{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### 半径1の円に内接する正N角形の面積と円周率\n", "\n", "> Tags\n", "\n", "- limits\n", "- pi\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "vscode": { "languageId": "wolfram" } }, "outputs": [ { "data": { "text/html": [ "<div><pre style=\"font-family: "Courier New",Courier,monospace;\">13.2.0 for Linux x86 (64-bit) (December 12, 2022)</pre></div>" ], "text/plain": [ "13.2.0 for Linux x86 (64-bit) (December 12, 2022)" ] }, "execution_count": 1, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "$Version" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "vscode": { "languageId": "wolfram" } }, "outputs": [], "source": [ "BoxForm`$UseTemplateSlotSequenceForRow = False;" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "> 半径1の円に内接する正$n$角形の面積\n", "\n", "半径1の円に内接する正$n$角形の面積を$S_n$とすると\n", "\n", "$$\n", "S_n = \\frac{n}{2} \\times \\sin \\frac{2\\pi}{n}\n", "$$\n", "\n", "半径1の円の面積は$\\pi$なので以下のことが予想される\n", "\n", "$$\n", "\\lim_{n\\to\\infty} S_n = \\pi\n", "$$\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "vscode": { "languageId": "wolfram" } }, "outputs": [ { "data": { "text/html": [ "<div><img alt=\"Output\" src=\"\"></div>" ], "text/plain": [ "{RawBoxes[Cell[BoxData[FormBox[TagBox[RowBox[{TemplateBox[{StyleBox[RowBox[\n", " \n", "> {FractionBox[1, 2], , x, , \n", " \n", "> RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}]}], \n", " \n", "> ScriptLevel -> 0, StripOnInput -> False], x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", ShowStringCharacters -> False], \n", " \n", "> RowBox[{#2, , #3}], LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], ]}] & )], , π}], \n", " \n", "> HoldForm], TraditionalForm]], Output, \n", " \n", "> {Background -> None, GraphicsBoxOptions -> \n", " \n", "> {DefaultBaseStyle -> {FontFamily -> Times, Graphics}, \n", " \n", "> DefaultAxesStyle -> \n", " \n", "> Directive[GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, \n", " \n", "> GraphicsAxes], DefaultFrameStyle -> \n", " \n", "> Directive[GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, \n", " \n", "> GraphicsFrame], DefaultFrameTicksStyle -> \n", " \n", "> Directive[FontFamily -> Times, FontSize -> 10, GraphicsFrameTicks], \n", " \n", "> DefaultTicksStyle -> \n", " \n", "> Directive[FontFamily -> Times, FontSize -> 10, GraphicsTicks]}, \n", " \n", "> Graphics3DBoxOptions -> {DefaultBaseStyle -> {FontFamily -> Times, Graphics3D}}}, \n", " \n", "> NumberPoint -> ., CellSize -> {550, Automatic}, \n", " \n", "> AutoStyleOptions -> {HighlightFormattingErrors -> False}, \n", " \n", "> RenderingOptions -> {3DRenderingMethod -> BSPTreeOrDepthBuffer}, \n", " \n", "> FontFamily -> Times, FontSize -> 14, ScriptLevel -> 0, Background -> None]], \n", " \n", "> RawBoxes[Cell[BoxData[FormBox[StyleBox[GridBox[{{TemplateBox[{RowBox[\n", " \n", "> {π, -, FractionBox[RowBox[{2, , SuperscriptBox[π, 3]}], \n", " \n", "> RowBox[{3, , SuperscriptBox[x, 2]}]], +, \n", " \n", "> FractionBox[RowBox[{2, , SuperscriptBox[π, 5]}], \n", " \n", "> RowBox[{15, , SuperscriptBox[x, 4]}]], +, \n", " \n", "> InterpretationBox[RowBox[{O, (, \n", " \n", "> SuperscriptBox[RowBox[{(, FractionBox[1, x], )}], 5], )}], \n", " \n", "> SeriesData[x, Infinity, {}, 0, 5, 1], Editable -> False]}], \n", " \n", "> RowBox[{SeriesData, [, \n", " \n", "> RowBox[{x, ,, ∞, ,, \n", " \n", "> RowBox[{{, RowBox[{π, ,, 0, ,, \n", " \n", "> RowBox[{-, FractionBox[RowBox[{2, , SuperscriptBox[π, 3]}], 3]}], \n", " \n", "> ,, 0, ,, FractionBox[RowBox[{2, , SuperscriptBox[π, 5]}], 15]}], \n", " \n", "> }}], ,, 0, ,, 5, ,, 1}], ]}]}, SeriesData, \n", " \n", "> DisplayFunction -> (#1 & ), InterpretationFunction -> (#2 & ), \n", " \n", "> SyntaxForm -> Plus]}, {StyleBox[RowBox[{\"(\", , \"Laurent series\", , \")\"}], \n", " \n", "> {FontFamily -> Roboto, FontSize -> 