

FGTα =
1

N

H∑
i=1

(
z − yi

z

)α

where N is the number of people in the population under study, H is the number of people within that population349

who are below the poverty line, z is the poverty line, yi is the income (or consumption) of each individual i who is350

under the poverty line, and α is a parameter that controls weighting.351

3https://en.wikipedia.org/wiki/Indicator_function

https://en.wikipedia.org/wiki/Indicator_function
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If α is high, then people far below the poverty line are given much more weight than people just barely below352

the poverty line. When α = 0, FGT0 is simply the poverty headcount. When α = 1, FGT1 is the poverty gap353

index. When α = 2, FGT2 weights each person’s poverty gap by its square, and for α = 3, by its cube, and so354

forth.355

A loss function analogue can be defined:356

LFGTα(θ,a, λ) =
1

N

N∑
i=1

1 {ai < θi}w(θi, λ)
(
θi − ai

θi

)α

(4)

The 1 {ai < θi} indicator function ensures that ai’s are only counted when there is some privacy deficit. The sym-357

metric counterpart LFGTα,sym(θ,a, λ) would omit the 1 {ai < θi} term and replace
(
θi − ai

θi

)α

with
(∣∣∣∣θi − ai

θi

∣∣∣∣)α

.358

Using α = 0 probably doesn’t make sense for our purposes. Using α = {1, 2, 3} is reasonable.359

4.2 Economic welfare360

A full discussion of the meaning and theory of economic welfare is outside of the scope of this document. The361

basic idea is that people are theorized to have preferences that can be approximated via a mathematical function.362

These approximating functions are called utility functions. When people’s preferences are satisfied, they obtain363

utility. When the preferences are satisfied to a higher degree, they obtain higher utility. In essence, when an364

individual’s utility is higher, their happiness is higher. Within the framework of neoclassical economics, individuals365

strive to maximize their utility, subject to the constraints they encounter in the world. The analysis of aggregate366

population-level utility is the realm of welfare economics.367

We may assume that Monero users prefer to have privacy and therefore some “privacy utility function” in this368

specific context could be defined. In practice, the loss function derived from this type of analysis will look similar369

to the LFGTα
(θ,a, λ) privacy impoverishment loss function, but with a different interpretation.370

There are dozens of utility functions to choose from. One of the more appropriate ones in the present context371

is the Constant Relative Risk Aversion (CRRA) utility function:372

uCRRAη
(y) =


y1−η

1−η η ≥ 0, η ̸= 1

ln(y) η = 1
(5)

where η is the coefficient of constant relative risk aversion. The CRRA utility function makes sense to use in373

this context because (1) At a basic level, it takes a single argument, unlike other classes of utility functions that374

deal with multiple goods and services; (2) It explicitly deals with risk; (3) It has an adjustable parameter η that375

we can use to explore the sensitivity of the results; (4) For η ≥ 1, the CRRA utility function approaches −∞ as y376

approaches zero.377

The (4) characteristic serves as an important advantage compared to the privacy impoverishment framework378

since in theory the LFGTα
(θ,a, λ) loss function would allow fD(x) to have zero mass at some x values — and379

therefore any ring members having an age corresponding to those x values would be clearly identifiable as real380

spends. In addition, a numerical optimization process that used the CRRA utility function as its basis would avoid381

at all costs fD(x) = 0 for any and all x values as long as η is chosen so that η ≥ 1.382

In a welfare economics framework, generally some discussion of the Pareto weights and Pareto efficiency would383

be appropriate. However, that type of discussion has little practical effect on the analysis here and it would generally384

only be of interest to economists, so I will elide it here.385

Now we are ready to define an economic welfare loss function:386
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LWelfareη (θ,a, λ) = (−1)
1

N

N∑
i=1

w(θi, λ)
(
uCRRAη

(
min

{
ai

θi
, 1
}))

(6)

The (−1) scalar is to make this a loss function to be minimized. As is typical, the CRRA utility function387

increases with its argument, and privacy increases as ai becomes closer to θi, i.e. as fD(i) becomes closer to fS(i).388

We use the min {x} operator here. When ai < θi, the utility function is applied to ai

θi
. When ai ≥ θi, the utility389

function is applied to one, as if ai = θi, since users spending outputs from this block i suffer no privacy deficit as I390

have defined it. The symmetric counterpart LWelfareη,sym(θ,a, λ) would replace min
{

ai

θi
, 1
}

with ai

θi
.391

The choice for η is somewhat open-ended. Perhaps five values should be tested, to get some sense of the392

sensitivity of the results to the choice of η. One of the values should be η = 1 so that log utility is used. It is393

less clear what the remaining four values should be. Some experimentally-determined values for η for the utility of394

income are available in the literature, but how individuals’ utility functions for income and privacy relate to one395

another is unclear. Tentatively, let us set η to η = {0.5, 1, 2, 5}.396

4.3 Inequality minimization397

Another possible loss function is an inequality metric. The privacy impoverishment and economic welfare frameworks398

dealt with the absolute privacy of each user. We may also want to consider a framework that explicitly compares399

users to each other, in terms of the privacy that a fD(x) provides. A loss function that attempts to minimize400

inequality of privacy among users may be appropriate.401

One of the most widely-used inequality metrics is the Gini coefficient (or Gini index). The Gini coefficient402

has many attractive theoretical properties that I will not recite here. Its main drawback is that its value is not403

very interpretable for laypeople. (The most intuitive explanation involves the Lorenz curve.) Given that we are404

already far into the realm of difficulty with interpretation of these loss functions, the low interpretability of the Gini405

coefficient should not stop us from using it.406

One formulation of the Gini coefficient is:407

G(x) =

n∑
i=1

n∑
j=1

|xi − xj |

2
n∑

i=1

n∑
j=1

xj

=

n∑
i=1

n∑
j=1

|xi − xj |

2n2x̄

This formulation is somewhat easy to interpret, although it is computationally expensive as it requires about408 (
n2 − n

