
A Framework for the Automatic Execution of
Measurement-based Experiments on Android Devices

Ivano Malavolta1, Eoin Martino Grua1, Cheng-Yu Lam1, Randy de Vries1, Franky Tan1, Eric
Zielinski1, Michael Peters2, Luuk Kaandorp1

1 Vrije Universiteit Amsterdam, The Netherlands. i.malavolta@vu.nl, e.m.grua@vu.nl, c2.lam@student.vu.nl,
randy.de.vries@student.vu.nl, k.h.tan@vu.nl, e.a.zielinski@student.vu.nl, l.kaandorp@student.vu.nl

2 M2mobi, The Netherlands. m.peters@m2mobi.com

ABSTRACT
Conducting measurement-based experiments is fundamental for
assessing the quality of Android apps in terms of, e.g., energy con-
sumption, CPU, and memory usage. However, orchestrating such
experiments is not trivial as it requires large boilerplate code, careful
setup of measurement tools, and the adoption of various empirical
best practices scattered across the literature. All together, those
factors are slowing down the scientific advancement and harming
experiments’ replicability in the mobile software engineering area.

In this paper we present Android Runner (AR), a framework for
automatically executing measurement-based experiments on native
and web apps running on Android devices. In AR, an experiment
is defined once in a descriptive fashion, and then its execution is
fully automatic, customizable, and replicable. AR is implemented
in Python and it can be extended with third-party profilers.

AR has been used in more than 25 scientific studies primarily
targeting performance and energy efficiency.

1 INTRODUCTION
Android is the leading mobile platform today and the majority of
scientific contributions on mobile software engineering focuses
on Android [1]. When dealing with quality properties like energy
efficiency and performance, practitioners and researchers rely on
the measurement of run-time metrics such as battery discharge,
CPU and memory usage, number and type of network requests, etc.
[7, 9, 10] In this context, considerable effort and time are spent on
setting up infrastructures and software pipelines for conducting
measurement-based experiments. Moreover, when available, exist-
ing pipelines are either (i) ad-hoc for a specific experiment or (ii)
tailored to one specific quality property (e.g., energy consumption).

This paper presents Android Runner (AR)1, a framework to au-
tomatically execute measurement-based experiments on native and
web apps. The main goal of AR is to streamline the execution of
measurement-based experiments involving Android devices. In AR,

1https://github.com/S2-group/android-runner

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASEW ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8128-4/20/09. . . $15.00
https://doi.org/10.1145/3417113.3422184

experiments are defined in a descriptive fashion, and then their exe-
cution is fully automatic, customizable, and replicable. We designed
AR with the following design drivers in mind:

• Automation: after an initial configuration, the experiment
can be executed without any interaction from the user;

• Incremental experiments: AR always persists the inter-
mediate results of the experiment and, if interrupted, it is
able to resume it and continue with the remaining runs;

• Usability: users define the experiment in a descriptive man-
ner, without writing boilerplate code or knowing the inter-
nals of AR;

• Customizability: users have the possibility to include their
own business logic and automated testing tools [6] at spe-
cific points within the experiment execution (e.g., before the
whole experiment begins, before or after each run, etc.);

• Profiler independence: in AR, run-time measures can be
collected both via hardware (e.g., the Monsoon power moni-
tor2) and software (e.g., Trepn3). Profilers can produce differ-
ent data points and can interact with apps and the Android
device in their own way; moreover, AR makes straightfor-
ward to use multiple profilers within a single experiment;

• Experiments replicability: given the configuration, sub-
ject apps, and available Android devices, AR can execute an
already-performed experiment with low effort, even if the
experiment has been performed by a third party.

We are aware that frameworks like AR must be as accurate as
possible and that their accuracy must be independently verifiable.
In order to facilitate the validation of AR, we created a set of 27
benchmarking apps, each of them stressing a specific hardware
component of an Android mobile device, such as its accelerometer,
camera, CPU, display, GPS, etc.. We use those apps on a regular basis
for validating the accuracy of AR. The full set of benchmarking
apps is publicly available4 (together with their source code) and can
be reused by researchers in the area of mobile software engineering,
also independently of AR.

