

Curriculum Induction for Safe Reinforcement Learning

Marvin Sextro¹ and Jonas Loos¹ ¹Technical University of Berlin

1. Introduction

1.1 Key Ideas²

- A teacher trains a student to solve a task
- The teacher keeps the student safe during training
- For this, the teacher is given a set of pre-defined interventions and learns to apply them optimally
 → curriculum policy

3. Experiments

3.1 Curriculum Policies

3.1.1 Back

• The Back_x curriculum policy always resets the agent by a constant number of x steps (we tested $x \in [1, 9]$)

3.1.2 Incremental

 Interventions are pairs of trigger states and transitions guiding the student back into a safe state

1.2 Our Approach

• We compare the students trained by the Optimized curriculum policy from the paper [2] to students trained with our own curriculum policies

2. Background

- 2.1 Constrained Markov Decision Process²
- The student is a RL agent trained in a CMDP:

 $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, r, \mathcal{D} \rangle$

- $\mathcal{S}, \mathcal{A}\text{:}$ State and action space
- $\mathcal{P}(s'|s, a)$: Transition kernel
- $r: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: Reward function
- \mathcal{D} : Set of unsafe terminal states

- The Incremental curriculum policy gradually changes from exploration to exploitation
- We define ${\rm Incremental}_x$ to reset the agent by $\lceil \frac{1}{2^x}\cdot n\rceil$ steps during the $n^{\rm th}$ curriculum step
- The parameter x can be adjusted for environments of different size or complexity (we tested $x \in [0, 4]$)
- 3.2 Environments

Figure 4: Success rates of different curriculum policies on the Frozen Smiley environment. For our policies, the best found parameters *x* are used.

Figure 5: Exemplary trajectories for the Frozen Smiley environment with the Optimized policy. The lines represent the steps taken, while the background shows a heatmap of the student's positions. The trajectories show a progression from the first curriculum step (left) to a later step (right).

5. Conclusions

2.2 Curriculum Induction for Safe RL²

- In CISR, the teacher gets a set \mathcal{I} of interventions $\{\langle \mathcal{D}_i, \mathcal{T}_i \rangle\}_{i=1}^K$ as input, which consist of *trigger states* $\mathcal{D}_i \subset S$ and reset distributions $\mathcal{T}_i : S \to \Delta_{S \setminus D_i}$
- Curriculum: Sequence of CMDPs $\mathcal{M}_{i_1}, ..., \mathcal{M}_{i_{N_s}}$, where during the n^{th} curriculum step, the student interacts with the CMDP \mathcal{M}_{i_n} induced by an intervention $i_n \in \mathcal{I}$
- Curriculum Policy: A curriculum policy π^T : H → I maps the teacher's observation history of statistics φ(π₁), ..., φ(π_{n-1}) ∈ H about the student's policy to an intervention at the start of the nth curriculum step
 For curriculum policies independent of the student's policy (e.g. SR, HR, Back or Incremental), this can be simplified to a mapping π^T : [N_s] → I

Figure 2: The Frozen Lake environment used in the paper [2] on the left (size 10x10) and our Frozen Smiley environment on the right (size 16x16). Interventions are triggered at distance = 1 from holes.

4. Results

- For all policies with teacher interventions the agent was kept safe during training
- Both the Back and the Incremental curriculum policy perform better than the Optimized one
- For Back, with increasing environment size and longer paths, it is beneficial to increase reset steps
- For Incremental, increasing the reset steps more slowly to allow for longer exploration is advantageous in larger environments

• For the Frozen environments, our curriculum policies outperform the Optimized one

- Larger environments require a longer exploration phase and more reset steps
- The original HR, SR and Bandit policies do not generalize well to larger environments
- Defining reset transitions which keep the student safe is easier than defining suitable trigger states
- This could become a problem when the state space is complex, dynamic or just partly observable

6. Outlook

- Apply the method to OpenAl's Safety Gym
- Increase the amount of available interventions for

Figure 1: The Optimized curriculum policy switching interventions from Soft Reset 1 (SR1 moves the agent one step back) to Hard Reset (HR resets the agent back to the start).

Figure 3: Success rates of different curriculum policies on the Frozen Lake environment. For our policies, the best found parameters *x* are used.

the Optimized curriculum policy

• Evaluate how well different curriculum policies generalize to dynamic or random environments

References

[1] OpenAl. Frozen Lake. URL: https://gymlibrary.ml/environments/toy_ text/frozen_lake.

[2] Matteo Turchetta, Andrey Kolobov, S. Shah, Andreas Krause, and Alekh Agarwal. Safe Reinforcement Learning via Curriculum Induction. *ArXiv*, abs/2006.12136, 2020.