Correctness of Time-forward Processing Algorithms

Steffan Sglvsten, Simon Wimmer
LogSem Seminar, 2"4 of December 2024

AARHUS
/v UNIVERSITY

Adiar

|/O-efficient Decision Diagrams

github.com/logsem /adiar

http://github.com/logsem/adiar

106
105
10*
103
102
10!
100

B L L L L R L D R R A T T T 1717

Time (s)

T T T 1117

Lol

1073 Bl T T I A I I N B A 1 R B AN | Lol
108 10° 107 108 10° 1010
Problem Complexity (# BDD nodes)

—— Adiar —— BuDDy —— CUDD —— Sylvan

Running Time to solve N-Queens problems.

1011

Adiar v2.1
Relational Product

Adiar v1.0 Adiar v1.1 Adiar v2.0 i Adiar v2.2
BD‘D ZDD ngntiﬁcation 3 Variable Reordering
A S S S Wy .
2021 ' ! 2022 | 2023 ! 2024 |
| Adiar v1.0.1 Adiar v2.0
| Equality Checking | Levelised Random Access 1
3 Adia;r v1.2 Adi;r v2.3
Adiar v1.0 Levelised Cuts Node Table

Levelised Priority Queue

Written in

~N O b W N

117777777777 77
/// \brief Negates the content of ‘p‘ if it is a terminal and the
/77 ‘negate ¢ flag is set to true.

[177

inline ptr_uint64
cnot (const ptr_uint64& p, const bool negate)
{
const uint64 shifted_negate =
((uint64) negate) << ptr_uint64::data_shift;

return p.is_leaf() 7 p._raw shifted_negate : p._raw;

}

Correctness guaranteed by

~3500 Unit Tests
~400 Integration Tests

Cache and 1/0O Efficient Functional Algorithms
Guy E. Blelloch Robert Harper

Carnegie Mellon University

Abstract

In this paper we present a cost model for analyzing the memory efficiency of algorithms expressed in a simple
functional language. We show how some algorithms written in standard forms using just lists and trees (no arrays)
and requiring no explicit memory layout or memory management are efficient in the model. We then describe
an implementation of the language and show provable bounds for mapping the cost in our model to the cost
in the ideal- cache model. These bound imply that purely functional programs based on lists and trees with no
special attention to any details of memory layout can be as asymptotically as efficient as the carefully designed
imperative 1/O efficient algorithms. For example we describe an O(N/Blogy g N/B) cost sorting algorithm,
which is optimal in the ideal cache and |/O models.

Contents

Motivation

Correctness of Time-forward Processing
Encoding Binary Decision Diagrams
bbd eval
bbd not

bbd satcount

Appendix
|a|n: Bounded Domain

#n: Number of Assignments

Contents

Correctness of Time-forward Processing

Encoding Binary Decision Diagrams

Semantics of BDDs

f(Xo, X1, X2, X3) — (XO A\ X1 N\ X3) V (X2 S, X3)

! Julius Michaelis, Maximilian Haslbeck, Peter Lammich, and Lars Hupel. “Algorithms for Reduced
Ordered Binary Decision Diagrams”. In: Archive of Formal Proofs (2016)

Semantics of BDDs

Binary Decision Tree

! Julius Michaelis, Maximilian Haslbeck, Peter Lammich, and Lars Hupel. “Algorithms for Reduced
Ordered Binary Decision Diagrams”. In: Archive of Formal Proofs (2016)

Semantics of BDDs

Binary Decision Diagram

! Julius Michaelis, Maximilian Haslbeck, Peter Lammich, and Lars Hupel. “Algorithms for Reduced
Ordered Binary Decision Diagrams”. In: Archive of Formal Proofs (2016)

Data Types: Unique ldentifiers and Pointers
1 Uid = (level: N, id: N)

2 operator < (a: Uid) (b: Uid) =
a.level < b.level V (a.level = b.level A a.id < b.id)

w

4 Ptr = Leaf (val : B)
5 | Node (uid : Uid)

5 operator < (a: Ptr) (b: Ptr) =
1lift Uid.< s.t. Ptr.Node < Ptr.Leaf

(@)

Lemma
Uid.< and Ptr.< are total orders.

Proof.
Trival case distinctions.

Data Types: Nodes and BDDs

() 1

2

BO R

|

.

. 4

(2] :

I 6

7

8

9

| !
. v

(o Ax1 Ax3)V (x2 P x3)

Node
Bdd

(i: Uid,

1]

| Nodes (mns

t: Ptr, e:

Leaf (val : B)

Ptr)

List [Node])

Example = Bdd.Nodes ([

D

Node (Uid (0,0),
Node (Uid (1,0),
Node (Uid (2,0),
Node (Uid (3,0),
Node (Uid (3,1),

Ptr(1,0),
Ptr(3,1),
Ptr(3,1),
Ptr(Ll),
Ptr(T),

Ptr(2,0));
Ptr(2,0));
Ptr(3,0));
Ptr(T));
Ptr(Ll));

Data Types: Nodes and BDDs

@ 1 Node (i: Uid, t: Ptr, e: Ptr)
2 Bdd Leaf (val : B)
! e 3 | Nodes (ns : List[Nodel)
y
’ Definition
@ A Bdd is well formed, if ns : List [Node] satisfies:

e e 1 It is non-empty.

. . 2 It is closed, i.e. every node referred to exists.

1]

=

3 For each node, the level is strictly increasing.

(X0 Ax1 Axs) V(e x3) 4 It is sorted w.r.t. Node.1i.

Contents

Correctness of Time-forward Processing

bbd eval

bdd__evalfx

1 bdd_eval’ ((i t e)::mns’: List[Nodel]) (tgt: Uid) (x: N—B) =
2 if i < tgt

3 then bdd_eval’ ns’ tgt x

4 else match (x(a) 7?7 t : e) with

5 | Leaf (b) => Db

6 | Node(tgt’) => bdd_eval’ ns’ tgt’ x

7 bdd_eval (val : Bdd.Leaf) (x: N—B) = val
8 bdd_eval (r::ns : Bdd.Nodes) (x: N—B) = bdd_eval’ r::ns r x

bdd eval f x

Define the function bdt_of_bdd : Bdd — Bdt to converts a Binary Decision Diagram
into a Binary Decision Tree. Here, skip over “irrelevant” nodes to convert subtrees.

bdd eval f x

Define the function bdt_of_bdd : Bdd — Bdt to converts a Binary Decision Diagram
into a Binary Decision Tree. Here, skip over “irrelevant” nodes to convert subtrees.

Theorem
If f is well formed, then Vx: bdd_eval f z <= bdt_eval (bdt_of_bdd f) z.

Proof.
Case Leaf B: Trivial
Case Nodes ns:
Induction on ns.
Discard bad cases due to the BDD being closed and sorted.

Contents

Correctness of Time-forward Processing

bbd not

bdd not f

operator !

(p:

4 bdd_not (val

5

bdd_not (ns

Ptr) = match

Bdd.Leaf)
Bdd.Nodes)

p with
Leaf v => !v

Node u => u

Bdd.Leaf (!v)
Bdd.Nodes(map (i t e)

=> (i

't

'e) ns)

bdd not f

1 operator ! (p: Ptr) = match p with

2 | Leaf v => lv

3 | Node u => u

4 bdd_not (val : Bdd.Leaf) = Bdd.Leaf(!v)

5 bdd_not (ns : Bdd.Nodes) = Bdd.Nodes(map (i t e) => (i !t !e) mns)
Theorem

If f is well formed, then Vx: = (bdd_eval f z) <= bff_eval (bdd_not f) .

Proof.
Case Leaf B: Trivial

Case Nodes ns: Induction on ns.