The target audience of AR includes (i) researchers who need
to conduct empirical evaluations of software engineering methods
and techniques involving Android apps, (ii) researchers developing
new run-time profilers for Android devices, and (iii) practitioners
needing to quantitatively assess the quality of their own apps.

The remainder of the paper is organized as follows. Section 2 pro-
vides an overview of the proposed framework, Section 3 presents its

2https://www.msoon.com/high-voltage-power-monitor
3https://developer.qualcomm.com/forums/software/trepn-power-profiler
4https://github.com/S2-group/android-apps-benchmark

https://github.com/S2-group/android-runner
https://doi.org/10.1145/3417113.3422184
https://www.msoon.com/high-voltage-power-monitor
https://developer.qualcomm.com/forums/software/trepn-power-profiler
https://github.com/S2-group/android-apps-benchmark

ASEW ’20, September 21–25, 2020, Virtual Event, Australia I. Malavolta et al.

currently implemented plugins, and Section 4 describes its intended
usage. Section 5 presents the set of synthetic apps we developed
for benchmarking AR, together with an application in the area of
energy efficiency. Section 6 closes the paper.

2 OVERVIEW OF THE FRAMEWORK
In the remainder of this section we describe the input and output
artifacts of AR (Section 2.1) and its architecture (Section 2.2).

2.1 Input and Output
As shown in Figure 1, AR takes four types of artifacts as input.
Devices. It is a configuration file mapping the Android Debug
Bridge (ADB5) identifier of each connected device to a mnemonic
name. This makes the definition of the experiment independent
of the used mobile devices, thus allowing its direct replication on
different devices.
Experiment configuration. It is the main input of AR and con-
tains the description of the experiment. Table 1 describes its main
fields. The full list of the fields supported by AR is available in its
GitHub repository.

Android Runner

Measures

APKs

App

Devices

{json}

External
scripts

Experiment
configuration

{json}

Logs

commands / log dataADB + monkeyrunner

Progress
manager

Trepn

Monsoon

Performance

Frames

Batterystats

GC

...

Devices
manager

Experiment
orchestrator

Plugin
handler

Figure 1: Overview of AR

External scripts. A set of optional Python scripts provided by the
user for executing custom behaviour during the execution of the
experiment. AR passes contextual information to external scripts,
such as the current subject of the experiment, the device on which
the subject is running, etc. AR supports the following hooks for
executing custom scripts:

• before_experiment: executes before the first run of the
experiment;

• before_run: executes before every run of the experiment;
• after_launch: executes after the current subject is launched,
but before measurement starts;

• interaction: executes during the measurement window (it
is often used for executing usage scenarios like user taps,

5https://developer.android.com/studio/command-line/adb

drags, etc.); for convenience, instead of Python, the user can
also adopt a JSON-based descriptive syntax where user inter-
actions are specified as sequences of typed actions with dis-
play coordinates and timestamps. Listing 1 shows an example
with a touch, drag, and typing actions. In this way, complex
usage scenarios can be automatically recorded once and AR
is able to replay them in each run using the monkeyrunner6
Android tool;

• before_close: executes before the current subject is closed;
• after_run: executes after a run completes;
• after_experiment: executes after the last run of the exper-
iment.

1 {"type": "touch", "x": 600, "y": 200, "down": 200,
"up": 300}

2 {"type": "drag", "points": [{"x": 600, "y": 200},
{"x": 600, "y": 800}] "down": 2200, "up": 2300}

