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Preface

This book was written by undergraduate students at Wright College who were
enrolled in my Math 299 class, Writing in the Sciences.

For many years, I have been teaching Discrete Math using the open source
mathematical software SageMath. Despite the fabulous capabilities of this
software, students were often frustrated by the lack of specific documentation
geared towards beginning undergrad students in Discrete Math.

This book was born out of this frustration and the desire to make our own
contribution to the Open Education movement, from which we have benefit-
ted greatly. In the context of Open Pedagogy, my students and I ventured
into a challenging learning experience based on the principles of freedom and
responsibility. Each week, students wrote a chapter of this book. They found
the topics and found their voice. We critically analyzed their writing, and they
edited and edited again and again. They wrote code, tested it and polished it.
In the process, we all learned so much about Sage, and we found some bugs
in the software that are now in the process of being fixed thanks to its very
active community of developers.

The result is the book we dreamed of having when we first attempted
Discrete Math with Sage.

Our book is intended to provide concise and complete instructions on how
to use different Sage functions to solve problems in Discrete Math. Our goal is
to streamline the learning process, helping students focus more on mathemat-
ics and reducing the friction of learning how to code. Our textbook is interac-
tive and designed for all math students, regardless of programming experience.
Rooted in the open education philosophy, our textbook is, and always will be,
free for all.

I am very proud of the work of my students and hope that this book will
serve as inspiration for other students to take ownership of a commons-based
education. Towards a future where higher education is equally accessible to
all.

Hellen Colman
Chicago, May 2024
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Chapter 1

Getting Started

Welcome to our introduction to SageMath (also referred to as Sage). This
chapter is designed for learners of all backgrounds—whether you’re new to
programming or aiming to expand your mathematical toolkit. There are vari-
ous options for running Sage, including the SageMathCell, CoCalc, and a local
installation. The easiest way to get started is to use the SageMathCell embed-
ded directly in this book. We will also cover how to use CoCalc, a cloud-based
platform that provides a collaborative environment for running Sage code.

Sage is a free open-source mathematics software system that integrates
various open-source mathematics software packages1. We will cover the ba-
sics, including SageMath’s syntax, data types, variables, and debugging tech-
niques. Our goal is to equip you with the foundational knowledge needed to
explore mathematical problems and programming concepts in an accessible
and straightforward manner.

Join us as we explore the capabilities of SageMath!

1.1 Intro to Sage
You can execute and modify Sage code directly within the SageMathCells
embedded on this webpage. Cells on the same page share a common memory
space. To ensure accurate results, run the cells in the sequence in which they
appear. Running them out of order may cause unexpected outcomes due to
dependencies between the cells.

1.1.1 Sage as a Calculator
Before we get started with discrete math, let’s see how we can use Sage as a
calculator. Here are the basic arithmetic operators:

• Addition: +

• Subtraction: -

• Multiplication: *

• Exponentiation: **, or ^

• Division: /

1doc.sagemath.org/html/en/reference/spkg/

1

https://doc.sagemath.org/html/en/reference/spkg/
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• Integer division: //

• Modulo: %

There are two ways to run the code within the cells:

• Click the Evaluate (Sage) button located under the cell.

• Use the keyboard shortcut Shift + Enter if your cursor is active in the
cell.

# Lines that start with a pound sign are comments
# and ignored by Sage
1+1

100 - 1

3*4

# Sage uses two exponentiation operators
# ** is valid in Sage and Python
2**3

# Sage uses two exponentiation operators
# ^ is valid in Sage
2^3

# Returns a rational number
5/3

# Returns a floating point approximation
5/3.0

# Returns the quotient of the integer division
5//3

# Returns the remainder of the integer division
5 % 3

1.1.2 Variables and Names
We can assign the value of an expression to a variable. A variable is a name
that refers to a value in the computer’s memory. Use the assignment operator
= to assign a value to a variable. The variable name is on the left side of the
assignment operator, and the value is on the right side. Unlike the expressions
above, the assignment statement does not display anything. To view the value
of a variable, type the variable name and run the cell.

a = 1
b = 2
sum = a + b
sum

When choosing variable names, use valid identifiers.

• Identifiers cannot start with a digit.
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• Identifiers are case-sensitive.

• Identifiers can include:

◦ letters (a - z, A - Z)
◦ digits (0 - 9)
◦ underscore character _

• Do not use spaces, hyphens, punctuation, or special characters when
naming identifiers.

• Do not use keywords as identifiers.

Below are some reserved keywords that you cannot use as variable names:
False, None, True, and, as, assert, async, await, break, class, continue,

def, del, elif, else, except, finally, for, from, global, if, import, in, is,
lambda, nonlocal, not, or, pass, raise, return, try, while, with, yield.

Use the Python keyword module to check if a name is a keyword.

import keyword
keyword.iskeyword( ' if ' )

The output is True because if is a keyword. Try checking other names.

1.2 Display Values
Sage offers various ways to display values on the screen. The simplest way is
to type the value into a cell, and Sage will display it. Sage also has functions
that display values in different formats.

• print() displays the value of the expression inside the parentheses on
the screen.

• pretty_print() displays rich text.

• show() is an alias for pretty_print().

• latex() produces the raw LATEX code for the expression inside the paren-
theses. You can paste this code into a LATEX document to display the
expression.

• %display latex renders the output of commands as LATEX automatically.

• While Python string formatting is available, the output is unreliable for
rendering rich text and LATEX due to compatibility issues.

Sage will display the value of the last line of code in a cell.

"Hello , World!"

print() outputs a similar result without the quotes.

print("Hello , World!")

View mathematical notation with rich text.

show(sqrt (2) / log(3))

If we want to display values from multiple lines of code, we can use multiple
functions to display the values.
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a = x^2
b = pi
show(a)
show(b)

Obtain raw LATEX code for an expression.

latex(sqrt (2) / log(3))

If you are working in a Jupyter notebook or SageMathCell, %display latex
sets the display mode.

%display latex
# Notice we don ' t need the show() function
sqrt (2) / log(3)

The expressions will continue to render as LATEX until you change the dis-
play mode. The display mode is still set from the previous cell.

ZZ

Revert to the default output with %display plain.

%display plain
sqrt (2) / log(3)

ZZ

1.3 Object-Oriented Programming
Object-Oriented Programming (OOP) is a programming paradigm that
models the world as a collection of interacting objects. More specifically, an
object is an instance of a class. A class can represent almost anything.

Classes are like blueprints that define the structure and behavior of objects.
A class defines the attributes and methods of an object. An attribute is a
variable that stores information about the object. A method is a function that
can interact with or modify the object. Although you can create custom classes,
the open-source community has already defined classes for us. For example,
there are specialized classes for working with integers, lists, strings, graphs,
and more.

In Python and Sage, almost everything is an object. When assigning a
value to a variable, the variable references an object. In this case, the object
is a list of strings.

vowels = [ ' a ' , ' e ' , ' i ' , ' o ' , ' u ' ]
type(vowels)

type( ' a ' )

The type() function confirms that 'a' is an instance of the string class and
vowels is an instance of the list class. We create a list object named vowels
by assigning a series of characters within square brackets to a variable. This
object, vowels, now represents a list of string elements, and we can interact
with it using various methods.
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Dot notation is a syntax used to access an object’s attributes and call an
object’s methods. For example, the list class has an append method, allowing
us to add elements to the list.

vowels.append( ' y ' )
vowels

A parameter is a variable passed to a method. In this case, the parameter
is the string 'y'. The append method adds the string 'y' to the end of the list.
The list class has many more methods that we can use to interact with the list
object. While list is a built-in Python class, Sage offers many more classes
specialized for mathematical applications. For example, we will learn about
the Sage Set class in the next chapter. Objects instantiated from the Set class
have methods and attributes useful for working with sets.

v = Set(vowels)
type(v)

While OOP might seem abstract at first, it will become clearer as we dive
deeper into Sage. We will see how Sage utilizes OOP principles and built-
in classes to offer a structured way to represent data and perform powerful
mathematical operations.

1.4 Data Types
In computer science, Data types represent data based on properties of the
data. Python and Sage use data types to implement these classes. Since Sage
builds upon Python, it inherits all the built-in Python data types. Sage also
provides classes that are well-suited for mathematical computations.

Let’s ask Sage what type of object this is.

n = 2
print(n)
type(n)

The type() function reveals that 2 is an instance of the Integer class. Sage
includes numerous classes for different types of mathematical objects.

In the following example, Sage does not evaluate an approximation of
sqrt(2) * log(3). Sage will retain the symbolic value.

sym = sqrt (2) / log (3)
show(sym)
type(sym)

String: a str is a sequence of characters used for text. You can use single
or double quotes.

greeting = "Hello , World!"
print(greeting)
print(type(greeting))

Boolean: The type bool can be one of two values, True or False.

# Check if 5 is contained in the set of prime numbers
b = 5 in Primes ()
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print(f"{b} is {type(b)}")

List: A mutable collection of items within a pair of square brackets []. If
an object is mutable, you can change its value after creating it.

l = [1, 3, 3, 2]
print(l)
print(type(l))

Lists are indexed starting at 0. Here, we access the first element of a list
by asking for the value at index zero.

l[0]

Lists have many helpful methods.

# Find the number of elements in the list
len(l)

Tuple: An immutable collection within a pair of parenthesis (). If an
object is immutable, you cannot change the value after creating it.

t = (1, 3, 3, 2)
print(t)
type(t)

set: A collection of items within a pair of curly braces {}. set() with
lowercase s is built into Python. The items in a set are unique and unordered.
After printing the set, we see there are no duplicate values.

s = {1, 3, 3, 2}
print(s)
type(s)

Set is a built-in Sage class. Set with a capital S has added functionality
for mathematical operations.

S = Set([1, 3, 3, 2])
type(S)

We start by defining a list within square brackets []. Then, the Set()
function creates the Sage set object.

S = Set([5, 5, 1, 3, 5, 3, 2, 2, 3])
print(S)

Dictionary: A collection of key-value pairs.

d = {
"title": "Discrete Math with SageMath",
"institution": "City Colleges of Chicago",
"topics_covered": [

"Set Theory",
"Combinations and Permutations",
"Logic",
"Quantifiers",
"Relations",
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"Functions",
"Recursion",
"Graphs",
"Trees",
"Lattices",
"Boolean Algebras",
"Finite State Machines"

],
"format": ["Web", "PDF"]

}
type(d)

Use the pprint module to print the dictionary in a more readable format.

import pprint
pprint.pprint(d)

1.5 Iteration
Iteration is a programming technique that allows us to efficiently write code
by repeating instructions with minimal syntax. The for loop assigns a value
from a sequence to the loop variable and executes the loop body once for each
value.

# Print the numbers from 0 to 19
# Notice the loop is zero -indexed and excludes 20
for i in range (20):

print(i)

# Here , the starting value of the range is included
for i in range (10, 20):

print(i)

# We can also specify a step value
for i in range (30, 90, 9):

print(i)

Here is an example of list comprehension, a concise way to create lists.
Unlike Python’s range(), the Sage range syntax for list comprehension includes
the ending value.

# Create a list of the cubes of the numbers from 9 to 20
# The for loop is written inside the square brackets
[n**3 for n in [9..20]]

We can also specify a condition in list comprehension. Let’s create a list
that only contains even numbers.

[n**3 for n in [9..20] if n % 2 == 0]

1.6 Debugging
Error messages are an inevitable part of programming. When you make a syn-
tax error and see a message, read it carefully for clues about the cause of the
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error. While some messages are helpful and descriptive, others may seem cryp-
tic or confusing. With practice, you will develop valuable skills for debugging
your code and resolving errors. Not all errors will produce an error message.
Logical errors occur when the syntax is correct, but the program does not
produce the expected output. Remember, mistakes are learning opportunities,
and everyone makes them. Here are some tips for debugging your code:

• Read the error message carefully for information to help you identify and
fix the problem.

• Study the documentation.

• Google the error message. Someone else has likely encountered the same
issue.

• Search for previous posts on Sage forums.

• Take a break and return with a fresh perspective.

• If you are still stuck after trying these steps, ask the Sage community.

Let’s dive in and make some mistakes together!

# Run this cell and see what happens
1message = "Hello , World!"
print (1 message)

Why didn’t this print Hello, World! on the screen? The error message
informed us of a SyntaxError. While the phrase invalid decimal literal
may seem confusing, the key issue here is the invalid variable name. Valid
identifiers must start with a letter or underscore. They cannot begin with a
number or use any special characters. Let’s correct the variable name by using
a valid identifier.

message = "Hello , World!"
print(message)

Here is another error:

print(Hi)

In this case, we encounter a NameError because Hi is not defined. Sage
assumes that Hi is a variable because there are no quotes. We can make Hi a
string by enclosing it in quotes.

print("Hi")

Alternatively, if we intended Hi to be a variable, we can assign a value to
it before printing.

Hi = "Hello , World!"
print(Hi)

Reading the documentation is essential to understanding how to use meth-
ods correctly. If we incorrectly use a method, we will likely get a NameError,
AttributeError, TypeError, or ValueError, depending on the mistake.

Here is an example of a NameError:
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l = [6, 1, 5, 2, 4, 3]
sort(l)

The sort() method must be called on the list object using dot notation.

l = [4, 1, 2, 3]
l.sort()
print(l)

Here is an example of an AttributeError:

l = [1, 2, 3]
l.len()

Here is the correct way to use the len() method:

l = [1, 2, 3]
len(l)

Here is an example of a TypeError:

l = [1, 2, 3]
l.append(4, 5)

The append() method only takes one argument. To add multiple elements
to a list, use the extend() method.

l = [1, 2, 3]
l.extend ([4, 5])
print(l)

Here is an example of a ValueError:

factorial (-5)

Although the resulting error message is lengthy, the last line informs us
that the argument must be a non-negative integer.

factorial (5)

Finally, we will consider a logical error. If your task is to print the numbers
from 1 to 10, you may mistakenly write the following code:

for i in range (10):
print(i)

The output will be the numbers from 0 to 9. To include 10, we need to
adjust the range because the start is inclusive and the stop is exclusive.

for i in range(1, 11):
print(i)

For more information, read the CoCalc article about the top mathematical
syntax errors in Sage1

1github.com/sagemathinc/cocalc/wiki/MathematicalSyntaxErrors

https://github.com/sagemathinc/cocalc/wiki/MathematicalSyntaxErrors
https://github.com/sagemathinc/cocalc/wiki/MathematicalSyntaxErrors
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1.7 Defining Functions
Sage comes with many built-in functions. Math terminology is not always
standard, so be sure to read the documentation to learn what these functions
do and how to use them. You can also define custom functions yourself. You
are welcome to use the custom functions we define in this book. However, since
these custom functions are not part of the Sage source code, you will need to
copy and paste the functions into your Sage environment. If you try to use a
custom function without defining it, you will get a NameError.

To define a custom function in Sage, use the def keyword followed by the
function name and the function’s arguments. The function’s body is indented.
When you call the function, the return keyword returns a value from the
function. The function definition is only stored in memory after you run the
cell. You will not see any output when you run the cell that defines the function.
You will see output only when you call the function. A green box under the
cell indicates the successful execution of the cell. If the box is not green, you
must run the cell to define the function.

You may have heard of Pascal’s Triangle, a triangular array of numbers in
which each number is the sum of the two numbers directly above it. Here is
an example function that returns the nth (0-indexed) row of Pascal’s Triangle:

def pascal_row(n):
return [binomial(n, i) for i in range(n + 1)]

Try calling the function for yourself. First, run the Sage cell with the
function definition to define the function. If you try to call a function without
defining it, you will get a NameError. After defining the function, you can use
it in other cells. You won’t see any output when you run the cell that defines
the function. The Sage cells store the function definition memory. You will see
output only when you call the function. After running the above cell, you can
call the pascal_row() function.

pascal_row (5)

Input validation makes functions more robust. We may get some validation
out of the box. For example, if we try to call the function using a string or
decimal value as input, we will get a TypeError:

pascal_row("5")

However, if we try to call the function with a negative integer, the function
will return an empty list without raising an error.

pascal_row (-5)

This lack of error handling is risky because it can go undetected and cause
unexpected behavior. Let’s add a ValueError to handle negative input:

def pascal_row(n):
if n < 0:

raise ValueError("`n` must be a non -negative 
integer")

return [binomial(n, i) for i in range(n + 1)]

Running the above cell redefines the function. Try calling the function with
a negative integer to see the input validation.
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pascal_row (-5)

Functions can also include a docstring to provide documentation for the
function. The docstring is a string that appears as the first statement in the
function body. It describes what the function does and how to use it.

def pascal_row(n):
r"""

    Return row `n` of Pascal ' s triangle.

    INPUT:

    - ``n`` -- non -negative integer; the row number of 
Pascal ' s triangle to return.

      The row index starts from 0, which corresponds to the 
top row.

    OUTPUT: list; row `n` of Pascal ' s triangle as a list of 
integers.