Contents

Correctness of Time-forward Processing

bbd satcount

bdd pathcount f

(a) (Xo A X1 A\ X3) V

/\
EB
&

~

bdd pathcount f

|
()
@ Priority Queue: Qcount:
[

bdd pathcount f

Priority Queue: Qcount:

bdd pathcount f

Priority Queue: Qcount:
[((0,0) = (1,0), 1)
((0,0) = (2,0), 1)

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:
[((0,0) = (1,0), 1)
((0,0) = (2,0), 1)

bdd pathcount f

(@) (xo Ax1 Ax3)V (x2 ® x3)

Seek Sum Result

Priority Queue: Qcount:
[((0,0) = (1,0), 1)
((0,0) = (2,0), 1)

bdd pathcount f

(@) (xo Ax1 Ax3)V (x2 ® x3)

Seek Sum Result

Priority Queue: Qcount:

[
((0,0) = (2,0), 1)

bdd pathcount f

(@) (xo Ax1 Ax3)V (x2 ® x3)

Seek Sum Result

Priority Queue: Qcount:

[
((0,0) = (2,0), 1)
((1,0) = (2,0), 1)

(1,00 5 (3,1), 1)

bdd pathcount f

(@) (xo Ax1 Ax3)V (x2 ® x3)

Seek Sum Result

Priority Queue: Qcount:

[
((0,0) = (2,0), 1)
((1,0) = (2,0), 1)

(1,00 5 (3,1), 1)

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

[
((0,0) = (2,0), 1)
((1,0) = (2,0), 1)

(1,00 5 (3,1), 1)

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

((1,0) = (2,0), 1)

(1,00 5 (3,1), 1)

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

(1,00 5 (3,1), 1)

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

((2,0) = (3,0), 2)
(1,00 5 (3,1), 1)
((2,0) = (3,1), 2) |

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

((2,0) = (3,0), 2)
(1,00 5 (3,1), 1)
((2,0) = (3,1), 2) |

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

((2,0) = (3,0), 2)
(1,00 5 (3,1), 1)
((2,0) = (3,1), 2) |

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

(1,00 5 (3,1), 1)
((2,0) = (3,1), 2) |

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

(1,00 5 (3,1), 1)
((2,0) = (3,1), 2) |

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

(1,00 5 (3,1), 1)
((2,0) = (3,1), 2) |

bdd pathcount f

(@) (xo Ax1 Ax3)V (x2 ® x3)

Seek Sum Result

Priority Queue: Qcount:

(1,00 5 (3,1), 1)
((2,0) = (3,1), 2) |

bdd pathcount f

(@) (xo Ax1 Ax3)V (x2 ® x3)

Seek Sum Result

Priority Queue: Qcount:

((2,0) = (3,1), 2) |

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

(a) (Xo A X1 A\ X3) V (X2 D X3)]

bdd pathcount f

Seek Sum Result

Priority Queue: Qcount:

(a) (Xo A X1 A\ X3) V (X2 D X3)]

bdd pathcount f

@ Result
5
|
(o)
@ Priority Queue: Qcount:
[

bdd satcount f vc

What needs to be changed for a
bdd_satcount f vc?

bdd satcount f vc

Think of a Priority Queue of Req as a Multiset with (pure) functions top() and pop().

1 Req = (target : Uid, sum : N, levels_visited : N)

2 operator (a: Req) < (b: Req) = a.target < b.target
3 V (a.target = b.target A a.levels_visited < b.levels_visited)

Lemma
Req.< is a partial order.

Proof.
Trivial case distinctions. O

bdd satcount f vc
Think of a Priority Queue of Req as a Multiset with (pure) functions top() and pop().
1 Req = (target : Uid, sum : N, levels_visited : N)

Definition
#Rd ns (Req t s {) = s-(#¢nst) and #Pdnspg= Yrepg Fdns 1.

bdd satcount f vc

Think of a Priority Queue of Req as a Multiset with (pure) functions top() and pop().