3 {"type": "press", "keys": [{"key": "KEYCODE_BACK"}],
"down": 3200, "up": 3300}

Listing 1: Simple usage scenario with three actions

Over time, external scripts proved to be useful in many situations,
e.g., for setting up a local web proxy recording the traffic generated
by the subjects, for instrumenting the subjects of the experiment
on the fly, or for cleaning up the environment between runs.
APKs. The binary files of the subject apps of native experiments.
AR will automatically fetch, install, execute, and uninstall them.
AR produces two types of outputs: measures and logs.
Measures. The measures produced by the profilers (e.g., consumed
energy). The specific format of the measures is profiler-dependent
and is decided by the developers of the plugin of each profiler ac-
cording to their specific needs/constraints. So far, the vast majority
of implemented plugins produce comma-separated values (CSV)
files (see Section 3). For the sake of replicability and independent
verification, we require that the profilers used in AR must always
save their results into the file system of the user.
Logs. The dump of all system messages produced during the whole
experiment. Before each run, AR launches the logcat7 Android
debugging tool, receives its messages as a stream, and persists them
for future inspection. Log files have proven to be useful for per-
forming diagnostic checks on problematic runs of the experiment
and for further inspecting low-level system information such as
calls to the garbage collector, invocations of system APIs, etc.

2.2 Architecture
In line with the state of the art [3–5, 10], AR experiments involve
two main hardware nodes: a base station running the software in
charge of executing the experiment (AR in our case) and a mobile
device running the subjects. The main rationale for having two sep-
arate nodes is to keep the Android device as lightweight as possible,
so as to not influence the measurements [10]. AR is implemented as
a set of Python 3 modules and as such it can run on any base station
able to run Python code, such as a desktop computer, a laptop, or a
Raspberry Pi; given its low cost, the latter is especially useful when
needing to run multiple experiments in parallel.

6https://developer.android.com/studio/test/monkeyrunner
7https://developer.android.com/studio/command-line/logcat

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/command-line/logcat

A Framework for the Automatic Execution of Measurement-based Experiments on Android Devices ASEW ’20, September 21–25, 2020, Virtual Event, Australia

Table 1: Main fields of the experiment configuration
Name (type) Description
Type
(native | web)

– native : the experiment subjects are native apps; they are identified either in the paths or apps fields.
– web : the subjects of the experiment are mobile-optimized web apps; in this case, the paths field will contain
their URLs and the browser field must be set.

Randomization
(boolean)

True if the order of execution of experiment runs is randomized, false otherwise.

Repetitions
(number)

The number of times an experiment trial is repeated; it is useful for taking into consideration the natural fluctuations
when dealing with measures like execution time, energy consumption, memory usage, etc.

Time between runs
(number)

Waiting time between each run of the experiment; it is useful for mitigating the effect where certain hardware
components of mobile devices are optimistically kept active by the OS to avoid startup energy costs [9].

Devices (map) Contains an entry for each Android device to be used in the experiment (identified by its name in the Devices
file), together with other device-specific information (e.g.,, whether it is rooted or not).

Paths (list) The list of either the file system paths of the subjects (if native) or their URLs (if web).
Apps (list) The package names of the subject apps in case they are already installed on the device; it is useful for system-level

preinstalled apps for which there is no need in having a locally-stored APK.
Browsers (list) The browsers to use when running an experiment of type web . Currently AR supports the following browsers:

Google Chrome, Mozilla Firefox, Opera. Different browsers can be used within the same experiment.
Profilers (map) Contains an entry for each profiler used for collecting run-time measures during the experiment. Since AR is

profiler-independent, here each entry corresponds to one of the external plugins shown in Figure 1 (e.g., Batterystats,
Trepn, Monsoon) and contains plugin-specific parameters, such as sampling frequency, data points to collect, etc.

Scripts (map) Optional, contains an entry for each external script implementing custom behaviour (see details below).
Duration (number) Optional, AR will terminate the execution of a run if it does not terminate within the provided duration in ms.

AR is independent from the communication channel between
the base station and the Android device (e.g., USB, Wi-Fi), provided
that it is supported by ADB. ADB is the official Android tool to run
commands on a connected Android device. In experiments targeting
energy consumption, it is advised to use the Wi-Fi channel in order
to avoid the influence that USB charging may have on the energy-
related behaviour of the device. Alternatively, for rooted devices AR
is able to overcome this limitation by programmatically disabling
the USB charging of the device while running the experiment.