)
/2 arithmetic operations. It does not contemplate weights, so it must be modified. [Creedy, 2015] provides409

some guidance.410

First, the formula suggested by Creedy requires that the weights sum up to n, i.e.
∑n

i=1 wi = n. The weights411

that we will use, w(θi, λ) could easily be normalized to ensure
∑n

i=1 w(θi, λ) = n.412

In his equation (17), Creedy suggests the following weighted formula:413

G(x) =

n∑
i=1

n∑
j=i+1

wiwj |xi − xj |

n∑
i=1

wi

n∑
i=1

wixi

If we let xi be ai

θi
as with the economic welfare loss function, the corresponding loss function for our problem414

would then be:415
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LGini(θ,a, λ) =

n∑
i=1

n∑
j=i+1

w(θi, λ) · w(θj , aj , λ) ·
∣∣∣min

{
ai

θi
, 1
}
−min

{
aj

θj
, 1
}∣∣∣

n∑
i=1

w(θi, λ)
n∑

i=1

w(θi, λ) ·min
{

ai

θi
, 1
}

subject to
∑n

i=1 w(θi, λ) = n

(7)

Note that the formula given in equation (17) in [Creedy, 2015] is just one possible way to deal with weighting416

to compute a Gini coefficient. The reason that there are multiple ways to do weighting is that weighting attempts417

to, in essence, interpolate parts of the Lorenz curve. How to do that interpolation is up for debate. In his equation418

(12), [Creedy, 2015] also gives a weighted Gini formula that is less computationally expensive. However, it would419

require conversion of w(θi, λ) to integers, which is feasible but adds another layer of complication. The symmetric420

counterpart LGini,sym(θ,a, λ) would replace min
{

ai

θi
, 1
}

with ai

θi
.421

4.4 Worst-case-scenario minimization422

Worst-case-scenario minimization is inspired by Appendix F: Minimum Untraceability in [Möser et al., 2018]. They423

define Gemin, the minimum possible guessing entropy of the untraceability of a transaction input:424

Gemin =
1
2m(m+ 1)
rmax

rmin
+m

(8)

where m is the number of ring members and425

rmax = max
∀x

(
fS(x)

fD(x)

)
, rmin = min

∀x

(
fS(x)

fD(x)

)
Since m is a constant, and optimization procedures are insensitive to constants, for the purposes of constructing426

a loss function, Gemin can be simplified to427

Gemin (optimizer) =
rmax

rmin
(9)

The logic to construct Gemin (optimizer) is as follows:428

Gemin (optimizer) =
1
2m(m+ 1)
rmax

rmin
+m

∝ 1
rmax

rmin
+m

scaling by
(
1
2m(m+ 1

)−1 is a monotonic transformation

∼= rmax

rmin
+m g(x) = 1

x is a strictly decreasing monotonic transformation

∼= rmax

rmin
subtracting m is a monotonic transformation

(I am using the ∼= symbol loosely here.) Therefore, a fD(x) that minimizes (9) will also maximize (8)429

430

Putting these ideas into the loss function notation that I have been using, i.e.431

rmax = max
∀i

(
θi
ai

)
, rmin = min

∀i

(
θi
ai

)



4 CRITERIA FOR BEST FIT 15

gives us432

LWorst case(θ,a) =

max
i∈{1,...,N}

(
θi
ai

)
min

i∈{1,...,N}

(
θi
ai

) (10)

It is not clear to me how weighting by w(θi, λ) might work here since the numerator and denominator are both433

single numbers. For the time being I will leave it out.434

Although I include LWorst case in the proposed set L of loss functions, I am skeptical of its usefulness. It is435

not clear to me that we should care about the minimum θi and ai among literally hundreds of thousands of them.436

Maybe the tail should not wag the dog. However, it could serve as a useful comparison to other approaches, so I437

include it in L. Another issue is that I suspect that LWorst case will not be a well-behaved function for the purposes438

of numerical optimization. Given the min and max operators and how they are used here, I foresee that LWorst case439

as a function will have some significant discontinuities with respect to i.440

4.5 Maximum Likelihood Estimation441

As I have stated, I do not favor a MLE approach here. However, including it in the set of loss functions L might442

serve as a useful comparison.443

Let β = {β1, ..., βk} be the set of parameters of some parametric probability density function g(x|β). Then the444

likelihood function for some sample x is445

L (β|x) =
n∏

i=1

g (xi|β)

To put MLE in a loss function framework, convert it into a minimization problem and take the log to ease the446

computational burden:447

LMLE (β|x) = (−1) ·
n∑

i=1

log g (xi|β) (11)

4.6 Maximize Resistance to an Attack448

Define the potency of an attack on the untraceability of Monero transactions for a specified fD(x) as P (fD(x)),449

the unconditional probability of correctly guessing the real spend. Then the corresponding loss function can be450

defined as451

LAttack (fD(x)) = P (fD(x)) (12)

452

453

Now that the set L of loss functions has been defined, the set D of allowable estimators will be defined. Continuing454

with the θi notation, the allowable estimators will be selected from the set of parametric probability density functions455

(PDF) f (x|β) such that each θi shall be estimated by the image of i under f (x|β). In other words, θ̂i = f (i|β)456

for all i.457

Strictly speaking, the estimator here is the minimizer of a specified loss function in the set L where ai = f(i)458

for all i for some specified parametric PDF f (x|β). The set of all PDFs (and probability mass functions (PMFs),459

for that matter) can be all PDFs whose support is the set [0,∞). The Wikipedia page on probability distributions460
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lists over 40 distributions that have such a support.4 So let us say that the target number of elements of the set461

of PDFs used in estimation is 40. Note that many distributions are special cases of more general distributions and462

therefore the actual number of distributions to fit may be lower than 40 in practice. Define the set F of these PDFs.463

