{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Calculate daily mean SSH at Neah Bay"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import arrow\n",
    "import datetime\n",
    "import matplotlib.pyplot as plt\n",
    "import os\n",
    "import pandas as pd\n",
    "import xarray as xr\n",
    "\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "basedir = '/results/forcing/sshNeahBay/obs'\n",
    "xb, yb = 50, 0 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2 {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:       (time_counter: 24, xbT: 100, yb: 1)\n",
       "Coordinates:\n",
       "  * time_counter  (time_counter) float32 1.0 2.0 3.0 4.0 ... 21.0 22.0 23.0 24.0\n",
       "Dimensions without coordinates: xbT, yb\n",
       "Data variables:\n",
       "    nav_lat       (yb, xbT) float32 48.31 48.32 48.32 48.33 ... 48.7 48.7 48.71\n",
       "    nav_lon       (yb, xbT) float32 -124.6 -124.6 -124.6 ... -125.0 -125.0\n",
       "    sossheig      (time_counter, yb, xbT) float32 -0.2549 -0.2549 ... -0.07914\n",
       "    vobtcrtx      (time_counter, yb, xbT) float32 0.0 0.0 0.0 ... 0.0 0.0 0.0\n",
       "    vobtcrty      (time_counter, yb, xbT) float32 0.0 0.0 0.0 ... 0.0 0.0 0.0\n",
       "    nbidta        (yb, xbT) int32 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0\n",
       "    nbjdta        (yb, xbT) int32 370 371 372 373 374 ... 465 466 467 468 469\n",
       "    nbrdta        (yb, xbT) int32 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0\n",
       "Attributes:\n",
       "    Conventions:  CF-1.6\n",
       "    title:        Neah Bay SSH hourly values\n",
       "    institution:  Dept of Earth, Ocean &amp; Atmospheric Sciences, University of ...\n",
       "    source:       /results/forcing/sshNeahBay/txt/sshNB_2020-12-03_19.txt\n",
       "    references:   https://github.com/SalishSeaCast/SalishSeaNowcast/blob/mast...\n",
       "    history:      [2020-12-03 11:40:03] Created netCDF4 zlib=True dataset.\n",
       "    comment:      Observation from Neah Bay storm surge website generated by ...</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-cef3affd-58e6-4a59-bfb8-ed8bc8556c44' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-cef3affd-58e6-4a59-bfb8-ed8bc8556c44' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time_counter</span>: 24</li><li><span>xbT</span>: 100</li><li><span>yb</span>: 1</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-55338f2a-1afc-4719-a562-2017f6076506' class='xr-section-summary-in' type='checkbox'  checked><label for='section-55338f2a-1afc-4719-a562-2017f6076506' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time_counter</span></div><div class='xr-var-dims'>(time_counter)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.0 2.0 3.0 4.0 ... 22.0 23.0 24.0</div><input id='attrs-ca7057d2-1615-478f-9350-364deffa5f51' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ca7057d2-1615-478f-9350-364deffa5f51' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8f40db15-c4f5-4b93-9d12-bf4fd874806f' class='xr-var-data-in' type='checkbox'><label for='data-8f40db15-c4f5-4b93-9d12-bf4fd874806f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Time axis</dd><dt><span>axis :</span></dt><dd>T</dd><dt><span>units :</span></dt><dd>hour since 00:00:00 on 2020-12-02</dd></dl></div><div class='xr-var-data'><pre>array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13., 14.,\n",
       "       15., 16., 17., 18., 19., 20., 21., 22., 23., 24.], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-40b3297e-d9ee-4e47-9113-674dba555140' class='xr-section-summary-in' type='checkbox'  checked><label for='section-40b3297e-d9ee-4e47-9113-674dba555140' class='xr-section-summary' >Data variables: <span>(8)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>nav_lat</span></div><div class='xr-var-dims'>(yb, xbT)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-52e84968-8b80-4018-a1e8-f72a43e394e6' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-52e84968-8b80-4018-a1e8-f72a43e394e6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f0b728f9-7253-4c01-970e-dc331655ba12' class='xr-var-data-in' type='checkbox'><label for='data-f0b728f9-7253-4c01-970e-dc331655ba12' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd></dl></div><div class='xr-var-data'><pre>array([[48.314762, 48.318752, 48.322746, 48.326736, 48.330727, 48.334717,\n",
       "        48.338707, 48.342697, 48.346687, 48.350677, 48.354668, 48.358658,\n",
       "        48.362648, 48.36664 , 48.370625, 48.374615, 48.3786  , 48.38259 ,\n",
       "        48.386578, 48.390568, 48.394554, 48.39854 , 48.40253 , 48.406517,\n",
       "        48.410503, 48.41449 , 48.418476, 48.422462, 48.42645 , 48.430435,\n",
       "        48.434418, 48.438404, 48.44239 , 48.446373, 48.45036 , 48.45434 ,\n",
       "        48.45833 , 48.46231 , 48.466293, 48.47028 , 48.474262, 48.478245,\n",
       "        48.482227, 48.48621 , 48.490192, 48.494175, 48.498158, 48.50214 ,\n",
       "        48.50612 , 48.5101  , 48.51408 , 48.518063, 48.52204 , 48.526024,\n",
       "        48.530003, 48.53398 , 48.537964, 48.541943, 48.54592 , 48.5499  ,\n",
       "        48.55388 , 48.557858, 48.561832, 48.56581 , 48.56979 , 48.57377 ,\n",
       "        48.577744, 48.581722, 48.585697, 48.589672, 48.59365 , 48.597626,\n",
       "        48.6016  , 48.605576, 48.60955 , 48.613525, 48.6175  , 48.621475,\n",
       "        48.62545 , 48.629425, 48.633396, 48.63737 , 48.641346, 48.645317,\n",
       "        48.64929 , 48.653263, 48.657234, 48.661205, 48.665176, 48.669147,\n",
       "        48.67312 , 48.67709 , 48.68106 , 48.68503 , 48.689003, 48.692974,\n",
       "        48.69694 , 48.700912, 48.70488 , 48.70885 ]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>nav_lon</span></div><div class='xr-var-dims'>(yb, xbT)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-cb5768a3-fd22-4fb3-92e2-33e244bd7b5f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-cb5768a3-fd22-4fb3-92e2-33e244bd7b5f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5d769eb3-7162-4065-8785-319941719469' class='xr-var-data-in' type='checkbox'><label for='data-5d769eb3-7162-4065-8785-319941719469' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd></dl></div><div class='xr-var-data'><pre>array([[-124.628914, -124.63225 , -124.63558 , -124.63892 , -124.64226 ,\n",
       "        -124.6456  , -124.64893 , -124.65227 , -124.65561 , -124.65894 ,\n",
       "        -124.662285, -124.66562 , -124.66896 , -124.672295, -124.67564 ,\n",
       "        -124.67897 , -124.68231 , -124.685646, -124.68899 , -124.69233 ,\n",
       "        -124.69566 , -124.699005, -124.70234 , -124.70568 , -124.70902 ,\n",
       "        -124.71236 , -124.7157  , -124.71904 , -124.722374, -124.725716,\n",
       "        -124.72906 , -124.73239 , -124.73573 , -124.739075, -124.74242 ,\n",
       "        -124.74575 , -124.74909 , -124.75243 , -124.755775, -124.75911 ,\n",
       "        -124.76245 , -124.76579 , -124.769135, -124.77248 , -124.77581 ,\n",
       "        -124.77915 , -124.78249 , -124.785835, -124.78918 , -124.79252 ,\n",
       "        -124.79586 , -124.799194, -124.802536, -124.80588 , -124.80922 ,\n",
       "        -124.81256 , -124.8159  , -124.819244, -124.822586, -124.82593 ,\n",
       "        -124.82927 , -124.83261 , -124.83595 , -124.839294, -124.842636,\n",
       "        -124.84598 , -124.84932 , -124.85266 , -124.856   , -124.859344,\n",
       "        -124.862686, -124.86603 , -124.86937 , -124.87271 , -124.87605 ,\n",
       "        -124.879395, -124.88274 , -124.88608 , -124.88942 , -124.89277 ,\n",
       "        -124.89611 , -124.89945 , -124.902794, -124.906136, -124.90948 ,\n",
       "        -124.91282 , -124.91616 , -124.91951 , -124.92285 , -124.92619 ,\n",
       "        -124.929535, -124.93288 , -124.936226, -124.93957 , -124.94291 ,\n",
       "        -124.94625 , -124.94959 , -124.95294 , -124.95628 , -124.959625]],\n",
       "      dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sossheig</span></div><div class='xr-var-dims'>(time_counter, yb, xbT)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-69bab7cb-2cf2-4f2b-b96e-fd8c1e5e7b45' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-69bab7cb-2cf2-4f2b-b96e-fd8c1e5e7b45' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2fa6bac0-6928-4bc1-9bc8-b9c38763b3d1' class='xr-var-data-in' type='checkbox'><label for='data-2fa6bac0-6928-4bc1-9bc8-b9c38763b3d1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>m</dd><dt><span>long_name :</span></dt><dd>Sea surface height</dd><dt><span>grid :</span></dt><dd>SalishSea2</dd></dl></div><div class='xr-var-data'><pre>array([[[-0.25489 , -0.25489 , ..., -0.25489 , -0.25489 ]],\n",
       "\n",
       "       [[-0.26432 , -0.26432 , ..., -0.26432 , -0.26432 ]],\n",
       "\n",
       "       ...,\n",
       "\n",
       "       [[-0.090255, -0.090255, ..., -0.090255, -0.090255]],\n",
       "\n",
       "       [[-0.079137, -0.079137, ..., -0.079137, -0.079137]]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>vobtcrtx</span></div><div class='xr-var-dims'>(time_counter, yb, xbT)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-7dbb77a4-0fc9-4edb-99c9-1e6eb437cf91' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7dbb77a4-0fc9-4edb-99c9-1e6eb437cf91' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-715721c3-b1e3-44b1-b583-221e81159575' class='xr-var-data-in' type='checkbox'><label for='data-715721c3-b1e3-44b1-b583-221e81159575' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>m/s</dd><dt><span>long_name :</span></dt><dd>Barotropic U Velocity</dd><dt><span>grid :</span></dt><dd>SalishSea2</dd></dl></div><div class='xr-var-data'><pre>array([[[0., 0., ..., 0., 0.]],\n",
       "\n",
       "       [[0., 0., ..., 0., 0.]],\n",
       "\n",
       "       ...,\n",
       "\n",
       "       [[0., 0., ..., 0., 0.]],\n",
       "\n",
       "       [[0., 0., ..., 0., 0.]]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>vobtcrty</span></div><div class='xr-var-dims'>(time_counter, yb, xbT)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-84fdd827-2ab5-440d-b30b-88e662488bab' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-84fdd827-2ab5-440d-b30b-88e662488bab' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b3c08a7c-9598-4a48-991c-a4a54a1d2f63' class='xr-var-data-in' type='checkbox'><label for='data-b3c08a7c-9598-4a48-991c-a4a54a1d2f63' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>m/s</dd><dt><span>long_name :</span></dt><dd>Barotropic V Velocity</dd><dt><span>grid :</span></dt><dd>SalishSea2</dd></dl></div><div class='xr-var-data'><pre>array([[[0., 0., ..., 0., 0.]],\n",
       "\n",
       "       [[0., 0., ..., 0., 0.]],\n",
       "\n",
       "       ...,\n",
       "\n",
       "       [[0., 0., ..., 0., 0.]],\n",
       "\n",
       "       [[0., 0., ..., 0., 0.]]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>nbidta</span></div><div class='xr-var-dims'>(yb, xbT)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-7e949fcc-37f0-426d-8ccd-f30b46a3d8f8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7e949fcc-37f0-426d-8ccd-f30b46a3d8f8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fee5778f-2973-4717-8e06-a2138997b598' class='xr-var-data-in' type='checkbox'><label for='data-fee5778f-2973-4717-8e06-a2138997b598' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>i grid position</dd><dt><span>units :</span></dt><dd>1</dd></dl></div><div class='xr-var-data'><pre>array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "        0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>nbjdta</span></div><div class='xr-var-dims'>(yb, xbT)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-fcd84b45-1ac8-4f42-b709-17d134e24a81' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fcd84b45-1ac8-4f42-b709-17d134e24a81' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-00faa2fd-ff48-4904-acdf-248e0be768a1' class='xr-var-data-in' type='checkbox'><label for='data-00faa2fd-ff48-4904-acdf-248e0be768a1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>j grid position</dd><dt><span>units :</span></dt><dd>1</dd></dl></div><div class='xr-var-data'><pre>array([[370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383,\n",
       "        384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397,\n",
       "        398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411,\n",
       "        412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425,\n",
       "        426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439,\n",
       "        440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453,\n",
       "        454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467,\n",
       "        468, 469]], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>nbrdta</span></div><div class='xr-var-dims'>(yb, xbT)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-0ee0c99d-b4c8-4ac6-aa9f-ffa5b002ba89' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0ee0c99d-b4c8-4ac6-aa9f-ffa5b002ba89' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5d5a0b39-ed76-40a2-a60d-592a943b2e39' class='xr-var-data-in' type='checkbox'><label for='data-5d5a0b39-ed76-40a2-a60d-592a943b2e39' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>position from boundary</dd><dt><span>units :</span></dt><dd>1</dd></dl></div><div class='xr-var-data'><pre>array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "        0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-86f9fff6-9cce-47b8-9b2b-3483fd7f122c' class='xr-section-summary-in' type='checkbox'  checked><label for='section-86f9fff6-9cce-47b8-9b2b-3483fd7f122c' class='xr-section-summary' >Attributes: <span>(7)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>Conventions :</span></dt><dd>CF-1.6</dd><dt><span>title :</span></dt><dd>Neah Bay SSH hourly values</dd><dt><span>institution :</span></dt><dd>Dept of Earth, Ocean &amp; Atmospheric Sciences, University of British Columbia</dd><dt><span>source :</span></dt><dd>/results/forcing/sshNeahBay/txt/sshNB_2020-12-03_19.txt</dd><dt><span>references :</span></dt><dd>https://github.com/SalishSeaCast/SalishSeaNowcast/blob/master/nowcast/workers/get_NeahBay_ssh.py</dd><dt><span>history :</span></dt><dd>[2020-12-03 11:40:03] Created netCDF4 zlib=True dataset.</dd><dt><span>comment :</span></dt><dd>Observation from Neah Bay storm surge website generated by Salish Sea NEMO nowcast get_NeahBay_ssh worker</dd></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:       (time_counter: 24, xbT: 100, yb: 1)\n",
       "Coordinates:\n",
       "  * time_counter  (time_counter) float32 1.0 2.0 3.0 4.0 ... 21.0 22.0 23.0 24.0\n",
       "Dimensions without coordinates: xbT, yb\n",
       "Data variables:\n",
       "    nav_lat       (yb, xbT) float32 ...\n",
       "    nav_lon       (yb, xbT) float32 ...\n",
       "    sossheig      (time_counter, yb, xbT) float32 ...\n",
       "    vobtcrtx      (time_counter, yb, xbT) float32 ...\n",
       "    vobtcrty      (time_counter, yb, xbT) float32 ...\n",
       "    nbidta        (yb, xbT) int32 ...\n",
       "    nbjdta        (yb, xbT) int32 ...\n",
       "    nbrdta        (yb, xbT) int32 ...\n",
       "Attributes:\n",
       "    Conventions:  CF-1.6\n",
       "    title:        Neah Bay SSH hourly values\n",
       "    institution:  Dept of Earth, Ocean & Atmospheric Sciences, University of ...\n",
       "    source:       /results/forcing/sshNeahBay/txt/sshNB_2020-12-03_19.txt\n",
       "    references:   https://github.com/SalishSeaCast/SalishSeaNowcast/blob/mast...\n",
       "    history:      [2020-12-03 11:40:03] Created netCDF4 zlib=True dataset.\n",
       "    comment:      Observation from Neah Bay storm surge website generated by ..."
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "xr.open_dataset('/results/forcing/sshNeahBay/obs/ssh_y2020m12d02.nc', decode_cf=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n",
      "100\n",
      "200\n",
      "300\n"
     ]
    }
   ],
   "source": [
    "year = 2018\n",
    "start = datetime.datetime(year, 1, 1)\n",
    "endtime = datetime.datetime(year, 12, 31)\n",
    "timerange = arrow.Arrow.range('day', start, endtime)\n",
    "for i, day in enumerate(timerange):\n",
    "    ymd = day.format('YYYYMMDD')\n",
    "    filename = f'ssh_y{day.year}m{day.month:02d}d{day.day:02d}.nc'\n",
    "    fullfile = os.path.join(basedir, filename)\n",
    "    neah = xr.open_dataset(fullfile, decode_cf=False)\n",
    "    ssh = neah['sossheig'].isel(yb=yb, xbT=xb).mean()\n",
    "    neah.close()\n",
    "    if i == 0:\n",
    "        ssh_year = ssh.copy(deep=True)\n",
    "        ssh.close()\n",
    "    else:\n",
    "        ssh_year = xr.concat([ssh_year, ssh], dim='time_counter')\n",
    "        ssh.close()\n",
    "    if i % 100 == 0:\n",
    "        print (i)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEHCAYAAACwUAEWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABfFUlEQVR4nO2dd5wkV3Xvf6dzmLSTdmfzapO0Equ0WgSSBQhJKGBLZIlgkpExlm1MejIYMMbmCR7YPDC2LKLgASIYkAABQgsCCRR2lVa7kla72hxnZyf3dKrq8/6outW3qqu7q3PPzP1+PvOZ7urq6tvVVffck4mZoVAoFApFMXytHoBCoVAo2hslKBQKhUJREiUoFAqFQlESJSgUCoVCURIlKBQKhUJRkkCrB9AI+vv7eeXKla0ehkKhUMwaHn300RFmHnB7bU4KipUrV2Lbtm2tHoZCoVDMGojoQLHXlOlJoVAoFCVRgkKhUCgUJVGCQqFQKBQlUYJCoVAoFCVRgkKhUCgUJVGCQqFQKBQlUYJCoVAoFCVRgkKhUCjalMlUFo/sG231MJSgUCgUinblL7/5KF7/3w8ikdZaOg4lKBQKhaJN2XFkAgCg5VrbYE4JCoVCoWhTcqIDaYsbkbZUUBDRlUS0i4j2ENHNLq+/lIgmiOgJ8+9jrRinQqFQtAKhSGi5XEvH0bKigETkB/AlAJcDOAxgKxHdxcxPO3a9n5lf2fQBKhQKRYsRGoU+j01PmwHsYea9zJwBcAeAa1s4HoVCoWgr2NIo5q+gWALgkPT8sLnNyYuI6Eki+gURnVnsYER0IxFtI6JtJ0+erPdYFQqFoukojQIgl23Os/EYgBXMfDaALwL4SbGDMfNtzLyJmTcNDLj23lAoFIpZhRIUhgaxTHq+FMBReQdmnmTmafPx3QCCRNTfvCEqFApF68gp0xO2AlhLRKuIKATgegB3yTsQ0SIiIvPxZhjjPdX0kSoUCkULabVG0bKoJ2bWiOgmAL8C4AfwNWbeSUTvNl+/FcBrAfwVEWkAkgCuZ+YWRxQrFApFc5m34bGAZU6627HtVunxfwD4j2aPS6FQKNqJVmsUKjNboVAo2pz57KNQKBQKhQeURqFQKBSKkmi6EhQKhUKhKEGuxTE8SlAoFApFm6N8FAqFQqEoid7i8FglKBQKhaLNUT4KhUKhUJRERT0pFAqFoiTKR6FQKBSKkiiNQqFQKBQlURqFQqFQKEqSzGhIa3rLPl8JCoVCoWhDZHPTR+/ciZd85r6WjUUJCoVCoWhDsro9d+L4ZKpFI1GCQqFQKNoSp6BoJUpQKBQKRRvS6iQ7mZYKCiK6koh2EdEeIrq5xH4XEJFORK9t5vgUCoWiVbSTRtGyDndE5AfwJQCXAzgMYCsR3cXMT7vs92kYLVMVCoViTvOtB/djQTyEc5b1tHooFq3UKDYD2MPMe5k5A+AOANe67Pc3AP4HwHAzB6dQKBSt4KN37sRN33kcWWV6AgAsAXBIen7Y3GZBREsAvArArSgDEd1IRNuIaNvJkyfrOlCFQqFoNom01uohWLRSUJDLNqcI/TyA/8XMZTNNmPk2Zt7EzJsGBgbqMT6FQqFoGa/84gOtHoJFy3wUMDSIZdLzpQCOOvbZBOAOIgKAfgBXE5HGzD9pygg98tDeU8jlGC9e09/qoSgUCkXdaaWg2ApgLRGtAnAEwPUA3ijvwMyrxGMi+gaAn7WbkACA6297CACw/5ZrWjwShUKhqD8tExTMrBHRTTCimfwAvsbMO4no3ebrZf0SCoVCoWg8rdQowMx3A7jbsc1VQDDz25oxJoVCoVDYUZnZdYS5fcLZFAqFol4oQVFH0lr7ZFIqFIrZz99ftq7VQwCgBEVdmUxmWz0EhUIxh7j6BYtaPQQASlDUlcmUEhQKhaJ+hAP+Vg8BgBIUdWVCaRQKhaIGnL2xQ4H2mKLbYxRzhD3D07jy87/HkfFkq4eiUChazI4jExWX4dBydj9nWAmKucfjB8fx7PEp7D4x1eqhKBSKFpLWdLzyiw/g3f/v0Yre5+xB4dQoWhVZqQRFHTmVyABor4YjCoWi+YjKrw/sGanofZrD9OTUKHItmlqUoKgDPrO84anpNIBC9VGhUMwvsmaofKUKgOyj8BEQ8Nun6FbNLUpQ1AGfUbTQ0igySqNQKOY11Xan06T3uUU8OZ3dzUIJihphZktdHLVMT0qjUCjmM5lqBYUkCNwinpymqWahBEWNyD9cMmO0zWinXrcKhaL5VNudTvZvugkKvUXWCiUoakT+YYXQaKcWhgqFovlUbXrKyaYnpVHMGdycS8r0pFDMbzJV1n0rZ3pSPopZilsorNAoRqbTSGXLdnFVKBRzjOqd2fn5xM2ZraKeZilZlx8um8vhxGQKm/7lXnz0JztaMCqFQtFKZPNzJUJDFgRKozAhoiuJaBcR7SGim11ev5aIthPRE0S0jYgubsU4S+GqUWiMz/5qFwBg9/B0s4ekUChajCwcplPey3jIpic3H8W8ExRE5AfwJQBXAdgA4AYi2uDYbQuAs5n5HADvAPCVpg7SA26CQsvlcHjMqPe0dEG02UNSKBQtRg6PnapAUOhKUBSwGcAeZt7LzBkAdwC4Vt6Bmac5X9wkDqDtwolcTU86WypktU4thUIxe8lK930l7QeyemHU06r+uLVtPkY9LQFwSHp+2Nxmg4heRUTPAvg5DK3CFSK60TRPbTt58mTdB1sMd2d2zrJRqpwKhWL+IfsoKhEUukvU08//9mJ85rUbC15vJq0UFOSyreAsMPOPmfl0ANcB+GSxgzHzbcy8iZk3DQwM1G+UZRCCIOjPfx1Nz+U1CiUoFIp5h7xAnExW4KNwiXqKhQIY6Awbr89DQXEYwDLp+VIAR4vtzMy/B7CaiPobPbBKEBI+GsyHsmV0tn7wrNZ21jKFQtFg5AWiKO3jBVsehVQQMGBWHtXnYXjsVgBriWgVEYUAXA/gLnkHIlpDZFTcI6LzAIQAnGr6SEsgNIdYKJDfpuesFYXSKBSK+YesUYiq0l6wFQUM5qdnvykoWtXCIFB+l8bAzBoR3QTgVwD8AL7GzDuJ6N3m67cCeA2APyeiLIAkgDdwqzp3FEHYImMhv7QtZ2kaypmtUMw/ZGf2SCWCoqhGYTxulY+iZYICAJj5bgB3O7bdKj3+NIBPN3tclSAkfCwsCYocK2e2QjGPEff/YGcYIxWYnoQgCAV8WD3YYW23NIoc48h4Ekt6mht2rzKza0SEx8aCdtOTcmYrFPMXcd8P9UQxMuVdoxALyy3vewlu2Lzc2i58FNv2j+KiW36DPU1O5FWCokaERhG1mZ5kZ7YSFArFfENM+ENdEauhmReERhHw24NChUZxeNxI5B2eStVjmJ5RgqJGhPPJ6aPIO7PbyqWiUCiaQFbPIeAjDHSGK/JRZE1BIQSDQDwX5UCaXWxUCYoa0VzCY+3ObFU9VqGYb2R1RtDvQ19HCOMzWc++St3cTzivBcL0NGUJiuZaKpSgqBErPFZyZms6WysD1cRIoZh/ZLQcgn5Cf4eRKOc1l0IrY3qaThuCQnTTbBZKUNRIPjw278zO5tgySamoJ4Vi/pHVcwgFfFgQCwEAxmYqFBQO05PQMISgSDXZUqEERY1YzmzJ9JTO6sixsQrQcoxci2KfFQpFa8jqOQT9PnREjAVkIu2tjIflzHaYnvx+ZXqa1eQzs/OCQjiaYqbwUCGyCsXc556dx7Hy5p9jLJGxfBQdYUNQTKe9aQBZy0fh1CiE6ckoMKic2bMMy/QUzpuekuaPKEJmlaBQKOY+n793NwDg4OgMMrrho7AEhYeeFIm0Bj3H8BHgKxL1JDQJJShmGVZ4rGR6Eo4moWWoXAqFYu5zKmGEwYYCPmQ1u+lJaALF+Nn2ozjz47/CU0cmCsxOQKGGoZzZswwrPNZmesqZ24yLREU+KRRzn1PThsM6o+UsZ7bQKMp1ubtvl9FD57EDYwU5FEBhXoVyZs8y3DKzhakpLkxPSqNQKOY8YtGYMRuXyT6KRBkfRdAsAJjK5gpCY4FC53Yyo5zZswotlwMREAn4C16bjz6KRw+MYu/J5tahUSjaiYyWQ8bMzPb7CNGgv6zpKWQKB/E+J0qjmCVoRSb7rM4I+nwIBQp/3Ng81Che818P4tLP/a7Vw1AomorsXM7oedMTAHREAlb+QzECcklxf3kfRVo5s9uP3zx7Ams+8gs8d2Kq4DVNN1TFkL9Qo4hZPor5IygUivnI8Yl8kT7hoxDmpM5woGx4bNClm52Mz0cgaXNSCYr24/+aYW+HRmcKXtNyjICPEHTRKITpSQkKhWJuMyplXme0HLIaI2iakzoiAUynvJmegMLyHdZ2SYDMq4Q7IrqSiHYR0R4iutnl9TcR0Xbz749EdHYrxvnk4QkAdqkvyJgqpnhN/jHnmzO7mHlOoZjr2ExPDo0iHipveiJJXQi5zDOA3U8xb8JjicgP4EsArgKwAcANRLTBsds+AC9h5o0APgngtuaOEhiTinm5aQbJjI5oyG/9uHL0kwiPnS/O7Jkmq8MKRbuQllb4Gd1wZos5oSMSKBseK88tvfGQ6z6iwCAwv5zZmwHsYea9zJwBcAeAa+UdmPmPzDxmPn0IwNImj9G2EnDTDJIZHdGg33JcyaU85psz22s9G4VirlFKo+gMB5DIlL435DlCFBJ0csZQl/U43WTTk6ee2UT0BZfNEwC2MfOdVX72EgCHpOeHAbywxP7vBPCLYi8S0Y0AbgSA5cuXF9utYtKafaXgJJk1BIUIj+0IB3ACRoamEBSPHhzDGUNdePb4FC7fsLBuY2s3ysWKKxRzFXmFbwgKtvyW8XCgbAkPLxrFmsEO/PrpEwDa15kdAXAOgN3m30YAvQDeSUSfr/Kz3Tw2rinMRPQyGILifxU7GDPfxsybmHnTwMBAlUMqRP4B3TKsk1nD9NQdC+LWN5+H121aZr0mKsr+9+/24g3//SBu+s5jdRtXO6I0CsV8JeUwPYkSHoC38Fh5EbqgiKBYPdAhfV57Coo1AC5l5i8y8xcBXAbgDACvAnBFlZ99GMAy6flSAEedOxHRRgBfAXAtM5+q8rOqRlYJi/ooTIFw5VlDWNwTtV6Te1QcnUghreWa/gM3EyUoFPMVp+nJ5qMIB5DVGekSfgXZctFbxPT0knXGAvjsZT1IZnUwN680kFdBsQRAXHoeB7CYmXUA3hvC2tkKYC0RrSKiEIDrAdwl70BEywH8CMBbmPm5Kj+nJjJ6GUFhahSCDqnTndz1TlDOqTWbSZiRGG61ahSKuUyBRiH7KCLlK8jK1opiGsVAZxj7b7kGV2xYCObmBsl48lEA+AyAJ4joPhgmo0sAfIqI4gDureaDmVkjopsA/AqAH8DXmHknEb3bfP1WAB8D0AfgP83wMY2ZN1XzedUiV34t5syOBGVBEbQey82MBNNpDQOd4YLtcwGhUUQCKj1HMb8QGkU06EcyYzQuk8NjAePe7+twv/czkrbRV0RQCMKBfF2osEvpoEbgSVAw81eJ6G4YkUoE4MPMLMxEH6z2w5n5bgB3O7bdKj3+CwB/Ue3x60FaL+3MTmV1W6RTXNIi+uIhvPq8JfjRY0esbVNlEm9mMyKyI+wiIBWKuUxaM0xNkaAPM+Z9IJzZ+VLjxTUKW9STR0HRzGjKkks/Ijrd/H8egCEYUUoHASwyt815bD4KrdAmOCP5KACgU9Iogn4fPve6s21JeHPa9KQ0CsU8JZXVEQ4aibci+i8khccC3k1PxXwUAhGK306mp/fBCDn9nMtrDODSuo+ozciW8FEwsxUeKxCrB8BIxScixEJ+TJoXyZzWKMwbRGkUivlGWjNM0KGAz9KsLdNTuDKNoiceLLofkBcUzSwMWFJQMPON5v+XNWc47UepqCcRqRApYnqSLxQhKCbngUaRa2I0hkLRDqSyOUQsjcIuKDyZnvQcBjvDuP6CZZYGUgzhl2imRuHJRkBEMSL6RyK6zXy+lohe2dihtQeyoEg7bIJWy1NpBS07l4TJSfZhzGnTk7mS0lRHP8U8I5XVEQ4YpXxEpVhRFLDTo0axcWk33nfFelvdJzeESattfBQSXweQAfBi8/lhAP/SkBG1GaVMT6K2kRweKxNwqJ7A/DA96TklKBTzi1RWRyToQziQ1yjkfhRAaR+FKC7qhVC7ObMlVjPzZwBkAYCZk3DPrJ5zCC3CSJpx1ygiRWzy802jmDHPh86Mg6dm8LfffRzjUvllhWKuksrmEAmYPgqH6Ska9MNHpTWKrJSgV452FhQZIorCLLFBRKtRfaLdrELYAWMhf0EJDzl22g1RVz4emh8ahZYzzpWeY9zz9HHc9eRRfOiH21s8KoWi8aRMZ3bQ77MEghAURGTUeypjenJrY+CG5cxuoqDwmnD3cQC/BLCMiL4N4CIAb2vUoNoJERLbEQ4UOI+SZUxPQbMhesxmepq7GoXQuDQ9Z5mf7nn6BJi5rN1VoZjNpLI59MV90HJsTeBBqQFRZ5nCgBnNu+kp3K6Cgpl/TUSPAbgQhsnp75h5pKEjaxMyuo6AjxAO+gtUPWFqiRURFD6f0Cjmh+lJaFx6jjGezGtOGb15GaQKRStIazrCQT980hwhm5LKFQbM6N41inAb5lHIRACMme/ZQERg5t83Zljtg1AJQ36q2EchkIsDTs3hwnmWRpFjm28ioylBoZjbpE0fhaw3ByUNwYvpKezVme1vfp8br/0oPg3gDQB2AhCjYwBzXlBkdbZanToFRTkfhUDkVnRHg01NkqmVRFrDH/aM4IozF3naX4TF5pgxlpA0innSuEkxe9g/ksCy3ljdCliKqCeWOiXIGkJHGUGRnSNRT9cBWM/M1zDzn5p/f9bAcbUNaS3fE9tZwqOYj+K9l63Fwq588S+hUfTGQ021K9bKh3/8FG781qPYMzztaX+bRpHMaxSz6Tsr5j6Hx2bw0s/eh8/es6tuxzQEhd+mFcg+io4SPgpNz9mKCJYj78xu3qLTq6DYC6B0XvkcRYStBQO+ApugCIOTTUsA8N7L1uHhD19mPRcaxYJYcFatrp8+OgnAeyN3ISiYgdGE3fSkULQLp6aNa/MPe+rnZk1p+cxsgeyjiIUClk/TiZhXKnVmt43piYi+CMPENAOjzPgWSGGxzPy3jR1e6xHRCG4+islkFkQom3K/YagLK/piWN4bw8HRmUYOt64ITWDSY0ivHD58ajqDeMiPREZvqtNNMXf42fajGJ5M4x0Xr6rbMR8/OIbdpoZcrwoCWTPKLxLwI+3PX+tBm6DwW1VlC95vWiraOY+inI9im/n/UTiaCs0XMmb54FDAV/DDTKY0dIQDVnRTMTat7MXvPvgyfOKnO5veFL0c7/rmNlx6+iBu2FzYZ1yothNJb4JCkwTCqUQGp/XHsXckoTQKRVXc9J3HAQBvv2hl3cKrX/Wff7Qe16uCgFhQhYM+xHSp1pukIcTC/qIaRVrXC/YvRcBHIGqjqCdmvt25jYgWAFjGzPMikyqr5xAMkKszezKVRVfEu0UuHPC3lb3+8NgMfv30CUylsq6CQnTtGp/xJigyjhXaQGcYe0cSSGtG28a7njyKV5y5qGyUmEIhc3gsiWW9sbofVySI1opYCIUDfviieYEm+yjioQDSmqF5OB3o1vs9ahREhJC/cOHaSLwWBbyPiLqIqBfAkwC+TkT/VuuHE9GVRLSLiPYQ0c0ur59ORA8SUZqIPlDr51WD6H1rCAr7RDiZ1Kw2h14Im36OXJvUQnrweaMF+VOHJ1xXVxVrFI4bb2FXxDxODruHp/F3dzyB3zw7XMuQFfOQHUcm6nIcZ4/p+mkUZv+JgM82H4QcpicAruYnsSATjY68EAr4mrro9OrM7mbmSQCvBvB1Zj4fwGVl3lMSIvID+BKAqwBsAHADEW1w7DYK4G8BfLaWz6oFOerJqepNpbLoilagUQSbnygj89avPYLvbT0IABifyeDHjxud9xIZ3RbZlNZ0nPXxX+U1iqS3ek1ZzV6vZtBs+ZrRcpYDMTWLwoMVrWVBzLi3dhytj6Bw5jBpdRIUYmUf8vvQGbE3LhOIgBc389P9u08CADYMdXv+zGZbJ7wKigARDQF4PYCf1emzNwPYw8x7mTkD4A4A18o7MPMwM2+FWYywFYgm6a7O7JRWsekJaE24KDPjD3tG8PjBcQDA5+/djQf3nsJrz18KAHjy8Li170Qya4v5nvBoesrm2BYeKIRoRsthwhQ2qgS5witiAt5/qj4BIGKxIqiXZi/7KLqKCgrj3k+45FL86LEjOHNxF9Yv6vT8mWEXn2kj8Soo/hnAr2BM7FuJ6DQAu2v87CUwWqsKDpvbqoKIbiSibUS07eTJkzUOLY/ImAz6fRifyeLf7tmFnz5ptAufTGbRVaHpCWhu/LMgreWg5dgSAFMpDUNdEdzy6hfAR4Yd2NrX4XCvxJktN3ES5yat5Sw/R7ZOdmHF3EbPMRLm6rteASCjCXsd08ZoFPn5QPZR5E1P9ns/l2M8dWQCL1s/WNFnhlzC9RuJJ0HBzD9g5o3M/B7z+V5mfk2Nn+1mkKv6l2Pm25h5EzNvGhgYqGFYdqzwWHOS/8Jv9uDf730OQOWmp3wLw8b+wN96cD9+YpqVBCLEVQiKjJ5DOOhHwO/DQGcYxyckQWEKsrdcuALnr1jgyZmt5xg5BiLB/CUl1PCMlrNqPymNQuEFOTmtXgurEadGUadOjEKjcPoo5Egt0ZPGKSjEe+NlQuydGM7sNku4I6LPmM7sIBFtIaIRInpzjZ99GMAy6flSAEdrPGbdEaYnWY30EyGXY0ylK3dmA401PTEzPnrnTrz3e0/YtosbT6i+6axujWdRdxTHJlLWvsI3cfHafiyIBW0F/oohzHIRqaaTaNiS0SWNQuVUKDwg5+7UT6OwC4p6aRRCkIUD/qILx2gRZ7bw2ckLLC+0qzP7CtOZ/UoYE/w6AB+s8bO3AlhLRKuIKATgerRhrobIo0hJ0nsqpSGR0cCMKn0UjVsJFLPniqq1ok2j3FFrqCuC45KgEOOLBP3ojoYwWYmgCMqmJ+PcpLO65aNQ3e8UXpB9ZPW6X05N201Pep2020wRjUImXsSZnZLutUpoto/C63JYzIZXA/guM4/WmgDDzBoR3QTD9+EH8DVm3klE7zZfv5WIFsFI+usCkCOi9wLYYAqtpiAm1GeOTQEAlvfGMDKdxqQ58XZFK9Aogo3XKB47MOa6Xdx4eY0iJ2kUEfzh+Xw5A7GCiwR86IkFC1ZibgiTklwgsdNFo6jXKk4xtxELm85wwNJwa+WU4zqul7/McmYHfEWrJBfzUeQrUFeuUbSjM/unRPQsgE0AthDRAIBUmfeUhZnvZuZ1zLyamf/V3HYrM99qPj7OzEuZuYuZe8zHTRMSgHERBP0+vOLMhQCAl58xiJmMjjHzouusSKNovI9iuxm91N8Rsm2fcvFRhCRBMZXSrNfEKicc9KOvI4RkVi9afkAgNIqwdMF3yT4KZXpSVIC4Xvs7w3XTKJy+tlQ2VxcNNyMJimIUy6NIZQtNtl5oV2f2zQBeBGATM2cBJOAIZZ2rpLI6YiE/3vTCFXj+U1djZV8cQD5KqBrTUyN/YBGhlEjbb6686cnUKDTdGs9Qt5EYJ8xPlkYR9KE/buRCOEMLnWTNG05WoWPhfN185cxWVIK4XvvqWHHZrQ1xsg55PbLpqRgij8J5X1ZremrXzOwggLcA+B4R/RDAOwGcauTA2oGMlkNWZysiwe8jy9R0eMzwBVRkerI0isb5KMSEnczqttpL4sbLaDlktBzS2Xxy3ICZGDc8ZQiKlOSc6+80NJOR6dIt0rNaoY9ClF1OazlMmI2MVHiswgtiUh/oDNctSdOtu+Szxybx0N7aprK86an4ZB8J+kAEJIs4s8NzxJn9XwDOB/Cf5t955rY5S07KOZBbnXaGDQ3iyLihUVRlemrgDywLB3n1IjsHE2nNDI81xtMhQvfM/VOSRtHnUaMQ5Tui0gUviimmlUahqBCRRd3fEa6jRqHB6Vp97a0P4vrbHqrpuBmphEcxiAjxUMDKDRHktfdKndl+z+X/64HX5fAFzHy29Pw3RPRkIwbULnx+y26r3EVc6jchwt/ypqdKNIrGZ2bLE/FUOotuswyCLCim05rNmW2pxZl86KwYb1+HN40ioxWanoJ+QjjgQyKtWU48TfkoFB6YTGoI+g0Nvl73y3Raw0BHGMNThdeyW7E+rzj7SXztbZswmSzUXqKhwgqyVnhshT6Ks5Z04X8eO4yt+0dxwcreaoZdEV41Cp2IVosnZmb2nC7a8/zJaZyYNC4ouYNd3vRUhUZhRT013vQE2IWDbJ9NZDSbM1toTGKFktIkH0WHqVGUiXwSGoUsKIgI4YDfdmOqqCeFFyaSWXRHQ4gE/NBzXJcFxlQqa5lZnXgJAS+G0ArEwuvS0xfiunMLi0zEXXpS5H0UlZmerr9gOXrjIXzjj/urGHHleF0OfwDAb4lor/l8JYC3N2REbYKcGSo61AF55/WRsRlEgj7PXamA5kQ92U1PsqCwm56MhDvjezlD9/IXvh9+H6EjHMBJl1WYjKisG3Gcj1DAhxOT+QA5ZXpSeGEimUFPLGgtPFJaDh0ey3C7wWyYkoWg8BEgr1nGZjJYEA8VeXdpMnoOREafiFJEgoXmolSVpqdoyI+1gx0YKXNf1guvZ74PwFkwKrluAfAMgPqUdGxT5NV4zMX0VGlBQKA5UU+aztbqRBYOzseyRiE0JhEBktJ0BP1kqeL9HaGyGoWVcOfoHx7y+2xCRjmzFV4Yn8miJxrMa+E1OrTTZmDKgKkhL4jZhcLYjLcKycWOHQ74yjZXiob8BVFWwvQUraJHSzjYvAqyXgXFR838hS4AlwO4FXPcmW3TKCRBEQ/5IRYOlZTvAJpT6ymby1k3gdMv0WeumKZSGrJ6vtJryO+D30eWWpzO5mw2076OcNmVi2ZpFPYLPhz02YSM0igUXhifyaInFqxbAIhYKPWbGoXw3QlGE9WbnkT1hnJEg/6CCK5qNQrAsFA0q2y/Zx+F+f8aALcy850AqtPTZgk2jSJst7t3m1pFJQUBASO8NuCjhvooNJ3RIwSFJOwyWs5yTItMayG4iAixkN+Kkkppui1crzsaLNs3262EB2Bv3hIO+OrWVUwxt7F8FML0VOOEaIXbmhpFj+PeHfNQfaAYRs+a8hN9NFhcoyiVrFeMZpbx8Dq6I0T03zD6UdxNROEK3jsrkQWFrFEAsNoyVmp6AmDlFTSKrJ6zGr7I3yGr5yzHtIhgkuO+Y6G8/dSIiMq/Fg2VD8XLC4pCH4WgvyNc0CVQoXBjfCaD7mj9NApxLwgfRX1NT7qniT7ich+lNB2hgA++KiKumtm8yOtk/3oYNZmuZOZxAL2ovShg2yIcXwJZowCAFWZ2dqWmJ0DYFRuoUeTY0nimHBrFgngIAR9ZGdjyxR0LBTAj+SjkCT8WLN4YXpB1qfUE5AWF30dYEA+q8FhFWbJ6DomMbpqe6hNSbpmeOoqYnmoQFKJnTTkM05P9exhm3urW3OGgr2m9bbyW8Jhh5h8x827z+TFmvqexQ2sdzhowMcfkt8LUKGKhau2KjY16CgV86IoEcEpq1JLRcwj7jSJ/x80oJHm1Hw36raxROSIKML5nuVpPbuGxQF4YdUeDCPp9Kjx2npLVc7j1d897MiGJMjSyj6J201O+iGc44ENnOGDLm6jF9CR61pSjmOmpGv8EYFonGtzbRjCnzUfVMpW22+MDDkfVij5DULiVBChHVyTouWNcNWR1RsDnw+rBDuw+MS1tNy7mnljICleVV0HxcF5rSGs5u0YRDpStiZNxKeEBAGsHjfaOfh8h6PMpZ/Y85TsPH8Qtv3gWX31gX9l9RfG+7mgQ4WC9NArjmJ3hIP78RSvw8jMW2rTfcpUHSpH2qlG4mJ6SNQmK9jM9zSumywiAoe4ogPJJaG4MdoXL5iTUgpbLIegnnL6oE8+dmAKbXbwyZhXcBbGgq+kpKpUXSDk1iqAfWZ1LOs40qyig/ZJ68eo+AMDJqTT8PlLO7HmKCKDwplEY+/bEQnWrjyYWZ52RAD5yzQZcsm7ANkH/7rmTuPOJI1j94bux9+R0scO44lWjiJgaBUud9QyNokrTk1lBdjKVxSd+urOhJT2UoHBh2qUBuszqQcNHceFpfRUfe6CjwYJCZwT8hHULOzE2k7U+K6uzKShCVi8NpzCwTE8OjSLqyNx2o1jU03krFliPA35Szux5ilXmwkMYqaxRiOswVcPKOaPl8O2HD2LNYIflvwPypuP3vHQ1gn4f/u6OJ6DnuKCNcDnkSsyliLpoR6lsrnqNwjw3f9wzgq//YT8eP+Tei6YeVO6NnQd40Sj+ePOlWNgVqfjYA52GoGDmsgk61ZDRcwj4fFi/0DD57DoxhcGuiLXqkaM9QjZndt705LSbioTDmayGbrhHelmZ2Y6LPhL04wNXrMOy3hjufOKo0ijmKV5KcQtEKHZXJGC1IK5Fo3hw7ynsG0ng1jefZ4suEhP3ou4IuqNBy7yaqXAxk9Fz6PHkozD2SWZ0W9hvpXWeBEI4CW1pzmoURHQlEe0ioj1EdLPL60REXzBf305E5zVjXFNlNAoAWNwTraqI2EBn2FAXXYqG1QNNZwT9hJX9+b4ZzGxkYvsJPfH8RG83PUnhsQ6ba7HuXDJCo3DLML3p0rW49pwlCPhI+SjmKUJQ+DwsjoSDNhry16Ur5LgZ0bTWXDwJRBWBSMBvE2CVRuZ5TbgTCy7Z35fSchWXGBeIe1TMJeUiE2uhZYKCiPwAvgTgKgAbANxARBscu10FYK35dyOalA2e8CAoqkXEcR8ac+9tXStaLoeA32flfiQzuuU/EKYnQcjmzA4U1Si8mJ60InkUMkG/T3W4m6cIQeGlUZDc36Ee4bFyW1UZscIPB322hVGl12ja42QfcZTKAQxNqVrTk3hfMzSKVpqeNgPYw8x7AYCI7oDRNe9paZ9rAXyTDe/PQ0TUQ0RDzHyskQMTPopb33y+1f2tXgx2Gsd75RcfwCevPRM5Bt764pV1OTYzG74IHyESMtXcrG5T+3tiskYhCQPT0ZbLMWbSuq2+lTeNgq3PKEbATyo8dp4ybfq/vAmKfLZywG9oILWEx4r7uSPiFBR+67983WYrvEblkv2lEJ8nT+hTKa2qfCwgr1EIQVEuhL0WWikolgA4JD0/DOCFHvZZAqBAUBDRjTC0DixfvrymgYlSFpes67dNmPVALnP80Tt3AgDecMGyqlcVMiL3I+D3IeT3wUfGDSZWSE6NwtW8lNUxndFsN1Wxfr8yGT1nKyToZpYLqPDYecvEjPdVr1y22+8j9MSCOGo2CquG6ZQGHxWaRYWmLDoxCrIVai+JjGZ1wSxFVPJLCCaSWfREq6uG5BQUyQbmVLTSR+FmrHTOIl72MTYy38bMm5h508DAQE0DS0utQOvNYFdhPXwRrlormiUoCESEqJlRLTdWWSfZaZ3ObAAYmUqD2a6mxyQzVjGSGR3RoB9Bnw8r+2L43OvOLtgn6FfhsfMVMZl50QzSWs6oi+Y3KrKuHezA7uHKQlZlptMaOsKBguARsTgzBEX+Xq9E62VmzGR0T8m3UUnLBwwT13Ras0ViVUK4wPTUOI2ilYLiMIBl0vOlAI5WsU/dSWv21XE96YoE8eU/32TbdqSG1ZKMpTn4RPnwgN305PdhZX8cQVOdt/shDGEgmgy5axSlBUUsFIDPR7jvgy9zbdziV87seUvePOLN9CSv8NcMdmK3lBNUKYZ5p3AyjlqCwt5XppI2AGnNqOLgxfIQcZieRLOk7mi9TE9z0JkNYCuAtUS0iohCAK4HcJdjn7sA/LkZ/XQhgIlG+yeAwqJ49ebyDQut8FWgfoJCTMLCrhsN+ZDK6Jb/IBgwtt//oUvxiT87E71So5a4KQyGpwztpkPSKKKSWaoYM9nyqyrlzJ6/iMgjW8RPVsfH79xRUKnAGXW3drADYzNZW4JrRst5FhzT6aztehaI6zXqMD1VUhZDTM5xLxpF0O7Mzpcqqc30JAROqfuzVlomKJhZA3ATjGKDzwD4PjPvJKJ3E9G7zd3uBrAXwB4AXwbwnmaMzWs1yFqQTVC12F9lRFMgUXJEOKjzGkU+btzpQBfCQLR/tWsUZh5FiWiwZEaztYx1I+BTzuz5SC7HVsi5bHp66sgEbn/wAB7ZN2rb37lQW7uwAwCskjSansO6f/wFPv3LXZ4+fzqtFTiyAVmjsDuzS0U9fnHLbmx55kTBvjEvPoqQ3UcxnswnFlZDM/MoWppwx8x3wxAG8rZbpccM4K+bPS6vtVtqQXZqHxnzJii++8hBDHSEcdmGha6vC40iaJrMhI8i78wubkqLWaYnQ6OQfRTihiql2nqx0wb8ypk9H5lKaxCLf3kyE9FIztIwaUc/FFEv7J6nj2PvyDQuXtMPALhj60HcfNXpZT9/OqW5rtpFuKoRHpu/dhMlbP2f+/VzAID9t1wDQNYovDuzxTkQE3ylfW0E4hyJBMW5GvXUthhx0Y0zPQH5MFkAODrhTVD8w4+eApC/SJ3kTU/5FqfJbN6ZHSwh/MQkf9JFo/D7COGAr2Ro40xGL3vBB/1Ut1aomp6Dj6iqOv6K5iJPYPJiQ6zGnaWynQu1hV1hdIYD+Pof9gOA5eNb5LEywlRaw1Kz4rPMmoEOLOqKmMUH859XroSPjBAqzlYEblg+CtO0JSLBemLVahTGmIVpea76KNoWo8x2g01PpkYx1B3ByFT1lStlxCQsNAfRelGs2MIlskejlo/CFBQOVbpcqfFkRi8ox+4k4POBGbYS7tVyzRcewK2/f77m4ygajzyByaanGTMMvVCjsJueiMgyPwHAjiMTAAwTqhemU1pBsh0AXHHmIjz04ZcjHPDbMqu9JNx+4AdPYiyRsb6DF40iHDBC1sV9NFEn05NgzpbwaFeaYXq6aE0/Xry6DxuXdmMmW/7C9FJWwNIofJJGIZueSnyneIHpyX7xxkIBJDPFxzCT1TyYngwBVqtDm5mx5+Q09p5M1HQcRXMQE5hcTwnIr9ydWdduPsIlC/IagRAUbuVi3JhOl89zkDUKkUflJCctcH746GH85IkjeY3CgzObiBAPBazj1ywoHNngSqNoMl6rQdbC+kWd+M67LkRvPOxpJeClh4WYgANS+KvsoyhVj8bpzI47VGlR0rgYyYzuyZkN1K5RzGR06Dm2egwo2hshHHrjIZugKGp6yhaWxJAjnLabgsLLxHjv0ycwk9Fdo55kZG07kdFcI6qc139/R9jSDrwk3AGGiUp87/GZLOIhv1X4sFKcwrTW5k6lUILCBa+1W+qB3Kv6t88OF9UcxmbKT4r5mk7upqdSF6RYEU0ks4gG/QXNmkIBX8kKnl6d2QBqdmgL510ltmRF6xATel88ZJvcRVmPcqYnAHj/FeutvCZROt/LAusvvrkNQKEp1Ynsk2R2F0LOsNm0lrO0Ay/hsYAhUBKS6alabQIwFn5yDqHSKJpMo/MoZGIhP2ayOu7ffRJv/8ZWfPE3e1z3G/fQ01cIGWF6ilnObFGHqbjjN+j3WQLGbXUUDviKFmbL5Yzs1GgZO604fq0ObVHkrZoOg4rmIyb03ngIGS3fZljY972Ynlb1x3HHjRfatpUz2cqaSq5MzoXz8yZdtNWUQ/NJZXVLo/ASHgvAND0JjSJTdQ4FYJiy5HE3MupJCQoXnOF5jSQa8oMZOGaW8dhTpFSB0ChKZYtnnQl3RfIoio7FXFW5FSkLBXxFO9yJG6isRuGrk0ZhmuHK9Q1RtAdJc0Lv6zAmRWEiSRT1Ubj7CJ0O43IraHF9bBjqwvUXlK7/5ixmOZYoFBRCo3jf5esAGN9DaBRe/SXxsN/qJDmSyFjnpFo6JF+il4KL1aIEhQvNcGYLRKSQmDyL+QGERlFKhdZydhNTxBRCwpYfLKFRAHlNwu0zjP687heiuGGb5cwWq71JJShmBeL6EAUpxYRmObOzLj4KF43euYApZ3oSk/jbL1qJ7jIhqOJ+F9ewmwYvrv/lZqhtKqsjmTVqnHkt9yNrFKem0+jvKKz9Vglydeuszg2rfKAEhQtuNtJG4czWLPZDi/aQpUoS56Oe8hoFkG9sUs5pJsayIF64yinlzBY3bLlVlTA91ZqdLb7PdFo5s2cD4voQk5q4loWt3nldFdPoZZNoXOrIWAyrvLgHs5DQKERuhptPUGg+8XAAAR8hmdWRSGsFgR+lkPu+nJrOoM/lXqsEZxuERvkplKBwoRl5FAJh1xfN54sJijFzhVNqMpbLiQN2BzVQvg2l2H/ZgmjBa4Yz231seY2i9A2ZNz2VXvWcmEzhfd97oqizWmhIqWxO1Y6aBQhBsbzP6LooQrCnhY/CxUnsanqSJuShnmh5jaKCiCSxMFxoCYriGkU44EMk6EcqmzODOLznLcfDfkynNcxkNCSzOvo7a9MoFvcY96pwpiuNook0NerJnPhFwbOs5r7aFiscvYRTTi4zDuQzQYWpply7RnGNLXPJYi3lzJ7xGEsuBFi56pzv//6T+NHjR/DIvlOur8smJ+WnaE9GpQJ+M1kdAR9hSY8xCYuopZmSPorCa0neNtQdQUbPlVx0iIWGN0FhXJsLzRpsrqYnqU9GxPT/JdLl84dk4qEAZtIaTk0bx69Vo3AmHSpB0SSYuammJ3GRjSaMmydd5IcWk32pHISsI+opb3oyfRRlBMWYeXMvLaJRFHNmW6anMjeMEL7FjiN4YM8IgLxz3smklFOiIp/aj0cPjOK8T/4av9p5HEA+x2bALFszbObquDmzNd2Iiiqn0QuTS6mKqYkqTE+dkSBiIT9G3ZzZosJB0I9I0GdGPemecygAIzoqkdGtCgi1+iiEoBEO8mILzVpRgsKBWO02y/QUsQSF0CjcJ1GxvVTEkFVO3NQoRA3+k9Np+H3l+2uIMSxb4KZR1O7MFue0VP/jh/bmtYiJIrkjcuiiWxijorUcHDX6wd/xyEEAoleJH12RAMIBn2R6Kky4y0/G5QRF1Dp2MRKWRlF+0ScWhqGA0QWylDM7HPBZOUqJTGUaRYc5lsNjxjmqNerJ+f5KemlUghIUDvKN3ZuXcAfkTU/OWG2BMCuV0iisPApTcxAVao+OJ0tWjhWIi8zN9FRKoxCruvKCwni9lKD40A+3W+Mulo1uMz2ppLu2Q6TJPH1sEoDoVWJ0mBvsCuPEZBrMbK2C5eshf/+VvpYsjaKEoBA+kEo0irDZV97dR2E3PaWyOcykdU91ngRC+zh4SgiK2jSK1QNGDay1g8Z/ZXpqEpYdssHVYwWxoHHhCJuliOhxIi6AUhFDoim8KDMuel6cmEyX9U8AwGn9hrNxgUsoYSkfhWjBWC7hztIoipgLcjnGwdEZ3LB5Ofw+wnjSPclwMpm1vk+jTU/f33YIh8wVssIbQss7MZlGMqMjmdEsf9lgZwTDUymrMxxgN0XKq/ZSiEQ1tySz/SMJfPn3eyWNwruPIhTwoTceco16EpGJkaDfyFHKmBpFJVFP5j3y86eM/mu1+ihW9MVx3wdeivdfsR5A7TlKxVBlxh14vVDrRdQRmVTMlCIEhV4iq9mpUXSGA9YEXy7iCQC+/+4X4fhEqqC3MGCs8LQcQ89xgQnLMj2VEa6RYGnTk9BMOsJ+9ESDVhilk6mUhkXdERwcnWloiGwqq1saztaPXNawz5lryML7p9uPYiKZtbTNwc4wdp2YslVotWkUWW+mJ3E8N9PTu765DbuHp/Gqc5cgFPB5qqWU1yj86ImFXBcHskYRDvrM6KXqNIpnj0/hr1662taOuFpW9sdxwBzvnDI9EVEvEf2aiHab/xcU2e9rRDRMRDuaNbZUtrmmJ6cDOKPlXIt7Cf9DKY1Cc/gohKoPeGuO0t8RxllLul1fEzeSm/lpxqszu4zpyeoWFgqgOxa0OoA5mU5rVrx7I6OehDlQROkMT6Wwf2R+VKw9Op7EX9y+1VMxSieTZr2wJT1RfOiH27F1/5hNUJycTNsqtLr6KIqYns5e1gMgLygSLoJCaANPH530ZHYyPi+vUfRE3a892dpgaRTpSjWK/L4fesV6z+8rR7BOyazFaJXp6WYAW5h5LYAt5nM3vgHgymYNCpA1iiYl3LmsKL6/7RBu/+N+2zbN0ihKmZ4Ki/+JBkmnL+p0fY9X8o7owhszmdHho/LCVbxerMqlHKXSEw3aopuc+wknXil/R62MJeymr/9997N4z7cfa9jntRP/+xfP4t5nhm1tP70ymTKK3X1QmgjF7zTYFcFUWsPJabNKcchvy6Mop9H/6K9ejN3/epW1KEm6mJ6E5rrrxJRnQdETCyEW8mNJT8Qo3Ofi+3LmUSQyGtJariKNQmjjSxdEXTX3ahGm2LkmKK4FcLv5+HYA17ntxMy/BzDq9lqj8Bp1US9E9ziZr9y/r0BQZDxoFG7akFB11y/sqmmc5TQK4awsRTmNQo6e6i5heppOa1b2uNux0pqORw/UftnIuQCprI7hqZQ1wc11hieNyKRUkSTLUkwmNXRFA7ju3CX4n796MQDg0QNjAPINu4RmtiAesplLymkUfh8h6Pehy4zoc/PpyaZRr6GrHeEAHvyHl+OKDYvQEfYjq7Nr5z0fGZUPokE/Rk2/YiVRT+sWdqIzHMCnX7PR83u8EJyjgmIhMx8DAPP/YK0HJKIbiWgbEW07efJk1cdJN9n0BBReaMNTqYK+vV40irSmIxTw2SZsEeZ3+lC9NIrCCzGZ1cqanYC88C0WZiuXXOiJhVyd2cyMRFpDb6y4oPjK/fvwmv96sGYzkRz5cuDUDCaT2rzpgXHcFBQijLMSptJZKzT7HNNU9CdrjT7Xg6bJcP8p47fpi4dswQ1efRQiMs4puJnZMhUC+XBUL3RHg/D5yBIuzgZGIr+KiBAJ+iyzVyV5FAviITz1iVfgIrPvd72wkllnWx4FEd1LRDtc/q5txOcx823MvImZNw0MDFR9nGY7s4F86QthvxRhd0fHk1h588/x++dOSs5sdm2qAhg3WcQx7oi5Mlsz2OH2Fs+IKDC3Sd5LLwogrx4XLwWSL9ncHQ265lEkszpybPT0Nhz1heO564mjAOw5GdUgItEAYN9IApOp7LwoGzKRzOKAGb55ZNxbP3eZyaSGLrMmmd9H2PqRy/BfbzofQF6j2GsK8d54yBEe6+3+iwT96AgHMOIQFJMpzRYyW02/h7ygsC/W0tl8DSrZCV2JRtEoGu2jaFjUEzMXDRMhohNENMTMx4hoCMBwo8ZRKVYjkgpWCbXS3xnGkfEk+jvDSJg3aCKjYZuprn9v2yFblrKWY9e8CKOYmv2i/dzrz8YvdhyzQl+rxZrki5ievJRZ9vkIIX/xMNt83LsfPbEgJlNaQZSVXJYh7FJ/aveJKew6MQUAeHjfKK7fXLq8tBtpTcf4TNamUYxMpy2fyVRKQ2+NYY3tjBzxc2SsCkGRyuK0gfz1NiDVMxKCYt9Ju+mJmUFEnvMoAKC/I4SRabvWedws1//GFy5HPOSv6vcXPgenVi/XoJIFRSU+ikYhNAqtxl4vxWiV6ekuAG81H78VwJ0tGkcBIjxVqM7NYI2ZNCPHVOcYSJkrIz+RbaVQzPyUyuYsR55gWW8MN16yumbHWbhEaGvSo0YBoKgWAORr/8RCAasktTPxSQjyznAA4aC/IBzwZ9uPgQjYvLIXD1epUXzsJzvxwk9twcHRGata72giYyX6zXXzk8icXj0Qx+FqBEUyW7TK8YJYCAEfYZ/QKGIhMOej+irR6Ps6wjjl0CiOTRjjfdW5S/CRazZYCWmVIDK5nRpFKptvkWzTKCowbzWKoHm+5loJj1sAXE5EuwFcbj4HES0morvFTkT0XQAPAlhPRIeJ6J2NHtiUJSiat0oQZiFnTPWUeaES2Z3YxRzaqaxumZrqTdhfypmtea6gGQ6W0ihMbSEUsGrgyOafH2w7hJd99j5jHxeNgpnxs+1HsXllLy7fsBBHJ1IFpgkv3GtG+tz5xFEs7IqgMxLAodEZS0DPxvpSz52YwlGPZiTRN/3c5QtwYipVVLC7wcyYSmmWs9mJz0cY6Azn+2hb0Wv2SrJegkkMjcL++4oAiFoS2USk1LSrj0LUUcuPr5LqsY1CWBjmVB4FM59i5pcz81rz/6i5/SgzXy3tdwMzDzFzkJmXMvNXGz22qZQGIqCjiT/+alNNd8asixWNj8hWA0ovkn3ZyKq3pTSKGbPom6fjBPzly5WH/eg3JxB5Ivjy/Xutx/Gw3yh9Lk1iR8aTeP5kAledtQhnLjaivHYenfQ0LhnZrt0VCaAvHrKcr8DsFBRX/Pvv8eJbfoMHnz9Vtsy7KNp34Wl9YIa1+vdCMqtDy3HJvB1hfgr6CZ3mpCwWIJWZnsIFpidhEfCSN1SMoj4K6f6SW5967ZfdSOZqeGzbMpXS0BEOwOexY1U9EBrFaCID+WOnJY0im8ublZx2yI/fuQMP7B5prEYhQltdciCS2fqYnhIZzcqkFXX6ZUEh9xfuDAfNQoX5cyGEwtnLenDm4m5z24SncQmyeg4HR2csv0jQb5R02DeSt9vPZtPTDV9+CJ/51S7rec4lOGJ4KoWeWBAvMJMvdx2f8nx8oQG6lYERiNLY8XDACrtOWYLCu+mpvyOMsZmMTfAJP1ItFoG8RuEUFHnTk2zS8tovu5HM1fDYtmUylS2qNjeKZb0xhAM+vO/ydTbHmJiQfETI6mw5jGUfxWQqi9sfPICfP3WsoRqFlUfhciF6jXoSxymVmS1u0v64Gf4ohTrKk0887C+oP/X00Un4CDh9URe6Y0EsXRCtWKM4cGoGWo7xmddsxG1vOR8f/9Mz0RsP2wTWbNQoZH702BEAhpnotA/fjU/d/Yzt9eGpNAY7w1jVH0fAR3j2+FTRSDsnJ8yw2kXdhaXqBUvN6sTxUMCqDyZKcVQSnt7fGQYzMCr5sSZTGiJBX00Js0KjmHEIiqQUtCEnsLaDRpEXFHPLR9G2TKW0pvonAONH3vUvV+F1m5bZHGNywpmeY8uHIfsoRBXKYxPJBmsUxUNbjRvIq4/CX1RQzKTzAqcrGkDI77OZFnqieY2iw/JR5LWTp49NYlV/3DKDnTbQUXFBv70np833xnHFmYuwYXFXgb17tmkUzuCHkek0Dp6asRIKv3z/PtvrhqCIIBTwob8jjP+673nc8OWHPFXqPWZGHTlbdMqIDorJrG5NsiI0Oq3l4PeRVa+sFAOmH0uYygCjNH2tC71i5UGS2Zx1D8pRke3ko1AaRZOYShWP2GgG8gUoag3lzBs94qJRCNv50XFTUDSo6m0xjYKZTWd2BaanIiU8piWNgojQ53BWMvLfO25GPclC55ljkzhjKJ+B3hUJVFwLSqyIl0jNm5w9xJulUQxPpvAXt2+1opCqxRnmCQBHJ5JWUh1gt8efnExZNcI2LjXMT1v3j+ELW3bjvl3D1vXohghPdXZekxFl7EcTGet6l3tTeM1hWtFnHEf2H4nyIbUQDvgQ8FGBYExl3X1xXgpuNhoiQsBHSlA0GmbGgVMJPHdiuqmhsU7k2jRixSfan7ppFCIx6th4qmiv4XpQzEeR1nLIcfmCgPnjlGqpajdhGc7KvKBIStpMLGQ3PWX1HI6OJ235Ip2RgBU55hUhnBdI/pACjaJOPTC+/fABvO3rjxR9/aN37sC9zwzjd7uqrzQA2Asnvu/ydQAMX4KY1AFg636j5Mm+kQSOT6Ys89CnXv0C3PP3l+Dspd247fd78bavb8U3H9xf9LOOTaQQD/ktJ7Ubcr8TYWqdEf2zK7iGLUExYhcUtTiyAWPSdav3ZGjO+bF99a2b8OcvWlHTZ9WToN+nTE+NRssxLv/332M0kWmtRiGpsaIonVglCGe2XGpc3CRTaQ0j0+mG9dEQn51yTPJJj93tBE4HtMx0WrNpVM7wR7mYIJFRIytjOj+PT6SQ43yzecAQupWaiU5NZ9ATC9oKK8pdxHpiwYJj3vv0iaqywD/y4x24b9dJ1wqtzIzfPGvkofpK5MDoOcbX/7CvpIlNTHj/8cZzcYOZgDaaSNs0CpEv8am7n0E06MebLzT26+8IY93CTmxc2mPt+/8ePljUZ3F8MomF3ZGSeTtyq11hahVaTzrrvQ1xLBTAwq4w9p/Kf3c5K7wWOsKBAo0imbUnlr78jIX452vPqvmz6kXQT2XbDFeLEhQmQb8P6xcaDqrWmp7yF6JY3Yoks2gJjQIwEu4apVFEg374qLCst9fudgIjj6JYS1XNJigXdUdxaDRpmTqEoBC/jyx0RI6AbDLqjAQrLrkxmsgUZF1fevog/vplq/GlN56H3nioYGL/i29uw/W3PeT5M5zsPFIYmXV8MmWtDku1e/2Xnz+NT/z0aXz5/r3I6jkcGU8WTOJTUg2tBbEgiIARh0Yxlsjgj3tG8OunT+CvL11jVR0WCBMUAOwZnrZyLZwcm0iV9E8AeZt+VyRgadAJS6PQKwrIWNkXr7tGARj34Uza6aPQrdbF7Ugo4FOmp2ZwxpAQFK0zPbmVDhErQsv0JKmXYzMZW4mERvkoiMh1he61u50gUiKPIpHWbc78zasWYCKZtVpqprI6LjytF0/90ysA2COojpoZuU6NAqisZ8XIdNqKuBL0xEL44CtOxzUbh7BmoANPF4mkqrQtqxCub/zKw/jGH+wO5YOOVbIbY4kMvvXgAQBGqY1P3f0MLrrlN1j3j7/AF7bszo8rlRcUAb/Rb+FUIo1jEyks6oqgIxzA6EwG33nkIPo7wnjHRasKPuvc5UbLGFHcr1gNqOMTKSzsKi0oAOBnf3Mx7vn7l1jnQHZmV7LYWdUft/sokvWJWoyFAjbfjp5jZLScp1I1rcIwPSlB0XBOM2OjnWFxzcRVUGTsGoXszE5pOlb15e3yzhIe9aQzErQ5csdnMlbESSmbtEypzOxERrP5aC5abUxKt/7ueaSyOlJZ+40qHOO5HOP5YWOyWNIjaxTu8fClcNMoZM5fsQD7T81YYbtyDL8ope0FPce28/A/Zsiq4KBkSiqmUfxix3FoOcZp/XE8cWgc3374IBZ2hRHy+/D9bYfwi6eOYeXNP8fuYSOSq8M8H30dYYwmMjgxmcKi7ggWxIMYS2RwaHQGZwx1ui42VvXH8d13XYgPveJ0ACia5T02k7Gy6ktx1pJuLOqOWNpF3pnt3fQEGP6OkekMkhkdzIzJlFHivFbiYb/NRyG02XYXFI1qhaoEhcRy08k2kigsb90sxEQpR26ICzZsJdzlL4ZkJoelvfnJsZENlzojAaveEQCc88+/xhu/8jCA0lEuMnLC3S93HLOVsTbCY/M3+WBXBGcMdeFn24/hS7/dUxDVJYTOv9/7HP7jt3sA2DUqIShKmW6cnEpkbD4JJ5tWGivrxw4aQkHurVyJoDg1nYaeY5y3vAdAPltZcGh0Bj4yfARuDZx+tv0oPnbnDqweiONV5y7BqYSRePa9G1+ED19zBg6PJfGxu3YaYzXHJcx6fXGjmN6+kQSW9ETRGw9jdCaLw2NJy4ntxotW92Flv/G6m6AwujPmPC8aAKO6bDTot7LyK4l6AvLnzSjNr0PPcc1RTwAQDQZsvThEyRGvQRutIOCnuVXCo115+RmDeN35S/HBK+rXorBSLl7Tj+vOWWy72IVa7qZRpLO6bd9GahRdkUJHrkA2+ZRC+BU0PYd3/7/H8Ib/Nmz7GS2HjJ4r6B9w21uM8tTHJ1JIaQ5BYR7rd8+5RwUJE6JX05OeY4zNZNBXYkV85uJuBHyE7YfHAdibGx3zWEuJmfHQPiPK6N0vWY0XndZX4Pc4ODqDoe4o+jtCroLuh48exlBPBLe/YzPWm8lfr9y4GCv747hkrVFmX2g9QjsRgrO/I4zth8dxeCyJC1YuQG8siCNjMziVyNgczW50RoLojATwjT/ux2+etXe/m6qyfIa8ek9nK0saFf0thqfy1X3rYXqKhvy24AnxuFGm3XoQUqan5hAO+PF/Xnc2VtZYkrsWLlk3gM9ffy56pCzkaaePQop6EpOn0EQarVEI05N8E8VDfs+RJkakUs7KphW2bqsXhcPXsaw3hnULOzCV0pDM5ByCwrh8xarym+/YbHuvOCde8x7GZjJgLl1QLhL0Y6gnYkUJnUrknbrDU94KEP5hzyn87XcfB2BoYt3RYIGgODA6gxV9MXRFCl/L5RiPHRjDxWv6sXRBDC9c1YeXrR/Aey9bC8A4Z6ulMt+7h40SHMKs2RsPWavlF6/px4J4CM+bZb/LCQrAOD/HJlJ4//eftF0HQtusNBgkFsqHolZqerI0ism0JbTlUi/VEg36LC0CmD2mJxUeO8+QTRHipnZqFJqes0p7iJuzsT6KAKbSxqQll/9e3OO9/69wvD97zJi8xHjl7naFnxvEZCqLdFa3fT8hKMZmsjh7aTcuWWdvWNVRoY9C1Ckq12tiaU8Mh8eS0PScbYL1Kige2Z9v0zrUHXUVFEfGkli6IIquaKDAmf38yWlMpjScZzqYu2NBfP3tmy0fGwC8ZF2+aaSIhhMhv0L764uHsHaww+oWaHyP4qYngQhHHZvJ4s4n8r4VS6OocEUfDwcsP1wtpiehQYlkwVqQzWGAYeIV29uVoF8l3M07BjoLL/aIw0chchoiQZ8kKBp3IXdImc5y+e8hj2YnIO8HeuLQOIC8BiRXjnXSFQkY3eWcpifz8Vgi41pGQZwTrwlyopdBufDOpQuiODw2g8/e8xw++pMdAIz6Uic9ZlA/eWgcA51hfOmN52GgM4yemF1QMDPGZ7JYEA+hyxSSMk+Z4bSizagbL1nvEJqSAH7HxStx65vPw1ffdgGIyJZ5vsyDRvGhK9djRV8Mi7oieGhvXugJgVax6Snkd2gU3qcl0d9ieCptCYoBD870ckRCfptGMRt8FEG/T+VRzDcGOgsnK6uEh6leimS3SNBvreIa2cJVRD0xs802v9ijIxvIZ9M+aQoKsUITE4Vbt7CuaBBjiaytMCKQ75ExNpNxzePoDBvn5NO/eBbv/Eb5UhhHXHIx3Fi6IIYTk2n86LHD1rb1izosh7LMjiMTOPNjv8R773jcqtT65OFxXLp+ENdsHLK+X1rLWeaNtOmv6YoE0RUNFjizRQ0wt8WE4E/W9OPfXn+2Fc7aIZmDwgE/rjxryBI0YmIPm7WdyvGel67B7z74Mpw2EHeUX6+ucmtM1igqSLgD8v0thifTVv/sUufFK9GgHxktZ2nvydngowj4ivaqqRUlKNoUd43C7qOQHWzi5izW/a4edEYC0HKMj92505YxvbyvvLlCsLgnCr+PLI1CaEmlWtB2RYLWatFmegrmTU9upZ5ls9aWZ4fxyL7Rgn1kjowlEfBRQbKZE2HHT0qmiaHuKJhR0B9hyzPDSGR0/OSJo9g7ksDwVBrjM1mcuSRfk0oEIwitQgiG7qghKKbSmq2+ktwOthg+H+HV5y21/C2iZLgbQ6ZD+JPXnVVRef2V/YXJbkDlGkVH2G+FpFeacAcY5qfhqRSGJ1PoigTqMpmLBYm4x5KZ2eKjmGU9s0tBRL0AvgdgJYD9AF7PzGOOfZYB+CaARQByAG5j5v/b3JG2Djf12VnryS4ojJuzkQXrxGd866EDVojr1962CZtX9Xk+RtDvw+KeCA6NGqt3sXpMWM5sF80gErDC/tyc2QAQc7mBnX4TORNZkMrqmEhmsbArgiPjSSzqjth6dLshBIUwacVCfivJ7MRkCgu7wtZnbzuQF047j07gLHPCliPVROCCGIcQGF3RIFJZHczAdCbfNW46bZTSDnqosPqGC5bD5yN8skSpiUtPH8SW97+k4rahK/tiGJvJYmImi+5YMG96qtmZXZmgGOiM4JDZtrYe2gSQNzElszri4UDemd3Wpqe5V8LjZgBbmHktgC3mcycagPcz8xkALgTw10S0oYljbCluDjmnM1t2cr/phUZtHhHn3wjkCeDYRAo+Al66btDVAV2K5VJRuKypHSVKOLO7bOG/9vBYQbG+xR+5+gx8/e0XIBL0uQqKm77zGF74qS1gZhwdT9oS9oqxbmG+F8E/XHU6Hv/Y5ZJTNY1//fkzeMtXH4am5/DYgTHcsHkZQn4fnj466boyLdAoUnmNQggguZaT0VzL26r9Rav78G+vP6es9lFNb+mVZqLnPtP8NJXKgsjdfFiKeMgvObMrMz0BwOrBOPaOTOPIWLJugkJcZ+L3Ss6CqKfAHAyPvRbA7ebj2wFc59yBmY8x82Pm4ykAzwBY0qwBthp3jcJ0ZuvCma1b2194Wh/233INVvQ1LrRXngAOnJrBglioqk6AovsckK8amijpzC4iKCQTRbHJ6V2XnIaXrR/EUHcUxyYLBcW9zxiF98ZnsjgylizrnwCMsuPCL7OyP45wwG8Jv/t3n8Q3HzyAZ45N4cDoDBIZHeev6MW6RR3YeXQy77SXxmsJCtP3YGkUkYBlMnrqcL4e1HS6+T1T3FhlhpEL89NkSkNnFd0hu6JGfk5aMxLmKtUoNi7pQVZnPHl4oqzZ0Cuz0fQUmoPhsQuZ+RhgCAQAg6V2JqKVAM4F8HCJfW4kom1EtO3kydrKMrcDbisjp0bR7ItXl4rNHRlPlg0jLcblGxZaj0X+RCmNQp4UI9IkIn9+OZPAwq4wTrhoFIIj40Z/Bi8aBQDc+pbzcdaSLlywsheAITzOGOrCNx88gIyew0xGw7Fx4/OWLoji9EVdeO7EVD55MlRCozBNON3RoJlLEcB2qXDgdCpbsRbXCEQorQgCmExlq6qTNtAZRo7z9a1KaT9uyAUL62Z6CuZNT/L/SKh93bqzMjyWiO4loh0uf9dWeJwOAP8D4L3MXLSvJTPfxsybmHnTwMBAsd1mDZGgH99914V424tXWtvCJXwUzeDS0wet8tN6jgsa+nhFxP8D+RtwJq2ByF3oFTM99UnF+8q1oxzqjlrd19x47sQUcmWS7WQ2Lu3Bz/7mT2zC6qLVhq+GyAj3FWUuFndHsbArjFOJjOW0l30x4hgieU92ChMRNi7tsTLBAcPx3w6CIhryY0EsaH3PyaRWVeVWoT0/a/bmLlVCxQ05SfC6c+pjdLB8FOZiLJXV4SNj1d6uzMqEO2a+jJnPcvm7E8AJIhoCAPP/sNsxiCgIQ0h8m5l/1KixtisvWt1n81XkNQpj1ZAP2WvOxRv0+/ChK0+3nnudVJ34fYQ7//oivPq8JcjqRlXO6bSOeCjgmrgn+0bkCVbuoV2uHeXCrgiGp1IF3dmE43rXCWOSqiWr98qzFiES9OFPNy4GADw/YhTjW9gdRn9HGHqOrUlV/h4d4QBiIT9++uQxXP1/77dW6MLkduaSLuw6PmWF3k6lNVu4aytZ3BO1vtNoIo3uKgryiWv8OfM3qFRTJSLc8uoX4As3nIsXLC0e3VUJEadGkTFyeLwmlraCD199Bn7zgZc05NitEo93AXir+fitAO507kDGL/JVAM8w8781cWxthbyCEascoVGIct3NjO3uCAUg7pVqNQoAOHtZj+WrSGb0ku1UZXPGWVKYp9xXuZgzWzDUHUFWZ1tYL5AXFM+Zq9laCsptWtmLnZ+4EheYAQXPD0+jvyOMcMBv5SeIukuy6YmIsKg7gqeOTODpY5P4+fZjiAb9VovNdYOdyOqMA+Z7p9PtYXoC8ppaVs9h59FJbBiqfKIe6DD8CkKjWFCFsL5+83L82dmLK35fMcS1KLT2k9PpijWdZhMPB+pS58qNVgmKWwBcTkS7AVxuPgcRLSaiu819LgLwFgCXEtET5t/VrRlu65Ade7KP4rkTU/j0L58F0FxB4fMROqQqpLUgzEWJjIbxmeINZxb3RLB6II4v3nBu0e9arnHS2kEjqkdMRoARsy/CCZ87Yaz+u2O13Wh+H1nazfMnE1jcY0yCTkHhdL4vkno4HB5L2kplr11ojH23OcbplNY2gmJJTwTPHp/C2o/8Amkth/NW9FR8jP5O4zp69rhhWW6HCdnpozg85i0ibq7SkquNmU8BeLnL9qMArjYfPwCgffW8JiE3bpdLePzltx61OuA1OxJD9KKu1pktiFpNa3Qcm0gWLZ0RCwWw5f0vLXmscqYnob3sODph1YQaS+QznoW5p6cOJaqF0No3ksArzjQc9wPmZCjCXJ2/2SJHs5+E1F1NhK7uGZ4CsAjTbWR6cpZvkf1PXomFjE53Irem1uuqHohr83e7TuLff70bB0dn8Nrzl7Z4VK2jfT0zCgBAwCcLirxGIWdgN7usgDAF1XpDi1V1MqPj2EQKi7srX7EJ4VlOo+iOBbG8N4YdUvTQqEvfkXr0MpCzxIfM7yRrFJGgryCEdKEpJM8yM7ZF3wfAMCks6Yliz/A00pqOrM5to1HI533tYIfncvNORLRSRzjQ0ArIXhH31E+eOGppgUqjULQtwtH3/svXWf4KTWf0xII4aCb9lsskrjciXLVWQSEmmYlkFien056bH9mPEUAq614U0MlZS7rw5KEJMDOIyBIU6xd2Ws7seggKOQJLTIDd0aAZvsiuJjYx8V+4qg///ZZNBa+vGezA7uFpqyhjO+RRAEYk3HcePogvvek8nFZDef6BzjD2jSTaQpsA3LV0LyXY5ypKo2hzLl7Tj23/eBn+5uVr4fMRiIxaT5EWrrrqJSiilolmGsyw7PkVHcO8ob2ELb503SCOjCetRkfCsX32MncHebVEbZFZxjkiIkurcJuE2MxRiYX8WNITLVi9rh3swJ7haSvXol00iqULYvjley/B6oGOmiKCNgwZmlTA3x7W5qDLOLwkY85VlKBoc+QJBjBizo+OpzCebF271rqZnsJ5py8ALKrC9PSP15yBWMjvKdHqunOXYElPFF99YB8Ao3VpLOTHRWv6K/7cUsiOavkcid/RzUz25gtX4M/OXox3XLzK9ZhrBjuQ1nLYZTrj20VQ1ItXnWvkP+w9mSizZ3OQhd4VZoJoNabRucLcutrmAesXdeK5E1MYTWTL79wgRERONWGMMmLiFL2mKylXLrjqBUO46gVDnvYNBXy4ZF0/7tlptPB8YM8IXriqt6o6R6WQQ3XlCJ4lPVE8dWTCVVD0xEL4wg3nFj2miHx6YM8IAKC/ThnI7cLGpd3ojYfwmvPap0pPZziAyzYsxD9feyYe2D3S0s6XrUYJilnG2sFOfOeRA8hoObxh0zK865LTmj6GsxZ3Y+PS7pqd6L3xEPo7wlYjnmp8FJWyqj+OU4kMXvBPv8JUSsObL1yBZb3ey6R7QdYoZGEqenGEqzhvawaMQoRbzNpUK+o85lZDRHj0Hy9rq4S2pz7xCsuf5XUxMldRgmKWsW5hh1U1dt2iTqwZrO9q2AvXb16O6zcvr8ux1i/qwMieNE4biFdVJ6hSTus3ztdUSsPSBVFce87iujiwZaK2MiN5QSH6djgbEXmhOxbEwq4wjk+m0BEOtI3Tt560k5AQtOOYWoHyUcwy1i3Kl7jujTd+Ym00YuJ+0Wnee1rUwqqBvPngpzddbJm//ulPN+Abb7+gLp8hh77KQmhFr/HZzuxwr4iOdMt6Y2oCUzQVJShmGWcuzndGq9VH0A4Ih/Z6SQA2ErkXhlyC5G0XrcJL15csYlwVstAQpidnFzyviEq15XJGFIp6o0xPs4xwwI9rNg7h59uP1VTArl34y0tOg57L4XXnL2vK5wX9Pmxc2o3zVzSuwVMxROZ5taauc82s57GZ1kW8KeYnSlDMQj73urNxxYaFOLtOlTJbyYJ4CB+5prmNC++66eKmfp4g4PfhP990Hk6vUnvauLQbl50xiBsvWV3nkSkUpSHmxtQvbyWbNm3ibdu2tXoYinnMtx46gM5wANed2z7hngpFKYjoUWYuLAsApVEoFA3hLReuaPUQFIq6oZzZCoVCoSiJEhQKhUKhKIkSFAqFQqEoSUsEBRH1EtGviWi3+b8gVpGIIkT0CBE9SUQ7iegTrRirQqFQzHdapVHcDGALM68FsMV87iQN4FJmPhvAOQCuJKILmzdEhUKhUACtExTXArjdfHw7gOucO7DBtPk0aP7NvVhehUKhaHNaJSgWMvMxADD/u9ZOICI/ET0BYBjAr5n54WIHJKIbiWgbEW07efJkI8asUCgU85KG5VEQ0b0AFrm89BGvx2BmHcA5RNQD4MdEdBYz7yiy720AbgOMhLvKR6xQKBQKN1qSmU1EuwC8lJmPEdEQgPuYeX2Z93wcQIKZP+vh+CcBHKhyeP0ARqp8bzOZDeOcDWME1DjrjRpn/WjmGFcw84DbC63KzL4LwFsB3GL+v9O5AxENAMgy8zgRRQFcBuDTXg5e7Mt6gYi2FUtjbydmwzhnwxgBNc56o8ZZP9pljK3yUdwC4HIi2g3gcvM5iGgxEd1t7jME4LdEtB3AVhg+ip+1ZLQKhUIxj2mJRsHMpwC83GX7UQBXm4+3AyjeRFihUCgUTUFlZhdyW6sH4JHZMM7ZMEZAjbPeqHHWj7YY45wsM65QKBSK+qE0CoVCoVCURAkKhUKhUJRECQoTIrqSiHYR0R4icqs91TKIaD8RPUVETxDRNnNb2cKKTRjX14homIh2SNuKjouI/sE8v7uI6BUtHuc/EdER85w+QURXt3KcRLSMiH5LRM+YRTD/ztzeVuezxDjb7Xy6FhVtw/NZbJxtdT7BzPP+D4AfwPMATgMQAvAkgA2tHpc0vv0A+h3bPgPgZvPxzQA+3YJxXQLgPAA7yo0LwAbzvIYBrDLPt7+F4/wnAB9w2bcl44QRDn6e+bgTwHPmWNrqfJYYZ7udTwLQYT4OAngYwIVteD6LjbOtzqfSKAw2A9jDzHuZOQPgDhiFC9uZsoUVGw0z/x7AqGNzsXFdC+AOZk4z8z4Ae2Cc91aNsxgtGSczH2Pmx8zHUwCeAbAEbXY+S4yzGK0aJ7N7UdF2O5/FxlmMloxTCQqDJQAOSc8Po/TF32wYwD1E9CgR3Whu81RYsQUUG1c7nuObiGi7aZoSJoiWj5OIVsLIIXoYbXw+HeME2ux8kntR0bY7n0XGCbTR+VSCwoBctrVT3PBFzHwegKsA/DURXdLqAVVBu53j/wKwGkavk2MAPmdub+k4iagDwP8AeC8zT5ba1WVbK8fZdueTmXVmPgfAUgCbieisEru32zjb6nwqQWFwGMAy6flSAEdbNJYC2MhYBzMPA/gxDFXzBBkFFWH+H27dCG0UG1dbnWNmPmHeoDkAX0ZefW/ZOIkoCGPy/TYz/8jc3Hbn022c7Xg+Bcw8DuA+AFeiDc+nQB5nu51PJSgMtgJYS0SriCgE4HoYhQtbDhHFiahTPAZwBYAdyBdWBIoUVmwRxcZ1F4DriShMRKsArAXwSAvGB8CaJASvgnFOgRaNk4gIwFcBPMPM/ya91Fbns9g42/B8DpDRngCULyr6LNrvfLqOs93OZ0M95bPpD0aNqedgRBF8pNXjkcZ1GowohycB7BRjA9AHo43sbvN/bwvG9l0YanEWxkrnnaXGBaMXyfMAdgG4qsXj/BaApwBsh3HzDbVynAAuhmFC2A7gCfPv6nY7nyXG2W7ncyOAx83x7ADwMXN7u53PYuNsq/OpSngoFAqFoiTK9KRQKBSKkihBoVAoFIqSKEGhUCgUipIoQaFQKBSKkihBoVAoFIqSKEGhUCgUipIoQaGYNxBRDxG9x3y8mIh+2OoxVQsRnSOXnlYoGokSFIr5RA+A9wBGWRRmfm1rh1MT58BIdPMMEQUaMxTFXEcJCsV84hYAq81GMD8gs5EREb2NiH5CRD8lon1EdBMRvY+IHieih4io19xvNRH90qziez8RnV7sg4hoIRH92GxI8yQRvdjc/j4i2mH+vdfctpLsTZU+QET/ZD6+j4g+bTa3eY6I/sQsM/PPAN5gfpc3mKVevkZEW81xXyt9tx8Q0U8B3NOIk6qY+6gVhmI+cTOAs5j5HLNE9s+k186CUTI7AqPG//9i5nOJ6N8B/DmAzwO4DcC7mXk3Eb0QwH8CuLTIZ30BwO+Y+VVE5AfQQUTnA3g7gBfCqAL6MBH9DsBYmXEHmHmzaWr6ODNfRkQfA7CJmW8CACL6FIDfMPM7zNpBjxDRveb7XwRgIzN77cmhUNhQgkKhMPgtG414pohoAsBPze1PAdholtV+MYAfGHXxABhdxopxKQwBA2bWAUwQ0cUAfszMCQAgoh8B+BOUL0ApKsk+CmBlkX2uAPBnRPQB83kEwHLz8a+VkFDUghIUCoVBWnqck57nYNwnPgDjbPQNqBa3XgIAoMFuBo4UGZuO4vcsAXgNM++ybTQ0n0SF41QobCgfhWI+MQWjz3PFsNGcZx8RvQ4wym0T0dkl3rIFwF+Z+/qJqAvA7wFcR0Qxs2T8qwDcD+AEgEEi6iOiMIBXVvFdfgXgb8wy4CCicyv7hgpFcZSgUMwbmPkUgD+YjuP/U8Uh3gTgnUQkSr6X6qv+dwBeRkRPwTAZnclGr+lvwOgf8DCArzDz48ycheGcfhiG3+RZD2P5LYANwpkN4JMw+i1vN7/fJ6v4fgqFK6rMuEKhUChKojQKhUKhUJREObMVihogoo8AeJ1j8w+Y+V9bMR6FohEo05NCoVAoSqJMTwqFQqEoiRIUCoVCoSiJEhQKhUKhKIkSFAqFQqEoyf8HICuLqcs2rnYAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "ssh_year.plot();"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "ssh_year.to_netcdf(f'ssh_{year}.nc')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Now Low Pass Filter the Velocities ##"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "ssh2015 = xr.open_dataset('ssh_2015.nc')\n",
    "ssh2016 = xr.open_dataset('ssh_2016.nc')\n",
    "ssh2017 = xr.open_dataset('ssh_2017.nc')\n",
    "ssh2018 = xr.open_dataset('ssh_2018.nc')\n",
    "ssh = xr.concat([ssh2015, ssh2016, ssh2017, ssh2018], dim='time_counter', coords='minimal')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEXCAYAAACzhgONAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABrNUlEQVR4nO19d7gdRfn/591zbslNIZWE9EIoSYAEQgelE4pSVIoURRAR69eKInYRO+JPmthAEAFReo30EhIgAUIgnRAgvbd77zn7/v7Ynd3Z2dlyzj31nvk8z33unq3vzs7MO28nZoaBgYGBgUEUrGoTYGBgYGBQ2zCMwsDAwMAgFoZRGBgYGBjEwjAKAwMDA4NYGEZhYGBgYBALwygMDAwMDGJhGIVB3YOIniSii6pNRzVARExEu1abDoPuDcMoDLotiOhwItri/m11J9Ut0t/IEj5rKRFtl+79qHL8k0T0jkvHf4mof6meXW6Qg18Q0Vr375dERNWmy6ByMIzCoNuCmZ9h5l7M3AvARHd3X7GPmZeV+JEfke59nNhJRBMB3ADgPACDAWwDcG2Jn11OXAzgVAD7ANgbwMkAPldNggwqC8MoDGoeRDSOiNYR0b7u76FEtIaIjpBOG0dELxHRRiK6p8ZW7OcAuI+Zn2bmLQCuAHA6EfVOupCIHiCiLyn7XiOiU6VdJxLRYrdNfkVEpR7XnwLwG2ZezszvAfgNgE+X+BkGNQzDKAxqHsy8CMC3AdxKRG0A/grgb8z8pHTa+QA+A2AogByAa4p5FhHdT0QbIv7uT7j8ViJaTUSPEtE+0v6JAOYo79MBYLcUJP0dwLkSffsAGAbgQemc0wBMBbAvgFPgtIPu3T4Z824bYlRxAfrd7YkR5xp0QxhGYVAXYOY/AVgAYAaAXQBcrpxyCzO/wcxb4azYzyCiTBHPOZmZ+0b8nRxz6TkARgMYBeAJAI8QUV/3WC8AG5XzNwJIlCgA3ANgPBGNd3+fB+BfzNwhnfMLZl7nqtKuBnB2xLvdFvNufWNUcSr9GwH0MnaKxoFhFAb1hD8BmATgD8zcrhx7V9p+B0ATgIGVIoyZn2Pm7cy8jZl/DmADgMPdw1sA9FEu6QNgc4r7tgO4A8C5rkrpbAC3KKep7z608DeIhUp/HwBb2GQUbRgYRmFQFyCiXnBWy38G8EONDWKEtD0SQCeANUU85yHFM0r+e6iAWzEAseKeC8cQLJ4xFkALgPkp7/V3OBLL0QC2MfMLynH13d/X3YSIzol5tzgvsAD97vbclLQbdAOQWRQY1AOI6M8AejPzGUR0IxzvpTPcY08C2BXAcQCWwplYO5n5k9L1owEsAdDEzLkS0zYSzmQ9E87i60sAvgVgD2Ze63o9vQDgJACvwPGAyjLzWe71PwRwBDMfEfOM+QB2ALiLmX8s7WcA/wPwcTgqoscA/JaZbyzh+10C4CsAjoHDAB+DI9VdX6pnGNQ2jERhUPMgolMATANwibvrawD2JaJzpNNuAfA3ACsAtAL4cgVJ7A3gOgDrAbwHh9YTmHktADDzXDi03wpglXv+pdL1IwA8l/CMmwHsBeAfmmP3AHgZwGwAD8CRukqJGwDcB+B1AG+4z7ihxM8wqGEYicLAoMogotkAjhaMJeKc8wFczMyHVYwwAwMX2WoTYGDQ6GDmyXHHXZfgS1FfQXoG3QhG9WRgUMMgouMBrAawEsBtVSbHoEFhVE8GBgYGBrEwEoWBgYGBQSy6pY1i4MCBPHr06GqTYWBgYFA3ePnll9cw8yDdsW7JKEaPHo1Zs2ZVmwwDAwODugERvRN1zKieDAwMDAxiYRiFgYGBgUEsDKMwMDAwMIiFYRQGBgYGBrEwjMLAwMDAIBZVZRRENI2I3iaihUR0WcQ5RxDRbCKaS0RPVZpGAwMDg0ZH1dxj3epjfwRwLIDlAGYS0b3M/KZ0Tl84+W2mMfMyItq5KsQaGBgYNDCqKVEcAGAhMy92yzreDqfer4xPArhblGhk5lUVptHAxeYdnXhpybpqk2FgYFAFVJNRDEOwhONyd5+M3QD0I6IniehlN9WyFkR0MRHNIqJZq1evLgO5jY0v3PYqzrjhBWzc1lltUgwMDCqMajIKXWF2NUNhFsB+cCqDHQ/gCiLaTXczZr6Rmacy89RBg7RR6AZdwJvvbwQAdOTtKlNiYGBQaVQzhcdyBGv9Dke41u9yAGuYeSuArUT0NJx6vWlrDRsYGBgYdBHVlChmAhhPRGOIqBnAWQDuVc65B8DhRJR1i7ccCGBehek0MDAwaGhUTaJg5hwRfRHAIwAyAP7CzHPdQu5g5uuZeR4RPQzgNQA2gJuY+Y1q0WwAmPolBgaNh6pmj2XmBwE8qOy7Xvn9KwC/qiRdBtHIG0ZhYNBwMJHZBqkg+EPeNozCwKDRYBiFQSLyNmPt1g4AgG2cngwMGg6GURgk4qn5fpxjznAKA4OGg2EUBonYvCPnbdvGRmFg0HAwjCIlmBlPvLUKdgPq6LOW301MvJ2BQePBMIqU+MeMZbjgbzNx32tqTGD3RzbjB9GXwph949OLMPqyB4xh3MCgTmAYRUq8+s56AEB7Z2MvqUuhevrNo05gfacRTwwM6gKGUaTE1g5HT9+rtaqhJ1WBzBtKKQU0urmjM28bqcqgLmAYRUpkLEf90ojGXDkauxQBd+RqsjiUA7KxMP7yh/Cx656vNhkGBokwjCIlLBKMosqEVAHyK5diBUzaxMGNidnvbqg2CQYGiTCMIiUEo2jEXEeyFGVUJaVBR87YZwy6jnkfbMJeP3gEqzbtKOtzDKNICVfz1KCqJ3+7lO7BDdiUHuL60cJVW7ClPRd53MBA4K/PLcHm9hyeeLu8xT8No0gJT/XUgAtBeUp7f2PXVy7UwEw3DY757VM4788zqk2GQR2gUkPIMIqUIDLGbAD4xp1zunw/YaFovJb0IXcjnfTw6rINlSPGoG4hulG57X6GUaSEUD01IJ8o+Ttv7ciX5b71BNnja72bcNHAoGiU2T/EMIqUsBpYoijlO98z+z1vuxEdAwwMSgmjeqoxiHRHjej0U8rOOH2eb3RrZD4RcBBo5IYwKAnK7XBuGEVKNLKNopTvLAfsNV5L+ih1bIqBQTlhGEVK+DaKxhvUpXxjuf0akekKcERsSiP2L4PiUansBoZRpISwUTTi6q+Uk1dwUizZbesOAYmCTZsYFAm3vwiNR7lgGEVKCEbx9sotVaak8ijl5CUnjG3kXE9RiRYbt0UMugJjo6gRCIb9z5eWVZeQKqCUQlRAOmnkWTEQ7S7tNiKFQQGoVG8xjCIlrDKLdrWMlSXMI5MP2ChKdtuK4Mv/fBW7Xf5Qye8r1yGvsyYxqDLEwqLc01PjFVcoEq1NDk+dsEufKlNSefx++oKS3SuoZqmvafHeOaWrbii/u21sFAZdRLkZhZEoUkIM4GH9elSXkDqHmRQdBG0U0v46Y54GjQHDKFJCDF+jQ+4aZH18Q7vHStsB1VPjNolBETA2ihqDGMBmIHcNxhXUQSCepAEzEhuUFiYpYI1AqAQaeRVcCpSynkU9QxdHsWj1FuxxxcPVIcigLmFyPdUaOPDPoEjI7dfITDdoo3BEikfmrqgSNQb1DuP1VCPwbRRVJaOq2GWnVowf3Ltk