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A relabelling 7 is monotonic if x; < x; = 7(x;) < 7(x;)

Lemma
If T is monotonic, then the BDD f(X) is isomorphic to f(m(X)).

m One can apply 7 in a single linear scan.
O(N) time, 2 - scan(N) I/Os, and N external space.

m One can incorporate 7 into a (succeeding) top-down Apply sweep.
O(N) time, 0 1/0s, and 0 external space.

m One can incorporate 7 into a (preceeding) bottom-up Reduce sweep.
O(n) time, 0 1/Os, and 0 external space.
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AndExists

Observation
The 1/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

m The outer accumulating Reduce sweep of the Exists can do double-duty

as the Reduce sweep of the preceeding And operation.
This saves ©(sort(N)) time and 1/Os.

m The And operation can prune subtrees that trivially will become redundant
during the succeeding Exists.
This can save up to O(sort(Nzk)) time and 1/Os.
In practice, this only saves up to O(sort(N)) time and 1/Os.






Experiment: Next(Sz, Tz x)
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Relational Product for MCC models with a 22° state space BDD. Timeouts are marked as stars.



Experiment: Next(Sz, Txx) & Prev(Sz, Tex)
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CUDD = LibBDD

Relational Product for MCC models, 384 GiB of memory, and 222, ...,2%° state space BDDs.



Experiment: Reachability
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16 Petri Nets [MCC 21-23] with 384 GiB of memory.
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Experiment: Deadlock Detection
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16 Petri Nets [MCC 21-23] and 59 Boolean Networks [AEON, PyBoolNet] with 384 GiB RAM.



Experiment: SCC Decomposition
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16 Petri Nets [MCC 21-23] and 59 Boolean Networks [AEON, PyBoolNet] with 384 GiB RAM.



Conclusions and Future Work

m To improve the 1/O-efficient Next(Sy, T, ), focus on AndExists.
m Factor of ~ 2x by using a AndExists instead of And and Exists for conventional
depth-first implementations [1]. This may explain the sudden performance gap.
m For larger instances, less than lioth of the time is spent on the And.

Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)
Van Dijk: Sylvan — Multi-core Decision Diagrams. (2016)

Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

Brand et al.: A Decision Diagram Operation for Reachability. (2023).

Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).
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m Deal with small BDDs using Depth-first Recursion.

m Apply ideas from recent and more advanced BDD algorithms.
For example the ones in [2], [3], [4], and [5] .

m Design a Replace(r) for Non-monotone Variable Substitutions.
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