10, GrayLevel[0.5], \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AllowScriptLevelChange -> False, \n", " \n", "> DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], Column]\\\n", " \n", "> , TraditionalForm]], Output, \n", " \n", "> {Background -> None, GraphicsBoxOptions -> \n", " \n", "> {DefaultBaseStyle -> {FontFamily -> Times, Graphics}, \n", " \n", "> DefaultAxesStyle -> \n", " \n", "> Directive[GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, \n", " \n", "> GraphicsAxes], DefaultFrameStyle -> \n", " \n", "> Directive[GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, \n", " \n", "> GraphicsFrame], DefaultFrameTicksStyle -> \n", " \n", "> Directive[FontFamily -> Times, FontSize -> 10, GraphicsFrameTicks], \n", " \n", "> DefaultTicksStyle -> \n", " \n", "> Directive[FontFamily -> Times, FontSize -> 10, GraphicsTicks]}, \n", " \n", "> Graphics3DBoxOptions -> {DefaultBaseStyle -> {FontFamily -> Times, Graphics3D}}}, \n", " \n", "> NumberPoint -> ., CellSize -> {550, Automatic}, \n", " \n", "> AutoStyleOptions -> {HighlightFormattingErrors -> False}, \n", " \n", "> RenderingOptions -> {3DRenderingMethod -> BSPTreeOrDepthBuffer}, \n", " \n", "> FontFamily -> Times, FontSize -> 14, ScriptLevel -> 0, Background -> None]]}" ] }, "execution_count": 4, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "(*Short Answerの確認*)\n", "WolframAlpha[\"Limit[(x/2)sin[2Pi/x], x ->\\[Infinity]\", \"PodCells\"]" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "> Wolframで証明を確認してみる" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "vscode": { "languageId": "wolfram" } }, "outputs": [ { "data": { "text/html": [ "<div><img alt=\"Output\" src=\"\"></div>" ], "text/plain": [ "RawBoxes[StyleBox[FormBox[StyleBox[GridBox[{{StyleBox[GridBox[{{StyleBox[\n", " \n", "> StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{\"Find the following limit\"}, RowDefault], \":\"}, \n", " \n", "> RowWithSeparators], GrayLevel[0.3], StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[TemplateBox[{TagBox[StyleBox[TemplateBox[{RowBox[{FractionBox[1, \n", " \n", "> 2], , x, , \n", " \n", "> RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}]}], x, ∞}, \n", " \n", "> Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], ]}] & )], \n", " \n", "> ScriptLevel -> 0, StripOnInput -> False], HoldForm]}, RowDefault], \n", " \n", "> HoldForm]}}, GridBoxAlignment -> {Columns -> {{Left}}}, \n", " \n", "> AllowScriptLevelChange -> False, DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}, \n", " \n", "> GridBoxSpacings -> {Columns -> {{None}}, Rows -> {{0.5}}}], Column]}, \n", " \n", "> {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{TemplateBox[{TemplateBox[{StyleBox[TemplateBox[\n", " \n", "> {RowBox[{FractionBox[1, 2], , x, , \n", " \n", "> RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}]}], \n", " \n", "> x, ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \" \"}, \n", " \n", "> RowDefault], \" \", \n", " \n", "> RowBox[{FractionBox[1, 2], , \n", " \n", "> StyleBox[TemplateBox[{RowBox[{x, , \n", " \n", "> RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}]}], \n", " \n", "> x, ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False]}]}, \n", " \n", "> RowDefault]}, RowDefault], \":\"}, RowWithSeparators], \n", " \n", "> GrayLevel[0.3], StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[RowBox[{TagBox[FrameBox[FractionBox[1, 2], \n", " \n", "> FrameStyle -> GrayLevel[0.8], FrameMargins -> 1, \n", " \n", "> BaselinePosition -> Baseline, ContentPadding -> False, \n", " \n", "> StripOnInput -> False], HoldForm], , \n", " \n", "> TagBox[StyleBox[TemplateBox[{RowBox[{x, , \n", " \n", "> RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}]}], x, ∞}, \n", " \n", "> Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], ]}] & )], \n", " \n", "> ScriptLevel -> 0, StripOnInput -> False], HoldForm]}], HoldForm]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AllowScriptLevelChange -> False, \n", " \n", "> DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{\"To \", \"prepare \", \"the \", \"product \", \n", " \n", "> TemplateBox[{RowBox[{x, , \n", " \n", "> RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}]}], \" \"}, \n", " \n", "> RowDefault], \"for \", \"solution \", \"by \", \"l'Hôpital's \", \"rule, \", \n", " \n", "> \"write \", \"it \", \"as \", \n", " \n", "> FractionBox[RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}], \n", " \n", "> RowBox[{1, /, x}]]}, RowDefault], \":\"}, RowWithSeparators], \n", " \n", "> GrayLevel[0.3], StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[RowBox[{FractionBox[1, TagBox[2, HoldForm]], \n", " \n", "> FrameBox[TagBox[StyleBox[TemplateBox[{FractionBox[RowBox[\n", " \n", "> {sin, (, FractionBox[RowBox[{2, , π}], x], )}], \n", " \n", "> RowBox[{1, /, x}]], x, ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], ]}] & )]\\\n", " \n", "> , ScriptLevel -> 0, StripOnInput -> False], HoldForm], \n", " \n", "> FrameStyle -> GrayLevel[0.8], FrameMargins -> 1, \n", " \n", "> BaselinePosition -> Baseline, ContentPadding -> False, \n", " \n", "> StripOnInput -> False]}], HoldForm]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AllowScriptLevelChange -> False, \n", " \n", "> DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{StyleBox[GridBox[{{\"•\", \n", " \n", "> TagBox[RowBox[{StyleBox[TemplateBox[{RowBox[{sin, (, \n", " \n", "> FractionBox[RowBox[{2, , π}], x], )}], x, ∞}, \n", " \n", "> Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], , 0}\n", " \n", "> ], HoldForm]}, \n", " \n", "> {\"•\", TagBox[RowBox[{StyleBox[TemplateBox[{FractionBox[1, x], x, \n", " \n", "> ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], , 0}\n", " \n", "> ], HoldForm]}}, GridBoxAlignment -> {Columns -> {{Left}}}, \n", " \n", "> AutoDelete -> False, \n", " \n", "> GridBoxItemSize -> \n", " \n", "> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], Grid]}, \n", " \n", "> RowDefault], \"\"}, RowWithSeparators], GrayLevel[0.3], \n", " \n", "> StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[TemplateBox[{TemplateBox[{\"Since \", \"both \", \"the \", \"numerator \", \n", " \n", "> \"and \", \"denominator \", \"approach \", \n", " \n", "> TemplateBox[{0, \",\", \" \"}, RowDefault], \n", " \n", "> TemplateBox[{StyleBox[TemplateBox[{FractionBox[RowBox[\n", " \n", "> {sin, (, FractionBox[RowBox[{2, , π}], x], )}], \n", " \n", "> RowBox[{1, /, x}]], x, ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], ]}] & )\n", " \n", "> ], ScriptLevel -> 0, StripOnInput -> False], \" \"}, RowDefault], \n", " \n", "> \"is \", \"a \", \"candidate \", \"for \", \"L'Hôpital's \", \"rule.\"}, \n", " \n", "> RowDefault]}, RowDefault], HoldForm]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AllowScriptLevelChange -> False, \n", " \n", "> DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{\"Compute \", \"the \", \"derivatives \", \"of \", \"the \", \n", " \n", "> \"numerator \", \"and \", \"denominator. \", \"By \", \"l'Hôpital's \", \n", " \n", "> \"rule: \", \"\\n \", \n", " \n", "> StyleBox[GridBox[{{StyleBox[TemplateBox[{FractionBox[\n", " \n", "> RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}], \n", " \n", "> RowBox[{1, /, x}]], x, ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \"\", \n", " \n", "> StyleBox[TemplateBox[{FractionBox[RowBox[{FractionBox[, \n", " \n", "> RowBox[{, x}]], \n", " \n", "> RowBox[{sin, (, FractionBox[RowBox[{2, , π}], x], )}]}], \n", " \n", "> RowBox[{FractionBox[, RowBox[{, x}]], (, \n", " \n", "> FractionBox[1, x], )}]], x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False]}, \n", " \n", "> {\"\", \"\", StyleBox[TemplateBox[{FractionBox[RowBox[\n", " \n", "> {-, FractionBox[RowBox[{2, , π, , \n", " \n", "> RowBox[{cos, (, FractionBox[RowBox[{2, , π}], x], )}]}]\\\n", " \n", "> , SuperscriptBox[x, 