Let B be the set of parameters of each f (x|β) under consideration.464

4.7 Formalized Optimization Criteria465

First, assume we have a good estimate of fS(x). Then OSPEAD is the set of procedures that perform the following466

minimizations:467

∀L ∈ L, Loss functions
∀f(x|β) ∈ F , Parametric distributions
∀λ ∈ λ, Weight parameters for w(θi, λ)

∀α ∈ α, Exponents for FGT poverty indicator
∀η ∈ η, Parameters for CRRA utility

min
β∈B

L (f (x|β)) Numerical optimization problems

where
L = {LFGTα

, LWelfareη , LGini, LWorst case, LMLE , LAttack} Equations (4), (6), (7), (10), (11), (12)
F = {Roughly 40 PDF/PMFs that have support [0,∞)}
λ = {0, 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, 1}
α = {1, 2, 3}
η = {0.5, 1, 5, 10, 50}
B = {Sets of parameters associated with each element of F}

(13)

For each loss function there will likely be a unique minimizer f∗(x|β). However, it is unlikely that every loss468

function will have the same minimizer. Therefore, determining which candidate f (x|β) is “best” will be the result469

of a judgment call, taking into account the totality of evidence and theory.470

Why stop with single PDFs when we could also examine mixture distributions? It would be useful to test some471

mixture distributions composed of two or three different parametric PDFs. The main difficulty is the combinatorics:472

The number of two-PDF mixture distributions would be
(
40
2

)
= 780. Given the loss functions and their variations,473

that would amount to about 58,500 numerical minimization procedures. There are already practical difficulties474

with carrying out the minimizations with no mixture distributions. Starting values have to be defined and robust475

minimization algorithms must be chosen and checked for problems. Even with no mixture distributions, the number476

of minimizations that I set out to perform, as stated in (13), is about 3,000.5477

Therefore, it could make sense to choose a small set of the most promising or complementary PDFs to do a478

second round of OSPEAD with mixture distributions. Another possible enhancement could be incorporating some479

periodic component in a mixture distribution to account for users’ sleep-wake cycle.480

4https://en.wikipedia.org/wiki/List_of_probability_distributions#Supported_on_semi-infinite_intervals,_usually_[0,%E2%88%9E)
5Let |S| denote the cardinality of set S. Note that |λ| = 8, |α| = 3, |η| = 5, and |F| = 40. Taking into account the different

flavors of the loss functions, |LFGTα (θ,a, λ)| = |λ| · |α| = 24,
∣∣∣LWelfareη (θ,a, λ)

∣∣∣ = |λ| · |η| = 40, |LGini(θ,a, λ)| = |λ| = 8,
|LWorst case(θ,a)| = 1, |LMLE (β|x)| = 1, and |LRRA (fD(x))| = 1. Therefore, |L| = 75 and hence |L| · |F| = 3, 000.

https://en.wikipedia.org/wiki/List_of_probability_distributions#Supported_on_semi-infinite_intervals,_usually_[0,%E2%88%9E)
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5 Dry Run with Old Möser et al. (2018) Data481

To see how the minimizers in (13) would work it practice, we can perform a dry run on partially de-anonymized482

Monero spend age data provided by [Möser et al., 2018] from before February 2017. The final version of OSPEAD483

will use data from about September 2021 to October 2022, but the dry run is useful as a demonstration.484

In the dry run I use a subset of the loss function and distribution functions described in (13). For the loss485

functions I select LFGTα with α = {1, 2}, LWelfareη with η = {0.5, 1}, and LMLE . For the distribution function486

I choose the Log-gamma, Noncentral F, Right-Pareto Log-normal, Generalized Extreme Value, and Generalized487

Hyperbolic distributions. I also include mixtures of Log-gamma with F, Generalized Extreme Value, and a Laplace488

Periodic distribution.489

Log-gamma: A two-parameter distribution used to fit the spend age data in [Möser et al., 2018]. The current decoy490

selection algorithm is based on a particular form of the Log-gamma distribution. The Gamma distribution491

includes the exponential, Erlang, and chi-square distributions as special cases.492

Noncentral F: A three-parameter distribution used often in hypothesis testing.493

Right-Pareto Log-normal: A three-parameter distribution that is a special case of the Double Pareto-lognormal494

distribution, which “arises as that of the state of a geometric Brownian motion (GBM), with lognormally495

distributed initial state, after an exponentially distributed length of time” [Reed & Jorgensen, 2004].496

Generalized Extreme Value: A three-parameter distribution that includes the Gumbel, Fréchet and Weibull497

distributions as special cases.498

Generalized Hyperbolic A six-parameter distribution that includes the Normal Inverse Gaussian, Variance499

Gamma, and Generalized Hyperbolic Student-t distributions as special cases.500

Table 2: Performance of Dry Run with Old Möser et al. (2018) Data

Loss function L_FGT L_FGT L_Welfare L_Welfare L_MLE

Loss function parameter 1 2 0.5 1

Log-gamma 0.1138 0.0574 -1.8542 0.1955 7.65e+07

F 0.1095 0.0462 -1.8681 0.1635 7.67e+07

Right-Pareto Log-normal 0.1073 0.0449 -1.8703 0.1604 7.66e+07

Generalized Extreme Value 0.1169 0.0503 -1.8608 0.1766 7.76e+07

Generalized Hyperbolic 0.1100 0.0455 -1.8684 0.1632 7.62e+07

Log-gamma + F mix 0.1081 0.0402 -1.8721 0.1622

Log-gamma + GEV mix 0.1095 0.0460 -1.8704 0.1547

Log-gamma + Laplace Periodic 0.112 0.0572 -1.86 0.195

Note: Values should be compared down columns. Lower values (darker green) indicate better
performance. MLE value is Akaike Information Criterion (AIC).

Table 2 contains the values of the minimums for the various loss functions and parametric distributions. These501

numbers are useful for demonstration purposes, but the final numbers will look very different. We can see that502
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the Log-gamma distribution tends to compare poorly to the other distributions. The Right-Pareto Log-normal503

distribution tends to perform better than other pure distributions. The Log-gamma has poor performance and the504

F has mediocre performance, but when they are combined in a mixture distribution their performance is consistently505

good.506

Table 3 contains the optimized parameter values for the various loss functions and parametric distributions. An507

important fact to recognize is that a particular set of parameter values that gives good performance according to508

one loss function may give poor performance for a different loss function. In these exercises we are not comparing a509

fixed set of parameter values across various loss functions. Rather, we are allowing each distribution’s parameters510

to be bent to minimize each loss function value.511

Following Table 3 is a series of plots showing the fitted distributions. The vertical black lines represent the512

empirical probability mass function. The vertical green lines extending below the horizontal axis represents the513

empirical cumulative distribution function. 76 percent of the mass of the Möser et al. (2018) data is less than514

10,000 blocks old.515

The first five plots show the fitted PDFs themselves. To compare the fitted distribution more closely with516

the empirical data, the second set of five plots shows the ratio of the fitted distributions fD(x) to the empirical517

probability mass function fS(x).518

The code for producing these tables and plots is at https://github.com/Rucknium/OSPEAD519

https://github.com/Rucknium/OSPEAD
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Table 3: Optimized Parameter Values of Dry Run with Old Möser et al. (2018) Data

Distribution Loss fn
Loss fn
param param_1 param_2 param_3

F L_FGT 1 0.0258 0.471 7.26

F L_FGT 2 0.0338 0.294 10.3

F L_Welfare 0.5 0.0289 0.429 8.1

F L_Welfare 1 0.0333 0.383 9.27

F L_MLE 0 0.0473 0.685 11.5

Generalized Extreme Value L_FGT 1 106 421 2.63

Generalized Extreme Value L_FGT 2 -72.7 3.14e-29 5.74

Generalized Extreme Value L_Welfare 0.5 -95.9 1.92e-18 3.88

Generalized Extreme Value L_Welfare 1 -86.6 6.28e-15 4.34

Generalized Extreme Value L_MLE 0 99.7 246 2.48

Log-gamma L_FGT 1 6.48 0.894

Log-gamma L_FGT 2 5.15 0.639

Log-gamma L_Welfare 0.5 6.25 0.852

Log-gamma L_Welfare 1 5.79 0.76

Log-gamma L_MLE 0 6.62 0.912

Right-Pareto Log-normal L_FGT 1 0.235 4.12 1.38

Right-Pareto Log-normal L_FGT 2 0.133 3.79 1.21

Right-Pareto Log-normal L_Welfare 0.5 0.209 4.03 1.32

Right-Pareto Log-normal L_Welfare 1 0.18 3.92 1.25

Right-Pareto Log-normal L_MLE 0 0.444 4.99 1.83

F Distribution: param_1 is first degree of freedom parameter; param_2 is second degree of
freedom parameter; param_3 is non-centrality parameter.

Generalized Extreme Value Distribution: param_1 is location parameter; param_2 is scale
parameter; param_3 is shape parameter.

Log-gamma Distribution: param_1 is shape parameter; param_2 is rate parameter.

Right-Pareto Log-normal Distribution: param_1 is shape parameter; param_2 is mean
parameter; param_3 is variance parameter.

Mixture distributions and Generalized Hyperbolic Distribution are omitted from this table.
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Figure 3: Optimized fD(x) for loss function LFGTα
, α = 1
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Figure 4: Optimized fD(x) for loss function LFGTα
, α = 2
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Figure 5: Optimized fD(x) for loss function LWelfareη , η = 0.5
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Figure 6: Optimized fD(x) for loss function LWelfareη , η = 1
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Figure 7: Optimized fD(x) for loss function LMLE



5 DRY RUN WITH OLD MÖSER ET AL. (2018) DATA 25

Figure 8: Optimized fD(x)/fS(x) for loss function LFGTα
, α = 1
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Figure 9: Optimized fD(x)/fS(x) for loss function LFGTα
, α = 2
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Figure 10: Optimized fD(x)/fS(x) for loss function LWelfareη , η = 0.5



5 DRY RUN WITH OLD MÖSER ET AL. (2018) DATA 28

Figure 11: Optimized fD(x)/fS(x) for loss function LWelfareη , η = 1
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Figure 12: Optimized fD(x)/fS(x) for loss function LMLE



6 OPTIONS FOR LOSS FUNCTIONS L AND PARAMETRIC DISTRIBUTIONS F 30

6 Options for Loss Functions L and Parametric Distributions F520

In Section 4 Criteria for Best Fit I developed several loss functions that could be used to decide which parametric521

distribution (and particular parameter values) should be used to form the OSPEAD decoy selection algorithm. At522

this point in time, it is not necessary to decide which loss function to use. We can perform the minimizations,523

examine the results, and make a decision when we have all the information.524

1. Privacy impoverishment. This loss function overall appears to be one of the better choices. It is intuitive525

and provides options in its α parameter. To minimize risk of very low coverage of certain intervals on the526

probability distribution, setting α ≥ 2 would probably be best.527

2. Economic welfare. This criteria is less intuitive than privacy impoverishment, but it offers another way to528

adjust the risk sensitivity with its η parameter. Setting η ≥ 1 will force more risk avoidance.529

3. Inequality minimization. This criteria would be most important if we seek to minimize inequality among530

users. One of its main drawbacks is that is can be computationally expensive.531

4. Worst-case-scenario minimization. This criteria has some appeal because worst case scenarios seem to be a532

focus in the field of cryptography. However, focusing on the worst case out of hundreds of thousands may be533

questionable.534

5. Maximum Likelihood Estimation. [Möser et al., 2018] used this criteria. For reasons stated above, I do not535

recommend this one.536

6. Maximize resistance to a specific attack. This criteria has some intuitive appeal: defend against an attack537

directly. However, it is difficult to say whether maximizing resistance to one attack may leave users vulnerable538

to a different attack.539

There is no particular statistical theoretical reason to choose one parametric distribution over another. Issues with540

software implementation may push us to use a simpler and more common distribution. If wallet developers do541

not use the wallet2 implementation, they may have difficulty implementing a distribution defined by a mixture of542

unusual distributions.543
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7 Dynamic Risk and Forecasting544