1 Req = (target : Uid, sum : N, levels_visited : N)
Definition
Red ns (Reqt s) & s-(#, nst) and P4 ps pg = Req ps r.
q repq

Lemma
#Plnsh=0

Proof.
Trivial. O

bdd satcount f vc

Think of a Priority Queue of Req as a Multiset with (pure) functions top() and pop().
1 Req = (target : Uid, sum : N, levels_visited : N)

Definition

#Rd ns (Req t s {) = s-(#¢nst) and #Pdnspg= Yrepg Fdns 1.

Lemma
If pg.top() = Some r, then #P9 ns pq = #P9 ns pq.pop() + #%e% ns r

Proof.
Due to pq = {r} + pq.pop(). 0

bdd satcount f vc

Think of a Priority Queue of Req as a Multiset with (pure) functions top() and pop().

1 Req = (target : Uid, sum : N, levels_visited : N)
Definition
Red ns (Reqt s) & s-(#, nst) and P4 ps pg = Req ps r.
q repq

Lemma
IfVr € pq: r.target # i, then #P? (i t €) :: ns pqg = #P? ns pq

Proof.
#R4 (i t) :: ns r = #%°% ns r by definition and some case distinction. O

bdd satcount f vc

Think of a Priority Queue of Req as a Multiset with (pure) functions top() and pop().
1 Req = (target : Uid, sum : N, levels_visited : N)

Definition

The priority queue pq is well formed wrt. list of nodes ns if

m {rtarget |repq} C{i|(ite) € ns}
m Vr € pq: r.levels_visited < r.target.level

bdd satcount f vc

Think of a Priority Queue of Req as a Multiset with (pure) functions top() and pop().
1 Req = (target : Uid, sum : N, levels_visited : N)
Definition
The priority queue pq is well formed wrt. list of nodes ns if
m {rtarget |repq} C{i|(ite) € ns}

m Vr € pq: r.levels_visited < r.target.level

Lemma
An empty priority queue is well formed.

Proof.
Trivial. O

bdd satcount f vc

Think of a Priority Queue of Req as a Multiset with (pure) functions top() and pop().
1 Req = (target : Uid, sum : N, levels_visited : N)
Definition
The priority queue pq is well formed wrt. list of nodes ns if
m {rtarget |repq} C{i|(ite) € ns}

m Vr € pq: r.levels_visited < r.target.level

Lemma
If pq is well formed then pq.pop () is too.

Proof.
A little bit of set theory. O

bdd satcount f vc

Accumulate from pq the sum, sacc, and the number of visited levels, lacc, along all
in-going edges to a single node with Uid t.

1 combine_paths’ (pq : PQ<Req>) (tgt : Uid) ((sacc, lacc) : NxN) =
2 match pq.top() with

3 | None => (sacc, lacc, pq)

4 | Some Req tgt’ s £ => if tgt’ # tgt

5 then (sacc, lacc, pq)

6 else let acc’ = (sacc-2/71¢ + g, ¢)
7 ; Pa’ = pq.popQ)

8 in combine_paths’ pq’ tgt acc’

9 combine_paths (pq : PQ<Req>) (tgt : Uid) =
10 combine_paths’ pq tgt (0,0)

bdd satcount f vc

Accumulate from pq the sum, sacc, and the number of visited levels, lacc, along all

in-going edges to a single node with Uid t.

1 combine_paths’ (pq : PQ<Req>) (tgt : Uid) ((sacc, lacc)

2 match pq.top() with

3 | None => (sacc, lacc, pq)

4 | Some Req tgt’ s £ => if tgt’ # tgt

5 then (sacc, lacc, pq)

6 else let acc’ = (sacc-2/71¢ + g, ¢)
7 ; Pa’ = pq.popQ)

8

in combine_paths’ pq’

Lemma

Let (s',¢',pq') = combine_paths pq t, if Vr € pg: r.target > i, then pd = {r € pq| r.target # t}.

bdd satcount f vc

Accumulate from pq the sum, sacc, and the number of visited levels, lacc, along all

in-going edges to a single node with Uid t.

