FC2018: Advanced

Samuel Orso

2018-10-23

Slides generously provided by Rob J Hyndman Based on Chapter 9, 11 and 12 of Forecasting: Principles and Practice by Rob J Hyndman and George Athanasopoulos

Outline

(1) Regression with ARIMA errors
(2) Complex seasonality
(3) Lagged predictors
(4) Neural network models
(5) Forecast combinations
(6) Some practical issues

Regression with ARIMA errors

Regression models

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\cdots+\beta_{k} x_{k, t}+\varepsilon_{t}
$$

- y_{t} modeled as function of k explanatory variables $x_{1, t}, \ldots, x_{k, t}$.
- In regression, we assume that ε_{t} was WN.
- Now we want to allow ε_{t} to be autocorrelated.

Regression with ARIMA errors

Regression models

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\cdots+\beta_{k} x_{k, t}+\varepsilon_{t},
$$

- y_{t} modeled as function of k explanatory variables $x_{1, t}, \ldots, x_{k, t}$.
- In regression, we assume that ε_{t} was WN.
- Now we want to allow ε_{t} to be autocorrelated.

Example: ARIMA(1,1,1) errors

$$
\begin{aligned}
& y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\cdots+\beta_{k} x_{k, t}+\eta_{t} \\
& \quad\left(1-\phi_{1} B\right)(1-B) \eta_{t}=\left(1+\theta_{1} B\right) \varepsilon_{t}
\end{aligned}
$$

where ε_{t} is white noise.

Stationarity

Regression with ARMA errors

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\cdots+\beta_{k} x_{k, t}+\eta_{t}
$$

where η_{t} is an ARMA process.

- All variables in the model must be stationary.
- If we estimate the model while any of these are non-stationary, the estimated coefficients can be incorrect.
- Difference variables until all stationary.
- If necessary, apply same differencing to all variables.

Stationarity

Model with ARIMA(1,1,1) errors

$$
\begin{aligned}
& y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\cdots+\beta_{k} x_{k, t}+\eta_{t} \\
& \quad\left(1-\phi_{1} B\right)(1-B) \eta_{t}=\left(1+\theta_{1} B\right) \varepsilon_{t}
\end{aligned}
$$

Stationarity

Model with ARIMA(1,1,1) errors

$$
\begin{aligned}
& y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\cdots+\beta_{k} x_{k, t}+\eta_{t} \\
& \quad\left(1-\phi_{1} B\right)(1-B) \eta_{t}=\left(1+\theta_{1} B\right) \varepsilon_{t}
\end{aligned}
$$

Equivalent to model with ARIMA(1,0,1) errors

$$
\begin{aligned}
& y_{t}^{\prime}=\beta_{1} x_{1, t}^{\prime}+\cdots+\beta_{k} x_{k, t}^{\prime}+\eta_{t}^{\prime} \\
& \quad\left(1-\phi_{1} B\right) \eta_{t}^{\prime}=\left(1+\theta_{1} B\right) \varepsilon_{t}
\end{aligned}
$$

where $y_{t}^{\prime}=y_{t}-y_{t-1}, x_{t, i}^{\prime}=x_{t, i}-x_{t-1, i}$ and $\eta_{t}^{\prime}=\eta_{t}-\eta_{t-1}$.

Regression with ARIMA errors

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Regression with ARIMA errors

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$
\begin{aligned}
& \quad y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\cdots+\beta_{k} x_{k, t}+\eta_{t} \\
& \text { where } \quad \phi(B)(1-B)^{d} \eta_{t}=\theta(B) \varepsilon_{t}
\end{aligned}
$$

Regression with ARIMA errors

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\cdots+\beta_{k} x_{k, t}+\eta_{t}
$$

where

$$
\phi(B)(1-B)^{d} \eta_{t}=\theta(B) \varepsilon_{t}
$$

After differencing all variables

$$
y_{t}^{\prime}=\beta_{1} x_{1, t}^{\prime}+\cdots+\beta_{k} x_{k, t}^{\prime}+\eta_{t}^{\prime}
$$

where $\phi(B) \eta_{t}=\theta(B) \varepsilon_{t}$

$$
\text { and } \quad y_{t}^{\prime}=\left(\underset{\text { FC2018: Advanced }}{(1-B)^{d} y_{t}}\right.
$$

Model selection

- Check that all variables are stationary. If not, apply differencing. Where appropriate, use the same differencing for all variables to preserve interpretability.
- Fit regression model with automatically selected ARIMA errors.
- Check that ε_{t} series looks like white noise.