    EXAMPLES:

    This example illustrates how to get various rows of 
Pascal ' s triangle (0-indexed) ::

        sage: pascal_row (0)  # the top row
        [1]

        sage: pascal_row (4)
        [1, 4, 6, 4, 1]

    It is an error to provide a negative value for `n` ::

        sage: pascal_row (-1)
        Traceback (most recent call last):
        ...
        ValueError: `n` must be a non -negative integer

    .. NOTE::

        This function uses the `binomial ` function to 
compute each

        element of the row.
    """

if n < 0:
raise ValueError("`n` must be a non -negative 

integer")

return [binomial(n, i) for i in range(n + 1)]

After redefining the function and running the above cell, view the docstring
by calling the help() function on the function name. You can also access the
docstring with the ? operator.

help(pascal_row)
# pascal_row? also displays the docstring
# pascal_row ?? reveals the function ' s source code
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For more information on code style conventions and writing documentation
strings, refer to the General Conventions article from the Sage Developer’s
Guide.

1.8 Documentation
Sage can do many more mathematical operations. If you want an idea of what
Sage can do, check out the Quick Reference Card1 and the Reference Manual2.

The tutorial3 is an overview to become familiar with Sage.
The Sage documentation4 can be found at this link. Right now, reading

the documentation is optional. We will do our best to get you up and running
with Sage with this text.

You can quickly reference Sage documentation with the ? operator. You
may also view the source code with the ?? operator.

Set?

Set??

factor?

factor ??

1.9 Run Sage in the browser
The easiest way to get started is by running SageMath online. However, if you
do not have reliable internet, you can also install the software locally on your
own computer. Begin your journey with SageMath by following these steps:

1. Navigate to the SageMath website1

2. Click on Sage on CoCalc2

3. Create a CoCalc account3

4. Go to Your Projects4 on CoCalc and create a new project.

5. Start your new project and create a new worksheet. Choose the Sage-
Math Worksheet option.

6. Enter SageMath code into the worksheet. Try to evaluate a simple ex-
pression and use the worksheet like a calculator. Execute the code by
clicking Run or using the shortcut Shift + Enter. We will learn more
ways to run code in the next section.

7. Save your worksheet as a PDF for your records.
1wiki.sagemath.org/quickref
2doc.sagemath.org/html/en/reference/
3doc.sagemath.org/html/en/tutorial/
4doc.sagemath.org/html/en/index.html
1https://www.sagemath.org/
2https://cocalc.com/features/sage
3https://cocalc.com/auth/sign-up
4https://cocalc.com/projects

https://wiki.sagemath.org/quickref
https://doc.sagemath.org/html/en/reference/
https://doc.sagemath.org/html/en/tutorial/
https://doc.sagemath.org/html/en/index.html
https://www.sagemath.org/
https://cocalc.com/features/sage
https://cocalc.com/auth/sign-up
https://cocalc.com/projects
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8. To learn more about SageMath worksheets, refer to the documentation5

9. Alternatively, you can run Sage code in a Jupyter Notebook6 for some
additional features.

10. If you are feeling adventurous, you can install Sage7 and run it locally on
your own computer. Keep in mind that a local install will be the most
involved way to run Sage code.

5https://doc.cocalc.com/sagews.html
6doc.cocalc.com/jupyter-start.html
7doc.sagemath.org/html/en/installation/index.html

https://doc.cocalc.com/sagews.html
https://doc.cocalc.com/jupyter-start.html
https://doc.sagemath.org/html/en/installation/index.html


Chapter 2

Set Theory

This chapter presents the study of set theory with Sage, starting with a de-
scription of the Set() function, its variations, and how to use it to calculate
the basic set operations.

2.1 Creating Sets

2.1.1 Set Definitions
To construct a set, encase the elements within square brackets []. Then, pass
this list as an argument to the Set() function. It’s important to note that
the S in Set() should be uppercase to define a Sage set. In a set, each element
is unique.

M = Set(["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",
"Aug", "Sep", "Oct", "Nov", "Dec"])

show(M)

Notice that the months in set M do not appear in the same order as when
you created the set. Sets are unordered collections of elements.

We can ask Sage to compare two sets to see whether or not they are equal.
We can use the == operator to compare two values. A single equal sign = and
double equal sign == have different meanings.

The equality operator == is used to ask Sage if two values are equal. Sage
compares the values on each side of the operator and returns the Boolean value.
The == operator returns True if the sets are equal and False if they are not
equal.

The assignment operator = assigns the value on the right side to the
variable on the left side.

M = Set(["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",
"Aug", "Sep", "Oct", "Nov", "Dec"])

M_duplicates = Set(["Jan", "Jan", "Jan", "Feb", "Feb",
"Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"])

# The Set function eliminates duplicates
M == M_duplicates

14
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If you have experience with Python, you may have used a Python set.
Notice how the Python set begins with a lowercase s. Even though Sage
supports Python sets, we will use Sage Set for the added features. Be sure to
define Set() with an upper case S.

2.1.2 Set Builder Notation
Instead of explicitly listing the elements of a set, we can use a set builder
notation to define a set. The set builder notation is a way to define a set by
describing the properties of its elements. Here, we use the Sage srange instead
of the Python range function for increased flexibility and functionality.

# Create a set of even numbers between 1 and 10
A = Set([x for x in srange(1, 11) if x % 2 == 0])
A

Iteration is a way to repeat a block of code multiple times and can be used
to automate repetitive tasks. We could have created the same set by typing
A = Set([2, 4, 6, 8, 10]). Imagine if we wanted to create a set of even
numbers between 1 and 100. It would be much easier to use iteration.

B = Set([x for x in srange(1, 101) if x % 2 == 0])
B

2.1.3 Subsets
To list all the subsets included in a set, we can use the Subsets() function and
then use a for loop to display each subset.

W = Set(["Sun", "Cloud", "Rain", "Snow", "Tornado",
"Hurricane"])

subsets_of_weather = Subsets(W)

subsets_of_weather.list()

2.1.4 Set Membership Check
Sage allows you to check whether an element belongs to a set. You can use the
in operator to check membership, which returns True if the element is in the
set and False otherwise.

"earthquake" in W

We can check if Severe = {Tornado,Hurricane} is a subset of W by using
the issubset method.

Severe = Set(["Tornado", "Hurricane"])
Severe.issubset(W)

When we evaluate W.issubset(Severe), Sage returns False because W is
not a subset of Severe.

W.issubset(Severe)
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2.2 Cardinality
To find the cardinality of a set, we use the cardinality() function.

A = Set([1, 2, 3, 4, 5])
A.cardinality ()

Alternatively, we can use the Python len() function. Instead of returning
a Sage Integer, the len() function returns a Python int.

A = Set([1, 2, 3, 4, 5])
len(A)

In many cases, using Sage classes and functions will provide more function-
ality. In the following example, cardinality() gives us a valid output while
len() does not.

P = Primes ()
P.cardinality ()

# This results in an error because the
# Python len() function is not defined for the primes class
P = Primes ()
P.len()

2.3 Operations on Sets

2.3.1 Union of Sets
There are two distinct methods available in Sage for calculating unions.

Suppose A = {1, 2, 3, 4, 5} and B = {3, 4, 5, 6}. We can use the union()
function to calculate A ∪B.
Notes. The union operation is relevant in real-world scenarios, such as merg-
ing two distinct music playlists into one. In this case, any song that appears
in both playlists will only be listed once in the merged playlist.

A = Set([1, 2, 3, 4, 5])
B = Set([3, 4, 5, 6])
A.union(B)

Alternatively, we can use the | operator to perform the union operation.

A = Set([1, 2, 3, 4, 5])
B = Set([3, 4, 5, 6])
A | B

2.3.2 Intersection of Sets
Similar to union, there are two methods of using the intersection function in
Sage.

Suppose A = {1, 2, 3, 4, 5} and B = {3, 4, 5, 6}. We can use the intersection()
function to calculate A ∩B.
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A = Set([1, 2, 3, 4, 5])
B = Set([3, 4, 5, 6])
A.intersection(B)

Alternatively, we can use the & operator to perform the intersection op-
eration.

A = Set([1, 2, 3, 4, 5])
B = Set([3, 4, 5, 6])
A & B

2.3.3 Difference of Sets
Suppose A = {1, 2, 3, 4, 5} and B = {3, 4, 5, 6}. We can use the difference()
function to calculate the difference between sets.

A = Set([1, 2, 3, 4, 5])
B = Set([3, 4, 5, 6])
A.difference(B)

Alternatively, we can use the - operator to perform the difference opera-
tion.

A = Set([1, 2, 3, 4, 5])
B = Set([3, 4, 5, 6])
A - B

2.3.4 Multiple Sets
When performing operations involving multiple sets, we can repeat the opera-
tions to get our results. Here is an example:

Suppose A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6} and C = {5, 6, 7}. To find the
union of all three sets, we repeat the union() function.

A = Set([1, 2, 3, 4, 5])
B = Set([3, 4, 5, 6])
C = Set([5, 6, 7])
A.union(B).union(C)

Alternatively, we can repeat the | operator to perform the union opera-
tion.

A = Set([1, 2, 3, 4, 5])
B = Set([3, 4, 5, 6])
C = Set([5, 6, 7])
A | B | C

The intersection() and difference() functions can perform similar chained
operations on multiple sets.

2.3.5 Complement of Sets
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9} be the universal set. Given the set A = {1, 2, 3, 4, 5}.
We can use the difference() function to find the complement of A.
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U = Set([1, 2, 3, 4, 5, 6, 7, 8, 9])
A = Set([1, 2, 3, 4, 5])
U.difference(A)

Alternatively, we can use the - operator.

U = Set([1, 2, 3, 4, 5, 6, 7, 8, 9])
A = Set([1, 2, 3, 4, 5])
U - A

2.3.6 Cartesian Product of Sets
Suppose A = {1, 2, 3, 4, 5} and D = {x, y}. We can use the cartesian_product()
and Set() functions to display the Cartesian product A×D.

A = Set([1, 2, 3, 4, 5])
D = Set([ ' x ' , ' y ' ])
Set(cartesian_product ([A, D]))

Alternatively, we can use the . notation to find the Cartesian product.

A = Set([1, 2, 3, 4, 5])
D = Set([ ' x ' , ' y ' ])
Set(A.cartesian_product(D))

2.3.7 Power Sets
The power set of the set V is the set of all subsets, including the empty set
{∅} and the set V itself. Sage offers several ways to create a power set, in-
cluding the Subsets() and powerset() functions. First, we will explore the
Subsets() function. The Subsets() function is more user-friendly due to the
built-in Set methods. Next, we will examine some limitations of the Subsets()
function. We introduce the powerset() function as an alternative for working
with advanced sets not supported by Subsets().

The Subsets() function returns all subsets of a finite set in no particular
order. Here, we find the power set of the set of vowels and view the subsets as
a list where each element is a Set.

V = Set(["a", "e", "i", "o", "u"])
S = Subsets(V)
list(S)

We can confirm that the power set includes the empty set.

Set ([]) in S

We can also confirm that the power set includes the original set.

V in S

The cardinality() method returns the total number of subsets.

S.cardinality ()

There are limitations to the Subsets() function. For example, the Subsets()
function does not support non-hashable objects.
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About hashable objects:

• A hashable object has a hash value that never changes during its lifetime.

• A hashable object can be compared to other objects.

• Most of Python’s immutable built-in objects are hashable.

• Mutable containers (lists or dictionaries) are not hashable.

• Immutable containers (tuples) are only hashable if their elements are
hashable.

You will see an unhashable type error message when trying to create
Subsets of a list containing a list. The powerset() function returns an it-
erator over the list of all subsets in no particular order. The powerset()
function is ideal when working with non-hashable objects.

N = [1, [2, 3], 4]
list(powerset(N))

The powerset() function supports infinite sets. Let’s generate the first 7
subsets from the power set of integers.

P = powerset(ZZ)

i = 0
for subset in P:

print(subset)
i += 1
if i == 7:

break

While the Subsets() function can represent infinite sets symbolically, it is
not practical.

P = Subsets(ZZ)
P

Observe the TypeError message when trying to retrieve a random element
from Subsets(ZZ)

P.random_element ()

Pay close attention to the capitalization of function names. There is a dif-
ference between the functions Subsets() and subsets(). Notice the lowercase
s in subsets(), which is an alias for powerset().

2.3.8 Viewing Power Sets
Power sets can contain many elements. The powerset of the set R contains
elements 128 elements.

R = Set(["red", "orange", "yellow", "green", "blue",
"indigo", "violet"])

S = Subsets(R)
S.cardinality ()
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If we only want to view part of the power set, we can specify a range of
elements with a technique called slicing. For example, here are the first 5
elements of the power set.

S.list()[:5]

Now, let’s retrieve the following 5 elements of the power set.

# Slicing to get elements from index 5 to 9
S.list() [5:10]



Chapter 3

Combinatorics

Counting techniques arise naturally in computer algebra as well as in basic
applications in daily life. This chapter covers the treatment of the enumeration
problem in Sage, including counting combinations, counting permutations, and
listing them.

3.1 Combinatorics

3.1.1 Factorial Function
The factorial of a non-negative integer n, denoted by n!, is the product of all
positive integers less than or equal to n.

Compute the factorial of 5:

factorial (5)

3.1.2 Combinations
The combination (n, k) is an unordered selection of k objects from a set of n
objects.
Notes. Use combinations when order does not matter, such as determining
possible Poker hands. The order in which a player holds cards does not affect
the kind of hand. For example, the following hand is a royal flush: 10, J , Q,
K, A. The following hand is also a royal flush: A, K, J , 10, Q.

Calculate the number of ways to choose 3 elements from a set of 5:

Combinations (5, 3).cardinality ()

List the combinations:

Combinations (5, 3).list()

The binomial() function provides an alternative method to compute the
number of combinations.
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binomial(5, 3)

3.1.3 Permutations
A permutation (n, k) is an ordered selection of k objects from a set of n objects.

Notes. Use permutations in situations where order does matter, such as when
creating passwords. Longer passwords have more permutations, making them
more challenging to guess by brute force.

To calculate the number of ways to choose 3 elements from a set of 5 when
the order matters, use the Permutations() method.

Permutations (5, 3).cardinality ()

List the permutations:

Permutations (5, 3).list()

When n = k, we can calculate permutations of n elements.
Calculate the number of permutations of a set with 3 elements:

Permutations (3).cardinality ()

List the permutations:

Permutations (3).list()

The following is an example of permutations of specified elements:

A = Permutations ([ ' a ' , ' b ' , ' c ' ])

A.list()

Choose 2:

A = Permutations ([ ' a ' , ' b ' , ' c ' ], 2)

A.list()



Chapter 4

Logic

In this chapter, we introduce different ways to create Boolean formulas using
the logical functions not, and, or, if then, and iff. Then, we show how to
ask Sage to create a truth table from a formula and determine if an expression
is a contradiction or a tautology.

4.1 Logical Operators
In Sage, the logical operators are AND &, OR |, NOT ~, conditional ->, and
biconditional <->.

Name Sage Operator Mathematical Notation
AND & ∧
OR | ∨
NOT ~ ¬
Conditional -> →
Biconditional <-> ↔

4.1.1 Boolean Formula
Sage’s propcalc.formula() function allows for the creation of Boolean formu-
las using variables and logical operators. We can then use show function to
display the mathematical notations.

A = propcalc.formula( ' (p & q) | (~p) ' )
show(A)

4.2 Truth Tables
The truthtable() function in Sage generates the truth table for a given logical
expression.
Notes. Truth tables aid in the design of digital circuits.

A = propcalc.formula( ' p -> q ' )
A.truthtable ()

23
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An alternative way to display the table with better separation and visu-
als would be to use SymbolicLogic(), statement(), truthtable() and the
print_table() functions.

A = SymbolicLogic ()
B = A.statement( ' p -> q ' )
C = A.truthtable(B)
A.print_table(C)

SymbolicLogic() creates an instance for handling symbolic logic operations,
while statement() defines the given statement. The truthtable() method
generates a truth table for this statement, and print_table() displays it.

Expanding on the concept of truth tables, we can analyze logical expressions
involving three variables. This provides a deeper understanding of the interplay
between multiple conditions. The truthtable() function supports expressions
with a number of variables that is practical for computational purposes, if the
list of variables becomes too lengthy (such as extending beyond the width of a
LaTeX page), the truth table’s columns may run off the screen. Additionally,
the function’s performance may degrade with a very large number of variables,
potentially increasing the computation time.

B = propcalc.formula( ' (p & q) -> r ' )
B.truthtable ()

4.3 Analyzing Logical Equivalences

4.3.1 Equivalent Statements
When working with Sage symbolic logic, the == operator compares semantic
equivalence.

h = propcalc.formula("x | ~y")
s = propcalc.formula("x & y | x & ~y | ~x & ~y")
h == s

Do not attempt to compare equivalence of truth tables.

