$\exists \mathbb{R}$-completeness of Nash equilibria in Perfect Information

 Stochastic GamesKristoffer Arnsfelt Hansen and Steffan Sølvsten
MFCS 2020
AARHUS
UNIVERSITY

Stochastic Games
Basic definitions and utility functions
Nash Equilibria
Game Theory in Model Checking and Synthesis
$\exists \mathbb{R}$-complexity
The NP and SqrtSum Complexity Classes
The $\exists \mathbb{R}$ Complexity Class
Proof Sketch: $\exists \mathbb{R}$-Completeness of Nash equilibria
Gadgets
Reduction
Implications for Model Checking

Stochastic Games

Stochastic Games

An m-player perfect information stochastic game G is defined by

Stochastic Games

An m-player perfect information stochastic game G is defined by

- Directed graph (V, A)

Stochastic Games

An m-player perfect information stochastic game G is defined by

- Directed graph (V, A)
- An initial node $v_{o} \in V$.

Stochastic Games

An m-player perfect information stochastic game G is defined by

- Directed graph (V, A)
- An initial node $v_{o} \in V$.
- V is partitioned into disjoint sets
$V_{0}, V_{1}, \ldots, V_{m}$, where V_{i} are controlled by Player i and V_{0} are chance nodes.

Stochastic Games

An m-player perfect information stochastic game G is defined by

- Directed graph (V, A)
- An initial node $v_{o} \in V$.
- V is partitioned into disjoint sets
$V_{0}, V_{1}, \ldots, V_{m}$, where V_{i} are controlled by Player i and V_{0} are chance nodes.

- A play $h \in \mathcal{H}_{\infty}$ is an infinite sequence $\left(h_{t}\right)_{t \geq 0}$ of vertices in V, where

$$
h_{0}=v_{0}, \quad\left(h_{t}, h_{t+1}\right) \in A
$$

Stochastic Games

An m-player perfect information stochastic game G is defined by

- Directed graph (V, A)
- An initial node $v_{o} \in V$.
- V is partitioned into disjoint sets
$V_{0}, V_{1}, \ldots, V_{m}$, where V_{i} are controlled by Player i and V_{0} are chance nodes.

- A play $h \in \mathcal{H}_{\infty}$ is an infinite sequence $\left(h_{t}\right)_{t \geq 0}$ of vertices in V, where

$$
h_{0}=v_{0}, \quad\left(h_{t}, h_{t+1}\right) \in A
$$

- Utility functions u_{i} assigns a payoff $u_{i}(i)$ for Player i to a play $h \in \mathcal{H}_{\infty}$

Mean-payoff games

A simple mean-payoff game.

Mean-payoff games

A simple mean-payoff game. Mean payoff for player 1: 1

Mean-payoff games

A simple mean-payoff game. Mean payoff for player 1: $\frac{1}{2}$

Mean-payoff games

A simple mean-payoff game. Mean payoff for player 1: 0

Recursive games

A simple game with terminal rewards only. Ummels ' 11

Recursive games

A simple game with terminal rewards only. Ummels ' 11

Strategies and Nash equilibria

A strategy τ_{i} assigns a probability distribution to the outgoing arcs of vertices $v \in V_{i}$ depending on the given history h.

- A strategy is stationary, if the choice of the players at a vertice is independent of the prior history of play (i.e. the strategy is memoryless).

Strategies and Nash equilibria

A strategy τ_{i} assigns a probability distribution to the outgoing arcs of vertices $v \in V_{i}$ depending on the given history h.

- A strategy is stationary, if the choice of the players at a vertice is independent of the prior history of play (i.e. the strategy is memoryless).

We assume players are acting rationally. This is commonly captured by the following notion

Definition (Nash equilibria)

A strategy profile $\tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right)$ is a Nash equilibrium, if no player i has a unilateral deviation available that strictly improves their payoff.

Subgame Perfect Nash equilibria

A two-player reachability game with an irrational Nash equilibrium. Ummels ' 11

Subgame Perfect Nash equilibria

A two-player reachability game with an irrational Nash equilibrium. Ummels ' 11

Subgame Perfect Nash equilibria

A two-player reachability game with an irrational Nash equilibrium. Ummels ' 11

Subgame Perfect Nash equilibria

A two-player reachability game with an irrational Nash equilibrium. Ummels '11

Definition (Subgame Perfect Nash equilibria)
A Subgame perfect Nash equilibrium is a NE of a game G, that is not only the best response from v_{0}, but is a best response in $G[h]$ given any history h of play.

Subgame Perfect Nash equilibria

A two-player reachability game with an irrational Nash equilibrium. Ummels '11

Definition (Subgame Perfect Nash equilibria)
A Subgame perfect Nash equilibrium is a NE of a game G, that is not only the best response from v_{0}, but is a best response in $G[h]$ given any history h of play.

Game Theory in Model Checking

Games provide a well studied framework that can capture many model checking problems with adversaries.

- A protocol between m entities can be described by a stochastic game of m players.
- A distributed system of m peers can be described by a concurrent game of m players.

Game Theory in Model Checking

Games provide a well studied framework that can capture many model checking problems with adversaries.

- A protocol between m entities can be described by a stochastic game of m players.
- A distributed system of m peers can be described by a concurrent game of m players.

Classical model checking objectives can be encapsulated in the utility function.

- Reachability objectives can be captured by payoffs in $\{0,1\}$ in a recursive game.

■ Safety objectives can be captured by payoffs in $\{-1,1\}$ in a recursive game, since an infinite game has payoff 0 .

- Other Büchi objectives can also be described in general Mean-payoff games.

Game Theory in Synthesis

The problem of synthesis is to not only check a program satisfies a given specification, but to also generate parts of the program according to the specification.

Does there exist a controller, such that the system satisfies the specification?

Game Theory in Synthesis

The problem of synthesis is to not only check a program satisfies a given specification, but to also generate parts of the program according to the specification.

Does there exist a controller, such that the system satisfies the specification?

$$
\equiv
$$

Does there exist a strategy, such that Player 1 is surely winning?

The subject of this seminar

Consider the problem:

Given an m-player game G and payoff demands $L \in \mathbb{R}^{m}$, does there exist a stationary ${ }^{1} \mathrm{NE} \tau$ with $U(\tau) \geq L$?

We will show this is $\exists \mathbb{R}$-complete.

[^0]$\exists \mathbb{R}$-complexity

$\exists \mathbb{R}$ Complexity Class

The relation between NP, SqrtSum, and $\exists \mathbb{R}$

$\exists \mathbb{R}$ Complexity Class

The relation between NP, SqrtSum, and $\exists \mathbb{R}$

The complexity class $\exists \mathbb{R}$ both encapsulates the hardness of NP decision problems and the hardness of computing with real numbers of SqrtSum.

$\exists \mathbb{R}$ Complexity Class

The relation between NP, SqrtSum, and $\exists \mathbb{R}$
The complexity class $\exists \mathbb{R}$ both encapsulates the hardness of NP decision problems and the hardness of computing with real numbers of SqrtSum.

NP Complexity Class

Remember that the well-known class NPcan be captured by the ILP problem:

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & A x \leq b \\
& x \in \mathbb{N}^{n}
\end{array}
$$

where $A \in \mathbb{Z}^{n \times m}, b \in \mathbb{Z}^{m}, c \in \mathbb{Z}^{n}$

SqrtSum Complexity Class

Consider the following problem: Given $a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots, b_{m} \in \mathbb{R}$ is the following inequality satisfied?

$$
\sum_{i=1}^{n} \sqrt{a_{i}} \leq \sum_{j=1}^{m} \sqrt{b_{j}}
$$

Seems trivial...

SqrtSum Complexity Class

Consider the following problem: Given $a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots, b_{m} \in \mathbb{R}$ is the following inequality satisfied?

$$
\sum_{i=1}^{n} \sqrt{a_{i}} \leq \sum_{j=1}^{m} \sqrt{b_{j}}
$$

Seems trivial... How many decimals do you have to compute, before you know the answer? ${ }^{2}$

Definition (SqrtSum)

The complexity class SqrtSum consists of all problems that are polynomial time reducible to the problem above.

[^1]
$\exists \mathbb{R}$ Complexity Class

The Existential Theory of the Reals is the language of all true sentences of the form

$$
\exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where ϕ is a quantifier-free Boolean formula of inequalities and equalities.

$\exists \mathbb{R}$ Complexity Class

The Existential Theory of the Reals is the language of all true sentences of the form

$$
\exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where ϕ is a quantifier-free Boolean formula of inequalities and equalities.
Definition ($\exists \mathbb{R}$)
The complexity class $\exists \mathbb{R}$ consists of all problems, that are polynomial time reducible to the existential theory of the reals.

$\exists \mathbb{R}$ Complexity Class

We will consider the following $\exists \mathbb{R}$-complete problem.
Definition (HomQuad)
Given a system \mathcal{S} of I homogeneous quadratic polynomials ${ }^{3}$ in n variables, does there exist an $x \in \mathbb{R}^{n}$ such that $q_{k}(x)=0$ for all $k \in\{1,2, \ldots, /\}$ and x is a probability distribution?
${ }^{3} \mathrm{~A}$ homogenous quadratic polynomial is of the form $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}$ where $A \in[-1,1]^{n \times n}$.

Proof Sketch: $\exists \mathbb{R}$-Completeness of Nash equilibria

$\exists \mathbb{R}$-Completness of Nash equilibria

Consider the problem:

Given an m-player game G and payoff demands $L \in \mathbb{R}^{m}$, does there exist a stationary NE τ with $U(\tau) \geq L$?

$\exists \mathbb{R}$-Completness of Nash equilibria

Consider the problem:

Given an m-player game G and payoff demands $L \in \mathbb{R}^{m}$, does there exist a stationary NE τ with $U(\tau) \geq L$?

It has already been shown to be NP-hard for ≥ 2 players and SqrtSum-hard for ≥ 4 players. Furthermore, it is contained within $\exists \mathbb{R}$.

It is $\exists \mathbb{R}$-complete! We will show this by reduction to:
Definition (HomQuad)
Given a system \mathcal{S} of I homogeneous quadratic polynomials in n variables, does there exist an $x \in \mathbb{R}^{n}$ such that $q_{k}(x)=0$ and x is a probability distribution?

It is $\exists \mathbb{R}$-complete! We will show this by reduction to:

Definition (HomQuad)

Given a system \mathcal{S} of I homogeneous quadratic polynomials in n variables, does there exist an $x \in \mathbb{R}^{n}$ such that $q_{k}(x)=0$ and x is a probability distribution?

That is, given a system \mathcal{S} of I polynomials of the form

$$
q_{k}(x)=a_{1,1} x_{1} x_{1}+a_{1,2} x_{1} x_{2}+\cdots+a_{i j} x_{i} x_{j}+\ldots a_{n n} x_{n} x_{n}
$$

we will construct a game $\mathcal{G}(\mathcal{S})$ such that all $q_{k}(x)=0$ if and only if $\mathcal{G}(\mathcal{S})$ has a stationary Nash equilibria that satisfies some payoff demand.

Proof Sketch: $\mathcal{G}_{\text {var }}$

At each v_{i}, Player 1 can choose to either give payoff 1 to players 2 and 4 or 3 and 5 .

The gadget game $\mathcal{G}_{\text {var }}$

Proof Sketch: $\mathcal{G}_{\text {var }}$

The gadget game $\mathcal{G}_{\text {var }}$

At each v_{i}, Player 1 can choose to either give payoff 1 to players 2 and 4 or 3 and 5 .

Player 1 strategy corresponds to a probability distribution if it satisfies the payoff demand

$$
\left(0, \frac{1}{n}, \frac{n-1}{n}, \ldots\right)
$$

Proof Sketch: $\mathcal{G}_{\text {mul }}(i, j, \alpha)$

The gadget game $\mathcal{G}_{\text {mul }}(i, j, \alpha)$

Proof Sketch: $\mathcal{G}_{\text {mul }}(i, j, \alpha)$

$$
(1,1,0,1,0, \alpha, 1-\alpha)
$$

The gadget game $\mathcal{G}_{\text {mul }}(i, j, \alpha)$

If Player 1 receives payoff 1 , then Player- 6 gets $\alpha x_{i} x_{j}$ and Player- 7 gets $(1-\alpha) x_{i} x_{j}$.

$$
\max _{\tau_{1}} \min _{\tau_{2}} \operatorname{Pr}\left[u_{1}\left(v_{0}\left(\tau_{1}, \tau_{2}\right)\right)=1\right]
$$

$$
\forall \tau_{2}: \operatorname{Pr}\left[u_{1}\left(v_{0}\left(\tau_{1}, \tau_{2}\right)\right)=1\right] \geq \text { value }
$$

Proof Sketch: $\mathcal{G}_{\text {poly }}(q)$

For a homogenous quadratic polynomial $q_{k}(x)=\sum_{i, j=1}^{n} A_{i j} x_{i} x_{j}$.

