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Slides generously provided by Rob J Hyndman
Based on Chapter 6 of Forecasting: Principles and
Practice by Rob J Hyndman and George Athanasopoulos

Samuel Orso FC2018: time series decomposition 2018-09-18 2 / 48



Time series components

Outline

1 Time series components

2 Seasonal adjustment

3 X-11 decomposition

4 SEATS decomposition

5 STL decomposition

6 Forecasting and decomposition

Samuel Orso FC2018: time series decomposition 2018-09-18 3 / 48



Time series components

Time series patterns

Recall
Trend pattern exists when there is a long-term

increase or decrease in the data.
Cyclic pattern exists when data exhibit rises and falls

that are not of fixed period (duration usually
of at least 2 years).

Seasonal pattern exists when a series is influenced by
seasonal factors (e.g., the quarter of the year,
the month, or day of the week).
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Time series components

Time series decomposition

yt = f(St, Tt, Rt)
where yt = data at period t

Tt = trend-cycle component at period t
St = seasonal component at period t
Rt = remainder component at period t

Additive decomposition: yt = St + Tt + Rt.
Multiplicative decomposition: yt = St × Tt × Rt.
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Time series components

Time series decomposition
Additive model appropriate if magnitude of seasonal
fluctuations does not vary with level.
If seasonal are proportional to level of series, then
multiplicative model appropriate.
Multiplicative decomposition more prevalent with
economic series
Alternative: use a Box-Cox transformation, and then use
additive decomposition.
Logs turn multiplicative relationship into an additive
relationship:

yt = St × Tt × Et ⇒ log yt = log St + log Tt + log Rt.
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Time series components

Euro electrical equipment
fit <- stl(elecequip, s.window=7)
autoplot(fit) + xlab(”Year”)
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Time series components

Euro electrical equipment

ggsubseriesplot(seasonal(fit))
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Time series components

Euro electrical equipment
autoplot(elecequip, series=”Data”) +
autolayer(trendcycle(fit), series=”Trend-cycle”)
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Time series components

Helper functions

seasonal() extracts the seasonal component
trendcycle() extracts the trend-cycle component
remainder() extracts the remainder component.
seasadj() returns the seasonally adjusted series.
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Time series components

Your turn
Repeat the decomposition using

elecequip %>%
stl(s.window=7, t.window=11) %>%
autoplot()
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What happens as you change s.window and t.window?
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Seasonal adjustment
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Seasonal adjustment

Seasonal adjustment

Useful by-product of decomposition: an easy way to
calculate seasonally adjusted data.
Additive decomposition: seasonally adjusted data
given by

yt − St = Tt + Rt

Multiplicative decomposition: seasonally adjusted
data given by

yt/St = Tt × Rt
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Seasonal adjustment

Euro electrical equipment
fit <- stl(elecequip, s.window=7)
autoplot(elecequip, series=”Data”) +
autolayer(seasadj(fit), series=”Seasonally Adjusted”)
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Seasonal adjustment

Seasonal adjustment

We use estimates of S based on past values to
seasonally adjust a current value.
Seasonally adjusted series reflect remainders as
well as trend. Therefore they are not “smooth””
and “downturns”” or “upturns” can be misleading.
It is better to use the trend-cycle component to
look for turning points.
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Seasonal adjustment

The ABS stuff-up
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Seasonal adjustment

The ABS stuff-up
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Seasonal adjustment

The ABS stuff-up
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Seasonal adjustment

The ABS stuff-up
ggseasonplot(window(x,start=c(2005,1)), year.labels=TRUE) +
ggtitle(”Total employed”) + ylab(”Thousands”)
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Seasonal adjustment

The ABS stuff-up

0 50 100 150 200

Thousands

Sep − Aug: total employed
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Seasonal adjustment

The ABS stuff-up
x %>% window(start=2009) %>%
stl(s.window=11, robust=TRUE) -> fit
autoplot(fit)
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Seasonal adjustment

The ABS stuff-up
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Seasonal adjustment

The ABS stuff-up

autoplot(seasadj(fit))
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Seasonal adjustment

The ABS stuff-up

August 2014 employment numbers higher than expected.
Supplementary survey usually conducted in August for
employed people.
Most likely, some employed people were claiming to be
unemployed in August to avoid supplementary questions.
Supplementary survey not run in 2014, so no motivation
to lie about employment.
In previous years, seasonal adjustment fixed the problem.
The ABS has now adopted a new method to avoid the
bias.
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Seasonal adjustment

History of time series decomposition
Classical method originated in 1920s.
Census II method introduced in 1957. Basis for X-11
method and variants (including X-12-ARIMA,
X-13-ARIMA)
STL method introduced in 1983
TRAMO/SEATS introduced in 1990s.