The Monero Research Lab research bulletin that I quoted in the introduction continues with the following observa-545

tion [Mackenzie et al., 2015]:546

This would suggest that we, the developers of Monero, must estimate the probability distribution gov-547

erning the age of transaction outputs.548

This, too, is problematic. When an exchange rate is experiencing a strong long-term decline (inflation),549

rational users are more likely to spend their transaction outputs, for tomorrow their outputs will be550

worth less in terms of goods and services than today and hoarding is not economically rational. When551

an exchange rate is experiencing a strong long-term increase (deflation), rational users are more likely to552

hoard their transaction outputs for the opposite reason. Hence, the distribution of transaction output553

ages will at least vary over time, and, presuming any proportion of users are rational will certainly depend554

sensitively on the economic performance of the currency. It is unwise to design security recommendations555

around the economic performance of our protocol.556

I would argue that, as long as Monero is committed to using a mimicking decoy selection algorithm, “design[ing]557

security recommendations around the economic performance of our protocol” is unavoidable, if unfortunate. The558

best that we can do is to minimize the risk of guessing the future distribution incorrectly. This requires an assessment559

of dynamic risk with forecasting. According to empirical evidence from transparent chains, the spent output560

age distribution is affected more by volatility than long-term inflation and deflation. [Makarov & Schoar, 2021]561

concluded that “the vast majority of Bitcoin transactions between real entities are for trading and speculative562

purposes. Starting from 2015, 75% of real bitcoin volume has been linked to exchanges or exchange-like entities563

such as on-line wallets, OTC desks, and large institutional traders.” I discussed my own findings for DOGE in the564

June 1, 2022 Monero Research Lab meeting.6 The transaction patterns of Monero may be somewhat different due565

to its absence from many centralized exchanges, but probably not completely different. Assume for a moment that566

changes in the real spend age distribution are entirely caused by exchange rate volatility. In that case, forecasting567

the real spend age distribution would be roughly equivalent to forecasting exchange rate volatility and therefore568

would be highly challenging. The Efficient Market Hypothesis would imply that a naive forecast may be the best569

forecast.570

We return to Equation (2) from Section 4 Criteria for Best Fit: the risk function R(θ, δ) = EθL(θ, δ(X)).571

This is the expected value of our choice of the loss function when a particular set of parameters, e.g. the shape,572

scale, and location of a parametric distribution, are set to particular values. The theoretical bounds on R(θ, δ)573

can be very wide in our setting and do not grant us much guidance. Therefore, it is best to compute some sort of574

empirical risk function based on data. All we have is past data, yet our goal is to compute future risk. We must575

forecast future data and then determine performance of our various options of decoy selection algorithms through576

forecast validation.577

How to do forecasting and forecast validation? A naive, simple method to forecast future values is to assume578

that the values will be the same as in the current period. More sophisticated methods attempt to anticipate changes579

in the forecasted values by analyzing cycles and statistical dependence of the values. In our setting with multi-580

variate forecasting, some appropriate forecasting methods include Exponential Smoothing, Vector Autoregression581

(VAR), Vector Autoregressive Moving Average (VARMA), Generalized Autoregressive Conditional Heteroskedas-582

ticity (GARCH), and Kalman Filter.583

Cross-validation is a popular general method to evaluate model accuracy. There are special considerations584

when the data is time series because time series data is not necessarily independent nor identically distributed.585

The general consensus in the academic literature is that when the characteristics of the time series are unknown586

then “out-of-sample” (OOS) cross-validation should be used. OOS cross-validation fits a forecasting model on587

6https://libera.monerologs.net/monero-research-lab/20220601#c103366

https://libera.monerologs.net/monero-research-lab/20220601#c103366
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all the data except the last few periods and then measures how well the model forecasts the data of the last few588

periods. OOS cross-validation is also known as “last block validation”, “forward validation”, and “holdout validation”589

([Bergmeir & Benítez, 2012], [Cerqueira et al., 2020]).590

To be specific, what I mean by “unknown” characteristics of a time series is that it is unknown whether the time591

series is stationary. Stationarity is a technical condition in time series that requires that its distribution does not592

depend on time. An independent and identically distributed series is stationary. A series that is neither independent593

nor identically distributed will not be stationary. Many financial time series are non-stationary. A common way to594

manage non-stationarity in data is to compute the first difference (or second difference if necessary, or third...), but595

it is not clear how this could be done when the object of observation is an entire distribution, as it is in our setting.596

[Bergmeir et al., 2018] mathematically prove that standard K-fold cross-validation is a valid technique when597

the data series is stationary (plus a few other assumptions). They warn that K-fold cross-validation is not valid if598

the data series is non-stationary and show through Monte Carlo simulations that OOS validation performs better599

on non-stationary data. [Bergmeir & Benítez, 2012] arrive at a similar conclusion. [Cerqueira et al., 2020] separate600

dozens of real data sets into stationary and non-stationary and finds that “when the time series are non-stationary,601

the most accurate estimates are produced by out-of-sample methods, particularly the holdout approach repeated602

in multiple testing periods....When the observations in a data set are not i.i.d. [independently and identically603

distributed], the standard cross-validation approach is not directly applicable.” The top performing models in the604

M5 forecasting competition generally used the last 28 day period for cross-validation ([Makridakis et al., 2022]).605

There is no particular reason to think that the spent output age distribution is stationary. Certainly, research606

into spent output age is in its infancy. Non-stationarity is the weaker assumption. To be “safe” it is better to impose607

fewer assumptions on statistical models if we cannot justify them. Furthermore, with only about 52 weeks of Monero608

data it would be difficult to perform a formal hypothesis test of stationarity with high statistical power. Therefore,609

it is best to use OOS cross-validation to evaluate forecast accuracy and risk. A form of OOS cross-validation is610

performed in the following section.611

The tsqsim software created by Monero developer mj-xmr is capable of OOS cross-validation.7 Some modifi-612

cations will be necessary to support multivariate time series. Technically, spent output age is univariate, but since613

we are measuring the age distribution at each time period, it makes sense to model it in a multivariate way.614

8 Inter-Temporal Stability of Spent Output Age Distribution for BTC,615

BCH, LTC, and DOGE616

Much like in Section 5 Dry Run with Old Möser et al. (2018) Data, it is useful to run an analysis of similar617

spent output age data from other blockchains to inform statistical modeling strategies.618

The table below lists the share of payments made with several different cryptocurrencies with an unspent619

transaction output (UTXO) model. I ignored cryptocurrencies with an account model like Ethereum because the620

spending mechanism is fundamentally different. The main question that we want to answer is whether the chosen621

cryptocurrencies are used in a roughly similar manner to Monero: as peer-to-peer electronic cash. This table may622

suggest that BTC, BCH, LTC, and DOGE have somewhat similar usage as Monero. One major difference between623

these cryptocurrencies and Monero is that there is a 10 block lock enforced at the protocol level for Monero. BTC,624

BCH, LTC, and DOGE allow users to spend received funds immediately.625

626

7https://github.com/mj-xmr/tsqsim

https://github.com/mj-xmr/tsqsim
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UTXO-based cryptocurrency usage as payment by percent (payment processors and merchants)

Service Bitpay8 CoinCards9 Bitrefill10 Cake Pay11 Travala12 Shodan13

TXs/month 67,000 NA 186,000 NA NA 220 total

Time period June 2022 July 2022 NA Aug 2022 NA NA

Metric Transactions USD value Unique users USD value Hotel nights Subscriptions

BTC 53.3 41.0 40 16 9.2 47.3

BCH 5.0 NA NA NA 0.5 4.1

LTC 21.2 7.0 7 6 0.8 12.7

DOGE 6.2 3.0 NA NA 0.3 13.2

XMR NA 19.0 NA 78 1.9 NA

DASH NA 0.5 NA NA 0.5 NA

ADA NA NA NA NA 0.9 NA

627

In the next several section I perform statistical analysis of these four UTXO cryptocurrencies. The code is628

available at https://github.com/Rucknium/OSPEAD/tree/main/General-Blockchain-Age-of-Spent-Outputs. The629

code was executed on the Monero Research Computing Server, whose hardware was improved by a CCS proposal.14630

8.1 Summary Characterization of Distributions Over Time631

Figures 14 to 17 show several statistics about the age of spent outputs of BTC, BCH, LTC, and DOGE since 2015.632

The age units are in terms of blocks. For BTC and BCH the interval between blocks is 10 minutes. For LTC it633

is 2.5 minutes and for DOGE it is 1 minute. The unit of observation is the ISO week, a natural unit of economic634

time.15635

The first line graphs show the mean, median, standard deviation, skewness, and kurtosis. The skewness and636

kurtosis statistics may be unfamiliar. They are the third and fourth standardized moments of a distribution,637

respectively. The moments of a distribution is defined by a power of the expectation E[X], i.e. theoretical mean, of638

the distribution. The kth moment is E[Xk]. Moments extend the concept of moving from expectation to variance639

(which is the square of the standard deviation). The mean (expectation) of a random variable is simply the first640

moment:641

µ = E[X1]

The variance is the second central moment:642

σ2 = E
[
(X − E[X])

2
]

The skewness is the third standardized moment (standardized by the standard deviation σ):643

µ̃3 = E

[(
X − E[X]

σ

)3
]

The kurtosis is the fourth standardized moment:644

8https://bitpay.com/stats/
9https://twitter.com/CoinCards/status/1555286172385116164

10https://youtu.be/bkjEcSmZKfc?t=549
11https://twitter.com/cakewallet/status/1565370179906838528
12https://travala-dashboard.com/
13https://blog.shodan.io/accepting-crypto-a-vendor-perspective/
14https://ccs.getmonero.org/proposals/gingeropolous_zenith_storage.html
15https://en.wikipedia.org/wiki/ISO_week_date

https://github.com/Rucknium/OSPEAD/tree/main/General-Blockchain-Age-of-Spent-Outputs
https://bitpay.com/stats/
https://twitter.com/CoinCards/status/1555286172385116164
https://youtu.be/bkjEcSmZKfc?t=549
https://twitter.com/cakewallet/status/1565370179906838528
https://travala-dashboard.com/
https://blog.shodan.io/accepting-crypto-a-vendor-perspective/
https://ccs.getmonero.org/proposals/gingeropolous_zenith_storage.html
https://en.wikipedia.org/wiki/ISO_week_date
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Figure 13: Skewness

Source: https://en.wikipedia.org/wiki/File:Negative_and_positive_skew_diagrams_(English).svg

µ̃4 = E

[(
X − E[X]

σ

)4
]

The mean is a measure of the central tendency of a distribution. The standard deviation is a measure of its645

dispersion (spread). The skewness and kurtosis of a distribution involve its characteristics in its tail or tails. A646

positive skew means that the distribution’s tail is on the right side of the distribution. All the age distributions647

analyzed here tend to have a positive skew. High kurtosis means that large outliers are more likely. Kurtosis648

of greater than 3 suggests that a distribution has a fatter tail than the normal distribution. The skewness and649

kurtosis become relevant when very old outputs “wake up” during periods of exchange rate volatility to participate650

in speculative activity, i.e. buying and selling on exchanges.651

The fitting function is essentially a minimum divergence estimator. This means that the parameters of the652

parametric probability density function (PDF) are chosen to minimize the distance between the parametric PDF653

and the PDF formed by the data (the empirical PDF), for some specified metric of “distance”.654