As shown in Figure 1, the main component of AR is the Ex-
periment orchestrator. It is in charge of executing the whole
experiment according to the experiment configuration provided by
the user. The orchestrator performs the following steps:

(1) Perform diagnostic checks on user input (e.g., all subjects’
APKs are present) and the environment (e.g., check if external
tools like ADB are properly configured);

(2) Setup the devices via the Devices manager;
(3) Bring up the profilers specified in the experiment configura-

tion via the Plugin handler;
(4) Setup the plan of the runs via the Progress manager;
(5) Execute the runs according to the sequence defined in the

plan. For each run the orchestrator does the following steps:
(a) if the experiment is native and the current subject is not

installed on the device, install it;
(b) if the experiment is web , launch one of the browsers

according to the plan and wait for its full load;
(c) start all profilers (via the Plugin handler);
(d) launch the subject, i.e., launch the app if the experiment is

native or load the web app in the browser if it is web ;

(e) stop all profilers (via the Plugin handler);
(f) close and clear the subject, i.e., terminate the app (or the

web browser) and delete all data associated with it (e.g.,
the cache of the browser, the local database of the app);

(g) aggregate and persist the collected measures if (i) the plu-
gin implements this feature (see below) or (ii) the user
provided a run-specific aggregation script;

(h) persist all logs via logcat;
(i) inform the Progress manager that the run is completed.

(6) Clean up the devices via the Devices manager (e.g., uninstall
all subjects in case of native experiment);

(7) Aggregate the collected measures according to either plugin-
specific or (if present) user-defined aggregation scripts.

During the execution of these steps, AR executes the external
scripts provided by the user according to the specific hooks they
are linked to (e.g., before/after each run, etc.).

TheDevices manager is responsible for providing a layer of ab-
straction on the low-level operations involving the Android devices.
Specifically, it is able to (i) check if the devices specified by the
user in the input configuration files are usable in the experiment,
(ii) programmatically activate/deactivate the USB battery charging
functionality during the experiment execution (this applies only to
rooted devices), (iii) list, install, and uninstall apps on the devices,
(iv) launch, stop, and force-terminate processes on the device, (v)
read and write files on the devices, etc.

In addition to masking the complexity of low-level operations
on the devices, the Devices manager also allows us to localize
the impact of future changes in AR in case new non-backward-
compatible versions of ADB will be released or for experimenting
with completely new platforms in the future.

ASEW ’20, September 21–25, 2020, Virtual Event, Australia I. Malavolta et al.

The main responsibility of the Progress manager is to keep
track of the execution of each run of the experiment. Its first opera-
tion is to build the plan of all the runs of the experiment; each entry
of the plan is a tuple composed of (i) a unique identifier of the run,
(ii) the subject to be executed, (iii) the device on which the subject
must be executed, and (iv) the index of the current run within the
range from 0 up to the number of repetitions per trial specified by
the user (see Table 1). Then, if the user requires randomization,
the entries of the plan are shuffled. Finally, the resulting plan is
sent to the Experiment orchestrator, which will go through each
entry of the plan, executes it, and informs the Progress manager
about the completion of the run. During the experiment execution,
the Progress manager persists the current entry of the plan being
executed and additional metadata; at launch time, this information
is queried by the Experiment orchestrator so that partially-executed
experiments can be safely resumed. This feature is particularly use-
ful when large-scale experiments must be carried out in batches or
when an unexpected error occurs and the experiment execution
must be restored without incurring in data loss.

The Plugin handler provides (i) a set of facilities for managing
the profilers and (ii) an extension point that third-party develop-
ers can use for integrating their own measurement tools into AR.
When launching AR, the Plugin handler checks which plugins are
currently extending its extension point and makes their functional-
ities available to the user. The extension point exposes a common
Python API to plugin developers, so that they can interact with
the other components of AR. For example, it allows developers to
access information about the current subject of the experiment,
to interact with ADB, to access the information provided by the
Devices manager, etc.

Ready
load set_output

Loaded

start_profilingunload

Stopped
stop_profiling

Profiling

collect_results

Initialized

Figure 2: Plugin lifecycle

Each plugin follows the lifecycle in Figure 2 to allow the Exper-
iment orchestrator to suitably call it during the execution of the
experiment and to ensure that multiple plugins can be used dur-
ing the same experiment. In the initialized state the plugin passes
an initial check of its configuration (e.g., the configuration of the
Monsoon power monitor is valid), then the plugin is loaded (e.g.,
an energy profiling app like Trepn is installed on the device). The
plugin reaches the ready state when its output folder exists and is
writable; when the profiling is started by the orchestrator, the plu-
gin reaches the profiling state and continuously collects measures
until it is stopped. Finally, the resulting measures are collected by
the orchestrator and, if other runs need to be executed, the plugin
comes back to the loaded state, otherwise it is unloaded.

A plugin can provide its collected measures either raw or ag-
gregated. Each plugin can define its default aggregation policy,
either for each run or after the whole experiment is completed. In
the first case the aggregation happens when the collect_result
event is triggered, whereas in the second case it happens when

the unload event is triggered. Optionally, users can also specify
their own experiment-specific aggregation policies and override
the ones provided by the plugins. In this way, plugin developers can
simply focus on producing the measures and providing a default
aggregation policy, instead of trying to cover all possible use cases
for their plugin.

3 IMPLEMENTED PLUGINS AND RELATION
WITH RELATEDWORK

With AR we do not want to compete with already-existing profilers
or measurement frameworks like GreenMiner [5] or PETrA [3],
but rather we aim at providing a solid, verifiable, and replicable
backbone to which already-existing profilers can be integrated. To
this purpose, AR follows a plugin-based architecture where third-
party profilers can be developed and integrated independently of
the orchestration logic of AR. The intuition behind this design
decision is to avoid researchers and practitioners to reinvent the
wheel with ad-hoc pipelines, but rather to focus their efforts on
their specific measurement needs by developing AR plugins. Table
2 lists the currently available AR plugins.

Table 2: Available AR plugins

Name
(quality)

Description

batterystats
(Energy)

Uses the batterystats utility and estimates energy
consumption via the algorithm proposed in [3].

monsoon
(Energy)

Collects energy consumption via theMonsoon hard-
ware profiler and the Physalia8 tool.

trepn
(mixed)

Collects data via the Trepn profiler, e.g., power con-
sumption, battery temperature, CPUs frequency

mem-CPU
(Perf.)

Collects memory and CPU usage via the cpuinfo
and meminfo Android utilities.

frametimes
(Perf.)

Collects frame rendering durations and the number
of delayed frames with the technique used in [4].

gc (Perf.) Collects the number of garbage collections as in [4].
perfume-js
(Perf.)

Collects performance metrics via the Perfume.js
library9, like time to first byte and first paint.

It is important to highlight that ARis not limited to energy and
performance measurement; it can be extended to support many
kinds of measurement-based studies related to Android apps, pro-
vided that a suitable plugin supporting the required measures exists
(e.g., one monitoring at run-time calls to sensitive Android APIs).

4 INTENDED USAGE OF AR
At the time of writing, more than 25 studies are based on AR, rang-
ing from peer-reviewed publications, theses, and students’ projects.
For the sake of space, below we report the ones that are representa-
tive of the intended usage scenarios of AR.
Web experiments. In [8] we used AR and its batterystats plugin
for empirically assessing the impact of the cache of ProgressiveWeb
Apps (PWAs) on their energy consumption and page load time. The
experiment involves one smartphone running Android 9.0, 9 PWAs
locally served by the base station over Wifi, the Mozilla Firefox as
9https://github.com/TQRG/physalia

https://github.com/TQRG/physalia

A Framework for the Automatic Execution of Measurement-based Experiments on Android Devices ASEW ’20, September 21–25, 2020, Virtual Event, Australia