The gadget game $\mathcal{G}_{\text {poly }}\left(q_{k}\right)$

If Player 1 receives payoff 1 , then Player 6 gains payoff $\frac{1}{2 n^{2}}\left(\|x\|_{1}^{2}+q_{k}(x)\right)$.
If also $\|x\|_{1}$ is 1 , then $q_{k}(x)=0$.

Proof Sketch: Final reduction

\mathcal{S} is a "yes"-instance of HomQuad if and only if the game $\mathcal{G}(\mathcal{S})$ has a Nash Equilibria that satisfies the demands

$$
\left(\frac{1}{2}, \frac{1}{n}, \frac{n-1}{n}, 0,0, \ldots, 0\right)
$$

The game $\mathcal{G}(\mathcal{S})$ of the reduction

Theorem

It is $\exists \mathbb{R}$-complete to decide whether for a given m-player recursive game G and payoff demands $L \in \mathbb{R}^{m}$ there exists a stationary Nash equilibria τ with $U(\tau) \geq L$.

- The problem is $\exists \mathbb{R}$-complete even for acyclic 7-player recursive games with non-negative rewards.
- It even holds for stationary Subgame Perfect Equilibria.

Implications for Model Checking

The game $\mathcal{G}_{\text {ヨNE }}(\mathcal{S})$
$\mathcal{G}_{\text {noNE }}$ is an independent sub-game,

- Has no stationary Nash equilibria
- Players 1, 2, 3 always get payoff 0 .

The game $\mathcal{G}_{\text {ヨNE }}(\mathcal{S})$
$\mathcal{G}_{\text {noNE }}$ is an independent sub-game,

- Has no stationary Nash equilibria
- Players 1, 2, 3 always get payoff 0 .
\mathcal{S} is a "yes"-instance of HomQuad if and only if the game $\mathcal{G}_{\exists \mathrm{NE}}(\mathcal{S})$ has a stationary Nash Equilibria.

$\exists \mathbb{R}$-Completeness of Reachability and Safety objectives

There exists different $\mathcal{G}_{\text {noNE }}$ gadget games for the different restrictions of the utility function:

- Reachability objective
- Safety objective

Theorem
It is $\exists \mathbb{R}$-complete to decide whether a given m-player game with Reachability or Safety objectives has a stationary NE.

- even for $m=7$ players.

$\exists \mathbb{R}$-Completeness of being almost surely winning

Consider the game $\mathcal{G}_{\exists \mathrm{NE}}(\mathcal{S})$ in which another player is added, who is always winning in $\mathcal{G}(\mathcal{S})$, but not in $\mathcal{G}_{\text {noNe }}$.

Theorem

For any i, it is $\exists \mathbb{R}$-complete to decide whether a given m-player recursive game has a stationary NE in which Player i is almost surely winning.

- even for $m=8$ players.

Final remarks

It is $\exists \mathbb{R}$-complete to decide in an m-player perfect information recursive game.

- exists Subgame Perfect Nash equilibria satisfying demand $L \in \mathbb{R}^{m}$
- exists any Nash equilibria for Reachability and Safety objectives
- exists any Nash equilibria such that Player 1 is surely winning.

Final remarks

It is $\exists \mathbb{R}$-complete to decide in an m-player perfect information recursive game.

- exists Subgame Perfect Nash equilibria satisfying demand $L \in \mathbb{R}^{m}$
- exists any Nash equilibria for Reachability and Safety objectives
- exists any Nash equilibria such that Player 1 is surely winning.

Notice here that

- This problem is already shown by Ummels ' 11 to be NP-hard for ≥ 2 players and SqrtSum-hard for ≥ 4 players so this completeness result could not become much tighter.
- There have been recent results of $\exists \mathbb{R}$-completeness in imperfect information games. The complexity of these results stem from the structure of the game, not the lack of information.

[^0]: ${ }^{1}$ The problem of existence of a Nash equilibria satisfying some demands is undecidable for ≥ 10 players in recursive games, so we will only focus on stationary strategies.

[^1]: ${ }^{1}$ This consistently comes up in Computational Geometry. Here, theoretical works solve this by assuming the $\mathbb{R}-R A M$ computational model; leaving an adventure for implementors to experience later.

