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Q Stationarity and differencing
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Stationarity

Definition

If {y+} is a stationary time series, then for all s, the
distribution of (i, ..., ¥:+s) does not depend on t.
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Stationarity

Definition

If {y+} is a stationary time series, then for all s, the
distribution of (i, ..., ¥:+s) does not depend on t.

A stationary series is:

@ roughly horizontal
@ constant variance
@ no patterns predictable in the long-term
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Stationary?
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Stationary?
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Stationary?

Sales of new one-family houses, USA

80-

60 -

Total sales

40-

1975 1980 1985 1990 1995
Year

FC2018: ARIMA 20181002 7/ 102



Stationary?

Price of a dozen eggs in 1993 dollars
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Stationary?

Number of pigs slaughtered in Victoria
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Stationary?

Annual Canadian Lynx Trappings
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Stationary?

Australian quarterly beer production
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Stationarity

Definition

If {y+} is a stationary time series, then for all s, the
distribution of (yt, ..., ¥:+s) does not depend on t.
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Stationarity

Definition

If {y+} is a stationary time series, then for all s, the
distribution of (yt, ..., ¥:+s) does not depend on t.

Transformations help to stabilize the variance.
For ARIMA modelling, we also need to stabilize the
mean.
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Stationarity and differencing

Non-stationarity in the mean

Identifying non-stationary series

@ time plot.

@ The ACF of stationary data drops to zero relatively
quickly

@ The ACF of non-stationary data decreases slowly.

@ For non-stationary data, the value of r; is often large
and positive.

FC2018: ARIMA 0181002 13/ 102



Stationarity and differencing

Example: Dow-Jones index

4000 -

3900 -

@
o]
o
o

Dow Jones Index
w
~
o
o

3600 -

FC2018: ARIMA 20181002 14/ 102



Example: Dow-Jones index

Series: dj
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Example: Dow-Jones index
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Example: Dow-Jones index

Series: diff(d))
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Differencing

@ Differencing helps to stabilize the mean.

@ The differenced series is the change between each
observation in the original series: y; = y; — y;_1.

@ The differenced series will have only T — 1 values
since it is not possible to calculate a difference y; for
the first observation.
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Seasonal differencing

A seasonal difference is the difference between an
observation and the corresponding observation from the
previous year.
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Stationarity and differencing

Seasonal differencing

A seasonal difference is the difference between an

observation and the corresponding observation from the
previous year.

/
Yi =Yt = Yt—-m
where m = number of seasons.
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Stationarity and differencing

Seasonal differencing

A seasonal difference is the difference between an

observation and the corresponding observation from the
previous year.

/
Yi =Yt = Yt—-m
where m = number of seasons.

@ For monthly data m = 12.
@ For quarterly data m = 4.
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Electricity production

usmelec %>% autoplot()
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Electricity production

usmelec %>% log() %>% autoplot()

6.0-
5.7-
5.4-

51-

0: A 1 o'on 'm'n I )
FC2018: ARIMA 20181002 21 102



Electricity production

usmelec %>% log() %>% diff(lag=12) %>%
autoplot()
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Electricity production

usmelec %>% log() %>% diff(lag=12) %>%
diff(lag=1) %>% autoplot()
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Electricity production

@ Seasonally differenced series is closer to being
stationary.

@ Remaining non-stationarity can be removed with
further first difference.

If y{ = ¥+ — y+—12 denotes seasonally differenced series,
then twice-differenced series i

Yi=Yi— Vi
= (Yt - yt—12) - (Yt_1 - Yt—13)
=Yt —Yt-1— Ye-12 t Yt-13 -

v
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Stationarity and differencing

Seasonal differencing

When both seasonal and first differences are applied. . .
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Seasonal differencing

When both seasonal and first differences are applied. . .

@ it makes no difference which is done first—the result
will be the same.

@ If seasonality is strong, we recommend that seasonal
differencing be done first because sometimes the
resulting series will be stationary and there will be no
need for further first difference.
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Seasonal differencing

When both seasonal and first differences are applied. . .

@ it makes no difference which is done first—the result
will be the same.

@ If seasonality is strong, we recommend that seasonal
differencing be done first because sometimes the
resulting series will be stationary and there will be no
need for further first difference.

It is important that if differencing is used, the differences
are interpretable.
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Interpretation of differencing

@ first differences are the change between one
observation and the next;

@ seasonal differences are the change between one
year to the next.
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Interpretation of differencing

@ first differences are the change between one
observation and the next;

@ seasonal differences are the change between one
year to the next.

But taking lag 3 differences for yearly data, for example,
results in a model which cannot be sensibly interpreted.
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Your turn

For the visitors series, find an appropriate differencing
(after transformation if necessary) to obtain stationary
data.
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© Non-seasonal ARIMA models
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Autoregressive models

Autoregressive (AR) models:

Ye=C+ P1yr—1+ Qoyr—o+ -+ OpYr—p + €t

where ¢, is white noise. This is a multiple regression with
lagged values of y; as predictors.
AR(1) AR(2)

25.0-

12- 22.5-

20.0-

17.5-

15.0-

e amuel Ors | FEZOTETARIMA 0181002 29/ 102



AR(1) model

Ye =2 —08y;_1+ ¢t ]
e ~ N(0,1), T =100.

AR(1)
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AR(1) model

Ye = C+ Q1yi—1 + &¢ ]

@ When ¢; =0, y; is equivalent to WN

@ When ¢; =1 and ¢ =0, y; is equivalent to a RW

@ When ¢; =1 and ¢ # 0, y; is equivalent to a RW
with drift

@ When ¢; < 0, y; tends to oscillate between
positive and negative values.
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AR(2) model

Ye =8+ 13y 1 —0.7y: o+ € ]
e~ N(0,1), T =100.

AR(2)
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Non-seasonal ARIMA models

Moving Average (MA) models

Ye=C+er+bther1 + b o+ -+ 04et_q,

where ¢, is white noise. This is a multiple regression with
past errors as predictors. Don’t confuse this with
moving average smoothing!

MA(1) MA(2)
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MA(1) model

Ye =20 + e, + 0.8, 1 |
e~ N(0,1), T = 100.
MA(1)
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MA(2) model

Ye =€t — €1+ 0.8 J
ee ~ N(0,1), T =100.
MA(2)
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ARIMA models

Autoregressive Moving Average models:

Ye=Ct+Q1ye-1+ -+ OpYip
+016¢1 + -+ Oget—g + €t
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ARIMA models

Autoregressive Moving Average models:

Yi=CH+ O1ye—1+ -+ OpYrp
+016¢1 + -+ Oget—g + €t

@ Predictors include both lagged values of y; and
lagged errors.

@ Conditions on coefficients ensure stationarity.

@ Conditions on coefficients ensure invertibility.
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ARIMA models

Autoregressive Moving Average models:

Yi=CH+ O1ye—1+ -+ OpYrp
+016¢1 + -+ Oget—g + €t

@ Predictors include both lagged values of y; and
lagged errors.

@ Conditions on coefficients ensure stationarity.

@ Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models
@ Combine ARMA model with differencing.
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ARIMA models

Autoregressive Integrated Moving Average models

ARIMA(p, d, g) model

AR: p = order of the autoregressive part
|: d = degree of first differencing involved
MA: g = order of the moving average part.

@ White noise model: ARIMA(0,0,0)

@ Random walk: ARIMA(0,1,0) with no constant

@ Random walk with drift: ARIMA(0,1,0) with const.
o AR(p): ARIMA(p,0,0)

o MA(q): ARIMA(0,0,q)
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US personal consumption

US consumption

Quarterly percentage change
o

1970 1980 1990 2000 2010
Year
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US personal consumption

(fit <- auto.arima(uschange[, " 'Consumption’]))

## Series: uschange[, "Consumption']
## ARIMA(2,0,2) with non-zero mean

H#t

## Coefficients:

#Hit arl ar2 mal ma2 mean
Hit 1.3908 -0.5813 -1.1800 0.5584 0.7463
## s.e. 0.2553 0.2078 0.2381 0.1403 0.0845
HH#

## sigma™2 estimated as 0.3511: log likelihood=-165.14
## A1C=342.28 AlCc=342.75 BIC=361.67
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US personal consumption

(fit <- auto.arima(uschange[, " "Consumption™]))

## Series: uschange[, "Consumption']
## ARIMA(2,0,2) with non-zero mean

H#t

## Coefficients:

#Hit arl ar2 mal ma2 mean
Hit 1.3908 -0.5813 -1.1800 0.5584 0.7463
## s.e. 0.2553 0.2078 0.2381 0.1403 0.0845
HH#

## sigma™2 estimated as 0.3511: log likelihood=-165.14
## A1C=342.28 AlCc=342.75 BIC=361.67

ARIMA(2,0,2) model:

Yr=¢C =+ 1-391yt—1 — 0-581yt—2 — 1.180€t_1 =+ 0.5588t_2 =+ Et,
where ¢ = 0.746 x (1 — 1.391 4 0.581) = 0.142 and ¢, is white noise with a

standard deviation of 0.593 = 1/0.351.
Y e FC2018: ARIMA




US personal consumption

fit %>% forecast(h=10) %>% autoplot(include=80)

Forecasts from ARIMA(2,0,2) with hon-zero mean
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Outline

© Order selection
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Partial autocorrelations

Partial autocorrelations measure relationship
between y; and y;_x, when the effects of other time lags
—1,2,3,..., k— 1 — are removed.
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Partial autocorrelations

Partial autocorrelations measure relationship
between y; and y;_x, when the effects of other time lags
—1,2,3,..., k— 1 — are removed.

a = kth partial autocorrelation coefficient
= equal to the estimate of by in regression:

Ye = C+ Q1ye—1+ Payr—o + - + OiYr—k-
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Partial autocorrelations

Partial autocorrelations measure relationship
between y; and y;_x, when the effects of other time lags
—1,2,3,..., k— 1 — are removed.

a = kth partial autocorrelation coefficient
= equal to the estimate of by in regression:

Ye = C+ Q1ye—1+ Payr—o + - + OiYr—k-

@ Varying number of terms on RHS gives « for
different values of k.
@ There are more efficient ways of calculating ay.

@ (V1 = O
Samuel Orso FC2018: ARIMA 2018-10-02 42 / 102



Example: US consumption

US consumption

Quarterly percentage change

1970 1980 1990 2000 2010
Year
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Example: US consumption
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ACF and PACF interpretation

AR(1)

pk:qﬁlf fork=1,2...;
a1 = @1 ar =0 for k=2,3,....

So we have an AR(1) model when

@ autocorrelations exponentially decay
@ there is a single significant partial autocorrelation.
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ACF and PACF interpretation

AR(p)

@ ACF dies out in an exponential or damped sine-wave
manner
@ PACF has all zero spikes beyond the pth spike

So we have an AR(p) model when

@ the ACF is exponentially decaying or sinusoidal
@ there is a significant spike at lag p in PACF, but
none beyond p
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ACF and PACF interpretation

MA(1)

p1 =01 pxk =0 for k=2,3,...;
Oék:—(—el)k

So we have an MA(1) model when

@ the PACF is exponentially decaying and
@ there is a single significant spike in ACF
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ACF and PACF interpretation

MA(q)

@ PACF dies out in an exponential or damped
sine-wave manner
@ ACF has all zero spikes beyond the gth spike

So we have an MA(q) model when

@ the PACF is exponentially decaying or sinusoidal
@ there is a significant spike at lag g in ACF, but none
beyond g
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Example: Mink trapping

Annual number of minks trapped
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Example: Mink trapping
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Order selection

Information criteria
Akaike’s Information Criterion (AIC):
AIC = —2log(L) +2(p+ g+ k+ 1),

where L is the likelihood of the data,
k=1ifc#0and k=0if c=0.
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Information criteria

Akaike’s Information Criterion (AIC):

AIC = —2log(L) +2(p+ g+ k+ 1),
where L is the likelihood of the data,
k=1ifc#0and k=0if c=0.

Corrected AIC:

+q+k+1 +k+2
AlCc = AIC + 2+atirt)(pra i)
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Order selection

Information criteria

Akaike’s Information Criterion (AIC):

AIC = —2log(L) +2(p+ g+ k+ 1),
where L is the likelihood of the data,
k=1ifc#0and k=0if c=0.

Corrected AIC:

AlCc = AIC + 2+atirt)(pra i)

Bayesian Information Criterion:
BIC = AIC + [log(T) — 2](p + g + k — 1).
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Order selection

Information criteria

Akaike’s Information Criterion (AIC):

AIC = —2log(L) +2(p+ g+ k+ 1),
where L is the likelihood of the data,
k=1ifc#0and k=0if c=0.

Corrected AIC:

AlCc = AIC + 2+atirt)(pra i)

Bayesian Information Criterion:
BIC = AIC + [log(T) — 2](p + g + k — 1).

