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Stochastic Games

An m-player perfect information stochastic
game G is defined by

Directed graph (V ,A)

An initial node vo ∈ V .

V is partitioned into disjoint sets
V0,V1, . . . ,Vm, where Vi are
controlled by Player i and V0 are
chance nodes.

→
1 2

A play h ∈ H∞ is an infinite sequence
(ht)t≥0 of vertices in V , where

h0 = v0, (ht , ht+1) ∈ A

Utility functions ui assigns a payoff
ui (i) for Player i to a play h ∈ H∞
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Mean-payoff games

1

→

2 2

3

1, 0, 0
0, 1, 0

1, 1, 0

0, 0, 0 1, 0, 1

0, 1, 1

A simple mean-payoff game.

Mean payoff for player 1: 1
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Recursive games

1

→

21
4

1
4

0, 1 1
2 ,

1
2

1
2 ,

1
2

(0, 1) (1
2 ,

1
2) (1, 0)

A simple game with terminal rewards only. Ummels ’11
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Strategies and Nash equilibria

A strategy τi assigns a probability distribution to the outgoing arcs of vertices v ∈ Vi

depending on the given history h.

A strategy is stationary, if the choice of the players at a vertice is independent of
the prior history of play (i.e. the strategy is memoryless).

We assume players are acting rationally. This is commonly captured by the following
notion

Definition (Nash equilibria)
A strategy profile τ = (τ1, τ2, . . . , τm) is a Nash equilibrium, if no player i has a
unilateral deviation available that strictly improves their payoff.
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Subgame Perfect Nash equilibria

v1

1

→ v2

2

(0, 0) (0, 0)

(1, 1)

A two-player reachability game with an irrational Nash equilibrium. Ummels ’11

Definition (Subgame Perfect Nash equilibria)
A Subgame perfect Nash equilibrium is a NE of a game G , that is not only the best
response from v0, but is a best response in G [h] given any history h of play.
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Game Theory in Model Checking

Games provide a well studied framework that can capture many model checking
problems with adversaries.

A protocol between m entities can be described by a stochastic game of m players.

A distributed system of m peers can be described by a concurrent game of m
players.

Classical model checking objectives can be encapsulated in the utility function.

Reachability objectives can be captured by payoffs in {0, 1} in a recursive game.

Safety objectives can be captured by payoffs in {−1, 1} in a recursive game, since
an infinite game has payoff 0.

Other Büchi objectives can also be described in general Mean-payoff games.
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Game Theory in Synthesis

The problem of synthesis is to not only check a program satisfies a given specification,
but to also generate parts of the program according to the specification.

Does there exist a controller, such that the system satisfies the specification?

≡

Does there exist a strategy, such that Player 1 is surely winning?
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The subject of this seminar

Consider the problem:

Given an m-player game G and payoff demands L ∈ Rm,
does there exist a stationary 1 NE τ with U(τ) ≥ L?

We will show this is ∃R-complete.

1The problem of existence of a Nash equilibria satisfying some demands is undecidable for ≥ 10
players in recursive games, so we will only focus on stationary strategies.
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∃R-complexity



∃R Complexity Class

NP SqrtSum

∃R

PSPACE

The relation between NP, SqrtSum, and ∃R

The complexity class ∃R both encapsulates the hardness of NP decision problems and
the hardness of computing with real numbers of SqrtSum.
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NP Complexity Class

Remember that the well-known class NPcan be captured by the ILP problem:

min cT x

s.t. Ax ≤ b

x ∈ Nn

where A ∈ Zn×m, b ∈ Zm, c ∈ Zn

10



SqrtSum Complexity Class

Consider the following problem: Given a1, a2, . . . an, b1, b2, . . . , bm ∈ R is the following
inequality satisfied?

n∑
i=1

√
ai ≤

m∑
j=1

√
bj

Seems trivial...

How many decimals do you have to compute, before you know the
answer? 2

Definition (SqrtSum)
The complexity class SqrtSum consists of all problems that are polynomial time
reducible to the problem above.
1This consistently comes up in Computational Geometry. Here, theoretical works solve this by

assuming the R-RAM computational model; leaving an adventure for implementors to experience later.
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∃R Complexity Class

The Existential Theory of the Reals is the language of all true sentences of the form

∃x1, x2, . . . , xn ∈ R : ϕ(x1, x2, . . . , xn)

where ϕ is a quantifier-free Boolean formula of inequalities and equalities.

Definition (∃R)
The complexity class ∃R consists of all problems, that are polynomial time reducible to
the existential theory of the reals.
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∃R Complexity Class

We will consider the following ∃R-complete problem.

Definition (HomQuad)
Given a system S of l homogeneous quadratic polynomials 3 in n variables, does there
exist an x ∈ Rn such that qk(x) = 0 for all k ∈ {1, 2, . . . , l} and x is a probability
distribution?

3A homogenous quadratic polynomial is of the form
∑n

i=1
∑n

j=1 Aijxixj where A ∈ [−1, 1]n×n.
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Proof Sketch: ∃R-Completeness of Nash equilibria



∃R-Completness of Nash equilibria

Consider the problem:

Given an m-player game G and payoff demands L ∈ Rm,
does there exist a stationary NE τ with U(τ) ≥ L?

It has already been shown to be NP-hard for ≥ 2 players and SqrtSum-hard for ≥ 4
players. Furthermore, it is contained within ∃R.
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It is ∃R-complete! We will show this by reduction to:

Definition (HomQuad)
Given a system S of l homogeneous quadratic polynomials in n variables, does there
exist an x ∈ Rn such that qk(x) = 0 and x is a probability distribution?

That is, given a system S of l polynomials of the form

qk(x) = a1,1x1x1 + a1,2x1x2 + · · ·+ aijxixj + . . . annxnxn

we will construct a game G(S) such that all qk(x) = 0 if and only if G(S) has a
stationary Nash equilibria that satisfies some payoff demand.
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Proof Sketch: Gvar

→

v1

1
(0, 1, 0, 1, 0, 0, 0)

(0, 0, 1, 0, 1, 0, 0)

vn

1
(0, 1, 0, 1, 0, 0, 0)

(0, 0, 1, 0, 1, 0, 0)

1
n

1
n

x1

xn

...

The gadget game Gvar

At each vi , Player 1 can choose to
either give payoff 1 to players 2
and 4 or 3 and 5.

Player 1 strategy corresponds to a
probability distribution if it satisfies
the payoff demand(

0,
1
n
,
n − 1
n

, . . .

)
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Proof Sketch: Gmul(i , j , α)

vi

w1

2

→ w2

3

w3

1

(1, 0, 1, 0, 0, 0, 0)

· · ·
x ′i

1 − x ′i

w4

4

w5

5

vj

w6

1

(1, 1, 0, 1, 0, α, 1 − α)

(1, 1, 0, 0, 1, 0, 0)

x ′j

1 − x ′j

The gadget game Gmul(i , j , α)

If Player 1 receives payoff 1, then Player-6 gets αxixj and Player-7 gets (1 − α)xixj .
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max τ1 min τ2 Pr [u1(v0(τ1, τ2)) = 1]

∀τ2 : Pr [u1(v0(τ1, τ2)) = 1] ≥ value
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Proof Sketch: Gpoly(q)

For a homogenous quadratic polynomial qk(x) =
∑n

i ,j=1 Aijxixj .

6

→

(0, 0, 0, 0, 0, 1
2n2 , 0)

7

(0, 0, 0, 0, 0, 0, 1
2n2 )

Gmul(x1, x1,
1+A11

2 )

Gmul(xi , xj ,
1+Aij

2 )

Gmul(xn, xn,
1+Ann

2 )

1
n2

1
n2

The gadget game Gpoly(qk)

If Player 1 receives payoff 1, then Player 6 gains payoff 1
2n2 (∥x∥2

1 + qk(x)).

If also ∥x∥1 is 1, then qk(x) = 0.
19



Proof Sketch: Final reduction

v0→

Gvar

Gpoly(q1)

Gpoly(qℓ)

1
2

1
2

1
ℓ

1
ℓ

...

The game G(S) of the reduction

S is a “yes”-instance of HomQuad
if and only if the game G(S) has a
Nash Equilibria that satisfies the
demands(

1
2
,
1
n
,
n − 1
n

, 0, 0, . . . , 0
)
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Theorem
It is ∃R-complete to decide whether for a given m-player recursive game G and payoff
demands L ∈ Rm there exists a stationary Nash equilibria τ with U(τ) ≥ L.

The problem is ∃R-complete even for acyclic 7-player recursive games with
non-negative rewards.

It even holds for stationary Subgame Perfect Equilibria.

21



Implications for Model Checking



∃R-Completeness of Stationary NE without Payoff Demands

t1

1

→ t2

2

t3

3

t4

G(S)

GnoNE 2 ·
(1

2 ,
1
n ,

n−1
n , 0, . . . , 0

)
1
2

1
2

The game G∃NE(S)

GnoNE is an independent sub-game,

Has no stationary Nash equilibria

Players 1, 2, 3 always get payoff 0.

S is a “yes”-instance of HomQuad if
and only if the game G∃NE(S) has a
stationary Nash Equilibria.
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∃R-Completeness of Reachability and Safety objectives

There exists different GnoNE gadget games for the different restrictions of the utility
function:

Reachability objective

Safety objective

Theorem
It is ∃R-complete to decide whether a given m-player game with Reachability or Safety
objectives has a stationary NE.

even for m = 7 players.
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∃R-Completeness of being almost surely winning

Consider the game G∃NE(S) in which another player is added, who is always winning in
G(S), but not in GnoNE.

Theorem
For any i , it is ∃R-complete to decide whether a given m-player recursive game has a
stationary NE in which Player i is almost surely winning.

even for m = 8 players.
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Final remarks

It is ∃R-complete to decide in an m-player perfect information recursive game.

exists Subgame Perfect Nash equilibria satisfying demand L ∈ Rm

exists any Nash equilibria for Reachability and Safety objectives
exists any Nash equilibria such that Player 1 is surely winning.

Notice here that

This problem is already shown by Ummels ’11 to be NP-hard for ≥ 2 players and
SqrtSum-hard for ≥ 4 players so this completeness result could not become much
tighter.
There have been recent results of ∃R-completeness in imperfect information
games. The complexity of these results stem from the structure of the game, not
the lack of information.
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