National Statistics Offices
ABS uses X-12-ARIMA
US Census Bureau uses X-13-ARIMA-SEATS
Statistics Canada uses X-12-ARIMA
ONS (UK) uses X-12-ARIMA
EuroStat use X-13-ARIMA-SEATS
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X-11 decomposition
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X-11 decomposition

X-11 decomposition
library(seasonal)
fit <- seas(elecequip, x11=””)
autoplot(fit)
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X11 decomposition of electrical equipment index
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X-11 decomposition

(Dis)advantages of X-11
Advantages

Relatively robust to outliers
Completely automated choices for trend and
seasonal changes
Very widely tested on economic data over a long
period of time.

Disadvantages
No prediction/confidence intervals
Ad hoc method with no underlying model
Only developed for quarterly and monthly data
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X-11 decomposition

Extensions: X-12-ARIMA and
X-13-ARIMA

The X-11, X-12-ARIMA and X-13-ARIMA methods
are based on Census II decomposition.
These allow adjustments for trading days and other
explanatory variables.
Known outliers can be omitted.
Level shifts and ramp effects can be modelled.
Missing values estimated and replaced.
Holiday factors (e.g., Easter, Labour Day) can be
estimated.
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SEATS decomposition

Outline

1 Time series components

2 Seasonal adjustment

3 X-11 decomposition

4 SEATS decomposition

5 STL decomposition

6 Forecasting and decomposition

Samuel Orso FC2018: time series decomposition 2018-09-18 32 / 48



SEATS decomposition

SEATS decomposition
library(seasonal)
fit <- seas(elecequip)
autoplot(fit)

da
ta

se
as

on
al

tr
en

d
re

m
ai

nd
er

2000 2005 2010

60

80

100

120

0.9

1.0

1.1

80

90

100

110

0.95

1.00

1.05

1.10

Time

SEATS decomposition of electrical equipment index

Samuel Orso FC2018: time series decomposition 2018-09-18 33 / 48



SEATS decomposition

SEATS decomposition
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SEATS decomposition

SEATS decomposition

ggsubseriesplot(seasonal(fit)) + ylab(”Seasonal”)
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SEATS decomposition

(Dis)advantages of SEATS

Advantages
Model-based
Smooth trend estimate
Allows estimates at end points
Allows changing seasonality
Developed for economic data

Disadvantages
Only developed for quarterly and monthly data
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STL decomposition
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STL decomposition

STL decomposition

STL: “Seasonal and Trend decomposition using Loess”
Very versatile and robust.
Unlike X-12-ARIMA, STL will handle any type of
seasonality.
Seasonal component allowed to change over time, and
rate of change controlled by user.
Smoothness of trend-cycle also controlled by user.
Robust to outliers
Not trading day or calendar adjustments.
Only additive.
Take logs to get multiplicative decomposition.
Use Box-Cox transformations to get other
decompositions.
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STL decomposition

STL decomposition
fit <- stl(elecequip, s.window=5, robust=TRUE)
autoplot(fit) +
ggtitle(”STL decomposition of electrical equipment index”)
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STL decomposition

STL decomposition
fit <- stl(elecequip, s.window=”periodic”, robust=TRUE)
autoplot(fit) +
ggtitle(”STL decomposition of electrical equipment index”)
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STL decomposition

STL decomposition

stl(elecequip,s.window=5)

stl(elecequip, t.window=15,
s.window=”periodic”, robust=TRUE)

t.window controls wiggliness of trend component.
s.window controls variation on seasonal
component.
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STL decomposition

STL decomposition
elecequip %>% mstl() %>% autoplot()
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mstl() chooses s.window=13
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Forecasting and decomposition

Outline

1 Time series components

2 Seasonal adjustment

3 X-11 decomposition

4 SEATS decomposition

5 STL decomposition

6 Forecasting and decomposition

Samuel Orso FC2018: time series decomposition 2018-09-18 43 / 48



Forecasting and decomposition

Forecasting and decomposition

Forecast seasonal component by repeating the last
year
Forecast seasonally adjusted data using
non-seasonal time series method.
Combine forecasts of seasonal component with
forecasts of seasonally adjusted data to get
forecasts of original data.
Sometimes a decomposition is useful just for
understanding the data before building a separate
forecasting model.
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Forecasting and decomposition

Electrical equipment
fit <- stl(elecequip, t.window=13, s.window=”periodic”)
fit %>% seasadj() %>% naive() %>%

autoplot() + ylab(”New orders index”) +
ggtitle(”ETS forecasts of seasonally adjusted data”)
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Forecasting and decomposition

Electrical equipment
fit %>% forecast(method='naive') %>%
autoplot() + ylab(”New orders index”) + xlab(”Year”)
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Forecasting and decomposition

Forecasting and decomposition
elecequip %>% stlf(method='naive') %>%
autoplot() + ylab(”New orders index”) + xlab(”Year”)
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Forecasting and decomposition

Decomposition and prediction
intervals

It is common to take the prediction intervals from
the seasonally adjusted forecasts and modify them
with the seasonal component.
This ignores the uncertainty in the seasonal
component estimate.
It also ignores the uncertainty in the future seasonal
pattern.
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