# Warning:
# Even though these truth tables look identical ,
# the comparison will return False.
h.truthtable () == s.truthtable ()

However, we can compare equivalence of truth table lists.

h_list = h.truthtable ().get_table_list ()
s_list = s.truthtable ().get_table_list ()
h_list == s_list

4.3.2 Tautologies
A tautology is a logical statement that is always true. The is_tautology()
function checks whether a given logical expression is a tautology.
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Notes. Tautologies are relevant in the field of cybersecurity. Attackers exploit
vulnerabilities by injecting SQL code that turns a WHERE clause into a tautology,
granting unintended access to the system.

a = propcalc.formula( ' p | ~p ' )
a.is_tautology ()

4.3.3 Contradictions
In contrast to tautologies, contradictions are statements that are always false.

A = propcalc.formula( ' p & ~p ' )
A.is_contradiction ()



Chapter 5

Relations

In this chapter, we will explore the relationships between elements in sets,
building upon the concept of the Cartesian product introduced earlier. We will
begin by learning how to visualize relations using Sage. Then, we will introduce
some new functions that can help us determine whether these relations are
equivalence or partial order relations.

5.1 Introduction to Relations
A relation R from set A to set B is any subset of the Cartesian product A×B,
indicating that R ⊆ A×B. We can ask Sage to decide if R is a relation from
A to B. First, construct the Cartesian product C = A × B. Then, build the
set S of all subsets of C. Finally, ask if R is a subset of S.

Recall the Cartesian product consists of all possible ordered pairs (a, b),
where a ∈ A and b ∈ B. Each pair combines an element from set A with an
element from set B.

In this example, an element in the set A relates to an element in B if the
element from A is twice the element from B.

A = Set([1, 2, 3, 4, 5, 6])
B = Set([1, 2, 7])

C = Set(cartesian_product ([A, B]))
S = Subsets(C)

R = Set([(a, b) for a in A for b in B if a==2*b])

print("R =", R)
print("Is R a relation from set A to set B?", R in S)

Let’s use relations to explore matching items of clothes. Let’s define two
sets, jackets and shirts, as examples:

jackets = {j1, j2, j3}

shirts = {s1, s2, s3, s4}

The Cartesian product of jackets and shirts includes all possible combina-
tions of jackets with shirts.
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# Define the sets of jackets and shirts
jackets = Set([ ' j1 ' , ' j2 ' , ' j3 ' ])
shirts = Set([ ' s1 ' , ' s2 ' , ' s3 ' , ' s4 ' ])

# View all the possible combinations of jackets and shirts
C = cartesian_product ([jackets , shirts ])

Set(C)

Since the Cartesian product returns all the possible combinations, some
jackets and shirts will clash. Let’s create a relation from jackets to shirts
based on matching the items of clothing.

# Define a matching relation between jackets and shirts
R = Set([( ' j1 ' , ' s1 ' ), ( ' j2 ' , ' s3 ' ), ( ' j3 ' , ' s4 ' ), ( ' j1 ' ,

' s2 ' )])

print("Matching relation R =", R)

5.2 Relations on a set
When A = B we refer to the relation as a relation on A.

Consider the set A = {2, 3, 4, 6, 8}. Let’s define a relation R on A such
that aRb iff a|b (a divides b). The relation R can be represented by the set of
ordered pairs where the first element divides the second:

A = Set([2, 3, 4, 6, 8])

# Define the relation R on A: aRb iff a divides b
R = Set([(a, b) for a in A for b in A if a.divides(b)])

show(R)

5.3 Digraphs
A digraph, or directed graph, is a visual representation of a relation R on the
set A. Every element in set A is shown as a node (vertex). An arrow from the
node a to the node b represents the pair (a, b) on the relation R.

# Define the set A
A = Set([2, 3, 4, 6, 8])

# Define the relation R on A: aRb iff a divides b
R = [(a, b) for a in A for b in A if a.divides(b)]

DiGraph(R, loops=true)

We can add a title to the digraph with the name parameter.
Notes. Digraphs come in handy when relationships have a clear direction, like
who follows who on social media or how academic papers cite one another.

DiGraph(R, loops=true , name="Look at my digraph")
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If the digraph does not contain a relation from a node to itself, we can omit
the loops=true parameter. If we happen to forgot to include the parameter
when we need to, Sage will give us a descriptive error message.

# Define the set A
A = Set([2, 3, 4, 6, 8])

# Define the relation R on A: aRb iff a < b
R = [(a, b) for a in A for b in A if a < b]
DiGraph(R)

We can also define the digraph using pair notion for relations.

DiGraph ([(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)])

Alternatively, we can define the digraph directly. The element on the left
of the : is a node. The node relates to the elements in the list on the right of
the :.

# 1 relates to 2, 3, and 4
# 2 relates to 3 and 4
# 3 relates to 4
DiGraph ({1: [2, 3, 4], 2: [3, 4], 3: [4]})

5.4 Properties
A relation on A may satisfy certain properties:

• Reflexive: aRa ∀a ∈ A

• Symmetric: If aRb then bRa ∀a, b ∈ A

• Antisymmetric: If aRb and bRa then a = b ∀a, b ∈ A

• Transitive: If aRb and bRc then aRc ∀a, b, c ∈ A

So far, we have learned about some of the built-in Sage methods that come
out of the box, ready for us to use. Sometimes, we may need to define custom
functions to meet specific requirements or check for particular properties. We
define custom functions with the def keyword. If you want to reuse the custom
functions defined in this book, copy and paste the function definitions into your
own Sage worksheet and then call the function to use it.

5.4.1 Reflexive
A relation R is reflexive if a relates to a for all elements a in the set A. This
means all the elements relate to themselves.

A = Set([1, 2, 3])
R = Set([(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)])
show(R)

Let’s define a function to check if the relation R on set A is reflexive. We
will create a set of (a, a) pairs for each element a in A and check if this set
is a subset of R. This will return True if the relation is reflexive and False
otherwise.
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def is_reflexive_set(A, R):
reflexive_pairs = Set([(a, a) for a in A])
return reflexive_pairs.issubset(R)

is_reflexive_set(A, R)

If we are working with DiGraphs, we can use the method has_edge to check
if the graph has a loop for each vertex.

def is_reflexive_digraph(A, G):
return all(G.has_edge(a, a) for a in A)

A = [1, 2, 3]
R = [(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)]

G = DiGraph(R, loops=True)

is_reflexive_digraph(A, G)

5.4.2 Symmetric
A relation is symmetric if a relates to b, then b relates to a.

def is_symmetric_set(relation_R):
inverse_R = Set([(b, a) for (a, b) in relation_R ])
return relation_R == inverse_R

A = Set([1, 2, 3])

R = Set([(1, 2), (2, 1), (3, 3)])

is_symmetric_set(R)

We can check if a DiGraph is symmetric by comparing the edges of the graph
with the reverse edges. In our definition of symmetry, we are only interested
in the relation of nodes, so we set edge labels=False.

def is_symmetric_digraph(digraph):
return digraph.edges(labels=False) ==

digraph.reverse ().edges(labels=False)

relation_R = [(1, 2), (2, 1), (3, 3)]

G = DiGraph(relation_R , loops=true)

is_symmetric_digraph(G)

5.4.3 Antisymmetric
When a relation is antisymmetric, the only case that a relates to b and b relates
to a is when a and b are equal.

def is_antisymmetric_set(relation):
for a, b in relation:

if (b, a) in relation and a != b:
return False

return True
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relation = Set([(1, 2), (2, 3), (3, 4), (4, 1)])

is_antisymmetric_set(relation)

While Sage offers a built-in antisymmetric() method for Graphs, it checks
for a more restricted property than the standard definition of antisymmetry.
Specifically, it checks if the existence of a path from a vertex x to a vertex y
implies that there is no path from y to x unless x = y. Observe that while
the standard antisymmetric property forbids the edges to be bidirectional, the
Sage antisymmetric property forbids cycles.

# Example with the more restricted
# Sage built -in antisymmetric method
# Warning: returns False

relation = [(1, 2), (2, 3), (3, 4), (4, 1)]

DiGraph(relation).antisymmetric ()

Let’s define a function to check for the standard definition of antisymmetry
in a DiGraph.

def is_antisymmetric_digraph(digraph):
for edge in digraph.edges(labels=False):

a, b = edge
# Check if there is an edge in both directions (a to

b and b to a) and a is not equal to b
if digraph.has_edge(b, a) and a != b:

return False
return True

relation = DiGraph ([(1, 2), (2, 3), (3, 4), (4, 1)])

is_antisymmetric_digraph(relation)

5.4.4 Transitive
A relation is transitive if a relates to b and b relates to c, then a relates to c.

Let’s define a function to check for the transitive property in a Set:

def is_transitive_set(A, R):
for a in A:

for b in A:
if (a, b) in R:

for c in A:
if (b, c) in R and not (a, c) in R:

return False
return True

A = Set([1, 2, 3])

R = Set([(1, 2), (2, 3), (1, 3)])

is_transitive_set(A, R)

You may be tempted to write a function with a nested loop because the logic
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is easy to follow. However, when working with larger sets, the time complexity
of the function will not be efficient. This is because we are iterating through the
set A three times. We can improve the time complexity by using a dictionary to
store the relation R. Alternatively, we can use built-in Sage DiGraph methods.

D = DiGraph ([(1, 2), (2, 3), (1, 3)], loops=True)

D.is_transitive ()

5.5 Equivalence
A relation on a set is called an equivalence relation if it is reflexive, sym-
metric, and transitive. The equivalence class of an element a in a set A is
the set of all elements in A that are related to a by this relation, denoted by:

[a] = {x ∈ A | xRa}

Here, [a] represents the equivalence class of a, comprising all elements in A
that are related to a through the relation R. This illustrates the grouping of
elements into equivalence classes.

Consider a set A defined as:

A = {x | x is a person living in a given building}

# Define the set of people
A = Set([ ' p_1 ' , ' p_2 ' , ' p_3 ' , ' p_4 ' , ' p_5 ' , ' p_6 ' , ' p_7 ' ,

' p_8 ' , ' p_9 ' , ' p_10 ' ])
A

Create sets for the people living on each floor of the building:

import pprint

# Define the floors as a dictionary , mapping floor names to
sets of people

floors = {
' first_floor ' : Set([ ' p_1 ' , ' p_2 ' , ' p_3 ' , ' p_4 ' ]),
' second_floor ' : Set([ ' p_5 ' , ' p_6 ' , ' p_7 ' ]),
' third_floor ' : Set([ ' p_8 ' , ' p_9 ' , ' p_10 ' ])

}

pprint.pprint(floors)

Let R be the relation on A described as follows:

xRy iff x and y live in the same floor of the building.

# Define the relation R based on living on the same floor
R = Set([(x, y) for x in A for y in A if any(x in

floors[floor] and y in floors[floor] for floor in
floors)])

R

This relation demonstrates the properties of an equivalence relation:
Reflexive: A person lives in the same floor as themselves.



CHAPTER 5. RELATIONS 32

def is_reflexive_set(A, R):
reflexive_pairs = Set([(a, a) for a in A])
return reflexive_pairs.issubset(R)

is_reflexive_set(A, R)

Symmetric: If person a lives in the same floor as person b, then person b
lives in the same floor as person a.

def is_symmetric_set(relation_R):
inverse_R = Set([(b, a) for (a, b) in relation_R ])
return relation_R == inverse_R

is_symmetric_set(R)

Transitive: If person a lives in the same floor as person b and person b
lives in the same floor as person c, then person a lives in the same floor as
person c.

G = DiGraph(list(R), loops=true)
G.is_transitive ()

5.6 Partial Order
A relation R on a set is a Partial Order (PO) ≺ if it satisfies the reflexive,
antisymmetric, and transitive properties. A poset is a set with a partial order
relation. For example, the following set of numbers with a relation given by
divisibility is a poset.

A = Set([1, 2, 3, 4, 5, 6, 8])

R = [(a, b) for a in A for b in A if a.divides(b)]

D = DiGraph(R, loops=True)

plot(D)

A Hasse diagram is a simplified visual representation of a poset. Unlike
a digraph, the relative position of vertices has meaning: if x relates to y,
then the vertex x appears lower in the drawing than the vertex y. Self-loops
are assumed and not shown. Similarly, the diagram assumes the transitive
property and does not explicitly display the edges that are implied by the
transitive property.
Notes. Partial orders and Hasse diagrams help analyze task dependencies in
scheduling applications.

If R is a partial order relation on A, then the function Poset((A, R))
computes the Hasse diagram associated to R.

A = Set([1, 2, 3, 4, 5, 6, 8])

R = [(a, b) for a in A for b in A if a.divides(b)]

P = Poset((A, R))
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plot(P)

Moreover, the cover_relations() function shows the pairs depicted in the
Hasse diagram after the previous simplifications.

P.cover_relations ()



Chapter 6

Functions

This chapter will briefly discuss the implementation of functions in Sage and
will delve deeper into the sequences defined by recursion, including Fibonacci’s.
We will show how to solve a recurrence relation using Sage.

6.1 Functions
A function from a set A into a set B is a relation from A into B such that each
element of A is related to exactly one element of the set B. The set A is called
the domain of the function, and the set B is called the co-domain. Functions
are fundamental in both mathematics and computer science for describing
mathematical relationships and implementing computational logic.

In Sage, functions can be defined using direct definition.
For example, defining a function f : R → R to calculate the cube of a

number, such as 3:

f(x) = x^3
show(f)
f(3)

6.1.1 Graphical Representations
Sage provides powerful tools for visualizing functions, enabling you to explore
the graphical representations of mathematical relationships.

For example, to plot the function f(x) = x3 over the interval [−2, 2]:

f(x) = x^3
plot(f(x), x, -2, 2)

6.2 Recursion
Recursion is a method where the solution to a problem depends on solutions
to smaller instances of the same problem. This approach is extensively used in
mathematics and computer science, especially in the computation of binomial
coefficients, the evaluation of polynomials, and the generation of sequences.

34
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6.2.1 Recursion in Sequences
A recursive sequence is defined by one or more base cases and a recursive step
that relates each term to its predecessors.
Notes. Use recursion to solve problems by breaking them down into simi-
lar steps. In programming, recursively defined functions often improve code
readability.

Given a sequence defined by a recursive formula, we can ask Sage to find
its closed form. Here, s is a function representing the sequence defined by
recursion. The equation eqn defines the recursive relation sn = sn−1 + 2 ·
sn−2. The rsolve() function is then used to find a closed-form solution to this
recurrence, given the initial conditions s0 = 2 and s1 = 7. At last, we use the
SR() function to convert from Python notation to mathematical notation.

from sympy import Function , rsolve
from sympy.abc import n
s = Function( ' s ' )
eqn = s(n) - s(n-1) - 2*s(n-2)
sol = rsolve(eqn , s(n), {s(0): 2, s(1): 7})
show(SR(sol))

We can use the show() function to make the output visually more pleasing;
you can try removing it and see how the output looks.

Similarly, the Fibonacci sequence is another example of a recursive sequence,
defined by the base cases F0 = 0 and F1 = 1, and the recursive relation
Fn = Fn−1 + Fn−2 for n > 1. This sequence is a cornerstone example in the
study of recursion.

from sympy import Function , rsolve
from sympy.abc import n
F = Function( ' F ' )
fib_eqn = F(n) - F(n-1) - F(n-2)
fib_sol = rsolve(fib_eqn , F(n), {F(0): 0, F(1): 1})
show(SR(fib_sol))

The show() function is again used here to present the solution in a more
accessible mathematical notation, illustrating the power of recursive functions
to describe complex sequences with simple rules.

We can also write a function fib() to compute the nth Fibonacci number
by iterating and updating the values of two consecutive Fibonacci numbers in
the sequence. Let’s calculate the third Fibonacci number.

def fib(n):
if n == 0 or n == 1: return n
else:

U = 0; V = 1 # the initial terms F0 and F1
for k in range(2, n+1):

W = U + V; U = V; V = W
return V

fib (3)

We go back to the previous method where we calculated the closed form
fib_sol and evaluate it now at n = 3.
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from sympy import Function , rsolve , Symbol , simplify
n = Symbol( ' n ' )
F = Function( ' F ' )
fib_eqn = F(n) - F(n-1) - F(n-2)
fib_sol = rsolve(fib_eqn , F(n), {F(0): 0, F(1): 1})
# Evaluate the solution at n=3
fib3 = simplify(fib_sol.subs(n, 3))
show(SR(fib3))

As we can see, we obtain the same number either by evaluating the closed
form at n = 3 or by finding the third Fibonacci number directly by iteration.

6.2.2 Recursion with Binomial Coefficients
Binomial coefficients, denoted as

(
n
k

)
, count the number of ways to choose k

elements from an n-element set. They can be defined recursively. Sage can
compute binomial coefficients using the binomial(n, k) function.

binomial(5, 3)

We can also explore the recursive nature of binomial coefficients by defining
a function ourselves recursively.

def binomial_recursive(n, k):
if k == 0 or k == n:

return 1
else:

return binomial_recursive(n-1, k-1) +
binomial_recursive(n-1, k)

binomial_recursive (5, 3)

This function implements the recursive formula
(
n
k

)
=

(
n−1
k−1

)
+

(
n−1
k

)
, with

base cases
(
n
0

)
=

(
n
n

)
= 1.



Chapter 7

Graph Theory

Sage is extremely powerful for graph theory. This chapter presents the study
of graph theory with Sage, starting with a description of the Graph class
through the implementation of optimization algorithms. We also illustrate
Sage’s graphical capabilities for visualizing graphs.

7.1 Basics

7.1.1 Graph Definition
A graph G = (V,E) consists of a set V of vertices and a set E of edges, where

E ⊂ {{u, v} | u, v ∈ V }

The set of edges is a set whose elements are subsets of two vertices.
Terminology:

• Vertices are synonymous with nodes.

• Edges are synonymous with links or arcs.

• In an undirected graph edges are unordered pairs of vertices.

• In a directed graph edges are ordered pairs of vertices.

There are several ways to define a graph in Sage. We can define a graph
by listing the vertices and edges:

V = [ ' A ' , ' B ' , ' C ' , ' D ' , ' E ' ]
E = [( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ), ( ' E ' ,

' A ' ), ( ' A ' , ' D ' ), ( ' C ' , ' E ' )]
G = Graph([V, E])
G.plot()

We can define a graph with an edge list. Each edge is a pair of vertices:

L = [( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ), ( ' E ' ,
' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' E ' )]

G = Graph(L)
G.plot()

37
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We can define a graph with an edge dictionary like so: {edge: [neighbor,
neighbor, etc], edge: [ neighbor, etc], etc: [etc]} Each dictionary key
is a vertex. The dictionary values are the vertex neighbors.

E = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2, 4], 4: [1, 2, 3]}
G = Graph(E)
G.plot()

You can improve the readability of a dictionary by placing each item of the
collection on a new line:

E = {
1: [2, 3, 4],
2: [1, 3, 4],
3: [1, 2, 4],
4: [1, 2, 3]

}
G = Graph(E)
G.plot()

Sage offers a collection of predefined graphs. Here are some examples:

graphs.PetersenGraph ().show()
graphs.CompleteGraph (5).show()
graphs.TetrahedralGraph ().show()
graphs.DodecahedralGraph ().show()
graphs.HexahedralGraph ().show()

Notes. Concepts from graph theory have practical applications related to
social networks, computer networks, transportation, biology, chemistry, and
more.

7.1.2 Weighted Graphs
A weighted graph has a weight, or number, associated with each edge. These
weights can model anything including distances, costs, or other relevant quan-
tities.

To create a weighted graph, add a third element to each pair of vertices.

E = [( ' A ' , ' B ' , 2), ( ' B ' , ' C ' , 3), ( ' C ' , ' D ' , 4), ( ' D ' , ' E ' ,
5), ( ' E ' , ' A ' , 1)]

G = Graph(E, weighted=True)
G.plot(edge_labels=True)

7.1.3 Graph Characteristics
Sage offers many built-in functions for analyzing graphs. Let’s examine the
following graph:

G = Graph ([( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ),
( ' E ' , ' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' D ' )])

G.show()

The vertices() method returns a list of the graph’s vertices.

G = Graph ([( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ),
( ' E ' , ' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' D ' )])
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G.vertices ()

The G.edges() method returns triples representing the graph’s vertices and
edge labels.

G = Graph ([( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ),
( ' E ' , ' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' D ' )])

G.edges ()

Return the edges as a tuple without the label by setting labels=false.

G = Graph ([( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ),
( ' E ' , ' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' D ' )])

G.edges(labels=false)

The order of G = (V,E) is the number of vertices |V |.

G = Graph ([( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ),
( ' E ' , ' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' D ' )])

G.order ()

The size of G = (V,E) is the number of edges |E|.

G = Graph ([( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ),
( ' E ' , ' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' D ' )])

G.size()

The degree of the vertex v, deg(v) is the number of edges incident with v.

G = Graph ([( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ),
( ' E ' , ' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' D ' )])

G.degree( ' A ' )

The degree sequence of G = (V,E) is the list of degrees of its vertices.

G = Graph ([( ' A ' , ' B ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ), ( ' D ' , ' E ' ),
( ' E ' , ' A ' ), ( ' A ' , ' C ' ), ( ' B ' , ' D ' )])

G.degree_sequence ()

7.1.4 Graphs and Matrices
The adjacency matrix of a graph is a square matrix used to represent which
vertices of the graph are adjacent to which other vertices. Each entry aij in
the matrix is equal to 1 if there is an edge from vertex i to vertex j, and is
equal to 0 otherwise.

G = Graph ([( ' A ' , ' B ' ), ( ' A ' , ' E ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ),
( ' D ' , ' E ' )])

G.adjacency_matrix ()

We can also define a graph with an adjacency matrix:

A = Matrix ([
[0, 1, 0, 0, 1],
[1, 0, 1, 0, 0],
[0, 1, 0, 1, 0],
[0, 0, 1, 0, 1],
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[1, 0, 0, 1, 0]
])
G = Graph(A)
G.plot()

The incidence matrix is an alternative matrix representation of a graph,
which describes the relationship between vertices and edges. In this matrix,
rows correspond to vertices, and columns correspond to edges, with entries
indicating whether a vertex is incident to an edge.

G = Graph ([( ' A ' , ' B ' ), ( ' A ' , ' E ' ), ( ' B ' , ' C ' ), ( ' C ' , ' D ' ),
( ' D ' , ' E ' )])

G.incidence_matrix ()

7.1.5 Manipulating Graphs in Sage
Add a vertex to a graph:

G = Graph ([(1, 2), (2, 3), (3, 4), (4, 1)])
G.add_vertex (5)
G.show()

Add a list of vertices:

G.add_vertices ([10, 11, 12])
G.show()

Remove a vertex from a graph:

G.delete_vertex (12)
G.show()

Remove a list of vertices from a graph:

G.delete_vertices ([5 ,10 ,11])
G.show()

Add an edge between two vertices:

G.add_edge(1, 3)
G.show()

Delete an edge from a graph:

G.delete_edge (2, 3)
G.show()

Deleting a nonexistent vertex returns an error. Deleting a nonexistent edge
leaves the graph unchanged. Adding a vertex or edge already in the graph,
leaves the graph unchanged.

7.2 Plot Options
The show() method displays the graphics object immediately with default set-
tings. The plot() method accepts options for customizing the presentation of
the graphics object. You can import more features from Matplotlib or LATEX
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for fine-tuned customization options. Let’s examine how the plotting options
improve the presentation and help us discover insights into the structure and
properties of a graph. The presentation of a Sage graphics object may differ
depending on your environment.

7.2.1 Size
Here is a graph that models the primary colors of the RGB color wheel:

E = [
( ' r ' , ' g ' ),
( ' g ' , ' b ' ),
( ' b ' , ' r ' )

]

Graph(E).show()

Let’s increase the vertex_size:

Graph(E).plot(vertex_size =1000).show()

Resolve the cropping by increasing the figsize. Specify a single number
or a (width, height) tuple.

Graph(E).plot(vertex_size =1000, figsize =10).show()

Increasing the figsize works well in a notebook environment. However, in
a SageCell, a large figsize introduces scrolling. Setting graph_border=True
is an alternate way to resolve the cropping while maintaining the size of the
graph.

Graph(E).plot(vertex_size =1000, graph_border=True).show()

7.2.2 Edge Labels
Let’s add some edge labels. Within the list of edge tuples, the first two
values are vertices, and the third value is the edge label.

E = [
( ' r ' , ' g ' , ' yellow ' ),
( ' g ' , ' b ' , ' cyan ' ),
( ' b ' , ' r ' , ' magenta ' )

]

G = Graph(E).plot(
edge_labels=True ,

)

G.show()

7.2.3 Color
There are various ways to specify vertex_colors, including hexadecimal, RGB,
and color name. Hexadecimal and RGB offer greater flexibility because Sage
does not have a name for every color. The color is the dictionary key, and
the vertex is the dictionary value.
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The following example specifies the color with RGB values. The values can
range anywhere from 0 to 1. Color the vertex r red by setting the first element
in the RGB tuple to full intensity with a value of 1. Next, ensure vertex r
contains no green or blue light by setting the remaining tuple elements to 0.
Notice vertex g is darker because the green RGB value is .65 instead of 1.

set_vertex_colors = {
(1,0,0): [ ' r ' ], # Color vertex `r` all red
(0 ,.65 ,0): [ ' g ' ], # Color vertex `g` dark green
(0,0,1): [ ' b ' ] # Color vertex `b` all blue

}

G = Graph(E).plot(
vertex_colors=set_vertex_colors ,
edge_labels=True ,

)

G.show()

The following example specifies the color by name instead of RGB value.
Sage will return an error if you use an undefined color name.

set_vertex_colors = {
' red ' : [ ' r ' ],
' green ' : [ ' g ' ],
' blue ' : [ ' b ' ]

}

G = Graph(E).plot(
vertex_colors=set_vertex_colors ,
edge_labels=True ,

)

G.show()

Let’s specify the edge_colors with RGB values. The edge from vertex r
to vertex g is yellow because the RGB tuple sets red and green light to full
intensity with no blue light. For darker shades, use values less than 1.

set_edge_colors = {
(1,1,0): [( ' r ' , ' g ' )],
(0,1,1): [( ' g ' , ' b ' )],
(1,0,1): [( ' b ' , ' r ' )]

}

G = Graph(E).plot(
edge_colors=set_edge_colors ,
vertex_colors=set_vertex_colors ,
edge_labels=True ,

)

G.show()

This alternate method specifies the color by name instead:

set_edge_colors = {
' yellow ' : [( ' r ' , ' g ' )],
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' cyan ' : [( ' g ' , ' b ' )],
' magenta ' : [( ' b ' , ' r ' )]

}

G = Graph(E).plot(
edge_colors=set_edge_colors ,
vertex_colors=set_vertex_colors ,
edge_labels=True ,

)

G.show()

Consider accessibility when choosing colors on a graph. For example, the
red and green on the above graph look indistinguishable to people with color
blindness. Blue and red are usually a safe bet for contrasting two colors.

Here is a Sage Interact to help identify hexadecimal color values.

• First, click Evaluate (Sage) to define and load the interact. You are wel-
come to modify the interact definition to suit your needs.

• You may define a new edge list, vertex size, and graph border within an
input box.

• After entering new values, press Enter on your keyboard to load the new
graph.

• Click on the color selector square to change the color. The hexadecimal
value appears to the right of the color square.

• After selecting a new color, the graph will update when you click outside
the color selector.

@interact
def _(

edges=input_box(default =[(1, 2), (2, 3), (3, 4), (4,
1)], label="Graph", width =40),

vertex_size=input_box(default =2000, label="Vertex Size",
width =40),

graph_border=input_box(default=True , label="Border",
width =40),

color=color_selector(widget= ' colorpicker ' , label="Click 
->")

):
g = Graph(edges)
color_str = color.html_color ()

show(
g.plot(

vertex_size=vertex_size ,
graph_border=graph_border ,
vertex_colors=color_str

)
)

7.2.4 Layout
Let’s define and examine the following graph. Evaluate this cell multiple times
and notice the vertex positions are not consistent.
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N = [
( ' g ' , ' b ' ,),
( ' g ' , ' d ' ,),
( ' g ' , ' f ' ,),
( ' b ' , ' d ' ,),
( ' b ' , ' f ' ,),
( ' d ' , ' f ' ,)

]

G = Graph(N)

G.show()

Layout options include: “acyclic”, “circular”, “ranked”, “graphviz”,
“planar”, “spring”, or “tree”.

A planar graph can be drawn without any crossing edges. The default
graph layout does not ensure the planar layout of a planar graph. Sage will
return an error if you try to plot a non-planar graph with the planar layout.

G.plot(layout= ' planar ' ).show()

Sage’s planar algorithm sets the vertex positions. Alternatively, we can
specify the positions in a dictionary. Let’s position the G node in the center.

positions = {
' g ' : (0, 0),
' d ' : (-1, 1),
' b ' : (1, 1),
' f ' : (0, -1)

}

G.plot(pos=positions).show()

The following graph modeling the intervals in the C major scale is challeng-
ing to read. Let’s think about how we can improve the presentation.

I = [
("c", "d", "M2"), ("c", "e", "M3"), ("c", "f", "P4"),

("c", "g", "P5"), ("c", "a", "M6"), ("c", "b", "M7"),
("d", "e", "M2"), ("d", "f", "m3"), ("d", "g", "P4"),

("d", "a", "P5"), ("d", "b", "M6"), ("d", "c", "m7"),
("e", "f", "m2"), ("e", "g", "m3"), ("e", "a", "P4"),

("e", "b", "P5"), ("e", "c", "m6"), ("e", "d", "m7"),
("f", "g", "M2"), ("f", "a", "M3"), ("f", "b", "a4"),

("f", "c", "P5"), ("f", "d", "M6"), ("f", "e", "M7"),
("g", "a", "M2"), ("g", "b", "M3"), ("g", "c", "P4"),

("g", "d", "P5"), ("g", "e", "M6"), ("g", "f", "m7"),
("a", "b", "M2"), ("a", "c", "m3"), ("a", "d", "P4"),

("a", "e", "P5"), ("a", "f", "m6"), ("a", "g", "m7"),
("b", "c", "m2"), ("b", "d", "m3"), ("b", "e", "P4"),

("b", "f", "d5"), ("b", "g", "m6"), ("b", "a", "m7"),
]

C = DiGraph(I, multiedges=True ,)

C.plot(edge_labels=True).show()

In this case, the graph is not planar. The circular layout organizes the
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vertices for improved readability.

C.plot(edge_labels=True , layout= ' circular ' )

7.2.5 View in a New Tab
Increasing the figsize improves the definition of the arrows. For an even
better view of the Graph, right-click the image and view it in a new tab.

C.plot(
edge_labels=True ,
layout= ' circular ' ,
figsize =30

).show()

7.2.6 Edge Style
The options for edge_style include “solid”, “dashed”, “dotted”, or "dashdot”.

C.plot(
edge_style= ' dashed ' ,
edge_labels=True ,
layout= ' circular ' ,
figsize =30

).show()

Improve the definition between the edges by using a different color for each
edge. The color_by_label method automatically maps the colors to edges.

C.plot(
edge_style= ' dashed ' ,
color_by_label=True ,
edge_labels=True ,
layout= ' circular ' ,
figsize =30

).show()

7.2.7 3-Dimensional
View a 3D representation of graph with show3d(). Click and drag the image
to change the perspective. Zoom in on the image by pinching your computer’s
touchpad.

G = graphs.CubeGraph (3)
G.show3d ()

G = graphs.TetrahedralGraph ()
G.show3d ()

G = graphs.IcosahedralGraph ()
G.show3d ()

G = graphs.DodecahedralGraph ()
G.show3d ()
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G = graphs.CompleteGraph (5)
G.show3d ()

7.3 Paths
A path between two vertices u and v is a sequence of consecutive edges starting
at u and ending at v.

To get all paths between two vertices:

G = Graph ({1: [2, 3], 2: [3], 3: [4]})
G.all_paths (1, 4)

The length of a path is defined as the number of edges that make up the
path.

Finding the shortest path between two vertices can be achieved using the
shortest_path() function:

G = Graph ({1: [2, 3], 2: [3], 3: [4]})
G.shortest_path (1, 4)

A graph is said to be connected if there is a path between any two vertices
in the graph.

To determine if a graph is connected, we can use the is_connected() func-
tion:

G = Graph ({1: [2, 3], 2: [3], 3: [4]})
G.is_connected ()

A connected component of a graph G is a maximal connected subgraph of
G. If the graph G is connected, then it has only one connected component.

For example, the following graph is not connected:

G = Graph ({1: [2, 3], 2: [4], 5: [6]})
G.is_connected ()

To identify all connected components of a graph, the connected_components()
function can be utilized:

G = Graph ({1: [2, 3], 2: [4], 5: [6]})
G.connected_components ()

We can visualize the graph as a disjoint union of its connected components,
by plotting it.

G = Graph ({1: [2, 3], 2: [4], 5: [6, 7], 6: [7]})
G.show()

The diameter of a graph is the length of the longest shortest path between
any two vertices.
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G = Graph ({1: [2, 3], 2: [3, 4], 3: [4]})
G.diameter ()

# Calculates the diameter of the graph.

A graph is bipartite if its set of vertices can be divided into two disjoint
sets such that every edge connects a vertex in one set to a vertex in the other
set:

G = Graph ({1: [2, 3], 2: [4], 3: [4]})
G.is_bipartite ()

7.4 Isomorphism
Informally, we can say that an isomorphism is a relation of sameness between
graphs. Let’s say that the graphs G = (V,E) and G′ = (V ′, E′) are isomorphic
if there exists a bijection f : V → V ′ such that {u, v} ∈ E ⇔ {f(u), f(v)} ∈ E′.

This means there is a bijection between the set of vertices such that every
time two vertices determine an edge in the first graph, the image of these
vertices by the bijection also determines an edge in the second graph, and vice
versa. Essentially, the two graphs have the same structure, but the vertices
are labeled differently.
Notes. Graph isomorphism identifies structures relevant to chemistry, biology,
machine learning, and neural networks.

C = Graph(
{

' a ' : [ ' b ' , ' c ' , ' g ' ],
' b ' : [ ' a ' , ' d ' , ' h ' ],
' c ' : [ ' a ' , ' d ' , ' e ' ],
' d ' : [ ' b ' , ' c ' , ' f ' ],
' e ' : [ ' c ' , ' f ' , ' g ' ],
' f ' : [ ' d ' , ' e ' , ' h ' ],
' g ' : [ ' a ' , ' e ' , ' h ' ],
' h ' : [ ' b ' , ' f ' , ' g ' ]

}
)

D = Graph(
{

1: [2, 6, 8],
2: [1, 3, 5],
3: [2, 4, 8],
4: [3, 5, 7],
5: [2, 4, 6],
6: [1, 5, 7],
7: [4, 6, 8],
8: [1, 3, 7]

}
)

C.show()
D.show()
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The sage is_isomorphic() method can be used to check if two graphs are
isomorphic. The method returns True if the graphs are isomorphic and False
if the graphs are not isomorphic.

C.is_isomorphic(D)

The invariants under isomorphism are conditions that can be checked
to determine if two graphs are not isomorphic. If one of these fails then the
graphs are not isomorphic. If all of these are true then the graph may or may
not be isomorphic. The three conditions for invariants under isomorphism are:

G = (V,E) is connected iff G′ = (V ′, E′) is connected

|V | = |V ′| and |E| = |E′|
degree sequence of G = degree sequence of G′

To summarize, if one graph is connected and the other is not, then the
graphs are not isomorphic. If the number of vertices and edges are different,
then the graphs are not isomorphic. If the degree sequences are different, then
the graphs are not isomorphic. If all three invariants are satisfied, then the
graphs may or may not be isomorphic.

Let’s define a function to check if two graphs satisfy the invariants under
isomorphism. Make sure you run the next cell to define the function before
using the function.

def invariant_under_isomorphism(G1, G2):
print("Are both graphs connected? ", end="")
are_connected: bool = (

G1.is_connected () == G2.is_connected ()
)
print("Yes" if are_connected else "No")

print(
"Do both graphs have same number of "
"vertices and edges? ", end=""

)
have_equal_vertex_and_edge_counts: bool = (

G1.order () == G2.order() and
G1.size() == G2.size()

)
print(

"Yes" if have_equal_vertex_and_edge_counts else "No"
)

# Sort the degree -sequences because
# the order of vertices doesn ' t matter.
print(

"Do both graphs have the same degree sequence? ",
end=""

)
have_same_degree_sequence: bool = (

sorted(G1.degree_sequence ()) ==
sorted(G2.degree_sequence ())

)
print("Yes" if have_same_degree_sequence else "No")

# All checks
are_invariant_under_isomorphism =(



CHAPTER 7. GRAPH THEORY 49

are_connected and
have_equal_vertex_and_edge_counts and
have_same_degree_sequence

)
print(

"\nTherefore , the graphs {0} isomorphic.".format(
"may be" if are_invariant_under_isomorphism
else "are not"

)
)

If we use invariant_under_isomorphism on the C and D, the output will
let’s know that the graphs may or may not be isomorphic. We can use the
is_isomorphic() method to check if the graphs are definitively isomorphic.

invariant_under_isomorphism(C, D)

Let’s construct a different pair of graphs A and B defined as follow

A = Graph(
[

( ' a ' , ' b ' ),
( ' b ' , ' c ' ),
( ' c ' , ' f ' ),
( ' f ' , ' d ' ),
( ' d ' , ' e ' ),
( ' e ' , ' a ' )

]
)

B = Graph(
[

(1, 5),
(1, 9),
(5, 9),
(4, 6),
(4, 7),
(6, 7)

]
)

A.show()
B.show()

This time, if we apply invariant_under_isomorphism function on A and
B, the output will show us that they are not isomorphic.

invariant_under_isomorphism(A, B)

7.5 Euler and Hamilton

7.5.1 Euler
An Euler path is a path that uses every edge of a graph exactly once. An
Euler path that is a circuit is called an Euler circuit.
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The idea of an Euler path emerged from the study of the Königsberg
bridges problem. Leonhard Euler wanted to know if it was possible to walk
through the city of Königsberg, crossing each of its seven bridges exactly once.
This problem can be modeled as a graph, with the land masses as vertices and
the bridges as edges.

konigsberg = [( ' A ' , ' B ' , ' b_1 ' ),
( ' A ' , ' B ' , ' b_2 ' ),
( ' A ' , ' C ' , ' b_3 ' ),
( ' A ' , ' C ' , ' b_4 ' ),
( ' D ' , ' A ' , ' b_5 ' ),
( ' D ' , ' B ' , ' b_6 ' ),
( ' D ' , ' C ' , ' b_7 ' )]

G = Graph(konigsberg , multiedges=True)
G.show(edge_labels=True)

Notes. Eulerian circuits and paths have practical applications for reducing
travel and costs in logistics, waste management, the airline industry, and postal
service.

While exploring this problem, Euler discovered the following:

• A connected graph has an Euler circuit iff every vertex has an even
degree.

• A connected graph has an Euler path iff there are at most two vertices
with an odd degree.

We say that a graph is Eulerian if contains an Euler circuit.
We can use Sage to determine if a graph is Eulerian.

G.is_eulerian ()

Since this returns False, we know that the graph is not Eulerian. Therefore,
it is not possible to walk through the city of Königsberg, crossing each of its
seven bridges exactly once.

We can use path=True to determine if a graph contains an Euler path. Sage
will return the beginning and the end of the path.

G = Graph ([(1, 2), (2, 3), (3, 4), (4, 1), (2, 4), (1, 3),
(1, 4)], multiedges=True)

G.show()
G.is_eulerian(path=True)

If the graph is Eulerian, we can ask Sage to find an Euler circuit with the
eulerian_circuit function. Let’s take a look at the following graph.

G = Graph ([(1, 2), (2, 3), (2, 3) ,(3, 4), (4, 1), (2, 4),
(1, 3), (1, 4)], multiedges=True)

G.show()
G.eulerian_circuit ()

If we are not interested in the edge labels, we can set labels=False. We
can also set return_vertices=True to get a list of vertices for the path

G = graphs.CycleGraph (6)
G.eulerian_circuit(labels=False , return_vertices=True)
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7.5.2 Hamilton
A Hamilton path is a path that uses every vertex of a graph exactly once.
A Hamilton path that is a circuit is called a Hamilton circuit. If a graph
contains a Hamilton circuit, we say that the graph is Hamiltonian.

Hamilton created the ”Around the World” puzzle. The object of the puzzle
was to start at a city and travel along the edges of the dodecahedron, visiting
all of the other cities exactly once, and returning back to the starting city.

We can represent the dodecahedron as a graph and use Sage to determine
if it is Hamiltonian. See for yourself if the dodecahedron is Hamiltonian.

graphs.DodecahedralGraph ().show()

We can ask Sage to determine if the dodecahedron is Hamiltonian.

graphs.DodecahedralGraph ().is_hamiltonian ()

By running Graph.is_hamiltonian?? we see that Sage uses the traveling_salesman_problem()
function to determine if a graph is Hamiltonian.

The traveling salesperson problem is a classic optimization problem. Given
a list of cities and the lengths between each pair of cities, what is the shortest
possible route that visits each city and returns to the original city? This is one
of the most difficult problems in computer science. It is NP-hard, meaning
that no efficient algorithm is known to solve it. The complexity of the problem
increases with the number of nodes. When working with many nodes, the
algorithm can take a long time to run.

Let’s explore the following graph:

G = Graph ({1:{3:2 , 2:1, 4:3, 5:1}, 2:{3:6 , 4:3, 5:1},
3:{4:5 , 5:3}, 4:{5:5}})

G.show(edge_labels=True)

We can ask Sage if the graph contains a Hamiltonian cycle.

G.hamiltonian_cycle(algorithm= ' backtrack ' )

The function hamiltonian_cycle returns True and lists an example of a
Hamiltonian cycle as the list of vertices [1, 2, 3, 4, 5]. This is just one
of the many Hamiltonian cycles that exist in the graph. Now lets find the
minimum Hamiltonian cycle.

h = G.traveling_salesman_problem(use_edge_labels=True ,
maximize=False)

h.show(edge_labels=True)

Now we have the plot of the minimum Hamiltonian cycle. The minimum
Hamiltonian cycle is the shortest possible route that visits each city and returns
to the original city. The minimum Hamiltonian cycle is the solution to the
traveling salesperson problem. We can ask Sage for the sum of the weights of
the edges in the minimum Hamiltonian cycle.

sumWeights = sum(h.edge_labels ())
print(sumWeights)

If there is no Hamiltonian cycle, Sage will return False. If we use the
backtrack algorithm, Sage will return a list that represents the longest path
found.
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G = Graph ([(1, 2), (1, 3), (2, 3), (1,4), (4, 7), (3, 5),
(5, 8), (8, 9), (2,6), (6, 9), (7, 9)])

G.show()
G.hamiltonian_cycle(algorithm= ' backtrack ' )

7.6 Graphs in Action
Imagine you are a bike courier tasked with making deliveries to each City
Colleges of Chicago (CCC) campus location. Per your contract, you get paid
per delivery, not per hour. Therefore, finding the most efficient delivery route
is in your best interest. We assume the bike delivery routes are the same
distance in each direction.

7.6.1 Bike Courier Delivery Route Problem
Let’s make a plan to solve our delivery route problem.

1. Find the distances in miles between each CCC location.

2. Make a graph of the CCC locations. Each location is a node. Each edge
is a bike route. The weight of the edges represents the distance of the
bike route between locations.

3. Use the traveling salesperson algorithm to calculate the optimal delivery
route.

7.6.2 Locations
Table 7.6.1 CCC Addresses

Name Address
Harold Washington College 30 E. Lake Street, Chicago, IL 60601
Harry Truman College 1145 West Wilson Ave, Chicago, IL 60640
Kennedy-King College 6301 South Halsted St, Chicago, IL 60621
Malcolm X College 1900 W. Jackson, Chicago, IL 60612
Olive-Harvey College 10001 South Woodlawn Ave, Chicago, IL 60628
Richard J. Daley College 7500 South Pulaski Rd, Chicago, IL 60652
Wilbur Wright College 4300 N. Narragansett Ave, Chicago, IL 60634
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Figure 7.6.2 City Colleges of Chicago

7.6.3 Graph
We will represent each College as a node with the initials of the College name.
The weight of the edge will represent the miles in between the locations. Since
we are using bike routes, we are assuming each direction between two loca-
tions has the same distance. For example, express the route between Harold
Washington College and Harry Truman College as ("HW", "HT", 6.5).

routes = [
("HW", "HT", 6.5),
("HW", "KK", 8.3),
("HW", "MX", 3.2),
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("HW", "OH", 15.4),
("HW", "RD", 11.9),
("HW", "WW", 10.7),

("HT", "KK", 13.6),
("HT", "MX", 7.1),
("HT", "OH", 22.1),
("HT", "RD", 17.3),
("HT", "WW", 7.9),

("KK", "MX", 8.3),
("KK", "OH", 8.1),
("KK", "RD", 5.7),
("KK", "WW", 16.9),

("MX", "OH", 16.2),
("MX", "RD", 10.2),
("MX", "WW", 10.2),

("OH", "RD", 10.0),
("OH", "WW", 24.9),

("RD", "WW", 18.3)
]
routes

Create a Graph from the edge list:

G = Graph(routes)
G.show(edge_labels=True)

The trailing zeros of the floating point values are hard to read. Let’s loop
through the edge list and display the numbers with 3 points of precision.

for u, v, label in G.edge_iterator ():
G.set_edge_label(u, v, n(label , digits =3))

G.show(edge_labels=True)

Since this graph is not planar, improve the layout with the "circular"
parameter. We can also improve the readability by increasing the vertex_size
and figsize.

G.show(
edge_labels=True ,
layout="circular",
vertex_size =500,
figsize =10,

)

Now that we have a clearer idea of the routes, let’s find the most efficient
delivery route using the traveling salesperson algorithm.

optimal_route =
G.traveling_salesman_problem(use_edge_labels=True ,
maximize=False)

optimal_route.show(
edge_labels=True ,
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vertex_size =500,
)

We can set the vertex positions to resemble their positions on the map. We
can use the latitude and longitude values of the locations and then reverse
them when we supply the values to the position dictionary.

positions = {
' HW ' : ( -87.62682604591349 , 41.88609733324964) ,
' HT ' : ( -87.65901943241516 , 41.9646769664519) ,
' KK ' : ( -87.6435785385309 , 41.77847328856264) ,
' MX ' : ( -87.67453475017268 , 41.87800548491064) ,
' OH ' : ( -87.5886722734757 , 41.71006715754713) ,
' RD ' : ( -87.72315805813204 , 41.75677704810169) ,
' WW ' : ( -87.78738482318016 , 41.95836512405638) ,

}

Graph(optimal_route).show(
pos=positions ,
edge_labels=True ,
vertex_size =500,
figsize =10,

)



Chapter 8

Trees

This chapter completes the preceding one by explaining how to ask Sage to
decide whether a given graph is a tree and then introduce further searching
algorithms for trees.

8.1 Definitions and Theorems
Given a graph, a cycle is a circuit with no repeated edges. A tree is a
connected graph with no cycles. A graph with no cycles and not necessarily
connected is called a forest.

Let G = (M,E) be a graph. The following are all equivalent:

• G is a tree.

• For each pair of distinct vertices, there exists a unique path between
them.

• G is connected, and if e ∈ E then the graph (V,E − e) is disconnected.

• G contains no cycles, but by adding one edge, you create a cycle.

• G is connected and |E| = |v| − 1.

Let’s explore the following graph:

data = {
1: [4],
2: [3, 4, 5],
3: [2],
4: [1, 2, 6, 7],
5: [2, 8],
6: [4, 9, 11],
7: [4],
8: [5, 10],
9: [6],
10: [8],
11: [6]
}

G = Graph(data)
G.show()

56
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Notes. Trees are a common data structure used in file explorers, parsers, and
decision making.

Let’s ask Sage if this graph is a tree.

G.is_tree ()

If we remove an edge, we can see that the graph is no longer a tree.

G_removed_edge = G.copy()
G_removed_edge.delete_edge ((1, 4))
G_removed_edge.show()
G_removed_edge.is_tree ()

However, we can see that the graph is still a forest.

G_removed_edge.is_forest ()

If we add an edge, we can see that the graph contains a cycle and is no
longer a tree.

G_added_edge = G.copy()
G_added_edge.add_edge ((1, 2))
G_added_edge.show()
G_added_edge.is_tree ()

8.2 Search Algorithms
The graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆
{{u, v} ∈ E | u, v ∈ V ′}.

The subgraph G′ = (V ′, E′) is a spanning subgraph of G = (V,E) if
V ′ = V .

A spanning tree for the graph G is a spanning subgraph of G that is a
tree.

Given a graph, various algorithms can calculate a spanning tree, including
depth-first search and breadth-first search.

Breadth-first search algorithm
1. Choose a vertex of the graph (root) arbitrarily.

2. Travel all the edges incident with the root vertex.

3. Give an order to this set of new vertices added.

4. Consider each of these vertices as a root, in order, and add all the unvis-
ited incident edges that do not produce a cycle.

5. Repeat the method with the new set of vertices.

6. Follow the same procedure until all the vertices are visited.
The output of this algorithm is a spanning tree.

The breadth_first_search() function provides a flexible method for travers-
ing both directed and undirected graphs. Let’s consider the following graph:

G = Graph({"a":{"c":8, "e":1}, "b":{"c":6, "d":4},
"c":{"e":2}, "d":{"a":5, "c":4}})

G.show()
print(list(G.breadth_first_search(start="a",
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report_distance=True)))

In the example above, the start parameter begins the traversal at vertex
a. The report_distance=True, parameter reports pairs in the format (vertex,
distance). Distance is the length of the path from the start vertex. From the
output above, we see:

• The distance from vertex a to vertex a is 0.

• The distance from vertex a to vertex d is 1.

• The distance from vertex a to vertex e is 1.

• The distance from vertex a to vertex c is 1.

• The distance from vertex a to vertex b is 2.

We can also set the parameter edges=True to return the edges of the BFS
tree. Sage will raise an error if you use the edges and report_distance param-
eters simultaneously.

G = Graph({"a":{"c":8, "e":1}, "b":{"c":6, "d":4},
"c":{"e":2}, "d":{"a":5, "c":4}})

s = list(G.breadth_first_search("a", edges=True))
print(s)
Graph(s)

The above graph is a spanning tree, but not necessarily a minimum span-
ning tree. Let’s check how many spanning trees exist.

G.spanning_trees_count ()

Iterate over all the spanning trees of a graph with spanning_trees().