Selecting predictors

- AICc can be calculated for final model.
- Repeat procedure for all subsets of predictors to be considered, and select model with lowest AIC value.

US personal consumption and

income

Quarterly changes in US consumption and personal income
(

US personal consumption and income

Quarterly changes in US consumption and personal income

US personal consumption and

income

- No need for transformations or further differencing.
- Increase in income does not necessarily translate into instant increase in consumption (e.g., after the loss of a job, it may take a few months for expenses to be reduced to allow for the new circumstances). We will ignore this for now.

US personal consumption and

income

(fit <- auto.arima(uschange[,1], xreg=uschange[,2]))
\#\# Series: uschange[, 1]
\#\# Regression with ARIMA(1,0,2) errors

\#\#

\#\# Coefficients:

\#\#	ar1	ma1	ma2	intercept	xreg
\#\#	0.692	-0.576	0.198	0.599	0.203
\#\# s.e.	0.116	0.130	0.076	0.088	0.046

\#\#
\#\# sigma^2 estimated as $0.322:$ log likelihood=-157
\#\# AIC=326 AICC=326 $B I C=345$

US personal consumption and

income

ggtsdisplay(residuals(fit, type='regression'), main="Regression errors")

Regression errors

Lag

Lag

US personal consumption and

income

ggtsdisplay(residuals(fit, type='response'), main="ARIMA errors")

ARIMA errors

US personal consumption and

income

checkresiduals(fit, test=FALSE)
Residuals from Regression with $\operatorname{ARIMA}(1,0,2)$ errors

US personal consumption and

income

```
fcast <- forecast(fit,
    xreg=rep(mean(uschange[,2]),8), h=8)
autoplot(fcast) + xlab("Year") +
    ylab("Percentage change") +
    ggtitle("Forecasts from regression with ARIMA(1,0,2) errors")
```

Forecasts from regression with $\operatorname{ARIMA}(1,0,2)$ errors

Forecasting

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- Some predictors are known into the future (e.g., time, dummies).
- Separate forecasting models may be needed for other predictors.
- Forecast intervals ignore the uncertainty in forecasting the predictors.

Daily electricity demand

Model daily electricity demand as a function of temperature using quadratic regression with ARMA errors.

```
qplot(elecdaily[,"Temperature"], elecdaily[,"Demand"]) +
    xlab("Temperature") + ylab("Demand")
```


Regression with ARIMA errors
Daily electricity demand
autoplot(elecdaily, facets = TRUE)

Daily electricity demand

```
xreg <- cbind(MaxTemp = elecdaily[, "Temperature"],
    MaxTempSq = elecdaily[, "Temperature"]^2,
    Workday = elecdaily[, "WorkDay"])
fit <- auto.arima(elecdaily[, "Demand"], xreg = xreg)
checkresiduals(fit)
```

Residuals from Regression with ARIMA(2,1,2)(2,0,0)[7] errors

Daily electricity demand

```
# Forecast one day ahead
forecast(fit, xreg = cbind(26, 26^2, 1))
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 53.14 190 181 198 177 203
```


Daily electricity demand

```
fcast <- forecast(fit,
    xreg = cbind(rep (26,14), rep(26^2,14),
        c(0,1,0,0,1,1,1,1,1,0,0,1,1,1)))
autoplot(fcast) + ylab("Electicity demand (GW)")
```

Forecasts from Regression with ARIMA(2,1,2)(2,0,0)[7] errors

Outline

(1) Regression with ARIMA errors
(2) Complex seasonality
(3) Lagged predictors

4 Neural network models
(5) Forecast combinations

6 Some practical issues

Examples

Weekly US finished motor gasoline products

Examples

5 minute call volume at North American bank

Examples

Turkish daily electricity demand

Dynamic harmonic regression

Combine Fourier terms with ARIMA errors

Advantages

- it allows any length seasonality;
- for data with more than one seasonal period, you can include Fourier terms of different frequencies;
- the seasonal pattern is smooth for small values of K (but more wiggly seasonality can be handled by increasing K);
- the short-term dynamics are easily handled with a simple ARMA error.

Disadvantages

- seasonality is assumed to be fixed

Eating-out expenditure

cafe04 <- window(auscafe, start=2004) autoplot(cafe04)

Eating-out expenditure

Regression with $\operatorname{ARIMA}(3,1,4)$ errors and $\lambda=0$

series

- Data
- Regression fit

Eating-out expenditure

Regression with $\operatorname{ARIMA}(3,1,2)$ errors and $\lambda=0$

Eating-out expenditure

Regression with $\operatorname{ARIMA}(2,1,0)$ errors and $\lambda=0$

Eating-out expenditure

Regression with $\operatorname{ARIMA}(5,1,0)$ errors and $\lambda=0$

Eating-out expenditure

Regression with $\operatorname{ARIMA}(0,1,1)$ errors and $\lambda=0$

Eating-out expenditure

Regression with $\operatorname{ARIMA}(0,1,1)$ errors and $\lambda=0$

series

- Data
- Regression fit

Example: weekly gasoline products

```
harmonics <- fourier(gasoline, K = 13)
(fit <- auto.arima(gasoline, xreg = harmonics, seasonal = FALSE))
## Series: gasoline
## Regression with ARIMA(0,1,2) errors
##
## Coefficients:
\begin{tabular}{lrrrrrr} 
\#\# & ma1 & ma2 & drift & S1-52 & C1-52 & S2-52 \\
\#\# & -0.961 & 0.094 & 0.001 & 0.031 & -0.255 & -0.052 \\
\#\# s.e. & 0.027 & 0.029 & 0.001 & 0.012 & 0.012 & 0.009 \\
\#\# & C2-52 & S3-52 & C3-52 & S4-52 & C4-52 & \\
\#\# & -0.018 & 0.024 & -0.099 & 0.032 & -0.026 & \\
\#\# s.e. & 0.009 & 0.008 & 0.008 & 0.008 & 0.008 & \\
\#\# & S5-52 & C5-52 & S6-52 & C6-52 & S7-52 & C7-52 \\
\#\# & -0.001 & -0.047 & 0.058 & -0.032 & 0.028 & 0.037 \\
\#\# s.e. & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\
\#\# & S8-52 & C8-52 & S9-52 & C9-52 & S10-52 & C10-52 \\
\#\# & 0.024 & 0.014 & -0.017 & 0.012 & -0.024 & 0.023 \\
\#\# s.e. & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\
\#\# & S11-52 & C11-52 & S12-52 & C12-52 & S13-52 \\
\#\# & 0.000 & -0.019 & -0.029 & -0.018 & 0.001 \\
\#\# s.e. & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\
\#\# & \(C 13-52\) & & & & & \\
\#\# & -0.018 & & & & & \\
\#\# s.e. & 0.008 & & & & &
\end{tabular}
```


Example: weekly gasoline products

newharmonics <- fourier (gasoline, $K=13, h=156$) fc <- forecast(fit, xreg = newharmonics) autoplot(fc)

Forecasts from Regression with $\operatorname{ARIMA}(0,1,2)$ errors

5-minute call centre volume

autoplot(calls)