There are several measures of distance that could be used. For the purpose of this exploration of output age655

distribution forecasting, the distance metric to be minimized will be the total linear sum of the mass of the estimated656

parametric PDF that falls below the empirical PDF. With the “loss function” specified this way, the optimization657

algorithm attempts to minimize the probability that the real spends are much more likely to come from a block of658

a particular age compared to a potential decoy. Ideally, the decoy distribution would be identical to the real spend659

age distribution, but parametric PDFs are not flexible enough to perfectly match an empirical PDF.660

Define fS(x) as the empirical spent output age distribution at block age x and fD(x;β) as a potential “decoy”661

distribution with some parameter vector β (with the transparent blockchains presented here, there is no actual662

decoy mechanism of course). Then for each week of spent output age data the parameter vector β can be chosen663

to minimize this quantity:664

L(β) =

N∑
i∈{xi:fD(xi;β)<fS(xi)}

fS(xi)− fD(xi;β)

That is, minimize the sum of the difference between the real spend age distribution for blocks xi where the decoy665

distribution is less than the real spend age distribution. The minimization is performed by computer numerical666

minimization methods similar to gradient descent.667

The two candidate “decoy” parametric PDFs under consideration in this exercise are the Log-gamma (lgamma)668
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distribution and the Right-Pareto Log-normal (rpln) distribution. The lgamma distribution, with two parameters,669

was used in [Möser et al., 2018] to suggest a decoy distribution that was later incorporated into Monero’s reference670

wallet software. The rpln distribution is a more flexible distribution, with three parameters. The PDFs of these671

two distributions are:672

flgamma(x) =
ratelogshapelog

Γ(shapelog)
× (lnx)shapelog−1

xratelog+1

with ratelog > 0 and shapelog > 0 and where Γ is the gamma function and673

frpln(x) = shape2× x−shape2−1eshape2×meanlog+ shape22×sdlog2

2 Φ

(
lnx−meanlog − shape2× sdlog2

sdlog

)
with shape2 > 0 and sdlog > 0 and where Φ is the cumulative distribution function of the standard Normal674

distribution.675
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Figure 14: BTC Summary Characterization of Spend Age Distribution Over Time
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Figure 15: BCH Summary Characterization of Spend Age Distribution Over Time
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Figure 16: LTC Summary Characterization of Spend Age Distribution Over Time
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Figure 17: DOGE Summary Characterization of Spend Age Distribution Over Time

8.2 Cross-Blockchain Correlations of Summary Statistics Across Time676

The following table contains the correlation between several statistics over time for each pair of blockchains. The677

“BTC&BCH” correlation included data only for January 2018 onward to avoid artificially raising the correlation by678

including weeks when the BTC and BCH contained the same transaction before the August 2017 hard fork.679

To be precise, define vector [xs,1, xs,2, . . . , xs,Z ] = Xs for statistic s, e.g. the median, of blockchain x at each680

week, with Z total weeks in the sample. Define Ys for blockchain y similarly. Then the quantities displayed in681

Table 4 are corr(Xs,Ys).682
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The two statistics that tend to have consistently high correlation for each pair of blockchains are skewness and683

kurtosis.684

Table 4: Cross-Blockchain Correlations of Summary Statistics Across Time

BTC&BCH BTC&LTC BTC&DOGE BCH&LTC BCH&DOGE LTC&DOGE
mean -0.04 -0.04 -0.04 -0.01 -0.08 0.21
median -0.03 -0.01 -0.01 -0.03 -0.02 -0.01
sd -0.07 0.02 0.34 -0.02 0.02 0.35
skewness 0.09 0.24 0.19 0.11 -0.32 0.28
kurtosis 0.02 0.29 0.31 0.22 -0.26 0.23

8.3 Evaluation of Forecast Accuracy685

OSPEAD needs to approximate the real spend age distribution in the future, not the past. Ideally, the decoy686

selection algorithm should mimic the real spend age distribution at the time that each transaction is made. Since687

the real spend age distribution is likely changing over time, some type of forecasting is needed. Here I perform some688

simple evaluation of forecasting methods on transparent blockchains.689

Let W be the number of weeks in a forecast horizon. It is the approximate interval of time that a proposed690

decoy selection algorithm should aim to be accurate. Let M be the number of weeks in the data sample. Then a691

common way to evaluate a forecasting method is to use the first M − W weeks to fit a forecasting model. Then692

determine the performance of the method by forecasting for W weeks into the “future” and compare with the actual693

sample data of the final W weeks. This is known as out-of-sample validation. For this exercise, I set W = 8.694

An entire distribution needs to be forecast rather than a single value or a set of values. Forecasting an entire695

(empirical, nonparametric) distribution is extremely complex, so here I reduce the magnitude of the forecasting696

problem to just the parameters of the fitted parametric distributions (lgamma and rpln).697

As an initial test, the sophisticated forecasting method used here was a multivariate auto-regressive(1) exoge-698

nous inputs state-space model with a Koopman-Durbin Kalman filter implemented in the MARSS R package. The699

forecasting method allows a forecast into each period in the future. Since the “S” in OSPEAD stands for “Static”,700

only one of the forecast periods can be chosen. I chose the 4th forecast period since it is roughly in the middle of701

the 8-week forecast horizon. This forecast is referred to as simply forecast.accuracy below.702