1 combine_paths’ (pq : PQ<Req>) (tgt : Uid) ((sacc, lacc)

2 match pq.top() with

3 | None => (sacc, lacc, pq)

4 | Some Req tgt’ s £ => if tgt’ # tgt

5 then (sacc, lacc, pq)

6 else let acc’ = (sacc-2/71¢ + g, ¢)
7 ; Pa’ = pq.popQ)

8

in combine_paths’

Lemma
Let (s',¢',pq') = combine_paths pq t, if pq is well formed then pq’ is too.

bdd satcount f vc

Accumulate from pq the sum, sacc, and the number of visited levels, lacc, along all
in-going edges to a single node with Uid t.

1
2
3
4
5
6
7
8

Lemma

combine_paths’ (pq : PQ<Req>) (tgt : Uid) ((sacc, lacc) : NxN) =
match pq.top() with

None => (sacc, lacc, pq)

Some Req tgt’ s ¢ => if tgt’ # tgt

then (sacc, lacc, pq)
else let acc’ = (sacc-2/71¢ + g, ¢)
5 pa’ = pq.pop()
in combine_paths’ pq’ tgt acc’

Let (s',¢',pq') = combine_paths pq t, then, #?¢ ns pq= #"% ns pq +s' - #uns t.

bdd satcount f vc

Forward sum, s, and number of visited levels, ¢, along an out-going edge to target ptr.

forward_paths (pq : PQ<Req>) (ptr : Ptr) (s : N) (/ : N) =
match s, ptr with
| 0, _ => (0, pq) (* Well formed % fully connected *)
| _, Leaf False => (0, pq)
| _, Leaf True => (52“72, Pa)
|

1
2
3
4
5
6 _, Node tgt => (0, pq + {(tgt, s, O)})

bdd satcount f vc

Forward sum, s, and number of visited levels, ¢, along an out-going edge to target ptr.

1 forward_paths (pq : PQ<Req>) (ptr : Ptr) (s : N) (/ : N) =
2 match s, ptr with
3 | 0, _ => (0, pq) (* Well formed % fully connected *)
4 | _, Leaf False => (0, pq)
5 | _, Leaf True => (g-2vet , Pq)
6 | _, Node tgt => (0, pq + {(tgt, s, O)})
Lemma

Let (s',pq) = forward_paths pqts (. If { < we,
then #P9 ns pg+s-#¢ ns t = #P% ns pqd + 5.

Proof.

Case analysis and definition of #P3, #8°4 and #,. O

10

bdd satcount f vc

Forward sum, s, and number of visited levels, ¢, along an out-going edge to target ptr.

1 forward_paths (pq : PQ<Req>) (ptr : Ptr) (s : N) (/ : N) =
2 match s, ptr with
3 | 0, _ => (0, pq) (* Well formed % fully connected *)
4 | _, Leaf False => (0, pq)
5 | _, Leaf True => (g-2vet , Pq)
6 | _, Node tgt => (0, pq + {(tgt, s, O)})
Lemma

Let (s',pq) = forward_paths pgt s (. If t € ns and pq is well formed,
then pq is also well formed.

Proof.

Case analysis and assumptions. O

10

bdd satcount f vc

Forward sum, s, and number of visited levels, ¢, along an out-going edge to target ptr.

1 forward_paths (pq : PQ<Req>) (ptr : Ptr) (s : N) (/ : N) =
2 match s, ptr with
3 | 0, _ => (0, pq) (* Well formed % fully connected *)
4 | _, Leaf False => (0, pq)
5 | _, Leaf True => (g-2vet , Pq)
6 | _, Node tgt => (0, pq + {(tgt, s, O)})
Lemma

Let (s',pq) = forward_paths pqgts (. Ift = Leaf , then pq C pq.
If t = Node u, then pqd C pq+ {(Req u s 0)}.