Good models are obtained by minimizing either the AIC,
AlCc or BIC. Our preference is to use the AlCc. J
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Outline

@ ARIMA modelling in R
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Choosing your own model

ggtsdisplay(internet)

internet
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Choosing your own model

ggtsdisplay(diff(internet))

diff(internet)
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Choosing your own model

(fit <- Arima(internet,order=c(3,1,0)))

## Series: iInternet
## ARIMA(3,1,0)

H#H#

## Coefficients:

Hit arl ar2 ar3
H## 1.1513 -0.6612 0.3407
## s.e. 0.0950 0.1353 0.0941
#H#

## sigma™2 estimated as 9.656: log likelihood=-252
## AI1C=511.99 AlCc=512_.42 BI1C=522_37
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Choosing your own model

auto.arima(internet)

## Series: iInternet
## ARIMA(1,1,1)

#H#

## Coefficients:

Ht arl mal
H## 0.6504 0.5256
## s.e. 0.0842 0.0896
H#

## sigma™2 estimated as 9.995: 1log likelihood=-254.1
## A1C=514_.3 AICc=514.55 BIC=522.08
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Choosing your own model

auto.arima(internet, stepwise=FALSE,

H#H
H#
H#
H#
H#
HH
HH
H#HH
H#HH
H#H

Samuel Orso

approximation=FALSE)

Series: internet

ARIMA(3,1,0)

Coefficients:
arl

1.1513

s.e. 0.0950

ar2
-0.6612 0.3
0.1353 0.0

ar3
407
941

sigma™2 estimated as 9.656: log likelithood=-252

A1C=511.99

AlCc=512.42

FC2018: ARIMA

B1C=522.37

2018-10-02 57 / 102



ARIMA modelling in R

Choosing your own model

checkresiduals(fit)
Residuals from ARIMA(3,1,0)
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Choosing your own model

fit %>% forecast %>% autoplot

Forecasts from ARIMA(3,1,0)

250-
—
$ 200- level
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3 80
£ 95
150 -
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Modelling procedure with Arima

© Plot the data. Identify any unusual observations.

© If necessary, transform the data (using a Box-Cox
transformation) to stabilize the variance.

© |If the data are non-stationary: take first differences of the data
until the data are stationary.

© Examine the ACF/PACF: Is an AR(p) or MA(q) model
appropriate?

© Try your chosen model(s), and use the AlCc to search for a
better model.

© Check the residuals from your chosen model by plotting the ACF
of the residuals, and doing a portmanteau test of the residuals.
If they do not look like white noise, try a modified model.

@ Once the residuals look like white noise, calculate forecasts.
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Modelling procedure with
auto.arima

@ Plot the data. Identify any unusual observations.
@ If necessary, transform the data (using a Box-Cox
transformation) to stabilize the variance.

© Use auto.arima to select a model.

© Check the residuals from your chosen model by plotting the ACF
of the residuals, and doing a portmanteau test of the residuals.
If they do not look like white noise, try a modified model.

@ Once the residuals look like white noise, calculate forecasts.
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Seasonally adjusted electrical equipment

eeadj <- seasadj(stl(elecequip, s.window="periodic'™))
autoplot(eeadj) + xlab(“Year™) +
ylab(*'Seasonally adjusted new orders index')

110-
100 -
90 -

80-

Seasonally adjusted new orders index

2000 2005 2010
Year
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Seasonally adjusted electrical equipment

© Time plot shows sudden changes, particularly big
drop in 2008/2009 due to global economic
environment. Otherwise nothing unusual and no need
for data adjustments.

© No evidence of changing variance, so no Box-Cox
transformation.

© Data are clearly non-stationary, so we take first
differences.
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Seasonally adjusted electrical equipment

ggtsdisplay(diff(eeadj))

diff(eead))
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ARIMA modelling in R

Seasonally adjusted electrical equipment

© PACF is suggestive of AR(3). So initial candidate
model is ARIMA(3,1,0). No other obvious
candidates.

@ Fit ARIMA(3,1,0) model along with variations:
ARIMA(4,1,0), ARIMA(2,1,0), ARIMA(3,1,1), etc.
ARIMA(3,1,1) has smallest AlCc value.
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Seasonally adjusted electrical equipment

(fit <- Arima(eeadj, order=c(3,1,1)))

## Series: eeadj
## ARIMA(3,1,1)

HH#

## Coefficients:

H#Hit arl ar2 ar3 mal
Hit 0.0044 0.0916 0.3698 -0.3921
## s.e. 0.2201 0.0984 0.0669 0.2426
Hit

## sigman2 estimated as 9.577: log likelihood=-492.69
## AIC=995.38 AlCc=995.7 BIC=1011.72
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Seasonally adjusted electrical equipment

@ ACF plot of residuals from ARIMA(3,1,1) model look
like white noise.

checkresiduals(fit)

Residuals from ARIMA(3,1,1)
10-
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ARIMA modelling in R

Seasonally adjusted electrical equipment

fit %>% forecast %>% autoplot

Forecasts from ARIMA(3,1,1)
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Your turn

For the usgdp data:

@ if necessary, find a suitable Box-Cox transformation
for the data;

o fit a suitable ARIMA model to the transformed data
using auto.arima();

@ check the residual diagnostics;

@ produce forecasts of your fitted model. Do the
forecasts look reasonable?
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© Seasonal ARIMA models

Y e FEZOTETARIMA 011002 70/ 102



Seasonal ARIMA models

ARIMA (p,d,q) (P,D, Q)m
———— ~—_—
T T
Non-seasonal part Seasonal part of
of the model of the model

where m = number of observations per year.
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Common ARIMA models

The US Census Bureau uses the following models most
often:

ARIMA(0,1,1)(0,1,1),, with log transformation
ARIMA(0,1,2)(0,1,1),, with log transformation
ARIMA(2,1,0)(0,1,1),, with log transformation
ARIMA(0,2,2)(0,1,1),, with log transformation
ARIMA(2,1,2)(0,1,1),, with no transformation
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Seasonal ARIMA models

Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in
the seasonal lags of the PACF and ACF.
ARIMA(0,0,0)(0,0,1)1, will show:

@ a spike at lag 12 in the ACF but no other significant
spikes.

@ The PACF will show exponential decay in the
seasonal lags; that is, at lags 12, 24, 36, ....

ARIMA(0,0,0)(1,0,0);, will show:

@ exponential decay in the seasonal lags of the ACF
@ a single significant spike at lag 12 in the PACF.
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European quarterly retail trade

autoplot(euretail) +
xlab("'Year') + ylab("'Retail index'")

100-

Retail index

2000 2005 2010
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European quarterly retail trade

euretail %>% diff(lag=4) %>% ggtsdisplay(Q)
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European quarterly retail trade

euretail %>% diff(lag=4) %>% diff(Q) %>%

ggtsdisplay()
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European quarterly retail trade

d =1 and D = 1 seems necessary.

Significant spike at lag 1 in ACF suggests

non-seasonal MA(1) component.

@ Significant spike at lag 4 in ACF suggests seasonal
MA(1) component,

@ Initial candidate model: ARIMA(0,1,1)(0,1,1),.

We could also have started with

ARIMA(1,1,0)(1,1,0),.
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European quarterly retail trade

fit <- Arima(euretail, order=c(0,1,1),
seasonal=c(0,1,1))
checkresiduals(fit)
Residuals from ARIMA(0,1,1)(0,1,1)[4]
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Seasonal ARIMA models

European quarterly retail trade
@ ACF and PACF of residuals show significant spikes at
lag 2, and maybe lag 3.

e AlCc of ARIMA(0,1,2)(0,1,1)4 model is 74.27.
@ AlCc of ARIMA(0,1,3)(0,1,1)4 model is 63.39.
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European quarterly retail trade

@ ACF and PACF of residuals show significant spikes at
lag 2, and maybe lag 3.

@ AlCc of ARIMA(0,1,2)(0,1,1); model is 74.27.

@ AlCc of ARIMA(0,1,3)(0,1,1)4 model is 63.39.

Residuals from ARIMA(0,1,3)(0,1,1)[4]

2000 2005 2010
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) Ly 11 | 5 10-
2 0.0 T T 3
o
-0.1- | 5 '
0.2
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European quarterly retail trade

## Series: euretail
## ARIMA(0,1,3)(0,1,1)[4]

H#Hit

## Coefficients:

Ht mal ma2 ma3 smal
H#t 0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
H#t

## sigma™2 estimated as 0.156: 1log likelihood=-28.63
## AIC=67.26 AlCc=68.39 BIC=77.65
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European quarterly retail trade

checkresiduals(fit)
Residuals from ARIMA(0,1,3)(0,1,1)[4]
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Seasonal ARIMA models

European quarterly retail trade

autoplot(forecast(fit, h=12))

Forecasts from ARIMA(0,1,3)(0,1,1)[4]
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European quarterly retail trade

auto.arima(euretail)

## Series: euretail
## ARIMA(1,1,2)(0,1,1)[4]

H#t

## Coefficients:

Ht arl mal ma2 smal
H#t 0.7362 -0.4663 0.2163 -0.8433
## s.e. 0.2243 0.1990 0.2101 0.1876
HHt

## sigma™2 estimated as 0.1587: 1log likelihood=-29.62
## AIC=69.24 AlICc=70.38 BIC=79.63
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European quarterly retail trade

auto.arima(euretail,
stepwise=FALSE, approximation=FALSE)

## Series: euretail
## ARIMA(0,1,3)(0,1,1)[4]

H#HHt

## Coefficients:

Ht mal ma2 ma3 smal
H#t 0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
H#t

## sigma™2 estimated as 0.156: 1log likelihood=-28.63
## AIC=67.26 AlCc=68.39 BIC=77.65
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Cortecosteroid drug sales
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Cortecosteroid drug sales

Seasonally differenced HO2 scripts
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Cortecosteroid drug sales

@ Choose D =1 and d = 0.

@ Spikes in PACF at lags 12 and 24 suggest seasonal
AR(2) term.

@ Spikes in PACF suggests possible non-seasonal AR(3)
term.

@ Initial candidate model: ARIMA(3,0,0)(2,1,0)15.
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Cortecosteroid drug sales

Model AlCc

ARIMA(3,0,1)(0,1,2);, -485.48
ARIMA(3,0,1)(1,1,1);, -484.25
ARIMA(3,0,1)(0,1,1);, -483.67
ARIMA(3,0,1)(2,1,0)1, -476.31
ARIMA(3,0,0)(2,1,0);, -475.12
(3.0.2)(2,1,0)
(3,0,1)(1,1,0)

ARIMA(3,0,2)(2,1,0)1, -474.88
ARIMA(3,0,1)(1,1,0);, -463.40
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Cortecosteroid drug sales

(fit <- Arima(h02, order=c(3,0,1), seasonal=c(0,1,2),
lambda=0))

## Series: h02
## ARIMA(3,0,1)(0,1,2)[12]
## Box Cox transformation: lambda= O

Hit

## Coefficients:

Hit arl ar2 ar3 mal smal sma2
Hit -0.1603 0.5481 0.5678 0.3827 -0.5222 -0.1768

## s.e. 0.1636 0.0878 0.0942 0.1895 0.0861 0.0872
#t

## sigma™2 estimated as 0.004278: 1log likelihood=250.04
## AIC=-486.08 AlCc=-485.48 BIC=-463.28
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Cortecosteroid drug sales

checkresiduals(fit, lag=36)
Residuals from ARIMA(3,0,1)(0,1,2)[12]
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Cortecosteroid drug sales

(fit <- auto.arima(h02, lambda=0))

## Series: h02
## ARIMA(2,1,3)(0,1,1)[12]
## Box Cox transformation: lambda= 0O

H#

## Coefficients:

Hit arl ar2 mal ma2 ma3 smal
#it -1.0194 -0.8351 0.1717 0.2578 -0.4206 -0.6528
## s.e. 0.1648 0.1203 0.2079 0.1177 0.1060 0.0657
#t

## sigma™2 estimated as 0.004203: log likelihood=250.8
## AIC=-487.6  AICc=-486.99 BIC=-464.83
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Cortecosteroid drug sales

checkresiduals(fit, lag=36)
Residuals from ARIMA(2,1,3)(0,1,1)[12]
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Cortecosteroid drug sales

(fit <- auto.arima(h02, lambda=0, max.order=9,
stepwise=FALSE, approximation=FALSE))

## Series: h02
## ARIMA(4,1,1)(2,1,2)[12]
## Box Cox transformation: lambda= 0

H#

## Coefficients:

Hit arl ar2 ar3 ard mal sarl sar2 smal
#it -0.0425 0.2098 0.2017 -0.2273 -0.7424 0.6213 -0.3832 -1.2019
## s.e. 0.2167 0.1813 0.1144 0.0810 0.2074 0.2421 0.1185 0.2491
#it sma2

H# 0.4959

## s.e. 0.2135

H#

## sigma™2 estimated as 0.004049: log likelihood=254.31
## AIC=-488.63 AlCc=-487.4 BIC=-456.1
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Seasonal ARIMA models

Cortecosteroid drug sales

checkresiduals(fit, lag=36)

Residuals from ARIMA(4,1,1)(2,1,2)[12]
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Cortecosteroid drug sales

Training data: July 1991 to June 2006
Test data: July 2006—June 2008

getrmse <- function(x,h,...)
{

train.end <- time(x)[length(x)-h]

test.start <- time(x)[length(x)-h+1]

train <- window(x,end=train.end)

test <- window(Xx,start=test.start)

fit <- Arima(train,...)

fc <- forecast(fit,h=h)

return(accuracy(fc,test)[2, 'RMSE™])
}
getrmse(h02,h=24,order=c(3,0,0),seasonal=c(2,1,0), lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(2,1,0), lambda=0)
getrmse(h02,h=24,0order=c(3,0,2),seasonal=c(2,1,0), lambda=0)
getrmse(h02,h=24,0rder=c(3,0,1),seasonal=c(1,1,0), lambda=0)
getrmse(h02,h=24,0rder=c(3,0,1),seasonal=c(0,1,1), lambda=0)
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Cortecosteroid drug sales

Model

RMSE

ARIMA(4,1,1
ARIMA(3,0,1
ARIMA(3,0,1
ARIMA(2,1,4)(0,1,1
ARIMA(2,1,3
ARIMA(3,0,3
ARIMA
ARIMA(3,0,1
ARIMA(3,0,2
ARIMA(3,0,2
ARIMA(3,0,1
ARIMA(3,0,0
ARIMA(3,0,1)(1,1,0)[12]
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[12]
[12]
[12]
[12]
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[12]
[12]
[12]

0.0615
0.0622
0.0630
0.0632
0.0634
0.0639
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0.0644
0.0644
0.0645
0.0646
0.0661
0.0679
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Cortecosteroid drug sales

@ Models with lowest AlCc values tend to give slightly
better results than the other models.

@ AICc comparisons must have the same orders of
differencing. But RMSE test set comparisons can
involve any models.

@ Use the best model available, even if it does not pass
all tests.
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Cortecosteroid drug sales

fit <- Arima(h02, order=c(3,0,1), seasonal=c(0,1,2),
lambda=0)

autoplot(forecast(fit)) +
ylab("'HO2 sales (million scripts)'™) + xlab(Year™)

Forecasts from ARIMA(3,0,1)(0,1,2)[12]

HO2 sales (million scripts)
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Outline

O ARIMA vs ETS
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ARIMA vs ETS

@ Myth that ARIMA models are more general than
exponential smoothing.

@ Linear exponential smoothing models all special cases
of ARIMA models.

@ Non-linear exponential smoothing models have no
equivalent ARIMA counterparts.

@ Many ARIMA models have no exponential smoothing
counterparts.

@ ETS models all non-stationary. Models with
seasonality or non-damped trend (or both) have two
unit roots; all other models have one unit root.
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ARIMA vs ETS

Equivalences
ETS model ARIMA model Parameters
ETS(AN,N) ARIMA(0,1,1) 0 =a—1
ETS(A,ANN) ARIMA(0,2,2) 0h=a+p—-2
02 =1l—-a
ETS(A,AN) ARIMA(1,1,2) =0
hh=a+o¢8—-1-0¢
0 =(1—a)o

ETS(AN,A)  ARIMA(0,0,m)(0,1,0),,
ETS(A,AA)  ARIMA(0,1,m + 1)(0,1,0),,
ETS(A,AA)  ARIMA(1,0,m + 1)(0,1,0),,

Samuel Orso
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Your turn

For the condmi Ik series:

@ Do the data need transforming? If so, find a suitable
transformation.

@ Are the data stationary? If not, find an appropriate
differencing which yields stationary data.

@ Identify a couple of ARIMA models that might be useful
in describing the time series.

@ Which of your models is the best according to their AlC
values?

@ Estimate the parameters of your best model and do
diagnostic testing on the residuals. Do the residuals
resemble white noise? If not, try to find another ARIMA
model which fits better.

@ Forecast the next 24 months of data using your preferred
model.

@ Compare the forecasts obtained using ets().
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