G = Graph({"a":{"c":8, "e":1}, "b":{"c":6, "d":4},
"c":{"e":2}, "d":{"a":5, "c":4}})

spanning_trees = list(G.spanning_trees(labels=True))
for i, tree in enumerate(spanning_trees):

print(f"Spanning Tree {i + 1}: {tree.edges()}")
show(tree.plot())

Given a weighted graph of all possible spanning trees we can calculate,
we may be interested in the minimal one. A minimal spanning tree is a
spanning tree whose sum of weights is minimal. Prim’s Algorithm calculates
a minimal spanning tree.

Prim’s Algorithm: Keep two disjoint sets of vertices. One (L) contains
vertices that are in the growing spanning tree, and the other (R) that are not
in the growing spanning tree.

1. Choose a vertex u ∈ V arbitrarily. At this step, L = {u} and R =
V − {u}.

2. In R, select the cheapest vertex connected to the growing spanning tree
L and add it to L

3. Follow the same procedure until all the vertices are in L

The output of this algorithm is a minimal spanning tree.
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G = Graph({"a":{"c":8, "e":1}, "b":{"c":6, "d":4},
"c":{"e":2}, "d":{"a":5, "c":4}})

G.show(edge_labels = True)

We can ask Sage for the minimal spanning tree of this graph. By running
Graph.min_spanning_tree?? We can see that min_spanning_tree() uses a
variation of Prim’s Algorithm by default. We can also use other algorithms
such as Kruskal, Boruvka, or NetworkX.
Notes. Minimal spanning trees influence the efficient design of networks and
roads.

G.min_spanning_tree(by_weight=True)

From the output of min_spanning_tree(by_weight=True), we see an edge
list of the minimal spanning tree. Each element of the edge lis is a tuple
where the first two values are vertices, and the third value is the edge weight
or label.

Let’s visualize the minimal spanning tree.

h = Graph(G.min_spanning_tree(by_weight=True))
h.show(edge_labels = True)

Let’s define a function to view the minimal spanning tree in the context of
the original graph. The function parameters include:

• graph: A SageMath Graph object.

• mst_color: Color for edges part of the MST (default: 'darkred').

• non_mst_color: Color for edges not part of the MST (default: 'lightblue').

• figsize: Dimensions for the graph image.

def visualize_mst(input_graph , mst_color= ' darkred ' ,
non_mst_color= ' lightblue ' , figsize=None):
try:

if not input_graph.is_connected ():
print("The graph must be connected")
return

mst_edges =
input_graph.min_spanning_tree(by_weight=True)

print("MST Edges:", mst_edges)
Graph(mst_edges).show(edge_labels=True ,

figsize=figsize , edge_color=mst_color)

edge_colors = {mst_color: [], non_mst_color: []}

mst_edge_set = set((v1, v2) for v1, v2 , _ in
mst_edges)

for edge in input_graph.edges():
v1, v2, _ = edge
if (v1 , v2) in mst_edge_set or (v2, v1) in

mst_edge_set:
edge_colors[mst_color ]. append ((v1, v2))

else:
edge_colors[non_mst_color ]. append ((v1, v2))
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print("MST overlaid on the original graph:")
p = input_graph.plot(edge_labels=True ,

edge_colors=edge_colors , figsize=figsize)
show(p)

except Exception as e:
print("Error:", e)

Let’s generate a random graph and view the minimal spanning tree.

import random

vertices = 5
G = Graph ([(i, j, random.randint(1, 20)) for i in

range(vertices) for j in range(i+1, vertices)])

visualize_mst(G)

The following graph contains 9 vertices.

import random

vertices = 9
G = Graph ([(i, j, random.randint(1, 20)) for i in

range(vertices) for j in range(i+1, vertices)])

visualize_mst(G, figsize =10)

The following graph contains 15 vertices.

import random

vertices = 15
G = Graph ([(i, j, random.randint(1, 20)) for i in

range(vertices) for j in range(i+1, vertices)])

visualize_mst(G, figsize =10)

8.3 Trees in Action
Imagine your task is to create a railway between all the City Colleges of Chicago
(CCC) campus locations. The contract requests that you use minimal track
material to save construction costs. For simplicity’s sake, assume each railway
is a straight line between campuses.

8.3.1 Railway Problem
Let’s make a plan to solve our railway construction optimization problem.

1. Find the latitude and longitude of each CCC campus location.

2. Use the Haversine formula to calculate the distances between the loca-
tions. The Haversine formula requires latitude and longitude for inputs
and computes the shortest path between two points on a sphere.
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3. Make a graph of the CCC campuses. Each location is a node. Each
railway path is an edge. Each railway path is the shortest path between
locations. The weight of the edges represents the distance between loca-
tions.

4. Find the minimum spanning tree (MST) of the CCC graph.

8.3.2 Location Distances
Table 8.3.1 City Colleges of Chicago Locations

Name (Latitude, Longitude)
Harold Washington College (41.88609733324964, -87.62682604591349)
Harry Truman College (41.9646769664519, -87.65901943241516)
Kennedy-King College (41.77847328856264, -87.6435785385309)
Malcolm X College (41.87800548491064, -87.67453475017268)
Olive-Harvey College (41.71006715754713, -87.5886722734757)
Richard J. Daley College (41.75677704810169, -87.72315805813204)
Wilbur Wright College (41.95836512405638, -87.78738482318016)
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Figure 8.3.2 City Colleges of Chicago
Now, let’s calculate the distances between campus locations. We will first

create a dictionary to store the campus name, latitude, and longitude values.

lat_long = {
"HW": (41.88609733324964 , -87.62682604591349) ,
"HT": (41.9646769664519 , -87.65901943241516) ,
"KK": (41.77847328856264 , -87.6435785385309) ,
"MX": (41.87800548491064 , -87.67453475017268) ,
"OH": (41.71006715754713 , -87.5886722734757) ,
"RD": (41.75677704810169 , -87.72315805813204) ,
"WW": (41.95836512405638 , -87.78738482318016)

}
lat_long
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Since the Earth is curved, we cannot use the Euclidean distance. We will use
the Haversine formula instead. Note that the Haversine formula still produces
an approximation because the Earth is not a perfect sphere. Here is a function
to compute the Haversine formula.

def haversine(lat1 , lon1 , lat2 , lon2):
' ' ' Reference:

https ://cs.nyu.edu/~ visual/home/proj/tiger/gisfaq.html ' ' '

import math

lat1 , lon1 , lat2 , lon2 = map(math.radians , [lat1 , lon1 ,
lat2 , lon2])

dlat = lat2 - lat1
dlon = lon2 - lon1

a = math.sin(dlat / 2)**2 + \
math.cos(lat1) * math.cos(lat2) * math.sin(dlon /

2)**2

c = 2 * math.asin(min(1.0, math.sqrt(a)))

# Earth ' s approximate radius in kilometers
R = 6367.0

distance = R * c

return distance

print("Ready to use `haversine ()`")

Now we can make an edge list. We will represent each campus as a node
with the initials of the college name. The weight of the edge will represent
the Haversine value between the locations. For example, express the route be-
tween Harold Washington College and Harry Truman College as ("HW", "HT",
Haversine).

distances = []
colleges = list(lat_long.items())
for i in range(len(colleges)):

college1 , (lat1 , lon1) = colleges[i]
for j in range(i + 1, len(colleges)):

college2 , (lat2 , lon2) = colleges[j]
dist = haversine(lat1 , lon1 , lat2 , lon2)
distances.append ((college1 , college2 , dist))

print("\nDistances between colleges (in kilometers):")
for edge in distances:

college1 , college2 , dist = edge
print(f"{college1} - {college2 }: {dist :.2f} km")

8.3.3 Graph
Swap (Latitude, Longitude) coordinates for plotting with (x, y) coordinates.

pos = {college: (lon , lat) for college , (lat , lon) in
lat_long.items ()}
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pos

Create a Graph from the edge list:

G = Graph(distances)
G.show(

pos=pos , # Positions are (longitude , latitude)
edge_labels=True ,
vertex_size =500,
figsize =20,
title="CCC Distance Graph"

)

8.3.4 Railway
So far, we have encountered various concepts for connecting a graph’s vertices,
including the Hamilton path and the MST. Let’s consider what technique is
best suited for solving the problem of constructing a railway that optimizes
material costs.

The previous chapter used the traveling salesperson algorithm to optimize
a delivery route. Since we aim to optimize material costs, you might think
of following a similar approach: apply the traveling salesperson algorithm,
eliminate the greatest edge from the Hamilton circuit, and design the railway
with the minimum Hamilton path. If we take a Hamilton circuit and eliminate
one edge, we obtain a spanning tree. While the Hamilton path optimizes
graph traversal by visiting each vertex exactly once in a single path, it does
not guarantee that all vertices are connected with the minimal total weight.

In a Hamilton path, the requirement to visit each vertex in a single path
can force the inclusion of high-weight edges. Alternatively, the MST is not
restricted by the requirement of connecting vertices with a path. The MST
can avoid high-weight edges by connecting vertices without regard to forming
a path as long as the graph remains connected and acyclic. Although the
minimum Hamilton path is one of many possible spanning trees, it is not an
MST. Prim’s Algorithm ensures the weight of the spanning tree is minimal
because, at each iteration, it selects the smallest-weight edge.

Let’s find the MST edge list of the campus locations with the min_spanning_tree(by_weight=True)
function.

mst = G.min_spanning_tree(by_weight=True)
mst

Visualize the MST with the vertex positions mapped to the geographical
coordinates of each campus location.

Graph(mst).show(
pos=pos ,
edge_labels=True ,
vertex_size =500,
figsize =15,
title="CCC Minimum Spanning Tree"

)

8.3.5 Conclusion
In this exercise, we only optimized construction material costs. In a real-world
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scenario, we may want to create a railway that optimizes both travel time and
material costs. In the case of the Chicago L train system, the railway resembles
a tree when ignoring the downtown Loop. The L receives criticism for its lack
of interconnectivity. For example, finding an efficient route connecting the end
of the Blue Line with the end of the Red Line is challenging because a traveler
may need to commute all the way downtown from one end of the railway to
reach another end. As an interesting challenge, you can optimize both travel
time and construction costs.



Chapter 9

Lattices

This chapter builds on the partial order sets introduced earlier and explains
how to ask Sage to decide whether a given poset is a lattice. Then, we show
how to calculate the meet and join tables using built-in and customized Sage
functions.

9.1 Lattices

9.1.1 Definition
A lattice is a partially ordered set (poset) in which any two elements have a
least upper bound (also known as join) and greatest lower bound (also known
as meet).

In Sage, a lattice can be represented as a poset using the Poset() function.
This function takes a tuple as its argument, where the first element is the
set of elements in the poset, and the second element is a list of ordered pairs
representing the partial order relations between those elements.

First, let’s define the lists of elements and relations we will use for the
following examples:

elements = [ ' a ' , ' b ' , ' c ' , ' d ' , ' e ' , ' f ' , ' g ' ]

relations = [
[ ' a ' , ' b ' ], [ ' a ' , ' c ' ], [ ' b ' , ' d ' ], [ ' c ' , ' d ' ],
[ ' c ' , ' e ' ], [ ' d ' , ' f ' ], [ ' e ' , ' f ' ], [ ' f ' , ' g ' ]

]
print("Elements: ", elements)
print("Relations: ", relations)

Create a poset from a tuple of elements and relations.

PO = Poset ((elements , relations))
PO.show()

The function is_lattice() determines whether the poset is a lattice.

PO.is_lattice ()

Notes. Lattices have practical applications in computer science, such as static
program analysis and distributed programming.
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We can also use LatticePoset() function to plot the lattice. The function
Poset() can be used with any poset, even when the poset is not a lattice. The
LatticePoset() function will raise an error if the poset is not a lattice.

LP = LatticePoset ((elements , relations))
LP.show()

9.1.2 Join
The join of two elements in a lattice is the least upper bound of those elements.

To check if a poset is a join semi-lattice (every pair of elements has a least
upper bound), we use is_join_semilattice() function.

PO.is_join_semilattice ()

We can also find the join for individual pairs using the join() function.

PO.join( ' b ' , ' f ' )

9.1.3 Meet
The meet of two elements in a lattice is their greatest lower bound.

To check if a poset is a meet semi-lattice (every pair of elements has a
greatest lower bound), we use is_meet_semilattice() function.

PO.is_meet_semilattice ()

We can also find the meet for individual pairs using the meet() function.

PO.meet( ' a ' , ' b ' )

9.1.4 Divisor Lattice
The Sage DivisorLattice() function returns the divisor lattice of an integer.

The elements of the lattice are divisors of n and x < y in the lattice if x
divides y.

Posets.DivisorLattice (12).show()

9.2 Tables of Operations
This section examines the representation of meet (�) and join (�) operations
within lattices using operation tables.

9.2.1 Meet Operation Table
The meet operation table illustrates the greatest lower bound, or meet, for
every pair of elements in the lattice.

To output the table as a matrix, we need to specify that the poset is indeed
a lattice, thus requiring us to use the function LatticePoset(). Then, we can
use the function meet_matrix() to process the table.
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elements = [ ' a ' , ' b ' , ' c ' , ' d ' , ' e ' , ' f ' , ' g ' ]

relations = [
[ ' a ' , ' b ' ], [ ' a ' , ' c ' ], [ ' b ' , ' d ' ], [ ' c ' , ' d ' ],
[ ' c ' , ' e ' ], [ ' d ' , ' f ' ], [ ' e ' , ' f ' ], [ ' f ' , ' g ' ]

]

L = LatticePoset ((elements , relations))
M = L.meet_matrix ()
show(M)

From the output matrix, we can see that each entry aij is not the actual
value of the meet of the elements ai and aj but just its position in the lattice.
Let’s show the values:

linear_extension = L.linear_extension ()

values_meet_matrix = [
[

linear_extension[M[i, j]]
for j in range(len(elements))

]
for i in range(len(elements))

]

values_meet_matrix

Show the output as a table:

import pandas as pd

df = pd.DataFrame(
values_meet_matrix ,
index=elements ,
columns=elements

)

df

9.2.2 Join Operation Table
Conversely, the join operation table presents the least upper bound, or join,
for each pair of lattice elements.

J = L.join_matrix ()

show(J)

Output the elements of the poset:

linear_extension = L.linear_extension ()

values_join_matrix = [
[

linear_extension[J[i, j]]
for j in range(len(elements))
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]
for i in range(len(elements))

]

values_join_matrix

Show the output as a table instead of a matrix.

import pandas as pd

df = pd.DataFrame(
values_join_matrix ,
index=elements ,
columns=elements

)

df



Chapter 10

Boolean Algebra

This chapter completes the preceding one by explaining how to ask Sage to
decide whether a given lattice is a Boolean algebra. We also illustrate basic
operations with Boolean functions.

10.1 Boolean Algebra
A Boolean algebra is a bounded lattice that is both complemented and distribu-
tive. Let’s define the is_boolean_algebra() function to determine whether a
given poset is a Boolean algebra. The function accepts a finite partially ordered
set as input and returns a tuple containing a boolean value and a message ex-
plaining the result. Run the following cell to define the function and call it in
other cells.

def is_boolean_algebra(P):
try:

L = LatticePoset(P)
except ValueError as e:

return False , str(e)
if not L.is_bounded ():

return False , "The lattice is not bounded."
if not L.is_distributive ():

return False , "The lattice is not distributive."
if not L.is_complemented ():

return False , "The lattice is not complemented."
return True , "The poset is a Boolean algebra."

Let’s check if the following poset is a Boolean algebra.

S = Set([1, 2, 3, 4, 5, 6])

P = Poset((S, attrcall("divides")))

show(P)

is_boolean_algebra(P)

When we pass P to the is_boolean_algebra() function, LatticePoset()
raises an error because P is not a lattice. The ValueError provides more
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information about the absence of a top element. Therefore, P is not a Boolean
algebra.

T = Subsets ([ ' a ' , ' b ' , ' c ' ])

Q = Poset((T, lambda x, y: x.issubset(y)))

Q.plot(vertex_size =3500, border=True)

is_boolean_algebra(Q)

Let’s examine the divisor lattice of 30:

dl30 = Posets.DivisorLattice (30)
show(dl30)
is_boolean_algebra(dl30)

Now for the divisor lattice of 20:

dl20 = Posets.DivisorLattice (20)
show(dl20)
is_boolean_algebra(dl20)

Here is a classic example in the field of computer science:

B = posets.BooleanLattice (1)
show(B)
is_boolean_algebra(B)

10.2 Boolean functions
A Boolean function is a function that takes only values 0 or 1 and whose
domain is the Cartesian product {0, 1}n.

Notes. Boolean algebra influences the design of digital circuits. For example,
simplifying a digital circuit can minimize the number of gates used and reduce
the manufacturing cost.

A minterm of the Boolean variables x1, x2, . . . , xn is the Boolean product
y1 · y2 · . . . · yn where each yi = xi or yi = xi.

A sum of minterms is called a sum-of-products expansion. In this section,
we will examine various methods for finding the sum-of-products expansion of
a Boolean function.

To find the sum-of-products expansion using a truth table, we first convert
the truthtable() into a form that is iterable with get_table_list(). For
every row where the output value is True, we construct a minterm:

• Include the variable as is if its value is True

• Include the negation of the variable if its value is False

• The zip function pairs each variable with its corresponding value, allow-
ing us to create minterms efficiently.

• We add each minterm to the sop_expansion list using the & operator.

• Finally, we join all minterms with the | operator to form the sum-of-
products expansion.
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• The function returns the sum-of-products expansion as a sage.logic.boolformula.BooleanFormula
instance.

def truth_table_sop(expression):
# Check if the input is a string , and if so, convert it

to a formula object
if isinstance(expression , str):

h = propcalc.formula(expression)
elif isinstance(expression ,

sage.logic.boolformula.BooleanFormula):
h = expression

else:
raise ValueError

table_list = h.truthtable ().get_table_list ()
sop_expansion = []

for row in table_list [1:]: # Skip the header row
if row[-1]: # If the output value is True

minterm = []
for var , value in zip(table_list [0], row[:-1]):

# Iterate over each variable and its value
in this row
if value:

minterm.append(var) # Include variable
as is if True

else:
minterm.append(f ' ~{var} ' ) # Include the

negated variable if False
sop_expansion.append( '  & ' .join(minterm)) #

Join variables in the minterm using the AND
operator

sop_result = '  | ' .join(f ' ({m}) ' for m in sop_expansion)
# Join minterms using the OR operator

return propcalc.formula(sop_result)

For your convenience, our truth_table_sop function converts String input
with propcalc.formula. Therefore, the input accepts String representations of
Boolean expressions. Alternatively, you may pass an instance of sage.logic.boolformula.BooleanFormula
directly to the function.

truth_table_sop("x & (y | z)")

Let’s verify that the sum-of-products expansion we found with the truth
table is equivalent to the original expression.

truth_table_sop("x & (y | z)") == propcalc.formula("x & (y | 
z)")

Our sop_expansion function mimics the manual process of finding the sum-
of-products expansion of a Boolean function. This process does not guarantee
the minimal form of the Boolean expression.

If we dig around in the Sage source code, we can find a commented-out
Simplify() function that relied on the Boolopt package and the Quine-McCluskey
algorithm. The Quine-McCluskey algorithm guarantees the minimal form of
the Boolean expression, but the exponential complexity of the algorithm makes
it impractical for large expressions. Moreover, in the Sage documentation, we
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see a placeholder function called Simplify() that returns a NotImplementedError
message. The Sage community is waiting for someone to implement this func-
tion with the Espresso algorithm. While the Espresso algorithm does not
guarantee the minimal form of the Boolean expression, it is more efficient than
the Quine-McCluskey algorithm.

Sage integrates well with Python libraries like SymPy, which have built-in
functions for Boolean simplification. The SymPy SOPform function takes the
variables as the first argument and the minterms as the second argument. The
function returns the sum-of-products expansion of the Boolean function in the
smallest sum-of-products form. To use the SymPy SOPform function in Sage,
first extract the variables and minterms of an expression.

We extract the variables from the first row of the truth table.

expression = propcalc.formula("x & (y | z)")
table_list = expression.truthtable ().get_table_list ()
variables = table_list [0]
print(variables)

We make the variables compatible with the SymPy SOPform function by
converting them to SymPy symbols.

from sympy import symbols
sympy_variables = symbols( '  ' .join(variables))
print(sympy_variables)

We extract the minterms from the rows where the output is True.

minterms = [row[:-1] for row in table_list [1:] if row[-1]]
print(minterms)

Now that we have the variables and minterms, we can use the SymPy
SOPform function to find the sum-of-products expansion of the Boolean func-
tion.

from sympy.logic import SOPform
from sympy import symbols

def sympy_sop(expression):
# Convert input expression to a SageMath formula object

if necessary
if isinstance(expression , str):

formula_object = propcalc.formula(expression)
elif isinstance(expression ,

sage.logic.boolformula.BooleanFormula):
formula_object = expression

else:
raise ValueError("Invalid input: expression must be 

a string or a BooleanFormula object.")

# Generate the truth table from the formula object
truth_table = formula_object.truthtable ()
table_list = truth_table.get_table_list ()

# Extract variables and minterms from the truth table
variables = table_list [0]
minterms = [row[:-1] for row in table_list [1:] if

row[-1]]
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# Convert the SageMath variables to SymPy symbols
sympy_variables = symbols( '  ' .join(variables))

# Use SymPy to compute the SOP form
sop_result = SOPform(sympy_variables , minterms)

return propcalc.formula(str(sop_result))

sympy_sop("x & (y | z)")

Let’s verify that the sum-of-products expansion we found with SymPy is
equivalent to the original expression.

sympy_sop("x & (y | z)") == propcalc.formula("x & (y | z)")

Now, we present a manual method for finding the sum of products by
applying the Boolean identities. Let’s find the sum-of-products expansion of
the Boolean function

h(x, y) = x+ ȳ.

We can apply the Boolean identities and use Sage to verify our work. Currently,
we have a sum of two terms but no products. We can apply the identity law
to introduce the product terms. Now, we have the equivalent expression

h(x, y) = x · 1 + 1 · ȳ.

Warning: Do not attempt to apply the identity law or null law within the
formula function. If you try to directly apply the identity law within the
formula function like so, propcalc.formula("x & 1 | 1 ~y"), Sage will raise
an error because propcalc.formula interprets 1 as a variable. Variables cannot
start with a number.

The formula function only supports variables and the following operators:

• & and

• | or

• ~ not

• ^ xor

• -> if then

• <-> if and only if

h = propcalc.formula("x | ~y")
show(h)

Apply the complement law and verify that our transformed expression is equiv-
alent to the original expression.

h_complement = propcalc.formula("x & (y | ~y) | (x | ~x) &  
~y")

show(h_complement)
h_complement == h

Apply the distributive law and verify that our transformed expression is
equivalent to the original expression.
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h_distributive = propcalc.formula("x & y | x & ~y | x & ~y | 
~x & ~y")

show(h_distributive)
h_distributive == h

Apply the idempotent law and verify that our transformed expression is
equivalent to the original expression.

h_idempotent = propcalc.formula("x & y | x & ~y | ~x & ~y")
show(h_idempotent)
h_idempotent == h

We started with the expression,

h(x, y) = x+ ȳ

After applying the identity, complement, and distributive laws, we trans-
formed the Boolean function into the sum-of-products expansion

h(x, y) = x · y + x · ȳ + x · ȳ + x̄ · ȳ.



Chapter 11

Logic Gates

This chapter explains how to process binary inputs in Sage to produce specific
outputs based on basic logic gates, such as AND, OR, and NOT . Then, we
show how these gates combine to form more complex circuits and integrate into
everyday electronics, using built-in and customized Sage functions to simulate
and analyze their behavior.

11.1 Logic Gates
Logic gates are the foundation of digital circuits. They process binary inputs
to produce specific outputs. The basic logic gates are AND, OR, and NOT .
Derived gates include NAND, NOR, XOR, and XNOR. Each gate has its
own symbol and behavior defined by a truth table.

Notes. Logic gates combine to form complex systems such as CPUs and
memory circuits.

11.1.1 AND Gate
The AND gate produces a 1 only when both inputs are 1.

Figure 11.1.1 AND Gate

from sympy.logic.boolalg import And
from sympy.abc import A, B
And(A, B)

Truth table for the AND gate:

# Generate truth table for AND gate
print("\nA | B | A AND B")
print(" --|---|--------")
for A in [False , True]:

for B in [False , True]:
print(f"{int(A)} | {int(B)} | {int(bool(And(A, 
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B)))}")

11.1.2 OR GATE
The OR gate produces a 1 if at least one input is 1.

Figure 11.1.2 OR Gate

from sympy.logic.boolalg import Or
from sympy.abc import A, B
Or(A, B)

Truth table for the OR gate:

# Generate truth table for OR gate
print("\nA | B | A OR B")
print(" --|---|--------")
for A in [False , True]:

for B in [False , True]:
print(f"{int(A)} | {int(B)} | {int(bool(Or(A, B)))}")

11.1.3 NOT Gate
The NOT gate inverts the input: 1 becomes 0, and 0 becomes 1.

Figure 11.1.3 NOT Gate

from sympy.logic.boolalg import Not
from sympy.abc import A
Not(A)

Truth table for the NOT gate:

# Generate truth table for NOT gate
print("\nA | NOT A")
print(" --|-------")
for A in [False , True]:

print(f"{int(A)} | {int(bool(Not(A)))}")

11.1.4 NAND Gate
NAND: Produces 0 only when both inputs are 1.
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Figure 11.1.4 NAND Gate

11.1.5 NOR Gate
NOR: Produces 1 only when both inputs are 0.

Figure 11.1.5 NOR Gate

11.1.6 XOR Gate
XOR: Produces 1 when inputs differ.

Figure 11.1.6 XOR Gate

11.1.7 XNOR Gate
XNOR: Produces 1 when inputs are the same.

Figure 11.1.7 XNOR Gate

from sympy.logic.boolalg import And , Or, Not , Xor

def nand(A, B):
return Not(And(A, B))

def nor(A, B):
return Not(Or(A, B))

def xor(A, B):
return Xor(A, B)

def xnor(A, B):
return Not(Xor(A, B))

# User -defined inputs
A = 1 # Replace with 0 or 1 for input A
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B = 0 # Replace with 0 or 1 for input B
gate = "xor" # Replace with "nand", "nor", "xor", or "xnor"

if gate == "nand":
result = nand(A, B)

elif gate == "nor":
result = nor(A, B)

elif gate == "xor":
result = xor(A, B)

elif gate == "xnor":
result = xnor(A, B)

else:
result = "Invalid gate type! Please use ' nand ' , ' nor ' , 

' xor ' , or ' xnor '. "

result

11.2 Combinations of Logic Gates
Logic gates can be combined to create more complex circuits that perform
specific tasks. By linking gates together, we can create circuits that process
multiple inputs to produce a desired output. For example, combining an AND
gate and a NOT gate results in a NAND gate, which inverts the output of the AND
gate. More complex circuits, such as half-adders and multiplexers, are built by
combining basic gates in strategic ways.

Let’s look at a circuit. We evaluate this circuit by setting True for X, Y ,
and False for Z below using Sage.

from sympy.logic.boolalg import And , Or, Not
from sympy.abc import X, Y, Z

# Define the logic circuit
F = Or(And(Not(X), Y, Z), And(X, Not(Y), Z), And(X, Y,

Not(Z)), And(X, Y, Z))

# Evaluate the logic circuit with values for X, Y, and Z
circuit_output = F.subs({X: True , Y: True , Z: False})
circuit_output

Boolean algebra provides a way to simplify complex logic circuits. By using
Boolean algebra rules, you can take a complicated circuit and reduce it to a
simpler form without changing its functionality.

Here’s a practical example. Consider the following Boolean expression,
which combines several gates:

# Original Boolean expression
from sympy import simplify
from sympy.logic.boolalg import And , Or, Not
from sympy.abc import x, y, z

# Define the expression
D = Or(And(Not(x), y, z), And(x, Not(y), z), And(x, y,
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Not(z)), And(x, y, z))
D

# Simplified Boolean expression
simplified_D = simplify(D)
simplified_D

Truth tables are a visual way to represent how inputs to a logic circuit
map to its outputs. For each possible combination of inputs, the table shows
the corresponding outputs, making it easier to analyze and understand the
behavior of the circuit.

Let’s create a truth table for the simplified circuit.
F = (x and y) or (x and z) or (y and z)
Here, we will show the intermediary steps to find the final output of the

function.

from sympy.logic.boolalg import And , Or, truth_table
from sympy.abc import x, y, z

# Define the logic function
intermediate1 = And(x, y) # x AND y
intermediate2 = And(x, z) # x AND z
intermediate3 = And(y, z) # y AND z
final_output = Or(intermediate1 , intermediate2 ,

intermediate3) # (x AND y) OR (x AND z) OR (y AND z)

# Variables and expressions
variables = [x, y, z]
expressions = [intermediate1 , intermediate2 , intermediate3 ,

final_output]

# Header names and column widths
headers = ["x", "y", "z", "x AND y", "x AND z", "y AND z",

"F"]
column_widths = [5, 5, 5, 10, 10, 10, 5] # Adjust widths as

needed

# Print header row with adjusted spacing
header_row = " | ".join(h.ljust(w) for h, w in zip(headers ,

column_widths))
print(header_row)
print("-" * len(header_row))

# Generate and print the truth table rows
for row in truth_table(final_output , variables):

inputs = row [0]
outputs = [int(bool(expr.subs(dict(zip(variables ,

inputs))))) for expr in expressions]
table_row = " | ".join(str(int(bool(x))).ljust(w) for x,

w in zip(list(inputs) + outputs , column_widths))
print(table_row)



Chapter 12

Finite State Machines

This chapter delves into a powerful abstract model, namely the finite-state ma-
chines. Beyond the theoretical framework, the content of this chapter demon-
strates the use of Sage to define, model, build, visualize, and execute examples
of state machines, showcasing their application in solving real-world problems.

12.1 Definitions and Components
The defining feature of any abstract machine is its memory structure, ranging
from a finite set of states in the case of finite-state machines to more complex
memory systems (e.g., Turing machines and Petri nets).

A Finite-State Machine (FSM) is a computational model that has a
finite set of possible states S, a finite set of possible input symbols (the input
alphabet) X, and a finite set of possible output symbols (the output alphabet)
Z. The machine can exist in one of the states at any time, and based on the
machine’s input and its current state, it can transition to any other state and
produce an output. The functions that take in the machine’s current state
and its input and map them to the machine’s future state and its output are
referred to as the state transition function and the output function, respectively.
The default state of an FSM is referred to as the initial state.

12.1.1 Mealy State Machine
A Mealy finite-state machine is defined by the tuple (S,X,Z,w, t, s0) where:

• S = {s0, s1, s2, . . . , sn} is the state set, a finite set that corresponds to
the set of all memory configurations that the machine can have at any
time.

• The state s0 is called the initial state.

• X = {x0, x1, x2, . . . , xm} is the input alphabet.

• Z = {z0, z1, z2, . . . , zk} is the output alphabet.

• w : S × X → Z is the output function, which specifies which output
symbol w(s, x) ∈ Z is written onto the output device when the machine
is in state s and the input symbol x is read.

• t : S ×X → S is the next-state (or transition) function, which specifies
which state t(s, x) ∈ S the machine should move to when it is currently
in state s and it reads the input symbol x.
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12.1.2 Other Types of Finite State Machines
12.1.2.1 Moore Machine

In a Moore Machine, the output depends solely on the current state. Unlike
Mealy state machine, this machine must enter a new state for the output to
change.

A Moore machine is also represented by the 6-tuple (S,X,Z,w, t, s0) where:

• S = {s0, s1, s2, . . . , sn} is the state set, and s0 is the initial state.

• The state s0 is called the initial state.

• X = {x0, x1, x2, . . . , xm} is the input alphabet.

• Z = {z0, z1, z2, . . . , zk} is the output alphabet.

• w : S → Z is the output function, which specifies which output symbol
w(s) ∈ Z associated with the machine current state s.

• t : S×X → S is the transition function, which specifies which next state
t(s, x) ∈ S the machine should move to when its current state is s and it
has the input symbol x.

12.1.2.2 Finite-State Automaton

A final state (also known as the accepted state) is defined as a special predefined
state that indicates whether an input sequence is valid or accepted by the finite-
state machine. The set F of all final states is a subset of the states set S.

A Finite-State Automaton is a finite-state machine with no output, and
it is represented by the 5-tuple (S,X, t, s0, F ) where:

• S = {s0, s1, s2, . . . , sn} is the state set, s0 is the initial state, and F is
the set of final states.

• The state s0 is called the initial state.

• The subset F ⊂ S is the set of all final states of the machine.

• X = {x0, x1, x2, . . . , xm} is the input alphabet.

• t : S×X → S is the transition function, which specifies which next state
t(s, x) ∈ S the machine should move to when its current state is s and it
has the input symbol x.

When the state machine processes a finite input sequence, it transitions
through various states based on each input in the sequence and the current
state of the machine. If, after processing the entire sequence, the machine
lands in any of the final states, then the input sequence is considered valid (or
recognized according to the machine’s rules). Otherwise, the input sequence is
rejected as invalid.

12.1.2.3 Deterministic Finite Automaton (DFA)

A Deterministic Finite Automaton (DFA) is a simplified automaton in
which each state has exactly one transition for each input. DFAs are typically
used for lexical analysis, language recognition, and pattern matching.
Note. A text parser or a string-matching application that recognizes a specific
language or regular expressions are real-world examples of DFA use.
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12.1.2.4 Nondeterministic Finite Automaton (NFA)

Unlike a DFA, an NFA allows multiple transitions for the same input or even
transitions without consuming input (ϵ-transitions).

12.1.2.5 Turing Machine

A Turing Machine is an expansion of an FSM, which includes infinite tape
memory representing both the input and output streams (shared stream). Un-
like all other FSMs, a Turing machine can alter the input/output stream, and
as such, it is capable of simulating any algorithm. Turing machines are the
theoretical foundation for modern computation (any general-purpose computer
executing any algorithm can be modeled as a Turing Machine).

Finite state machines are a foundational concept in computer science, often
associated with tasks related to system designs (circuits and digital computers,
algorithms, etc.). However, the vast and rich domain of applications of state
machines extends far beyond simple simulations to the full control logic of com-
plex industrial processes and workflows. These tasks can vary in complexity,
ranging from a simple parity check to managing traffic patterns, a program-
ming language compiler, or natural language recognition and processing.

State machines offer a structured way to model systems with discrete states
and transitions. Different variants, such as the Mealy machine and Moore ma-
chine, have distinct characteristics and, as such, can adapt to various applica-
tions.

12.2 Finite State Machines in Sage
Although Sage includes a dedicated built-in rich module to handle various types
of state machines, it may not always be sufficient to address certain use cases or
implement specific custom behaviors of the machine. Additionally, the built-in
module allows state machines to be defined and constructed in different ways,
providing greater flexibility and making it more suitable from a programmer’s
perspective. However, it may not fully conform to the precise definition given
earlier. This highlights that it is still possible to model, construct, display, and
run relatively simple state machines by utilizing general-purpose tools, such as
graphs and transition matrices, to represent and operate on state machines.
Notes. While Sage provides basic tools to represent and simulate state ma-
chines, it may not natively support more complex state machine features such
as parallel states or hierarchical transitions.

12.2.1 The Elevator State Machine
Let’s design a basic controller to an elevator to show the process of defining
states, creating a state transition graph, visualizing the state machine, and
simulating its execution in Sage.

Consider a 3-level elevator (floors 1 through 3). The elevator has 3 buttons
for users to select the destination floor (only one can be selected at a time).
Depending on the current position and the selected floor, the elevator can go
up, go down, or remain on the same floor.
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12.2.2 Description of the Elevator FSM
This elevator system can be modeled and simulated using a finite-state machine
with states S = {f1, f2, f3} representing each floor, the user inputs set X =
{b1, b2, b3} (where bi represents the button for ith floor), and the outputs set
Z = {U,D,N} for ’going up’, ’going down’, or ’going nowhere’.

The components of this FSM are transcribed in the following table.
Table 12.2.1 The Elevator State Machine Definition

next output
current b1 b2 b3 b1 b2 b3

f1 f1 f2 f3 N U U

f2 f1 f2 f3 D N U

f3 f1 f2 f3 D D N

The following steps outline the approach to build and test the elevator
controller system:

1. Define the elements of the Finite State Machine: States, Inputs, Transi-
tions, and Outputs.

2. Construct the State Machine.

3. Run the machine using a sample input set.

12.2.3 Elements of the Elevator FSM
The first step is to define the states and transitions in the state machine, which
can be represented using lists and dictionaries.

# Define state , input and output sets
states = [ ' f1 ' , ' f2 ' , ' f3 ' ]
inputs = [ ' b1 ' , ' b2 ' , ' b3 ' ]
outputs = [ ' U ' , ' D ' , ' N ' ]

# Transitions as a dictionary {( current_state , input):
next_state}

transitions = {
( ' f1 ' , ' b1 ' ): ' f1 ' ,
( ' f1 ' , ' b2 ' ): ' f2 ' ,
( ' f1 ' , ' b3 ' ): ' f3 ' ,

( ' f2 ' , ' b1 ' ): ' f1 ' ,
( ' f2 ' , ' b2 ' ): ' f2 ' ,
( ' f2 ' , ' b3 ' ): ' f3 ' ,

( ' f3 ' , ' b1 ' ): ' f1 ' ,
( ' f3 ' , ' b2 ' ): ' f2 ' ,
( ' f3 ' , ' b3 ' ): ' f3 ' ,

}

# The machine outputs control how the elevator would move
outputs = {

( ' f1 ' , ' b1 ' ): ' N ' ,
( ' f1 ' , ' b2 ' ): ' U ' ,
( ' f1 ' , ' b3 ' ): ' U ' ,

( ' f2 ' , ' b1 ' ): ' D ' ,
( ' f2 ' , ' b2 ' ): ' N ' ,
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( ' f2 ' , ' b3 ' ): ' U ' ,

( ' f3 ' , ' b1 ' ): ' D ' ,
( ' f3 ' , ' b2 ' ): ' D ' ,
( ' f3 ' , ' b3 ' ): ' N ' ,

}

# Display the machine configuration
print( ' States: ' , states)
print( ' Transitions: ' , transitions)
print( ' Outputs: ' , outputs)

12.2.4 Graph Model of the Elevator FSM
An FSM can be modeled as a graph where vertices represent the states, and the
directed edge between vertices is the relationship between two states (the tran-
sition from one state to the other). The weight of a directed edge between two
vertices represents the pair of input and output associated with the transition
between the two states.

In Sage, the DiGraph class can be used to represent the states, transitions,
and outputs of the state machine as a directed graph, leveraging the graph
structure to visualize the state machine representation.

# ' DiGraph ' is imported by default. If not , it can be
imported as follow

# from sage.graphs.digraph import DiGraph

# Initialize a directed graph
elevator_fsm = DiGraph(loops=True)

# Add states as vertices
elevator_fsm.add_vertices(states)

# Add transitions and outputs as edges
for (_state , _input), next_state in transitions.items():

_output = outputs [(_state , _input)]
edge_label = f"{_input}, {_output}"
elevator_fsm.add_edge(_state , next_state ,

label=edge_label)

# Display the graph (state machine)
elevator_fsm.show(

figsize =[5.6 , 5.6],
layout= ' circular ' ,
vertex_size =250,
edge_labels=True ,
vertex_labels=True ,
edge_color =(.2 ,.4 ,1),
edge_thickness =1.0,

)

The show() method renders a graphical representation of the state machine.
Each vertex in the graph represents a state, and each directed edge represents
a transition, labeled as (input, output).
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12.2.5 Run the Elevator State Machine
Next, the state machine’s behavior can be simulated by defining a function
that processes a list of inputs and transitions through the states accordingly.

# Function to run the state machine
def run_state_machine(start_state , inputs):

current_state = start_state
for _input in inputs:

print(f"Current state: {current_state}, Input: 
{_input}")

if (current_state , _input) in transitions:
current_output = outputs [( current_state , _input)]
current_state = transitions [( current_state ,

_input)]
print(

f"Transitioned to: {current_state }\n"
f"Output: {current_output }\n"

)
else:

print(
f"No transition/output available for input 

{_input} in state {current_state}"
)
break

print(f"Last state: {current_state}")

# Example of running the state machine
start_state = ' f2 '

inputs = [ ' b1 ' , ' b1 ' , ' b3 ' , ' b2 ' ]

run_state_machine(start_state , inputs)

The run_state_machine() function simulates the state machine by process-
ing a list of inputs starting from an initial state.

12.2.6 The Traffic Light State Machine
Let’s design a simple traffic light controller to illustrate alternative methods
for defining, visualizing, and executing finite state machines in Sage.

Consider a simplified traffic light system controlled by preset timers. This
system operates through three phases that represent the flow of road traffic:
Free-flowing, Slowing-down, and Halted. These phases correspond to the traffic
light signals: green, yellow, and red, controlling the flow of traffic. The system
uses three timer settings: 30 seconds, 20 seconds, and 5 seconds. When a timer
expires, it triggers the transition to the next phase. Initially, the light is green,
the traffic is flowing, and:

• When the 30-second timer expires, the traffic light changes from green
to yellow, and traffic begins to slow down.

• When the 5-second timer expires, the traffic light changes from yellow to
red, bringing traffic to a complete stop.

• When the 20-second timer expires, the traffic light changes from red to
green, allowing traffic to start moving again.
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12.2.7 Description of the Traffic Light FSM
In this traffic light system, the three phases representing the flow of road
traffic: Free-flowing (F), Slowing-down (S), and Halted (H) are the states S =
{F, S,H} of the FSM. These phases correspond to the traffic light signals:
green (G), yellow (Y), and red (R), which are the outputs set Z = {G,Y,R}
of the system. The timers driving the transitions are the inputs set X =
{t5s, t20s, t30s} of this traffic light system.

The following table summarize the elements of the traffic light FSM.
Table 12.2.2 The Traffic Light State Machine Definition

next output
current t5s t20s t30s t5s t20s t30s

F F F S G G Y

S H S S R Y Y

H H F H R G R

By applying the same steps and approach as in the previous section, the
traffic light controller system will be built and tested, this time utilizing the
Sage built-in module and functions.

12.2.8 Using `FiniteStateMachine’ Module
Sage FiniteStateMachine built-in library provides a powerful tool to model,
construct as well as simulate state machines of various systems. This module
will be leveraged to showcase its capabilities on the given example, and demon-
strating how it can be used to construct and display the FSM, manage its state
transitions and outputs.

The command FiniteStateMachine() constructs an empty state machine
(no states, no transitions).

from sage.combinat.finite_state_machine import FSMState

# FSM states , inputs and outputs
states = [ ' F ' , ' S ' , ' H ' ] # Free -flowing ,

Slowing -down , Halted
inputs = [ ' t30s ' , ' t5s ' , ' t20s ' ] # timer durations before

state transitions
outputs = [ ' G ' , ' Y ' , ' R ' ] # traffic light: Green ,

Yellow , Red

# Create an empty state machine object
traffic_light_fsm = FiniteStateMachine ()
traffic_light_fsm

The function FSMState() defines a state for a given label. The is_initial
flag can be set to true to set the current state as the initial state of the finite
state machine. The method add_state() appends the created state to an
existing state machine.

# Define a new state then adding it
free_flowing = FSMState( ' F ' , is_initial=True)
traffic_light_fsm.add_state(free_flowing)

# Adding more states by their labels (saving state handlers ,
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to use them in state transitions)
slowing_down = traffic_light_fsm.add_state( ' S ' )
halted = traffic_light_fsm.add_state( ' H ' )

# the FiniteStateMachine instance
traffic_light_fsm

To check whether or not a finite state machine has a state defined, has_state()
method can be used by passing in the state label (case-sensitive).

traffic_light_fsm.has_state( ' F ' )

The function states() enumerates the list of all defined states of the state
machine.

traffic_light_fsm.states ()

The method initial_states() lists the defined initial state(s) of the state
machine.

traffic_light_fsm.initial_states ()

To define a new transition between two states (as well as the input triggering
the transition, and the output associated with the state transition), the method
FSMTransition() can be used. The method add_transition() attaches the
defined transition to the state machine, and the function transitions() enu-
merates the list of all defined transitions of the state machine.

from sage.combinat.finite_state_machine import FSMTransition

# defining 3 transitions , and associating them the state
machine

# After 30sec , transition from free -flowing to slowing -down ,
and set traffic light to yellow

traffic_light_fsm.add_transition(
FSMTransition(

from_state=free_flowing ,
to_state=slowing_down ,
word_in= ' t30s ' ,
word_out= ' Y '

)
)

# After 5sec , transition from slowing -down to halted , and
set traffic light to red

traffic_light_fsm.add_transition(FSMTransition(slowing_down ,
halted , ' t5s ' , ' R ' ))

# After 30sec , transition from halted back to free -flowing ,
and set traffic light to green

traffic_light_fsm.add_transition(FSMTransition(halted ,
free_flowing , ' t20s ' , ' G ' ))

traffic_light_fsm.transitions ()
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An alternative method for defining state transitions in an FSM is by us-
ing the add_transitions_from_function() method. This approach accepts a
callable function that takes two states as arguments: the source state and the
target state. The following code demonstrates how this can be implemented.

from sage.combinat.finite_state_machine import FSMTransition

# define state transitions , inputs and outputs
def transit_function(state1 , state2):

if state1 == ' F ' :
if state2 == ' S ' :

return ( ' t30s ' , ' Y ' )

elif state1 == ' S ' :
if state2 == ' H ' :

return ( ' t5s ' , ' R ' )

elif state1 == ' H ' :
if state2 == ' F ' :

return ( ' t20s ' , ' G ' )

# all other ' no -transition ' combinations
return None

traffic_light_fsm.add_transitions_from_function(transit_function)
traffic_light_fsm.transitions ()

Once the states and transitions are defined, the state machine can be run
using process() method, which then returns the intermediary outputs during
the state machine run.

# pass in the initial state and the list of inputs
*_, outputs_history = traffic_light_fsm.process(

initial_state=free_flowing ,
input_tape =[ ' t30s ' , ' t5s ' , ' t20s ' ],

)

# print out the outputs of the state machine run
outputs_history

The graph() command displays the graph representation of the state ma-
chine.

traffic_light_fsm.graph().show(
figsize =[6, 6],
vertex_size =800,
edge_labels=True ,
vertex_labels=True ,
edge_color =(.2 ,.4 ,1),
edge_thickness =1.0

)

The FiniteStateMachine class also offers LATEX representation of the state
machine using the latex_options() method.
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# define printout options
traffic_light_fsm.latex_options(

format_state_label=lambda x: x.label(),
)

# display commands
print(latex(traffic_light_fsm))

Note that the LATEX printout may not have all elements displayed. However,
it can still be customized further. The following figure shows a rendering of
the above LATEX commands.

Figure 12.2.3 FSM graph output.

12.2.9 Using `Transducer’ Module
Sage Transducer is a specialization of the generic FiniteStateMachine class.
The Transducer class creates a finite state machine that support optional final
states, and whose transitions have input and output labels.

Let’s see how to create another state machine using Transducer and for the
same traffic light example.

# the module allows the instantiation of a state machine by
passing

# the entire state machine definition to the constructor
state_machine_definition = {

# from -state: [
# a list of tuples
# (to-state , input , output)
# ]
' F ' : [

( ' F ' , ' t5s ' , ' G ' ),
( ' F ' , ' t20s ' , ' G ' ),
( ' S ' , ' t30s ' , ' Y ' ),

],
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' S ' : [
( ' H ' , ' t5s ' , ' R ' ),
( ' S ' , ' t20s ' , ' Y ' ),
( ' S ' , ' t30s ' , ' Y ' ),

],
' H ' : [

( ' H ' , ' t5s ' , ' R ' ),
( ' F ' , ' t20s ' , ' G ' ),
( ' H ' , ' t30s ' , ' R ' ),

],
}

traffic_light_transducer = Transducer(
state_machine_definition ,
initial_states =[ ' F ' ]

)
traffic_light_transducer

The member variable input_alphabet lists the set of the transducer inputs
set.

traffic_light_transducer.input_alphabet

The member variable output_alphabet lists the set of the transducer out-
puts set.

traffic_light_transducer.output_alphabet

Since a Transducer is also a FiniteStateMachine , the method has_state()
can still be used to check whether or not a given state exists in the defined
transducer (by passing in the case-sensitive state label).

traffic_light_transducer.has_state( ' F ' )

The function states() enumerates the list of all defined states of the state
machine.

traffic_light_transducer.states ()

The method initial_states() lists the defined initial state(s) of the state
machine.

traffic_light_transducer.initial_states ()

After defining the states and transitions, the transducer can be executed
using the process() method from the parent FiniteStateMachine class. This
method returns the intermediate outputs generated during the execution of
the state machine.

# fetching the initial state by its label
free_flowing = traffic_light_transducer.state( ' F ' )
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# pass in the initial state and the list of inputs
*_, outputs_history = traffic_light_transducer.process(

initial_state=free_flowing ,
input_tape =[ ' t30s ' , ' t5s ' , ' t20s ' ],

)

outputs_history

The graph() command displays the graph representation of the transducer-
based state machine.
Notes. The latex_options() method of the base class FiniteStateMachine
also is inherited and can also be used with Transducer state machine to output
LATEX representation.

traffic_light_transducer.graph().show(
figsize =[6, 6],
vertex_size =800,
edge_labels=True ,
vertex_labels=True ,
edge_color =(.2 ,.4 ,1),
edge_thickness =1.0

)

The above are basic commands with a typical workflow of defining and running
of simple finite state machines. The general structure of the state machine can
be adapted to fit different use cases. The examples shown can be customized
and fine-tuned to reflect more complex scenarios (more states, different input
sequences, etc.)

12.3 State Machine in Action
Traffic light systems are crucial for regulating traffic. These systems use care-
fully coordinated signals to ensure safety for both vehicles and pedestrians. In
the previous section, the traffic light system was modeled in an overly sim-
plistic way. This section adds complexity to account for pedestrian presence,
ensuring safe crossings while maintaining smooth traffic flow.

12.3.1 Traffic Light Controller: Problem Overview
Let’s design a traffic light system for a two-way road with pedestrian cross-
ings. This system coordinates the movement of vehicles and pedestrians using
lights to indicate when vehicles can proceed, slow down, or stop, and when
pedestrians can cross safely. Vehicle traffic lights include three signals: Red,
Yellow, and Green. For simplicity, the pedestrian lights also use three signals:
red, yellow, and green. Signal transitions are governed by timers, as described
in the previous section, with each timer triggering a transition event after a
predefined duration.
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