Proof.
Case analysis and assumptions. O

10

bdd satcount f vc

Accumulate all in-going edges and then forward to children (to-be processed later).

1 bdd_satcount’ (ns : List<Node>) (pq : PQ<Req>) (racc : N) =
2 match ns , pq.top() with

3 I _ , None => racc

4 | n::ns?, _ =>

5 let (s, ¢, pq’) = combine_paths pq n.i

6 ; (rt, pq’?’) = forward_paths pq’ n.t s ({+1)
7 ; (re, pq’’’) = forward_paths pq’’ n.e s (£+1)
8

in bdd_satcount’ ns’ pq’’’ (racc + rt + re)

bdd satcount f vc

Accumulate all in-going edges and then forward to children (to-be processed later).

bdd_satcount’ (ns : List<Node>) (pq : PQ<Req>) (racc : N) =

Lemma
Assume pq and ns are well formed and {n.uid.level | n € ns} C {0,1,...vec— 1}.

Then, bdd_satcount’ ns pq r = r + #P% ns pq.
Proof.

Induction in ns and case analysis on top of pq. Use previous lemmata to skip node (if not the
target) or to parse correctness through combine_paths and forward_paths.

To this end, one needs to bound the number of visited levels in each request by vc.
Furthermore, the results, racc, rt, and re, are combined with the lemmata for #,

(Appendix). O

11

bdd satcount f vc

1
2
3
4

~N O O

Finally, deal with the root for a BDD f.

bdd_satcount (False

bdd_satcount (True

bdd_satcount (r::ns

let pq

; (rt, pq?)

; (re, pq??)
in bdd_satcount

)

1]
o

Bdd.Leaf) (ve : N)
Bdd.Leaf) (vc : N) = 2'¢
Bdd.Nodes) (vc : N)

0
forward_paths pq r.t 1 1

forward_paths pq’ r.e 1 1
ns) (rt + re)

12

bdd satcount f vc

Finally, deal with the root for a BDD f.

1 bdd_satcount (_ : Bdd) (ve : N)

Theorem
If f is well formed (incl. {n.uid.level | n € Bdd.Nodes ns} C {0,1,...vc—1}),

then bdd_satcount f vc = #¢ f.

Proof.
Leaf cases are trivial. For nodes ns, use lemmata for forward_paths to prove

preconditions for bdd_satcount’ ns pq (0,0) correctness.

12

Take Home Message...

m Time-forward processing algorithms can be implemented functionally.

m They are pure and tail-recursive.
m They are |/O-efficient since they only work on lists and trees [Blelloch & Harper].

m Proving correctness is feasible (see also github.com/SSoelvsten/cadiar)

m Further refinment possible to get closer to the C++ performance.

m One can prove them to be efficient both with respect to time and 1/O complexity.

13

https://github.com/SSoelvsten/cadiar

Steffan Christ Sdglvsten

¥ soelvsten@cs.au.dk

PN

% ssoelvsten.github.io

Adiar

<[> github.com/ssoelvsten /adiar
B ssoelvsten.github.io/adiar

AARHUS
/v UNIVERSITY

mailto:soelvsten@cs.au.dk
https://ssoelvsten.github.io
http://github.com/ssoelvsten/adiar
http://ssoelvsten.github.io/adiar

Contents

Appendix
|a|n: Bounded Domain

#n: Number of Assignments

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma (alternative definition)
laln <= Vi:ig&{nn+1l,.. jvc—1} = ai=1,

Proof.
From definition.

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
If n > we, then |a], <= a=X_.L.

Proof.
From (alternative) definition.

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.

Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
Forallne N, |al, A—an <= |a]nt1.

Proof.
Case analysis of i = n and (alternative) definition.

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
Forallne N, |a|, <= (lalnANan)V |a]pt1.

Proof.
Case analysis of i = n and (alternative) definition.

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
{a| |a]n} is finite.

Proof.
Induction in n and some set theory.

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
If n < we,

{allalnnan}| =HKallalnta}]:

Proof.
Previous lemmas together with set theory.

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
If n <we, [{a| |alve—n}| =2" and |{a]| |a]n}| =2V ".

Proof.
Induction in n, case analysis on dom_bounded with a and with v¢ — n and vec — (n+ 1),

respectively, and some set theory. O

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
If |a]n, then |(a[x := L])],.

Proof.
From (alternative) definition.

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
If n < x < wc, then |a|, <= |a[x :=DB]|,.

Proof.
From (alternative) definition.

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
If x < t.level, then bdd_eval’ ns t a[x := B| = bdd_eval’ ns t a.

Proof.
Induction in ns with a case analysis of the algorithms branches. Here, use that the BDD

is well formed. O

14

Bounded Domain

For this, we need to work with Boolean functions with a bounded domain.
Let the variable count, vc, be fixed.

Definition
laln 2 (a{i|n<i<wvc}C{L}).

Lemma
[{a| ma x A bdd_eval’ nst aA |a|p}| = |{a|bdd_eval’ nstaA |a]pt1}|-

Proof.
Set theory and previous lemma bdd_eval’ ns t (a[x := B)).

14

Number of Assignments

We need a mathematical notion of the number of assignments satisfying a BDD.

Definition
#nf2|{a|bdd_eval f aA |a]n}].

15

Number of Assignments

We need a mathematical notion of the number of assignments satisfying a BDD.

Definition
#nf2|{a|bdd_eval f aA |a]n}].

Lemma
Ifn<we, #, T =2v ",

Proof.
From definition of bdd_eval and lemma on |a],.

15

Number of Assignments

We need a mathematical notion of the number of assignments satisfying a BDD.

Definition
#nf2|{a|bdd_eval f aA |a]n}].

Lemma
#, L =0.

Proof.
From definition of bdd_eval.

15

Number of Assignments

We need a mathematical notion of the number of assignments satisfying a BDD.

Definition
#nf2|{a|bdd_eval f aA |a]n}].

Lemma
#n f = 2n—|s'u,pp0'r‘t(f)| . #suppo’r‘t(f) f.

15

Number of Assignments

We need a mathematical notion of the number of assignments satisfying a BDD.

Definition
#nf2|{a]bdd_eval f aA[a]n}].

Lemma
#n Node(i t €)::ns=#, ns+#5. 1 ns

Proof.
Use well formedness, set theory, and previous lemmata about |a], to prove:

ai = bdd_eval’ nst aA|al,and mai => bdd_eval’ ns e aA |a],.

Can split set of assignments S into S; U Se..

St={a|axAbdd_eval’ ns e aA |a|pr1} and Se = {a| ~a x Abdd_eval’ nst aA |a|ni1}.
St N Se = 0 and hence |S| = |S¢| + |Se|-

O

15

Number of Assignments

We need a mathematical notion of the number of assignments satisfying a BDD.
Definition
#,f 2 |{a|bdd_eval f aA |a],}|.

Lemma
If n.uid < t, then bdd_eval’ n::nst a= bdd_eval’ nst a.

Proof.
Simple case analysis.

15

Number of Assignments

We need a mathematical notion of the number of assignments satisfying a BDD.
Definition
#,f 2 |{a|bdd_eval f aA |a],}|.

Lemma
#p(ite):nst=7,nstand#,n:nse=+,nse.

Proof.
Due to levels are strictly increasing in BDDs.

15

Number of Assignments

We need a mathematical notion of the number of assignments satisfying a BDD.

Definition
#nf2|{a|bdd_eval f aA |a]n}].

Lemma

If i # u, then #, (i t €):: ns u= #, ns u.

Proof.
By definition.

15

	Motivation
	Correctness of Time-forward Processing
	Encoding Binary Decision Diagrams
	bbd_eval
	bbd_not
	bbd_satcount

	Appendix
	a n: Bounded Domain
	#n: Number of Assignments