5-minute call centre volume

```
xreg <- fourier(calls, K = c(10,0))
(fit <- auto.arima(calls, xreg=xreg, seasonal=FALSE, stationary=TRUE))
## Series: calls
## Regression with ARIMA(3,0,2) errors
##
## Coefficients:
\begin{tabular}{lrrrrrrr} 
\#\# & ar1 & ar2 & ar3 & mal & ma2 & \\
\#\# & 0.841 & 0.192 & -0.044 & -0.590 & -0.189 & \\
\#\# s.e. & 0.169 & 0.178 & 0.013 & 0.169 & 0.137 & \\
\#\# & intercept & S1-169 & C1-169 & S2-169 & C2-169 \\
\#\# & \multicolumn{2}{c}{192.07} & 55.245 & -79.087 & 13.674 & -32.375 \\
\#\# s.e. & \multicolumn{2}{c}{1.76} & 0.701 & 0.701 & 0.379 & 0.379 \\
\#\# & S3-169 & C3-169 & S4-169 & C4-169 & S5-169 \\
\#\# & -13.693 & -9.327 & -9.532 & -2.797 & -2.239 \\
\#\# s.e. & 0.273 & 0.273 & 0.223 & 0.223 & 0.196 \\
\#\# & C5-169 & S6-169 & C6-169 & S7-169 & C7-169 \\
\#\# & 2.893 & 0.173 & 3.305 & 0.855 & 0.294 \\
\#\# s.e. & 0.196 & 0.179 & 0.179 & 0.168 & 0.168 \\
\#\# & S8-169 & C8-169 & S9-169 & C9-169 & S10-169 \\
\#\# & 0.857 & -1.39 & -0.986 & -0.345 & -1.20 \\
\#\# s.e. & 0.160 & 0.16 & 0.155 & 0.155 & 0.15 \\
\#\# & C10-169 & & & & \\
\#\# & 0.801 & & & & \\
\#\# s.e. & 0.150 & & & &
\end{tabular}
```


5-minute call centre volume

checkresiduals(fit, test=FALSE)

Residuals from Regression with ARIMA(3,0,2) errors

5-minute call centre volume

fc <- forecast(fit, xreg = fourier (calls, c(10,0), 1690)) autoplot(fc)

Forecasts from Regression with ARIMA(3,0,2) errors

TBATS model

TBATS

Trigonometric terms for seasonality
Box-Cox transformations for heterogeneity
ARMA errors for short-term dynamics
Trend (possibly damped)
Seasonal (including multiple and

Complex seasonality

gasoline $\%>\%$ tbats() $\%>\%$ forecast() $\%>\%$ autoplot()
Forecasts from TBATS(1, $\{0,0\},-,\{<52.18,12>\})$

Complex seasonality

calls \%>\% tbats() \%>\% forecast() \%>\% autoplot()

Forecasts from TBATS(0.555, $\{0,0\},-,\{<169,6>,<845,4>\})$

Complex seasonality

telec $\%>\%$ tbats () $\%>\%$ forecast() $\%>\%$ autoplot()
Forecasts from TBATS(0.005, \{4,2\},,$-\{<7,3>,<354.37,7>,<365.25,3>\})$

TBATS model

TBATS

Trigonometric terms for seasonality
Box-Cox transformations for heterogeneity $^{\text {on }}$
ArMA errors for short-term dynamics
Trend (possibly damped)
Seasonal (including multiple and non-integer periods)

- Handles non-integer seasonality, multiple seasonal periods.
- Entirely automated
- Prediction intervals often too wide
- Very slow on long series

Outline

(1) Regression with ARIMA errors
(2) Complex seasonality
(3) Lagged predictors
(4) Neural network models
(5) Forecast combinations
(6) Some practical issues

Lagged predictors

Sometimes a change in x_{t} does not affect y_{t} instantaneously

Lagged predictors

Sometimes a change in x_{t} does not affect y_{t} instantaneously

- $y_{t}=$ sales, $x_{t}=$ advertising.
- $y_{t}=$ stream flow, $x_{t}=$ rainfall.
- $y_{t}=$ size of herd, $x_{t}=$ breeding stock.