2]]}], \n", " \n", "> RowBox[{-, FractionBox[1, SuperscriptBox[x, 2]]}]], x, ∞}, \n", " \n", "> Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False]}, \n", " \n", "> {\"\", \"\", StyleBox[TemplateBox[{RowBox[{2, , π, , \n", " \n", "> RowBox[{cos, (, FractionBox[RowBox[{2, , π}], x], )}]}], \n", " \n", "> x, ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AutoDelete -> False, \n", " \n", "> GridBoxItemSize -> \n", " \n", "> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], Grid]}, \n", " \n", "> RowDefault], \"\"}, RowWithSeparators], GrayLevel[0.3], \n", " \n", "> StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[RowBox[{FractionBox[1, TagBox[2, HoldForm]], \n", " \n", "> FrameBox[TagBox[StyleBox[TemplateBox[{RowBox[{2, , π, , \n", " \n", "> RowBox[{cos, (, FractionBox[RowBox[{2, , π}], x], )}]}], x, ∞}, \n", " \n", "> Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], ]}] & )]\\\n", " \n", "> , ScriptLevel -> 0, StripOnInput -> False], HoldForm], \n", " \n", "> FrameStyle -> GrayLevel[0.8], FrameMargins -> 1, \n", " \n", "> BaselinePosition -> Baseline, ContentPadding -> False, \n", " \n", "> StripOnInput -> False]}], HoldForm]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AllowScriptLevelChange -> False, \n", " \n", "> DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{\"Applying \", \"the \", \"product \", \"rule, \", \"write \", \n", " \n", "> TemplateBox[{StyleBox[TemplateBox[{RowBox[{2, , π, , \n", " \n", "> RowBox[{cos, (, FractionBox[RowBox[{2, , π}], x], )}]}], x, \n", " \n", "> ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \" \"}, \n", " \n", "> RowDefault], \"as \", \n", " \n", "> RowBox[{2, , π, , \n", " \n", "> TagBox[StyleBox[TemplateBox[{RowBox[{cos, (, \n", " \n", "> FractionBox[RowBox[{2, , π}], x], )}], x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \n", " \n", "> HoldForm]}]}, RowDefault], \":\"}, RowWithSeparators], \n", " \n", "> GrayLevel[0.3], StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[FractionBox[RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm], , \n", " \n", "> TagBox[StyleBox[TemplateBox[{RowBox[{cos, (, \n", " \n", "> FractionBox[RowBox[{2, , π}], x], )}], x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], ]}] & )]\\\n", " \n", "> , ScriptLevel -> 0, StripOnInput -> False], HoldForm]}], \n", " \n", "> RowBox[{TagBox[2, HoldForm]}]], HoldForm]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AllowScriptLevelChange -> False, \n", " \n", "> DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{RowBox[{StyleBox[TemplateBox[{RowBox[{cos, (, \n", " \n", "> FractionBox[RowBox[{2, , π}], x], )}], x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], , \n", " \n", "> RowBox[{cos, (, \n", " \n", "> StyleBox[TemplateBox[{FractionBox[RowBox[{2, , π}], x], x, ∞}, \n", " \n", "> Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], )}]}]}\n", " \n", "> , RowDefault], \":\"}, RowWithSeparators], GrayLevel[0.3], \n", " \n", "> StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[FractionBox[RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm], , \n", " \n", "> TagBox[FrameBox[RowBox[{cos, (, \n", " \n", "> TagBox[StyleBox[TemplateBox[{FractionBox[RowBox[{2, , π}], x], x, \n", " \n", "> ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \n", " \n", "> HoldForm], )}], FrameStyle -> GrayLevel[0.8], FrameMargins -> 1, \n", " \n", "> BaselinePosition -> Baseline, ContentPadding -> False, \n", " \n", "> StripOnInput -> False], HoldForm]}], RowBox[{TagBox[2, HoldForm]}]], \n", " \n", "> HoldForm]}}, GridBoxAlignment -> {Columns -> {{Left}}}, \n", " \n", "> AllowScriptLevelChange -> False, DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{\"Applying \", \"the \", \"product \", \"rule, \", \"write \", \n", " \n", "> TemplateBox[{StyleBox[TemplateBox[{FractionBox[RowBox[{2, , π}], \n", " \n", "> x], x, ∞}, Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \" \"}, \n", " \n", "> RowDefault], \"as \", \n", " \n", "> RowBox[{2, , π, , \n", " \n", "> TagBox[StyleBox[TemplateBox[{FractionBox[1, x], x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \n", " \n", "> HoldForm]}]}, RowDefault], \":\"}, RowWithSeparators], \n", " \n", "> GrayLevel[0.3], StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[FractionBox[RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm], , \n", " \n", "> TagBox[RowBox[{cos, (, \n", " \n", "> RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm], , \n", " \n", "> TagBox[StyleBox[TemplateBox[{FractionBox[1, x], x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \n", " \n", "> HoldForm]}], )}], HoldForm]}], RowBox[{TagBox[2, HoldForm]}]], \n", " \n", "> HoldForm]}}, GridBoxAlignment -> {Columns -> {{Left}}}, \n", " \n", "> AllowScriptLevelChange -> False, DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{\"Using \", \"the \", \"reciprocal \", \"rule, \", \"write \", \n", " \n", "> TemplateBox[{StyleBox[TemplateBox[{FractionBox[1, x], x, ∞}, \n", " \n", "> Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \" \"}, \n", " \n", "> RowDefault], \"as \", \n", " \n", "> FractionBox[1, StyleBox[TemplateBox[{x, x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], ]}] & )\n", " \n", "> ], ScriptLevel -> 0, StripOnInput -> False]]}, RowDefault], \":\"}\\\n", " \n", "> , RowWithSeparators], GrayLevel[0.3], StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[FractionBox[RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm], , \n", " \n", "> TagBox[RowBox[{cos, (, \n", " \n", "> RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm], , \n", " \n", "> TagBox[FrameBox[FractionBox[TagBox[1, HoldForm], \n", " \n", "> TagBox[TagBox[StyleBox[TemplateBox[{x, x, ∞}, Limit2Arg, \n", " \n", "> SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \n", " \n", "> HoldForm], HoldForm]], FrameStyle -> GrayLevel[0.8], \n", " \n", "> FrameMargins -> 1, BaselinePosition -> Baseline, \n", " \n", "> ContentPadding -> False, StripOnInput -> False], HoldForm]}], )}\n", " \n", "> ], HoldForm]}], RowBox[{TagBox[2, HoldForm]}]], HoldForm]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AllowScriptLevelChange -> False, \n", " \n", "> DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{TemplateBox[{TemplateBox[{StyleBox[TemplateBox[{x, x, ∞}, \n", " \n", "> Limit2Arg, SyntaxForm -> Limit, \n", " \n", "> DisplayFunction -> \n", " \n", "> (RowBox[{UnderscriptBox[StyleBox[\"lim\", \n", " \n", "> ShowStringCharacters -> False], RowBox[{#2, , #3}], \n", " \n", "> LimitsPositioning -> True], #1}] & ), \n", " \n", "> InterpretationFunction -> \n", " \n", "> (RowBox[{Limit, [, RowBox[{#1, ,, RowBox[{#2, ->, #3}]}], \n", " \n", "> ]}] & )], ScriptLevel -> 0, StripOnInput -> False], \" \"}, \n", " \n", "> RowDefault], \" \", ∞}, RowDefault]}, RowDefault], \":\"}, \n", " \n", "> RowWithSeparators], GrayLevel[0.3], StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {TagBox[FractionBox[RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm], , \n", " \n", "> TagBox[RowBox[{cos, (, \n", " \n", "> FractionBox[RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm]}], \n", " \n", "> TagBox[TagBox[FrameBox[∞, FrameStyle -> GrayLevel[0.8], \n", " \n", "> FrameMargins -> 1, BaselinePosition -> Baseline, \n", " \n", "> ContentPadding -> False, StripOnInput -> False], HoldForm], \n", " \n", "> HoldForm]], )}], HoldForm]}], RowBox[{TagBox[2, HoldForm]}]], \n", " \n", "> HoldForm]}}, GridBoxAlignment -> {Columns -> {{Left}}}, \n", " \n", "> AllowScriptLevelChange -> False, DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}, {StyleBox[GridBox[{{StyleBox[StyleBox[TemplateBox[{, \"\", \n", " \n", "> TemplateBox[{RowBox[{TagBox[RowBox[{FractionBox[1, 2], , \n", " \n", "> RowBox[{(, \n", " \n", "> RowBox[{TagBox[2, HoldForm], , TagBox[π, HoldForm], , \n", " \n", "> TagBox[RowBox[{cos, (, \n", " \n", "> FractionBox[RowBox[{TagBox[2, HoldForm], , \n", " \n", "> TagBox[π, HoldForm]}], TagBox[∞, HoldForm]], )}], \n", " \n", "> HoldForm]}], )}]}], HoldForm], , π}]}, RowDefault], \":\"}, \n", " \n", "> RowWithSeparators], GrayLevel[0.3], StripOnInput -> False], \n", " \n", "> {LinebreakAdjustments -> {1, 89, 100, 0, 100}, \n", " \n", "> LinebreakAdjustments -> {1, 100, 1, 0, 100}, LineIndent -> 0}]}, \n", " \n", "> {FrameBox[StyleBox[GridBox[{{StyleBox[TemplateBox[{\"Answer:\"}, RowDefault], \n", " \n", "> FontFamily -> Roboto, FontSize -> 12, StripOnInput -> False], }, \n", " \n", "> {\"\", TagBox[π, HoldForm]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}, Rows -> {{Baseline}}}, \n", " \n", "> AutoDelete -> False, GridBoxItemSize -> {Columns -> {2.5, Automatic}}, \n", " \n", "> GridBoxSpacings -> {Columns -> {2, 0, 3}, Rows -> {1.5, 1, 2}}, \n", " \n", "> AllowScriptLevelChange -> False], Grid], \n", " \n", "> FrameStyle -> \n", " \n", "> Directive[AbsoluteThickness[1], RGBColor[0.52, 0.76, 0.86]], \n", " \n", "> Background -> RGBColor[0.91, 0.98, 1], RoundingRadius -> 3, \n", " \n", "> FrameMargins -> 12, StripOnInput -> False]}}, \n", " \n", "> GridBoxAlignment -> {Columns -> {{Left}}}, AllowScriptLevelChange -> False, \n", " \n", "> DefaultBaseStyle -> Column, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}], \n", " \n", "> Column]}}, GridBoxAlignment -> {Columns -> {{Left}}}, \n", " \n", "> AllowScriptLevelChange -> False, DefaultBaseStyle -> Column, \n", " \n", "> GridBoxDividers -> {Columns -> {{False}}, Rows -> {False, {True}, False}}, \n", " \n", "> GridBoxItemSize -> {Columns -> {{Automatic}}, Rows -> {{Automatic}}}, \n", " \n", "> GridBoxSpacings -> {Columns -> {{Automatic}}, Rows -> {{3}}}, \n", " \n", "> FrameStyle -> GrayLevel[0.7]], Column], TraditionalForm], Output, \n", " \n", "> Background -> None, GraphicsBoxOptions -> \n", " \n", "> {DefaultBaseStyle -> {FontFamily -> Times, Graphics}, \n", " \n", "> DefaultAxesStyle -> \n", " \n", "> Directive[GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, \n", " \n", "> GraphicsAxes], DefaultFrameStyle -> \n", " \n", "> Directive[GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, \n", " \n", "> GraphicsFrame], DefaultFrameTicksStyle -> \n", " \n", "> Directive[FontFamily -> Times, FontSize -> 10, GraphicsFrameTicks], \n", " \n", "> DefaultTicksStyle -> \n", " \n", "> Directive[FontFamily -> Times, FontSize -> 10, GraphicsTicks]}, \n", " \n", "> Graphics3DBoxOptions -> {DefaultBaseStyle -> {FontFamily -> Times, Graphics3D}}, \n", " \n", "> NumberPoint -> ., CellSize -> {550, Automatic}, \n", " \n", "> AutoStyleOptions -> {HighlightFormattingErrors -> False}, \n", " \n", "> RenderingOptions -> {3DRenderingMethod -> BSPTreeOrDepthBuffer}, \n", " \n", "> FontFamily -> Times, FontSize -> 14, ScriptLevel -> 0, Background -> None]]" ] }, "execution_count": 5, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "WolframAlpha[\"Limit[(x/2)sin[2Pi/x], x ->\\[Infinity]\", {{\"Limit\", 2}, \"Content\"},\n", " PodStates -> {\"Limit__Step-by-step solution\"}]" ] } ], "metadata": { "kernelspec": { "display_name": "Wolfram Language 13.2", "language": "Wolfram Language", "name": "wolframlanguage13.2" }, "language_info": { "codemirror_mode": "mathematica", "file_extension": ".m", "mimetype": "application/vnd.wolfram.m", "name": "Wolfram Language", "pygments_lexer": "mathematica", "version": "12.0" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }