%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % SU2 configuration file % % Case description: Steady, laminar flow around a cylinder (Re 20) % % Author: Thomas D. Economon % % Institution: Stanford University % % Date: 2013.09.30 % % File Version 5.0.0 "Raven" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, % POISSON_EQUATION) SOLVER= RANS % % Specify turbulent model (NONE, SA, SA_NEG, SST) KIND_TURB_MODEL= SA % % Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) MATH_PROBLEM= DIRECT % % Axisymmetric simulation, only compressible flows (NO, YES) AXISYMMETRIC= YES % % Restart solution (NO, YES) RESTART_SOL= NO % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 3 % % Angle of attack (degrees, only for compressible flows) AOA= 0.0 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 291 % % Reynolds number (non-dimensional, based on the free-stream values) REYNOLDS_NUMBER= 3238920.99 % % Reynolds length (1 m by default) REYNOLDS_LENGTH= 0.05715 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = -2.00 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 1.0 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % Navier-Stokes wall boundary marker(s) (NONE = no marker) MARKER_HEATFLUX= ( bullet, 0.0 ) % % Farfield boundary marker(s) (NONE = no marker) MARKER_FAR= ( wall, inlet, outlet ) % %a determiner MARKER_SYM = ( axis ) % Marker(s) of the surface to be plotted or designed % MARKER_PLOTTING= ( flowfield ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( flowfield ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 5 % % Adaptive CFL number (NO, YES) CFL_ADAPT= YES % % Parameters of the adaptive CFL number (factor down, factor up, CFL min %value, % CFL max value ) CFL_ADAPT_PARAM= ( 0.1, 2.0, 100.0, 1e10 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations ITER= 500 % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver for implicit formulations (BCGSTAB, FGMRES) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) LINEAR_SOLVER_PREC= ILU % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 1E-10 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 20 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 10 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= V_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.8 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.8 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= ROE % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_FLOW= YES % % Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, % BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_FLOW= BARTH_JESPERSEN % % Coefficient for the Venkat's limiter (upwind scheme). A larger values decrease % the extent of limiting, values approaching zero cause % lower-order approximation to the solution (0.05 by default) VENKAT_LIMITER_COEFF= 0.05 % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Time discretization (EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT % % Reduction factor of the CFL coefficient in the turbulence problem CFL_REDUCTION_TURB= 1.0 % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) CONV_FIELD= RMS_DENSITY % % Min value of the residual (log10 of the residual) CONV_RESIDUAL_MINVAL= -15 % % Start convergence criteria at iteration number CONV_STARTITER= 10 % % Number of elements to apply the criteria CONV_CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CONV_CAUCHY_EPS= 1E-6 % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= SOCBT.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FILENAME= solution_flow.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT, STL) TABULAR_FORMAT= CSV % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file flow (w/o extension) variables VOLUME_FILENAME= flow OUTPUT_WRT_FREQ = 50 % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % % Screen output SCREEN_OUTPUT= (INNER_ITER, WALL_TIME, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG)