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Stationarity and differencing

Stationarity

Definition
If {yt} is a stationary time series, then for all s, the
distribution of (yt , . . . , yt+s) does not depend on t.

A stationary series is:
roughly horizontal
constant variance
no patterns predictable in the long-term
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Stationarity and differencing

Stationary?
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Stationarity and differencing
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Stationarity and differencing

Stationary?
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Stationarity and differencing

Stationary?
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Stationarity and differencing

Stationary?
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Stationarity and differencing

Stationary?
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Stationarity and differencing

Stationary?

400

450

500

1995 2000 2005 2010

Year

m
eg

al
itr

es

Australian quarterly beer production

Samuel Orso FC2018: ARIMA 2018-10-02 11 / 102



Stationarity and differencing

Stationarity

Definition
If {yt} is a stationary time series, then for all s, the
distribution of (yt , . . . , yt+s) does not depend on t.

Transformations help to stabilize the variance.
For ARIMA modelling, we also need to stabilize the
mean.
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Stationarity and differencing

Non-stationarity in the mean

Identifying non-stationary series
time plot.
The ACF of stationary data drops to zero relatively
quickly
The ACF of non-stationary data decreases slowly.
For non-stationary data, the value of r1 is often large
and positive.
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Stationarity and differencing

Example: Dow-Jones index
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Stationarity and differencing

Example: Dow-Jones index

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25

Lag

A
C

F

Series: dj

Samuel Orso FC2018: ARIMA 2018-10-02 15 / 102



Stationarity and differencing

Example: Dow-Jones index

−100

−50

0

50

0 50 100 150 200 250 300

Day

C
ha

ng
e 

in
 D

ow
 J

on
es

 In
de

x

Samuel Orso FC2018: ARIMA 2018-10-02 16 / 102



Stationarity and differencing

Example: Dow-Jones index
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Stationarity and differencing

Differencing

Differencing helps to stabilize the mean.
The differenced series is the change between each
observation in the original series: y ′t = yt − yt−1.
The differenced series will have only T − 1 values
since it is not possible to calculate a difference y ′1 for
the first observation.
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Stationarity and differencing

Seasonal differencing

A seasonal difference is the difference between an
observation and the corresponding observation from the
previous year.

y ′t = yt − yt−m

where m = number of seasons.
For monthly data m = 12.
For quarterly data m = 4.
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Stationarity and differencing

Electricity production

usmelec %>% autoplot()
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Stationarity and differencing

Electricity production

usmelec %>% log() %>% autoplot()
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Stationarity and differencing

Electricity production

usmelec %>% log() %>% diff(lag=12) %>%
autoplot()
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Stationarity and differencing

Electricity production

usmelec %>% log() %>% diff(lag=12) %>%
diff(lag=1) %>% autoplot()
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Stationarity and differencing

Electricity production
Seasonally differenced series is closer to being
stationary.
Remaining non-stationarity can be removed with
further first difference.

If y ′t = yt − yt−12 denotes seasonally differenced series,
then twice-differenced series i

y ∗t = y ′t − y ′t−1
= (yt − yt−12)− (yt−1 − yt−13)
= yt − yt−1 − yt−12 + yt−13 .
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Stationarity and differencing

Seasonal differencing

When both seasonal and first differences are applied. . .

it makes no difference which is done first—the result
will be the same.
If seasonality is strong, we recommend that seasonal
differencing be done first because sometimes the
resulting series will be stationary and there will be no
need for further first difference.

It is important that if differencing is used, the differences
are interpretable.
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Stationarity and differencing

Interpretation of differencing

first differences are the change between one
observation and the next;
seasonal differences are the change between one
year to the next.

But taking lag 3 differences for yearly data, for example,
results in a model which cannot be sensibly interpreted.
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Stationarity and differencing

Your turn

For the visitors series, find an appropriate differencing
(after transformation if necessary) to obtain stationary
data.
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Non-seasonal ARIMA models

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Order selection

4 ARIMA modelling in R
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Non-seasonal ARIMA models

Autoregressive models
Autoregressive (AR) models:

yt = c + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt ,

where εt is white noise. This is a multiple regression with
lagged values of yt as predictors.
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Non-seasonal ARIMA models

AR(1) model

yt = 2− 0.8yt−1 + εt

εt ∼ N(0, 1), T = 100.
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Non-seasonal ARIMA models

AR(1) model

yt = c + φ1yt−1 + εt

When φ1 = 0, yt is equivalent to WN
When φ1 = 1 and c = 0, yt is equivalent to a RW
When φ1 = 1 and c 6= 0, yt is equivalent to a RW
with drift
When φ1 < 0, yt tends to oscillate between
positive and negative values.
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Non-seasonal ARIMA models

AR(2) model

yt = 8 + 1.3yt−1 − 0.7yt−2 + εt

εt ∼ N(0, 1), T = 100.
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Non-seasonal ARIMA models

Moving Average (MA) models
Moving Average (MA) models:

yt = c + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q,

where εt is white noise. This is a multiple regression with
past errors as predictors. Don’t confuse this with
moving average smoothing!
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Non-seasonal ARIMA models

MA(1) model

yt = 20 + εt + 0.8εt−1

εt ∼ N(0, 1), T = 100.
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Non-seasonal ARIMA models

MA(2) model

yt = εt − εt−1 + 0.8εt−2

εt ∼ N(0, 1), T = 100.
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Non-seasonal ARIMA models

ARIMA models
Autoregressive Moving Average models:

yt = c + φ1yt−1 + · · ·+ φpyt−p

+ θ1εt−1 + · · ·+ θqεt−q + εt .

Predictors include both lagged values of yt and
lagged errors.
Conditions on coefficients ensure stationarity.
Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models
Combine ARMA model with differencing.
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Non-seasonal ARIMA models

ARIMA models
Autoregressive Integrated Moving Average models
ARIMA(p, d , q) model
AR: p = order of the autoregressive part

I: d = degree of first differencing involved
MA: q = order of the moving average part.

White noise model: ARIMA(0,0,0)
Random walk: ARIMA(0,1,0) with no constant
Random walk with drift: ARIMA(0,1,0) with const.
AR(p): ARIMA(p,0,0)
MA(q): ARIMA(0,0,q)
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Non-seasonal ARIMA models

US personal consumption
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Non-seasonal ARIMA models

US personal consumption
(fit <- auto.arima(uschange[,"Consumption"]))

## Series: uschange[, "Consumption"]
## ARIMA(2,0,2) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 mean
## 1.3908 -0.5813 -1.1800 0.5584 0.7463
## s.e. 0.2553 0.2078 0.2381 0.1403 0.0845
##
## sigma^2 estimated as 0.3511: log likelihood=-165.14
## AIC=342.28 AICc=342.75 BIC=361.67

ARIMA(2,0,2) model:
yt = c + 1.391yt−1 − 0.581yt−2 − 1.180εt−1 + 0.558εt−2 + εt ,

where c = 0.746× (1− 1.391 + 0.581) = 0.142 and εt is white noise with a
standard deviation of 0.593 =

√
0.351.
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Non-seasonal ARIMA models

US personal consumption
fit %>% forecast(h=10) %>% autoplot(include=80)
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Order selection

Partial autocorrelations
Partial autocorrelations measure relationship
between yt and yt−k , when the effects of other time lags
— 1, 2, 3, . . . , k − 1 — are removed.

αk = kth partial autocorrelation coefficient
= equal to the estimate of bk in regression:

yt = c + φ1yt−1 + φ2yt−2 + · · ·+ φkyt−k .

Varying number of terms on RHS gives αk for
different values of k .
There are more efficient ways of calculating αk .
α1 = ρ1
same critical values of ±1.96/

√
T as for ACF.
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Order selection

Example: US consumption
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Order selection

Example: US consumption
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Order selection

ACF and PACF interpretation

AR(1)

ρk = φk
1 for k = 1, 2, . . . ;

α1 = φ1 αk = 0 for k = 2, 3, . . . .

So we have an AR(1) model when
autocorrelations exponentially decay
there is a single significant partial autocorrelation.
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Order selection

ACF and PACF interpretation

AR(p)
ACF dies out in an exponential or damped sine-wave
manner
PACF has all zero spikes beyond the pth spike

So we have an AR(p) model when
the ACF is exponentially decaying or sinusoidal
there is a significant spike at lag p in PACF, but
none beyond p
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Order selection

ACF and PACF interpretation

MA(1)

ρ1 = θ1 ρk = 0 for k = 2, 3, . . . ;
αk = −(−θ1)k

So we have an MA(1) model when
the PACF is exponentially decaying and
there is a single significant spike in ACF
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Order selection

ACF and PACF interpretation

MA(q)
PACF dies out in an exponential or damped
sine-wave manner
ACF has all zero spikes beyond the qth spike

So we have an MA(q) model when
the PACF is exponentially decaying or sinusoidal
there is a significant spike at lag q in ACF, but none
beyond q
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Order selection

Example: Mink trapping
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Order selection

Example: Mink trapping

−0.4

−0.2

0.0

0.2

0.4

0.6

5 10 15

Lag

A
C

F

−0.2

0.0

0.2

0.4

0.6

5 10 15

Lag

PA
C

F

Samuel Orso FC2018: ARIMA 2018-10-02 50 / 102



Order selection

Information criteria
Akaike’s Information Criterion (AIC):

AIC = −2 log(L) + 2(p + q + k + 1),
where L is the likelihood of the data,
k = 1 if c 6= 0 and k = 0 if c = 0.

Corrected AIC:
AICc = AIC + 2(p+q+k+1)(p+q+k+2)

T−p−q−k−2 .

Bayesian Information Criterion:
BIC = AIC + [log(T )− 2](p + q + k − 1).

Good models are obtained by minimizing either the AIC,
AICc or BIC. Our preference is to use the AICc.
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ARIMA modelling in R
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ARIMA modelling in R

Choosing your own model

ggtsdisplay(internet)

80

120

160

200

0 20 40 60 80 100

internet

−0.5

0.0

0.5

1.0

5 10 15 20

Lag

A
C

F

−0.5

0.0

0.5

1.0

5 10 15 20

Lag

PA
C

F

Samuel Orso FC2018: ARIMA 2018-10-02 53 / 102



ARIMA modelling in R

Choosing your own model

ggtsdisplay(diff(internet))

−15

−10

−5

0

5

10

15

0 20 40 60 80 100

diff(internet)

−0.4

0.0

0.4

0.8

5 10 15 20

Lag

A
C

F

−0.4

0.0

0.4

0.8

5 10 15 20

Lag

PA
C

F

Samuel Orso FC2018: ARIMA 2018-10-02 54 / 102



ARIMA modelling in R

Choosing your own model

(fit <- Arima(internet,order=c(3,1,0)))

## Series: internet
## ARIMA(3,1,0)
##
## Coefficients:
## ar1 ar2 ar3
## 1.1513 -0.6612 0.3407
## s.e. 0.0950 0.1353 0.0941
##
## sigma^2 estimated as 9.656: log likelihood=-252
## AIC=511.99 AICc=512.42 BIC=522.37
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ARIMA modelling in R

Choosing your own model

auto.arima(internet)

## Series: internet
## ARIMA(1,1,1)
##
## Coefficients:
## ar1 ma1
## 0.6504 0.5256
## s.e. 0.0842 0.0896
##
## sigma^2 estimated as 9.995: log likelihood=-254.15
## AIC=514.3 AICc=514.55 BIC=522.08
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ARIMA modelling in R

Choosing your own model

auto.arima(internet, stepwise=FALSE,
approximation=FALSE)

## Series: internet
## ARIMA(3,1,0)
##
## Coefficients:
## ar1 ar2 ar3
## 1.1513 -0.6612 0.3407
## s.e. 0.0950 0.1353 0.0941
##
## sigma^2 estimated as 9.656: log likelihood=-252
## AIC=511.99 AICc=512.42 BIC=522.37
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ARIMA modelling in R

Choosing your own model

checkresiduals(fit)
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ARIMA modelling in R

Choosing your own model

fit %>% forecast %>% autoplot
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ARIMA modelling in R

Modelling procedure with Arima

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox

transformation) to stabilize the variance.
3 If the data are non-stationary: take first differences of the data

until the data are stationary.
4 Examine the ACF/PACF: Is an AR(p) or MA(q) model

appropriate?
5 Try your chosen model(s), and use the AICc to search for a

better model.
6 Check the residuals from your chosen model by plotting the ACF

of the residuals, and doing a portmanteau test of the residuals.
If they do not look like white noise, try a modified model.

7 Once the residuals look like white noise, calculate forecasts.
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ARIMA modelling in R

Modelling procedure with
auto.arima

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox

transformation) to stabilize the variance.

3 Use auto.arima to select a model.

6 Check the residuals from your chosen model by plotting the ACF
of the residuals, and doing a portmanteau test of the residuals.
If they do not look like white noise, try a modified model.

7 Once the residuals look like white noise, calculate forecasts.
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ARIMA modelling in R

Seasonally adjusted electrical equipment

eeadj <- seasadj(stl(elecequip, s.window="periodic"))
autoplot(eeadj) + xlab("Year") +

ylab("Seasonally adjusted new orders index")
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ARIMA modelling in R

Seasonally adjusted electrical equipment

1 Time plot shows sudden changes, particularly big
drop in 2008/2009 due to global economic
environment. Otherwise nothing unusual and no need
for data adjustments.

2 No evidence of changing variance, so no Box-Cox
transformation.

3 Data are clearly non-stationary, so we take first
differences.
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ARIMA modelling in R

Seasonally adjusted electrical equipment

ggtsdisplay(diff(eeadj))
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ARIMA modelling in R

Seasonally adjusted electrical equipment

4 PACF is suggestive of AR(3). So initial candidate
model is ARIMA(3,1,0). No other obvious
candidates.

5 Fit ARIMA(3,1,0) model along with variations:
ARIMA(4,1,0), ARIMA(2,1,0), ARIMA(3,1,1), etc.
ARIMA(3,1,1) has smallest AICc value.

Samuel Orso FC2018: ARIMA 2018-10-02 65 / 102



ARIMA modelling in R

Seasonally adjusted electrical equipment

(fit <- Arima(eeadj, order=c(3,1,1)))

## Series: eeadj
## ARIMA(3,1,1)
##
## Coefficients:
## ar1 ar2 ar3 ma1
## 0.0044 0.0916 0.3698 -0.3921
## s.e. 0.2201 0.0984 0.0669 0.2426
##
## sigma^2 estimated as 9.577: log likelihood=-492.69
## AIC=995.38 AICc=995.7 BIC=1011.72
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ARIMA modelling in R

Seasonally adjusted electrical equipment
6 ACF plot of residuals from ARIMA(3,1,1) model look

like white noise.
checkresiduals(fit)
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,1)
## Q* = 24.034, df = 20, p-value = 0.2409
##
## Model df: 4. Total lags used: 24
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ARIMA modelling in R

Seasonally adjusted electrical equipment

fit %>% forecast %>% autoplot
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ARIMA modelling in R

Your turn

For the usgdp data:
if necessary, find a suitable Box-Cox transformation
for the data;
fit a suitable ARIMA model to the transformed data
using auto.arima();
check the residual diagnostics;
produce forecasts of your fitted model. Do the
forecasts look reasonable?
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Seasonal ARIMA models

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Order selection

4 ARIMA modelling in R

5 Seasonal ARIMA models

6 ARIMA vs ETS
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Seasonal ARIMA models

Seasonal ARIMA models

ARIMA (p, d , q)︸ ︷︷ ︸ (P,D,Q)m︸ ︷︷ ︸
↑ ↑

Non-seasonal part Seasonal part of
of the model of the model

where m = number of observations per year.
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Seasonal ARIMA models

Common ARIMA models

The US Census Bureau uses the following models most
often:

ARIMA(0,1,1)(0,1,1)m with log transformation
ARIMA(0,1,2)(0,1,1)m with log transformation
ARIMA(2,1,0)(0,1,1)m with log transformation
ARIMA(0,2,2)(0,1,1)m with log transformation
ARIMA(2,1,2)(0,1,1)m with no transformation
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Seasonal ARIMA models

Seasonal ARIMA models
The seasonal part of an AR or MA model will be seen in
the seasonal lags of the PACF and ACF.
ARIMA(0,0,0)(0,0,1)12 will show:

a spike at lag 12 in the ACF but no other significant
spikes.
The PACF will show exponential decay in the
seasonal lags; that is, at lags 12, 24, 36, . . . .

ARIMA(0,0,0)(1,0,0)12 will show:
exponential decay in the seasonal lags of the ACF
a single significant spike at lag 12 in the PACF.
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Seasonal ARIMA models

European quarterly retail trade

autoplot(euretail) +
xlab("Year") + ylab("Retail index")
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Seasonal ARIMA models

European quarterly retail trade

euretail %>% diff(lag=4) %>% ggtsdisplay()
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Seasonal ARIMA models

European quarterly retail trade

euretail %>% diff(lag=4) %>% diff() %>%
ggtsdisplay()
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Seasonal ARIMA models

European quarterly retail trade

d = 1 and D = 1 seems necessary.
Significant spike at lag 1 in ACF suggests
non-seasonal MA(1) component.
Significant spike at lag 4 in ACF suggests seasonal
MA(1) component.
Initial candidate model: ARIMA(0,1,1)(0,1,1)4.
We could also have started with
ARIMA(1,1,0)(1,1,0)4.
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Seasonal ARIMA models

European quarterly retail trade

fit <- Arima(euretail, order=c(0,1,1),
seasonal=c(0,1,1))

checkresiduals(fit)
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)(0,1,1)[4]
## Q* = 10.654, df = 6, p-value = 0.09968
##
## Model df: 2. Total lags used: 8
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Seasonal ARIMA models

European quarterly retail trade
ACF and PACF of residuals show significant spikes at
lag 2, and maybe lag 3.
AICc of ARIMA(0,1,2)(0,1,1)4 model is 74.27.
AICc of ARIMA(0,1,3)(0,1,1)4 model is 68.39.
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,3)(0,1,1)[4]
## Q* = 0.51128, df = 4, p-value = 0.9724
##
## Model df: 4. Total lags used: 8
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Seasonal ARIMA models

European quarterly retail trade
ACF and PACF of residuals show significant spikes at
lag 2, and maybe lag 3.
AICc of ARIMA(0,1,2)(0,1,1)4 model is 74.27.
AICc of ARIMA(0,1,3)(0,1,1)4 model is 68.39.
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,3)(0,1,1)[4]
## Q* = 0.51128, df = 4, p-value = 0.9724
##
## Model df: 4. Total lags used: 8
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Seasonal ARIMA models

European quarterly retail trade

## Series: euretail
## ARIMA(0,1,3)(0,1,1)[4]
##
## Coefficients:
## ma1 ma2 ma3 sma1
## 0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
##
## sigma^2 estimated as 0.156: log likelihood=-28.63
## AIC=67.26 AICc=68.39 BIC=77.65
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Seasonal ARIMA models

European quarterly retail trade
checkresiduals(fit)
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,3)(0,1,1)[4]
## Q* = 0.51128, df = 4, p-value = 0.9724
##
## Model df: 4. Total lags used: 8
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Seasonal ARIMA models

European quarterly retail trade

autoplot(forecast(fit, h=12))
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Seasonal ARIMA models

European quarterly retail trade

auto.arima(euretail)

## Series: euretail
## ARIMA(1,1,2)(0,1,1)[4]
##
## Coefficients:
## ar1 ma1 ma2 sma1
## 0.7362 -0.4663 0.2163 -0.8433
## s.e. 0.2243 0.1990 0.2101 0.1876
##
## sigma^2 estimated as 0.1587: log likelihood=-29.62
## AIC=69.24 AICc=70.38 BIC=79.63
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Seasonal ARIMA models

European quarterly retail trade

auto.arima(euretail,
stepwise=FALSE, approximation=FALSE)

## Series: euretail
## ARIMA(0,1,3)(0,1,1)[4]
##
## Coefficients:
## ma1 ma2 ma3 sma1
## 0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
##
## sigma^2 estimated as 0.156: log likelihood=-28.63
## AIC=67.26 AICc=68.39 BIC=77.65
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Seasonal ARIMA models