Lagged predictors

Sometimes a change in x_{t} does not affect y_{t} instantaneously

- $y_{t}=$ sales, $x_{t}=$ advertising.
- $y_{t}=$ stream flow, $x_{t}=$ rainfall.
- $y_{t}=$ size of herd, $x_{t}=$ breeding stock.
- These are dynamic systems with input $\left(x_{t}\right)$ and output $\left(y_{t}\right)$.
- x_{t} is often a leading indicator.
- There can be multiple predictors.

Lagged predictors

The model include present and past values of predictor: $x_{t}, x_{t-1}, x_{t-2}, \ldots$

$$
y_{t}=a+\nu_{0} x_{t}+\nu_{1} x_{t-1}+\cdots+\nu_{k} x_{t-k}+\eta_{t}
$$

where η_{t} is an ARIMA process.

Lagged predictors

The model include present and past values of predictor: $x_{t}, x_{t-1}, x_{t-2}, \ldots$

$$
y_{t}=a+\nu_{0} x_{t}+\nu_{1} x_{t-1}+\cdots+\nu_{k} x_{t-k}+\eta_{t}
$$

where η_{t} is an ARIMA process.
Rewrite model as

$$
\begin{aligned}
y_{t} & =a+\left(\nu_{0}+\nu_{1} B+\nu_{2} B^{2}+\cdots+\nu_{k} B^{k}\right) x_{t}+\eta_{t} \\
& =a+\nu(B) x_{t}+\eta_{t} .
\end{aligned}
$$

Lagged predictors

The model include present and past values of predictor: $x_{t}, x_{t-1}, x_{t-2}, \ldots$.

$$
y_{t}=a+\nu_{0} x_{t}+\nu_{1} x_{t-1}+\cdots+\nu_{k} x_{t-k}+\eta_{t}
$$

where η_{t} is an ARIMA process.
Rewrite model as

$$
\begin{aligned}
y_{t} & =a+\left(\nu_{0}+\nu_{1} B+\nu_{2} B^{2}+\cdots+\nu_{k} B^{k}\right) x_{t}+\eta_{t} \\
& =a+\nu(B) x_{t}+\eta_{t}
\end{aligned}
$$

- $\nu(B)$ is called a transfer function since it describes how change in x_{t} is transferred to y_{t}.
- x can influence y, but y is not allowed to influence x.

Example: Insurance quotes and TV adverts

Insurance advertising and quotations

Example: Insurance quotes and TV adverts

Advert <- cbind(
AdLag0 = insurance[,"TV.advert"],
AdLag1 = lag(insurance[,"TV.advert"],-1),
AdLag2 = lag(insurance[,"TV.advert"],-2),
AdLag3 = lag(insurance[,"TV.advert"],-3)) \%>\% head(NROW(insurance))
\# Restrict data so models use same fitting period fit1 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1], stationary=TRUE)
fit2 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:2], stationary=TRUE)
fit3 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:3], stationary=TRUE)
fit4 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:4], stationary=TRUE)
c(fit1\$aicc,fit2\$aicc,fit3\$aicc,fit4\$aicc)

Example: Insurance quotes and TV adverts

```
(fit <- auto.arima(insurance[,1], xreg=Advert[,1:2],
    stationary=TRUE))
## Series: insurance[, 1]
## Regression with ARIMA(3,0,0) errors
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# & ar1 & ar2 & ar3 & intercept & AdLag0 \\
\#\# & 1.41 & -0.932 & 0.359 & 2.039 & 1.256 \\
\#\# s.e. & 0.17 & 0.255 & 0.159 & 0.993 & 0.067
\end{tabular}
## AdLag1
## 0.162
## s.e. 0.059
##
## sigma^2 estimated as 0.217: log likelihood=-23.9
## AIC=61.8 AICc=65.3 BIC=73.6
```


Example: Insurance quotes and TV adverts

```
(fit <- auto.arima(insurance[,1], xreg=Advert[,1:2],
    stationary=TRUE))
## Series: insurance[, 1]
## Regression with ARIMA(3,0,0) errors
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# & ar1 & ar2 & ar3 & intercept & AdLag0 \\
\#\# & 1.41 & -0.932 & 0.359 & 2.039 & 1.256 \\
\#\# s.e. & 0.17 & 0.255 & 0.159 & 0.993 & 0.067
\end{tabular}
## AdLag1
## 0.162
## s.e. 0.059
##
## sigma^2 estimated as 0.217: log likelihood=-23.9
## AIC=61.8 AICc=65.3 BIC=73.6
```


Example: Insurance quotes and TV adverts

```
fc <- forecast(fit, h=20,
    xreg=cbind(c(Advert[40,1],rep(10,19)), rep(10,20)))
autoplot(fc)
```

Forecasts from Regression with ARIMA(3,0,0) errors

Example: Insurance quotes and TV adverts

```
fc <- forecast(fit, h=20,
    xreg=cbind(c(Advert[40,1], rep(8,19)), rep(8,20)))
autoplot(fc)
```

Forecasts from Regression with ARIMA(3,0,0) errors

Example: Insurance quotes and TV adverts

```
fc <- forecast(fit, h=20,
    xreg=cbind(c(Advert[40,1], rep(6,19)), rep(6,20)))
autoplot(fc)
```

Forecasts from Regression with ARIMA(3,0,0) errors

Outline

(1)

Regression with ARIMA errors

(2) Complex seasonality
(3) Lagged predictors

4 Neural network models

Forecast combinations

Neural network models

Simplest version: linear regression

Input Output layer layer

Neural network models

Simplest version: linear regression

Input Output layer layer

Input \#1
Input \#2
Input \#3
Input \#4

- Coefficients attached to predictors are called "weights".
- Forecasts are obtained by a linear combination of inputs.
- Weights selected using a "learning algorithm" that minimises a "cost function".

Neural network models

Nonlinear model with one hidden layer

$$
\begin{array}{ccc}
\text { Input } & \text { Hidden } & \text { Output } \\
\text { layer } & \text { layer } & \text { layer }
\end{array}
$$

Neural network models

Nonlinear model with one hidden layer

$$
\begin{array}{ccc}
\text { Input } & \text { Hidden } & \text { Output } \\
\text { layer } & \text { layer } & \text { layer }
\end{array}
$$

* A multilayer feed-forward network where each layer of nodes receives inputs from the previous layers. * Inputs to each node combined using linear combination. * Result modified by nonlinear function before being output.

Neural network models

Inputs to hidden neuron j linearly combined:

$$
z_{j}=b_{j}+\sum_{i=1}^{4} w_{i, j} x_{i} .
$$

Modified using nonlinear function such as a sigmoid:

$$
s(z)=\frac{1}{1+e^{-z}}
$$

This tends to reduce the effect of extreme input values, thus making the network somewhat robust to outliers.

Neural network models

- Weights take random values to begin with, which are then updated using the observed data.
- There is an element of randomness in the predictions. So the network is usually trained several times using different random starting points, and the results are averaged.
- Number of hidden layers, and the number of nodes in each hidden layer, must be specified in advance.

NNAR models

- Lagged values of the time series can be used as inputs to a neural network.
- $\operatorname{NNAR}(p, k): p$ lagged inputs and k nodes in the single hidden layer.
- $\operatorname{NNAR}(p, 0)$ model is equivalent to an $\operatorname{ARIMA}(p, 0,0)$ model but without stationarity restrictions.
- Seasonal $\operatorname{NNAR}(p, P, k)$: inputs
$\left(y_{t-1}, y_{t-2}, \ldots, y_{t-p}, y_{t-m}, y_{t-2 m}, y_{t-P m}\right)$ and k neurons in the hidden layer.
- $\operatorname{NNAR}(p, P, 0)_{m}$ model is equivalent to an $\operatorname{ARIMA}(p, 0,0)(P, 0,0)_{m}$ model but without stationarity restrictions.