browser, and 20 repetitions for each trial, for a total running time
of more than 18 hours.
Native experiments. The author of [2] used AR and itsmem-CPU
plugin for measuring the performance of 12 synthetic native apps
we developed for assessing the run-time impact of 6 performance
bugs supported by Android Lint. The experiment involves a laptop
as base station, a phone running Android 8.0, and 20 repetitions for
each trial. The duration of the experiment is about 12 hours.
AR as a learning platform. AR is used at different levels within
the Computer Science program of the Vrije Universiteit Amsterdam.
Firstly, AR is used for scaling up the projects within the Green
Lab course, where teams of students design and conduct empirical
studies on the energy efficiency of software; students use AR as a
black-box tool for measuring real mobile apps without spending
time on activities outside the learning objectives of the course
(e.g., writing and fixing bugs of boilerplate code). Students working
on their final project go deeper on run-time profiling of Android
apps by either developing new plugins or improving AR itself.
This helps in (i) building a community of learners around AR and
(ii) keeping AR always up to date and well tested. For partially
mitigating accidental disruptive changes, a test suite is targeting
all internal components of AR with 100% line code coverage.

5 BENCHMARKING AR
Table 3 shows the 27 benchmarking apps we developed for bench-
marking AR. The first app is the baseline, it just loads an empty
Android activity and it is generally used as baseline; then, each app
is designed so to continuously perform the same operation until
it is killed from AR. When it is possible to control the rate of the
operation by the app (i.e., Camera, CPU, GPS, Local storage, Net-
working, Room database), we developed three versions of the same
app, each of them performing the operation at a specific interval.

Figure 3 shows one example of the results we obtained when
benchmarking AR. In this case, we measured the energy consump-
tion of all the 27 apps by using the batterystats plugin and two
different Android devices, namely: a Xiaomi Mi 9T Pro (Android
10.0, 2.84GHz octo-core CPU, 6Gb of memory) and an LG Nexus
5X (Android 6.0, 1.8GHz heza-core CPU, 2Gb of memory). Every
app and interval combination is run for 3 minutes and is then au-
tomatically stopped. Each run is repeated 30 times with 2 minutes
between each run, in order to account for possible fluctuations of
the measured energy consumption.

Even though in this paper we do not discuss the absolute preci-
sion of the measurement method behind the batterystats plugin (it
has been already done in [3]), in Figure 3 we can see some inter-
esting results. Firstly, the Nexus 5X tends to consume more energy
with respect to the Mi 9T; we presume that this difference is mainly
due to the fact that the Mi 9T is has hardware components of newer
generation, like the display, CPU, network card, and sensors. We
can also note that for the majority of the apps the coefficient of
variation of the collected measures is very low (for 44 out of 54
apps it is below 5%); this is an indication of the reliability of the
measurement infrastructure behind ARand its batterystats plugin.
We can also note that some hardware components tend to consume
more energy with respect to the baseline, they include the camera,
display, and GPS (high frequency). Finally, we can also note that

Table 3: Benchmarking Android apps

App Description
Baseline No functionality (idle)
Accelerometer Listens for accelerometer data
Ambient
light sensor

listens for changes in the ambient light sensor

Camera (x3) Takes a picture from the front camera every 15,
10, or 5 seconds

CPU (x3) Computes a large factorial number every 3, 2,
or 1 seconds

Display Plays a video at full brightness
GPS (x3) Listens for location updates every 3, 2, or 1 sec-

onds
Gravity sen-
sor

Listens for continuous updates of the gravity
sensor

Gyroscope Listens for continuous updates of the gyroscope
Local storage
(x3)

Writes 1 MB of data to local storage every 3, 2,
or 1 seconds

Magnetic
field sensor

Listens for continuous updates of the magnetic
field sensor

Microphone Records audio from microphone
Networking
(x3)

Sends an HTTP Get requests every 3, 2, or 1
seconds

Room data-
base (x3)

Writes 1 MB of data via the Room Android li-
brary every 3, 2, or 1 seconds

Speaker Plays audio file at half volume

all networking apps exhibit a relatively higher degree of variation
with respect to other apps; we presume that this variation is mostly
due to the fact that even small fluctuations of the networking condi-
tions can play a relatively important role in experiments involving
mobile applications.

