Relational Product of BDDs in External Memory

Steffan Christ Sglvsten, Jaco van de Pol
SPIN 2025

AARHUS
/v UNIVERSITY

NeXt(S)?, Tg);/) = (3x. S¢ /\T)?’)?/)[)?//)?]

[TACAS 22]

NeXt(S)?, Tg)g/) = (dx. Sx /\T)?’;/)[)?//)?]

[TACAS 22]

Apply (A)

transposed

Reduce

— fAg

[TACAS 22]

Apply (A)

transposed

[TACAS 22]

transposed

Reduce

— fAg

[TACAS 22]

Next(S;, T)—(’)?/) = (Ix. S)? A\ T)—(?;/)[)?//)?]

[TACAS 25]

[TACAS 25]

Transpose

Reduce

Reduce

Apply (V)

3%, £(X)

[TACAS 22]

Next(S;, T)?X/) = (Ix. 5)—(/\ T)a)?/)[)?//)?]

[TACAS 25]

[TACAS 22]

Next(S;, T)?X/) = (dx. Sg A T)—(?;/)[)?//)?]

[TACAS 25] [SPIN 25]

Replace
Definition
A relabelling 7 is monotonic if x; < x; = 7(x;) < 7(x;)

Lemma
If T is monotonic, then the BDD f(X) is isomorphic to f(m(X)).

Replace
Definition
A relabelling 7 is monotonic if x; < x; = 7(x;) < 7(x;)

Lemma
If T is monotonic, then the BDD f(X) is isomorphic to f(m(X)).

m One can apply 7 in a single linear scan.
O(N) time, 2 - scan(N) I/Os, and N external space.

Replace

Definition
A relabelling 7 is monotonic if x; < x; = 7(x;) < 7(x;)

Lemma
If T is monotonic, then the BDD f(X) is isomorphic to f(m(X)).

m One can apply 7 in a single linear scan.
O(N) time, 2 - scan(N) I/Os, and N external space.

m One can incorporate 7 into a (succeeding) top-down Apply sweep.
O(N) time, 0 1/0s, and 0 external space.

m One can incorporate 7 into a (preceeding) bottom-up Reduce sweep.
O(n) time, 0 1/Os, and 0 external space.

AndExists

Observation
The 1/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

Transpose Reduce X, f(X)

f —{ Apply (A) F---9 Reduce Reduce - Apply (V)

AndExists

Observation
The 1/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

Reduce X, f(X)

f — Apply (A) - Reduce f-4 Apply (V)

AndExists

Observation
The 1/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

m The outer accumulating Reduce sweep of the Exists can do double-duty

as the Reduce sweep of the preceeding And operation.
This saves ©(sort(N)) time and 1/Os.

AndExists

Observation
The 1/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

m The outer accumulating Reduce sweep of the Exists can do double-duty

as the Reduce sweep of the preceeding And operation.
This saves ©(sort(N)) time and 1/Os.

m The And operation can prune subtrees that trivially will become redundant
during the succeeding Exists.
This can save up to O(sort(Nzk)) time and 1/Os.
In practice, this only saves up to O(sort(N)) time and 1/Os.

Experiment: Next(Sz, Tz x)

N 1F 1F * * * I]
@ 10t | He¢————— 1| E
o F 1k 1F 1
E § 1 \\. 1 e— |
2 —s 4 . il |
‘£ 103 | El= ElS E
c - EIS 1r 1
& § S 1t 1
102 L ! ! ! ! ! ! ! ! ! ! ! ! ! !
1 2 4 8 1 2 4 8 1 2 4 8 16 32 64
Memory (GiB) Memory (GiB) Memory (GiB)
(a) GPUForwardProgress 20a (b) SmartHome 16 (C) ShieldPPPs 10a

—— Adiar —— BuDDy

Relational Product for MCC models with a 22° state space BDD. Timeouts are marked as stars.

Experiment: Next(Sz, Txx) & Prev(Sz, Tex)

10°

ET T T T T T T T T TTTJ
104 | B o Bs .
0 . ;/./l Ik
_E 103 ? * I/|.' ////
2 § 'r/‘ 7
102" " A
101 L I \HHH\’/\ \\\HH""\.‘\\\HH‘ Lol
10t 102 103 104 108

Other (s)

(a) NeXt(S;g, T;,)?/)

« BuDDy v CAL

=
o
-

T T T TTTTT T T T TTIH]

g ST el

[PO

E 't‘/ .

R N

[- "’ [} -

E e af B e E

E." ’t“ ,’/ -

e m L7

L ! \HHH\’/\/\ HHH\-""\ Ll Ll

102 103 104 108

Other (s)

(b) Prev(Sg, Tz)

CUDD = LibBDD

Relational Product for MCC models, 384 GiB of memory, and 222, ...,2%° state space BDDs.

Experiment: Reachability

104 T T TTTTT7 T T T 11717 T T T 11717 T T T 11717

T T T TTTT]

T T \’H’H‘
103

102

ol vl vl el el gad il g

1073 Lol
103 102 101 10° 10! 102 103

Other (s)
« BuDDy v CAL - CUDD = LibBDD & Sylvan

16 Petri Nets [MCC 21-23] with 384 GiB of memory.

104

Experiment: Deadlock Detection

103

T T T 11117 T T T 11117 T T T 11117 T T T TLFT T T TTLITT

<

@
e

102 AP
T e%e® B g

10!

100

Adiar (s)

<4
<
X T T T A M 11 -1

! \\\HH‘I//\/\\\HH“"I‘\Y.‘\\\HH‘ Ll Ll Ll Ll
103 102 1071 10° 10t 10? 103 104
Other (s)

« BuDDy v CAL » CUDD = LibBDD @ Sylvan

16 Petri Nets [MCC 21-23] and 59 Boolean Networks [AEON, PyBoolNet] with 384 GiB RAM.

Experiment: SCC Decomposition

105 T T T TTTTTT T T T TTTT T T TTTT T T T TTTTIT T T ‘é‘\‘i\t T ‘V/H.‘Hw‘ \V\\H/Hi‘, \.\V\\\H
. . v _-~
104 ¢ w .V%/!’V‘.

VWl v -7

103
102
10t
100

Adiar (s)

ool vl o vl sl o s oY

1073 HH\/’\/\\Hm\.w’\".v\”\v‘\uu\ RN Lol Lol RN Lol

103 102 101 100 10! 102 103 104 10°
Other (s)

e BuDDy v CAL » CUDD = LibBDD ¢ Sylvan

16 Petri Nets [MCC 21-23] and 59 Boolean Networks [AEON, PyBoolNet] with 384 GiB RAM.

Conclusions and Future Work

m To improve the 1/O-efficient Next(Sy, T,), focus on AndExists.
m Factor of ~ 2x by using a AndExists instead of And and Exists for conventional
depth-first implementations [1]. This may explain the sudden performance gap.
m For larger instances, less than lioth of the time is spent on the And.

Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)
Van Dijk: Sylvan — Multi-core Decision Diagrams. (2016)

Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

Brand et al.: A Decision Diagram Operation for Reachability. (2023).

Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).

10

Conclusions and Future Work

m To improve the 1/O-efficient Next(Sy, T,), focus on AndExists.
m Factor of ~ 2x by using a AndExists instead of And and Exists for conventional
depth-first implementations [1]. This may explain the sudden performance gap.
m For larger instances, less than lioth of the time is spent on the And.

m Deal with small BDDs using Depth-first Recursion.

[1] Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)
[2] Van Dijk: Sylvan — Multi-core Decision Diagrams. (2016)

[3] Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

[4] Brand et al.: A Decision Diagram Operation for Reachability. (2023).

[5] Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).

10

Conclusions and Future Work

m To improve the 1/O-efficient Next(Sy, T,), focus on AndExists.
m Factor of ~ 2x by using a AndExists instead of And and Exists for conventional
depth-first implementations [1]. This may explain the sudden performance gap.
m For larger instances, less than lioth of the time is spent on the And.

m Deal with small BDDs using Depth-first Recursion.

m Apply ideas from recent and more advanced BDD algorithms.
For example the ones in [2], [3], [4], and [5] .

[1] Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)
[2] Van Dijk: Sylvan — Multi-core Decision Diagrams. (2016)

[3] Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

[4] Brand et al.: A Decision Diagram Operation for Reachability. (2023).

[5] Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).

10

Conclusions and Future Work

m To improve the 1/O-efficient Next(Sy, T,), focus on AndExists.
m Factor of ~ 2x by using a AndExists instead of And and Exists for conventional
depth-first implementations [1]. This may explain the sudden performance gap.
m For larger instances, less than lioth of the time is spent on the And.

m Deal with small BDDs using Depth-first Recursion.

m Apply ideas from recent and more advanced BDD algorithms.
For example the ones in [2], [3], [4], and [5] .

m Design a Replace(r) for Non-monotone Variable Substitutions.

[1] Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)
[2] Van Dijk: Sylvan — Multi-core Decision Diagrams. (2016)

[3] Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

[4] Brand et al.: A Decision Diagram Operation for Reachability. (2023).

[5] Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).

10

Steffan Christ Sdglvsten

¥ soelvsten@cs.au.dk

PN

% ssoelvsten.github.io

Adiar

<[> github.com/ssoelvsten /adiar
B ssoelvsten.github.io/adiar

AARHUS
/v UNIVERSITY

mailto:soelvsten@cs.au.dk
https://ssoelvsten.github.io
http://github.com/ssoelvsten/adiar
http://ssoelvsten.github.io/adiar

Adiar v2.1
Relational Product

Adiar v1.0 Adiar v1.1 Adiar v2.0 \ Adiar v2.2
BD‘D ZDP Quantification 3 Variable Reordering
/— o I ‘ ; l / / ‘ ‘ .
2021 ! 12022 12023 ! 2024 !
| Adiar v1.0.1 Adiarv2.0 |
| Equality Checking | Levelised Random Access 1
3 Adi:;r vl.2 Adi;r v2.3
Adiar v1.0 Levelised Cuts Node Table

Levelised Priority Queue