NNAR models in R

- The nnetar () function fits an $\operatorname{NNAR}(p, P, k)_{m}$ model.
- If p and P are not specified, they are automatically selected.
- For non-seasonal time series, default $p=$ optimal number of lags (according to the AIC) for a linear $\mathrm{AR}(p)$ model.
- For seasonal time series, defaults are $P=1$ and p is chosen from the optimal linear model fitted to the seasonally adjusted data.
- Default $k=(p+P+1) / 2$ (rounded to the nearest integer).

Sunspots

- Surface of the sun contains magnetic regions that appear as dark spots.
- These affect the propagation of radio waves and so telecommunication companies like to predict sunspot activity in order to plan for any future difficulties.
- Sunspots follow a cycle of length between 9 and 14 years.

NNAR $(9,5)$ model for sunspots

fit <- nnetar (sunspotarea)
fit \%>\% forecast(h=20) \%>\% autoplot()
Forecasts from NNAR(9,5)

Prediction intervals by simulation

fit \%>\% forecast(h=20, PI=TRUE) \%>\% autoplot()
Forecasts from NNAR(9,5)

Outline

(1) Regression with ARIMA errors
(2) Complex seasonality
(3) Lagged predictors
(4) Neural network models
(5) Forecast combinations
(6) Some practical issues

Forecast combinations

Clemen (1989)

"The results have been virtually unanimous: combining multiple forecasts leads to increased forecast accuracy. ... In many cases one can make dramatic performance improvements by simply averaging the forecasts."

Forecast combinations

```
train <- window(auscafe, end=c (2012,9))
h <- length(auscafe) - length(train)
ETS <- forecast(ets(train), h=h)
ARIMA <- forecast(auto.arima(train, lambda=0, biasadj=TRUE),
    h=h)
STL <- stlf(train, lambda=0, h=h, biasadj=TRUE)
NNAR <- forecast(nnetar (train), h=h)
TBATS <- forecast(tbats(train, biasadj=TRUE), h=h)
Combination <- (ETS[["mean"]] + ARIMA[["mean"]] +
    STL[["mean"]] + NNAR[["mean"]] + TBATS[["mean"]])/5
autoplot(auscafe) +
    autolayer (ETS, series="ETS", PI=FALSE) +
    autolayer(ARIMA, series="ARIMA", PI=FALSE) +
    autolayer (STL, series="STL", PI=FALSE) +
    autolayer (NNAR, series="NNAR", PI=FALSE) +
    autolayer(TBATS, series="TBATS", PI=FALSE) +
    autolayer (Combination, series="Combination") +
    xlab("Year") + ylab("\$ billion") +
    ggtitle("Australian monthly expenditure on eating out")
```


Forecast combinations

Australian monthly expenditure on eating out

Forecast combinations

\#\#	ETS	ARIMA	STL-ETS	NNAR
\#\#	0.1370	0.1215	0.2145	0.2904
\#\#	TBATS	Combination		
\#\#	0.0941	0.0710		

Outline

Regression with ARIMA errors

(2) Complex seasonality
(3) Lagged predictors
(4) Neural network models
(5) Forecast combinations
(6) Some practical issues

Missing values

Functions which can handle missing values

- auto.arima(), Arima()
- tslm()
- nnetar()

Models which cannot handle missing values

- ets()
- stl()
- stlf()
- tbats()

Missing values

Functions which can handle missing values

- auto.arima(), Arima()
- tslm()
- nnetar ()

Models which cannot handle missing values

- ets()
- stl()
- stlf()
- tbats()

What to do?

(1) Model section of data after last missing value.
(2) Estimate missing values with na.interp().

Missing values

Missing values

series

- Interpolated
- Original

Outliers

Outliers

\#\# \$index
\#\# [1] 770
\#\#
\#\# \$replacements
\#\# [1] 495

Outliers