6 CONCLUSIONS AND FUTUREWORK
In this paper we presented AR, a framework for streamlining the
execution of measurement-based experiments targeting Android
(web) apps. The added value of AR is to help researchers and practi-
tioners in avoiding to reinvent the wheel with ad-hoc, not-replicable
empirical pipelines. AR is customizable via external business logic
and extensible thanks to a plugin-based architecture. In order to
facilitate the validation of the accuracy of AR and similar frame-
works, we also make available a set of 27 benchmarking Kotlin apps,
each stressing specific hardware components of Android devices.

As future work, we are planning to (i) extend AR with additional
hardware-based profilers, (ii) to further improve its customizability,
(iii) to carry out more evaluations to determine the level of accuracy
of the measurement results of AR, and (iv) to expand it towards
other emerging software engineering subdomains like robotics.

REFERENCES
[1] Luciano baresi, William G. Griswold, Grace A. Lewis, Marco Autili, Ivano

Malavolta, and Christine Julien. 2020. Trends and Challenges for Software
Engineering in the Mobile Domain. IEEE Software (2020), to appear. https:
//doi.org/10.1109/MS.2020.2994306

[2] Teerath Das. 2020. Investigating Performance Issues in Mobile Apps. PhD Thesis.
Computer Science Division, Gran Sasso Science Institute, L’Aquila, Italy.

https://doi.org/10.1109/MS.2020.2994306
https://doi.org/10.1109/MS.2020.2994306

ASEW ’20, September 21–25, 2020, Virtual Event, Australia I. Malavolta et al.

Figure 3: Benchmarking results of AR with the batterystats plugin

[3] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaid-
man, and Andrea De Lucia. 2017. Software-based energy profiling of android
apps: Simple, efficient and reliable?. In 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER). IEEE, 103–114.

[4] Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. 2016. An empirical study of
the performance impacts of android code smells. In Proceedings of the international
conference on mobile software engineering and systems. 59–69.

[5] Abram Hindle, Alex Wilson, Kent Rasmussen, E Jed Barlow, Joshua Charles
Campbell, and Stephen Romansky. 2014. Greenminer: A hardware based mining
software repositories software energy consumption framework. In Proceedings of
the 11th Working Conference on Mining Software Repositories. 12–21.

[6] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous,
evolutionary and large-scale: A new perspective for automatedmobile app testing.
In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 399–410.

[7] Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys Poshyvanyk.
2015. How developers detect and fix performance bottlenecks in android apps. In
international conference on software maintenance and evolution. IEEE, 352–361.

[8] Ivano Malavolta, Katerina Chinnappan, Lukas Jasmontas, Sarthak Gupta, and
Kaveh Ali Karam Soltany. 2020. Evaluating the Impact of Caching on the En-
ergy Consumption and Performance of Progressive Web Apps. In 7th IEEE/ACM
International Conference on Mobile Software Engineering and Systems 2020.

[9] Javad Nejati and Aruna Balasubramanian. 2016. An in-depth study of mobile
browser performance. In International Conference onWorldWideWeb. 1305–1315.

[10] Pijush Kanti Dutta Pramanik, Nilanjan Sinhababu, Bulbul Mukherjee, Sanjee-
vikumar Padmanaban, Aranyak Maity, Bijoy Kumar Upadhyaya, Jens Bo Holm-
Nielsen, and Prasenjit Choudhury. 2019. Power Consumption Analysis, Mea-
surement, Management, and Issues: A State-of-the-Art Review of Smartphone
Battery and Energy Usage. IEEE Access 7 (2019), 182113–182172.

	Abstract
	1 Introduction
	2 Overview of the Framework
	2.1 Input and Output
	2.2 Architecture

	3 Implemented Plugins and Relation with Related Work
	4 Intended Usage of AR
	5 Benchmarking AR
	6 Conclusions and Future Work
	References