Cortecosteroid drug sales
H
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Seasonal ARIMA models

Cortecosteroid drug sales
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Seasonal ARIMA models

Cortecosteroid drug sales

Choose D = 1 and d = 0.
Spikes in PACF at lags 12 and 24 suggest seasonal
AR(2) term.
Spikes in PACF suggests possible non-seasonal AR(3)
term.
Initial candidate model: ARIMA(3,0,0)(2,1,0)12.
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Seasonal ARIMA models

Cortecosteroid drug sales

Model AICc
ARIMA(3,0,1)(0,1,2)12 -485.48
ARIMA(3,0,1)(1,1,1)12 -484.25
ARIMA(3,0,1)(0,1,1)12 -483.67
ARIMA(3,0,1)(2,1,0)12 -476.31
ARIMA(3,0,0)(2,1,0)12 -475.12
ARIMA(3,0,2)(2,1,0)12 -474.88
ARIMA(3,0,1)(1,1,0)12 -463.40
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Seasonal ARIMA models

Cortecosteroid drug sales

(fit <- Arima(h02, order=c(3,0,1), seasonal=c(0,1,2),
lambda=0))

## Series: h02
## ARIMA(3,0,1)(0,1,2)[12]
## Box Cox transformation: lambda= 0
##
## Coefficients:
## ar1 ar2 ar3 ma1 sma1 sma2
## -0.1603 0.5481 0.5678 0.3827 -0.5222 -0.1768
## s.e. 0.1636 0.0878 0.0942 0.1895 0.0861 0.0872
##
## sigma^2 estimated as 0.004278: log likelihood=250.04
## AIC=-486.08 AICc=-485.48 BIC=-463.28
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Seasonal ARIMA models

Cortecosteroid drug sales

checkresiduals(fit, lag=36)
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,0,1)(0,1,2)[12]
## Q* = 50.712, df = 30, p-value = 0.01045
##
## Model df: 6. Total lags used: 36
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Seasonal ARIMA models

Cortecosteroid drug sales

(fit <- auto.arima(h02, lambda=0))

## Series: h02
## ARIMA(2,1,3)(0,1,1)[12]
## Box Cox transformation: lambda= 0
##
## Coefficients:
## ar1 ar2 ma1 ma2 ma3 sma1
## -1.0194 -0.8351 0.1717 0.2578 -0.4206 -0.6528
## s.e. 0.1648 0.1203 0.2079 0.1177 0.1060 0.0657
##
## sigma^2 estimated as 0.004203: log likelihood=250.8
## AIC=-487.6 AICc=-486.99 BIC=-464.83
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Seasonal ARIMA models

Cortecosteroid drug sales
checkresiduals(fit, lag=36)
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(2,1,3)(0,1,1)[12]
## Q* = 46.149, df = 30, p-value = 0.03007
##
## Model df: 6. Total lags used: 36
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Seasonal ARIMA models

Cortecosteroid drug sales
(fit <- auto.arima(h02, lambda=0, max.order=9,

stepwise=FALSE, approximation=FALSE))

## Series: h02
## ARIMA(4,1,1)(2,1,2)[12]
## Box Cox transformation: lambda= 0
##
## Coefficients:
## ar1 ar2 ar3 ar4 ma1 sar1 sar2 sma1
## -0.0425 0.2098 0.2017 -0.2273 -0.7424 0.6213 -0.3832 -1.2019
## s.e. 0.2167 0.1813 0.1144 0.0810 0.2074 0.2421 0.1185 0.2491
## sma2
## 0.4959
## s.e. 0.2135
##
## sigma^2 estimated as 0.004049: log likelihood=254.31
## AIC=-488.63 AICc=-487.4 BIC=-456.1
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Seasonal ARIMA models

Cortecosteroid drug sales
checkresiduals(fit, lag=36)
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(4,1,1)(2,1,2)[12]
## Q* = 36.456, df = 27, p-value = 0.1057
##
## Model df: 9. Total lags used: 36
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Seasonal ARIMA models

Cortecosteroid drug sales
Training data: July 1991 to June 2006
Test data: July 2006–June 2008

getrmse <- function(x,h,...)
{

train.end <- time(x)[length(x)-h]
test.start <- time(x)[length(x)-h+1]
train <- window(x,end=train.end)
test <- window(x,start=test.start)
fit <- Arima(train,...)
fc <- forecast(fit,h=h)
return(accuracy(fc,test)[2,"RMSE"])

}
getrmse(h02,h=24,order=c(3,0,0),seasonal=c(2,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(2,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,2),seasonal=c(2,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(1,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(0,1,2),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(1,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,3),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,2),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,3),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,4),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,5),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(4,1,1),seasonal=c(2,1,2),lambda=0)
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Seasonal ARIMA models

Cortecosteroid drug sales
Model RMSE

ARIMA(4,1,1)(2,1,2)[12] 0.0615
ARIMA(3,0,1)(0,1,2)[12] 0.0622
ARIMA(3,0,1)(1,1,1)[12] 0.0630
ARIMA(2,1,4)(0,1,1)[12] 0.0632
ARIMA(2,1,3)(0,1,1)[12] 0.0634
ARIMA(3,0,3)(0,1,1)[12] 0.0639
ARIMA(2,1,5)(0,1,1)[12] 0.0640
ARIMA(3,0,1)(0,1,1)[12] 0.0644
ARIMA(3,0,2)(0,1,1)[12] 0.0644
ARIMA(3,0,2)(2,1,0)[12] 0.0645
ARIMA(3,0,1)(2,1,0)[12] 0.0646
ARIMA(3,0,0)(2,1,0)[12] 0.0661
ARIMA(3,0,1)(1,1,0)[12] 0.0679
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Seasonal ARIMA models

Cortecosteroid drug sales

Models with lowest AICc values tend to give slightly
better results than the other models.
AICc comparisons must have the same orders of
differencing. But RMSE test set comparisons can
involve any models.
Use the best model available, even if it does not pass
all tests.
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Seasonal ARIMA models

Cortecosteroid drug sales
fit <- Arima(h02, order=c(3,0,1), seasonal=c(0,1,2),

lambda=0)
autoplot(forecast(fit)) +

ylab("H02 sales (million scripts)") + xlab("Year")
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ARIMA vs ETS

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Order selection

4 ARIMA modelling in R

5 Seasonal ARIMA models

6 ARIMA vs ETS
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ARIMA vs ETS

ARIMA vs ETS
Myth that ARIMA models are more general than
exponential smoothing.
Linear exponential smoothing models all special cases
of ARIMA models.
Non-linear exponential smoothing models have no
equivalent ARIMA counterparts.
Many ARIMA models have no exponential smoothing
counterparts.
ETS models all non-stationary. Models with
seasonality or non-damped trend (or both) have two
unit roots; all other models have one unit root.
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ARIMA vs ETS

Equivalences

ETS model ARIMA model Parameters

ETS(A,N,N) ARIMA(0,1,1) θ1 = α− 1
ETS(A,A,N) ARIMA(0,2,2) θ1 = α + β − 2

θ2 = 1− α
ETS(A,A,N) ARIMA(1,1,2) φ1 = φ

θ1 = α + φβ − 1− φ
θ2 = (1− α)φ

ETS(A,N,A) ARIMA(0,0,m)(0,1,0)m
ETS(A,A,A) ARIMA(0,1,m + 1)(0,1,0)m
ETS(A,A,A) ARIMA(1,0,m + 1)(0,1,0)m

Samuel Orso FC2018: ARIMA 2018-10-02 101 / 102



ARIMA vs ETS

Your turn
For the condmilk series:

Do the data need transforming? If so, find a suitable
transformation.
Are the data stationary? If not, find an appropriate
differencing which yields stationary data.
Identify a couple of ARIMA models that might be useful
in describing the time series.
Which of your models is the best according to their AIC
values?
Estimate the parameters of your best model and do
diagnostic testing on the residuals. Do the residuals
resemble white noise? If not, try to find another ARIMA
model which fits better.
Forecast the next 24 months of data using your preferred
model.
Compare the forecasts obtained using ets().
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