I also evaluated two naive forecasting methods. The first is to use the parameters of the M −W th week, i.e. the703

last week of the "training set", as the forecast. This is called forecast.accuracy.naive.final.week below. The704

second naive method (forecast.accuracy.naive.horizon.period) is to use the final W weeks of the training set705

to fit the specified lgamma and rpln distributions by minimizing the L(β) loss function for a set of weeks of data706

pooled together rather than a single week.707

Given that the loss function L(β) is not globally convex in the choice parameters β, the numerical optimization708

algorithm can go “off the rails” and settle at a local rather than global minimum. Such a failure mode is especially709

likely if the empirical distribution is unusual or if the starting values given to the optimization algorithm are far from710

the global minimum. Generally, the solution to this problem is to try different optimization algorithms, determined711

better starting values, or use a computationally expensive grid search method. I chose to defer dealing with the712

issue to a later stage in the process. For the purposes of forecasting, I removed any weeks where the estimated713

parameters of the parametric distributions were greater than (or less than) five times the 95th (5th) percentile from714

the median. For example, this exclusion step caused the forecast evaluation for BCH to use the 15th through 24th715

weeks of 2022 rather than the 20th through 27th week as for other blockchains.716

The results of the forecast evaluation are in Table 5. Forecasts were evaluated based on the value of their loss717

function L(β) for each out-of-sample week. Lower values indicate better performance. The minimum possible value718
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is 0 and the maximum possible value is 1. The color code scales were calculated separately for each blockchain.719

Each color claims a value bin of equal size. Higher values are red, average values are yellow, and low values are720

green.721

In this preliminary exercise, rpln.forecast.accuracy.naive.horizon.period appears to have the most con-722

sistently good performance across blockchains.723
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8.4 Animated Evolution of Distributions724

I created gif animations of the empirical probability densities of each blockchain’s spent output age distribution over725

time. The green line is the current week’s empirical density, with faint echoes of prior weeks in other colors. The726

fitted lgamma distribution line is white and rpln is red. The horizontal axis of the first charts for each blockchain727

has a log scale. Both the horizontal and vertical charts are log scale for the second chart of each blockchain. The728

“1” on the horizontal axis should be interpreted as “0”. In other words, a “1” means that the age of the spent output729

is approximately zero. This would occur if (1) a child transaction spent an output from a parent transaction that730

was confirmed in the same block as the child transaction; (2) the timestamps of blocks were out of order, leading731

to a “negative” age; (3) the block was confirmed at a time interval less than half of the target block time, e.g. 5732

minutes for BTC/BCH, leading to rounding down to zero.733

There is a clear daily cycle visible in the log-log scale charts.734

To view the animated gifs, visit:735

https://rucknium.me/html/spent-output-age-btc-bch-ltc-doge.html736

9 Options for Forecasting737

My suggestion is to reduce the dimensionality of the forecasting problem by forecasting the parameters of parametric738

distributions, as in Section 8.3 Evaluation of Forecast Accuracy. In this case we would need forecasting739

methods that can handle multivariate forecasting objectives. Beyond that requirement, there are few theoretical740

reasons to favor particular forecasting methods in this setting. Out-of-sample forecasting validation should guide741

the final choice of forecast method. The one exception is forecasting methods that technically require the time742

series to be stationary. We may want to somewhat discount such methods and choose one only if it offers much743

superior performance to a method that allows non-stationarity.744

Forecasting methods under consideration include:745

1. Exponential Smoothing. The legion R package can perform multivariate Exponential Smoothing.746

2. Vector Autoregression (VAR). The MTS R package can perform VAR forecasting through its VARpred function.747

Note that VAR generally requires stationary time series unless explicit cointegration relationships are specified748

as in a Vector Error Correction model.749

3. Vector Autoreregressive Moving Average (VARMA). The MTS R package can perform VAR forecasting through750

its VARMApred function. Generally, stationarity is required.751

4. Generalized Autoregressive Conditional Heteroskedasticity (GARCH). The rmgarch R package offers multi-752

variate GARCH forecasting. Generally, stationarity is required.753

5. Kalman Filter. The MARSS and KFAS R packages provide multivariate Kalman Filter forecasting methods.754

6. A naive forecast where the forecast is just the value of the parameters of the last period in the training set.755

7. A naive forecast where the parameters are fit on multiple weeks of pooled data on the last part of the training756

set.757

A simple way to evaluate forecast accuracy is to compute the loss function on some final W number of weeks as758

I did in Section 8.3 Evaluation of Forecast Accuracy. Another option is to perform the evaluation on a759

rolling window, called “evaluation on a rolling forecasting origin” in Section 5.10 “Time series cross-validation” of760

[Hyndman & Athanasopoulos, 2021]. For now for notational simplicity we will assume the former method.761

https://rucknium.me/html/spent-output-age-btc-bch-ltc-doge.html
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Let Q be the set of forecasting methods listed above and q(β) be a particular element of the Q set. q(β) is a762

function that takes as arguments fitted parameter values β̂ of parametric PDFs f(x|β) ∈ F of past weekly values763

and outputs forecasts β̃ for future β. Considering the fitting procedure from Equation (13), the final decoy selection764

algorithm parametric distribution f(x|β) and parameters β should be chosen by:765

argmin
f(x|β)∈F,q(β̂)∈Q

1

W

W∑
i=1

L
(
f
(
xi

∣∣∣q (β̂))) ,∀q ∈ Q (14)

Expression (14) will find the minimizers f(x|β̃) of each loss function L ∈ L among all parametric distributions766

f(x|β) ∈ F and all forecasting methods q(β) ∈ Q of the mean for the out-of-sample data xi for weeks i = 1, . . . ,W .767

Once these f(x|β̃) are found, the only decision left to be made is the judgment call on the proper choice of loss768

function and any associated loss function parameters λ, α, η. For example, in Table 5, Expression (14) would choose769

rpln.forecast.accuracy.naive.horizon.period for BTC, LTC, and DOGE, and rpln.forecast.accuracy for770

BCH. Note that Expression (14) forms a plug-in estimator for the risk function in Equation (2). Therefore, it is a771

type of empirical risk minimizer.16772
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