92vktpSN1sKYbaQtg0JhbBQ1BqFTbuRVcFtzpqSa0HpqyXLWuBYuw3ljqzAoEJVyrjGMIiUamD94KEXQYb0mBdzuFlsqGTQpPPJ11B4GtYWv3D67rPc3jCIlxBCup8mt1LCISpxJtoQ3KzOsEo8UnTE7b9yfDGoUhlGkhHGPdQxmzIzVm9uxo7MUK+z6acy00tQ9s9/DuhSlTQOFi4zqyaBINISNgoimEdHbRLSQiC6LOW9/IsoT0ccrSZ8M4x7rT5b7/+xxfP4fLxd1D7n1Fq3eWgKqKoM0X/3dddvwldtn4yu3v5rifuF6FI3ctwxqG1VjFESUAfBHACcAmADgbCKaEHHeLwA8UlkKgzAShaN+Ebr6J95e3eX7fe6W4phNNZDGaLhpRycAYPXm9hT387cFo8jlG7hzGRSFp+d3fRymQTUligMALGTmxczcAeB2AKdozvsSgH8DWKU5VnE08lC2iLDWVav0aMqkvi5vMzrrXK+S5rsLz6iWbPKw0tkojERhUAheX74Rm3fkKvKsajKKYQDelX4vd/d5IKJhAE4DcH3SzYjoYiKaRUSzVq8uPZcVK8pGzvVERNjS7nRMkU03DU679jmML0N67koiUEZD0weYGW+v2AwAaMmmZ6KA7B5bWN9iZqzdkiy9GHRPrN+WbAsrFarJKHTWQXWkXA3g28ycaDll5huZeSozTx00aFAp6NMS1sB8Ahb5hle19KJtMxat3oJbXnwndN1ryzd623XbfrLxWfMON7/wDi67+3UAQHMaiUJTM1vXdnH4x4vvYL+fPo4FKzcXdF210Z7L4y/PLkGuzqXMRkI1I7OXAxgh/R4OQE34PxXA7e6kNBDAiUSUY+b/VoRCCWJcN7J6wCKK9PW/7O7XcMes5QCAs/YfgaZM93KoU+tHqKGHry5b721nrGQPKdVG8d6G7QXT9JSrn16yZmtJI+bLjRufWozfPDYfrU0ZfPLAkamv+8adc3DE7oNw8t5Dy0hd/aCStdSqOZpnAhhPRGOIqBnAWQDulU9g5jHMPJqZRwO4C8Cl1WASAZqq+fAq4qS9d4FFQD7C4CqYBNA9mWnAnTXh/VLwiQBs5sh2TUOTKt3VOoTRf7P7Py3uenk5vnhbskdZo6DcGWNlVI1RMHMOwBfheDPNA3AHM88lokuI6JJq0RUFsaLshnNgKowb2BNAuujhQnXt9QD5jXRNUGjUunyPXJHtJa6qLzZhUCpUcn1Q1aSAzPwggAeVfVrDNTN/uhI0RcF3j+1+k2Ac/Jq8BAKlmtS6JaNISj0iDdo0K3xdHEWxNNWZQOG1T/frJd0X3UuRXEaw8r9R4Ks3AFC6SS0uE0W9tl8wPXr8uWnmbV1kdqHwJIp6YxTu/wZbc5UclfzshlGkRKMas331htMt0zCKXDfPWaTrA13RF+eZu1Qru5K66pKgzsitWTSIMbvO0Jg2Clm9kbZfxtox6rQBkyQAIv125P2k7e6oqkuDrjBHg8rCMIqUaNQUHsUYTLujQBF0jw0fp5hf2vtp4igKpqlO+6KQgOqV/lpBQ3g91RsaVvXkvq5lUWpdeLdUPWlyM8noikTBKG7S9C6pM1VOV20qT7xVE9l8qoJfPfIWvvTPyrsIG0aREo0qJsuMMWoFo+Zx6uZ8QtsX5LYp2JjNXNQCxFMLFnxlfWPV5h3VJqFq+OMTi3DfHCcuuVEC7moas9/dgHNuetFL9NaoEoVAXKf89aNvB35H2Sg2buvEHCmdRz2BVRFAQeGD1r8Jc7InVRzqLeDO93pqzLFUjzCMIgLfvHMOnlu4FkvXOjUTGjXXk+cei2jV05vvbwr8jqrU9vKydaUkraJItFEUqnpSjONdmTTri0347dNoY6nUMO6xNYhGlSjEBEmUftUclestW+p6ohVEIHusVg0pq57SBNz5sIuUKOq1K3rGbDjFnkpej7xBUElJsn5HboXhpfCoMh2VhmfMjumTaof91l1zvHw+MrKFJkGqIagTey5v45JbXsbrripNboJCFxM2c1GeTzITryfIEsXhv3wCF/59ZuI1Rk0VhrFR1CIaNDTb9gymFLlSVvfOWb4R1z6xKHReVsko26ulqhlkCkIghYfNWLZuGx6euwJf+ucrAIJtkGbSV+tbFGfMhvvsOuMULn73+HwAwPOL1iae26ChJjUDwygS4MVPuL8bT/XkoBDVEwDs6AyrE9T02/W0SlRJFUkAxQQmt02axImqzUN3SVL7sObZ9YAHXv+g4Gvqqa9UCsZGUYPwKtxVmY5KI8341E1U7bmwoUJlFPW6SrSZvXeRJS6BQiWKKPfYpEJGnuop8Wm1hcWrtxZ8jdyk3/736w0bzS6jki1gGEUCPH2q+7vRJAp4q9bo6Uh3pEPDKNS2q9fYFGa/X/gV//zjuRS1JYKMQi+FzFic0kus3jhFEVD7Sr3XYC8Fik0mWQwMo0iJxk3h4a9ao5iFbn97Lqx6UifQempLVQIQ76yb4AtVPTHr3WPryYZTCA4c07/ga9Tmqae+Uy4YiaIG0ehxFLFeT5p9OtWTWiO5ntoyMLHDX82JV5ILFxWnegqf0zOBUdRT+8koxqaivmvDSfYKnMVF5Z7XPZcsJYRasKjROqing6egb43Y3t6RR4dGDaCbLNWiR/WkepI/+6btnbj9pXfd/c6BQhmFDJv1aoReLZl4mtz/9er1VAjUvtJo41CFzcE2OXTXAWV9nmEUKdGoNgrZ60mHPb//sP46TTupyQLrqSllUn/2wDzMemc9AGDt1g48PX81spmuMArWqquSJIo64rNdhtqkDfTqWuRsW4nuL+/zjOopLdyP0mg2NN9XvzCVgW4gd+brd1UoMz7BJATO/8tLaJIYRZpyscE4Cj3TbG1Kkig48L87Q114cIONQxV5O6h6KncfMIwiAuqkKD5EVB6j7gqvA1JhCg7dxKeutOtpekuiVU5PksYbJRhHoXePTS2Z1FNDojhVmfqK9bTIKAdydrAqYrmbwzCKlGBPouieHTRvs9ZTSfTFQrNv+MZ/v71Ul8Z6GutJtMoxImnqcajusTopJGkyVINBuzNUCaLhGUU+6AAxY8m6srrLGkaRAE+8d79BN+UT+OzNs7D798L2Bi/yGBRwg01qBt/47+/TMdn6ibhNN2mr22nuZjMjr4m9SGQUBTyv3hE2ZleJkBqBY6MINsJdrywv2/OMMTsCHmNwVzK+6ql79tD/RVQNC2SPLeB+YpKT20u3apaD1+oZqvtsHF5+Zx1WbGz3z2fWtk2SPczPFlBffbIYekPG7EbgjjHI2+FWXLOlXXtuKWAYRQJUiSJNMFV3gmzMDu5Pt8KWV8W6iOV6ac241z1s14GBiSypbT523QuB37atX4B0V4miGHpDxuwS0VKvyOW5oo1gVE8RUIuriG/SXSWKKMjusYHEdwntINotF5AoktN61CriqMxLhYf2Gb5TwWoRm1nbNmnbuD5a0Ecx9BpjdhB5O+wAUc54GsMoEiA+Rnc3ZkfBr8tMkOWKpGbQqeq0EkWdNGccnXk3SjZjEcYO6lWwasWpb1G415POYaAuUAS56qTYYMMwBDWOotwwjCIB/seQ3BkbqJdGpbJOu9q1EySKetGvx9EpVneWa8cpdAAz6wsXpV0110cL+ijqmyuXNNIYFJC9EnMaG0U5YRhFAlSJAmgsO4V4/4xFBdVcEEdzKYzZ9YBYicJ2XBWFZ1jBjALFucf6tNVJI7ooZo4PG7NLQ0s94Qu3vuJt5/LhRJLldAoxjCIBuv5Y7+qnbR05XPi3mXh33bbQMWbGLx9+yzsm3tVSA+6SVE+a3FjdVfVksxP8JOw4hU7c0TaKdETVSxsKFMPYTK4n4PF5vmdi3mY89ubKwPFyOg8aRpEAXcGieu+k0+etwvS3VuGqh98KHVu8ZiuufXIRPnvzLAD+Ss5Sq9OljCsI2ii6p+rJWd35zLTQN4qyUXRbr6dirlElipJQUr/I2TbufLl8cRMqDKNIgJjn5FVQmlw+9QqRBXW7W8rUz44aFG2d8p3R7aDzEtOrV7pIcIWQJFHYtixRFHpvvY2i23o9lcSYXW9vXVroFhZG9VRF6AZjtzGkaV4j60oOoiPmPUYRrnetNsNFh43xtnUBd/UdmR0NEfxkEcEiKsLrKSrgTn+f22Ysw+jLHsDWjhwAJ6p+xcYdBdNdLRSlegrZKAq/R95m3P3K8m4xfiut/k4VcEdE12h2bwQwi5nvKS1JtQWtMbvOO1rcykPkLBI1JmypMA8p7rGqXv2cg0bhpmeXANDHUajZY4H6WQ0nG7PZy7BbcByFXViyyeufWgQAWL3Jj8R9av4qnLn/yMIeXCUU+s1XbNyBtVs7AvuKGYI3v7AUP7rvTWzvzOOcA0cVfoMagm5hUc44irSR2a0A9gBwp/v7YwDmAriQiI5k5q+WgbaagE6i6M5eT4IJCnuCHaF6ks8VkM0YWmO2zj22zpPxnjBpCN78YJOUiqRwr6eoCnfdVb1S6Gsd9PPpoX3FtM2qzQ5j3bCts+Braw26xWotqJ52BXAUM/+Bmf8A4BgAewI4DcBxxT6ciKYR0dtEtJCILtMcP4eIXnP/nieifYp9VrHwjNlSx6z1TON5W6/zVqFTkYgBKFRPdoTqCQivauQVTVobRb0bs3s0ZbzIbMtzIU7/TsKmoZv4mJ32W6+spn2apPvUUZW7UnzzYsZgXF+uN6iZmMuNtIxiGICe0u+eAIYycx5AUZmoiCgD4I8ATgAwAcDZRDRBOW0JgA8z894AfgLgxmKe1RXo5ts0aaSriQ//6glM/tGjkcfjJhVPorAFo3D2q3EUQNigRgGJIng/53yNRFEffCKSzoxFUhyFI1XF8WhVt54hctxrNdcwHFflKT95DBvdVXDeZixzXZcD96qjua+Qbx5liyhGohCXFJoyvxZRkzYKAL8EMJuInoTTJT8E4Eoi6gng8SKffQCAhcy8GACI6HYApwB4U5zAzM9L578IYHiRzyoaalJAoPYliuXrtxd9rc8o7MBvJ3tscISpE7/sQqtN4dGFoLJqI4pKwSgY7Nlx4gytahNYlmAUeo+wh95YAQDYsL0DO7U1YebSdYk01ToKmeN0dq1iIccE1Tu0NooyvlcqiYKZ/wzgEAD/df8OY+abmHkrM3+zyGcPA/Cu9Hu5uy8KFwJ4KOogEV1MRLOIaNbq1auLJCkMzz1WGpbdxUahew3xbmKAigkso1mGdcbaKIL3A+o9e6yeUssirNrcjn+8uMwxaFNyAkEZjkShv8a3e/j9sCNnB44L1NPUV4jHUtRCIiotfpp7qTFB9YhKSxSxjIKI9nD/7wtgFzgT+zIAQ9x9XYHua2nfnoiOhMMovh11M2a+kZmnMvPUQYMGdZE0YP7KLeK+7n//WHf2epIn82cWrPYD7jQFKVSJQvWKAlSJoo5VTxH7s9Kks35bp+MeG/NO6sSXsch1NdbZKNhb/drMuPrx+bjywXkSTf415VxNVhNRbfnbx+YXfC/bkyi6QlFtQGejKKereZJE8TX3/280f7/u4rOXAxgh/R4O4H31JCLaG8BNAE5h5rVdfGbB8LyeZNVTvcxuEUg7kc1cul5RPQWhqgV0Xk9J2WP3/9njgcmvVhHVZjo1Rlz/UA8Jd1rd2kOWKJgZVz++AG+t2Ky9Vz3NfQXZKEoocwrpVicd1xvkcXXFyY5ptyVbvrC42Dsz88Xu/yM1f0d18dkzAYwnojFE1AzgLAD3yicQ0UgAdwM4j5kLX0KUAF4cBeInvO6CgLQk6c4zWq8nRaLQnJMUcAcANz69uBhSK4x035wScnjoJIo4Y7ZgRDonl3rNEFDIQquUr+iV9e0G0pf87U/ca0jZn5eKBRFRGxF9j4hudH+PJ6KTu/JgZs4B+CKARwDMA3AHM88lokuI6BL3tO8DGADgWiKaTUSzuvLM4ugM/gfqX6KIGyfyZM4I5npSB5jKMOWFmi4yW9g0Zn//WPzklIlFUF49FPLJN7fnIqN/Q4xC2CgijNmiTXWqBrlt62nuK2T0lHKsiW+iW/TUG+Rv35yxQvtKjbSyyl8BdMAxaAOO2uinXX04Mz/IzLsx8zhm/pm773pmvt7dvoiZ+zHzZPdvalefWSh8icJHvdsoBHRjUF2l+ik8wuqNUByFNAD9yGx/ghM2jbbmLJoy9ZU9Rm2qg8cOwJ/OD3fHu195DwBw60vLgte7+aBUM43l2iiijNlCokjym6+nPqkyxXGDekacWdqATD9lfunuWS3IYy9rOS9Uzi6QtsnGMfMvAXQCADNvR32pRYuG1/iyMbtOJIqN2/URqHEfTl4Jy4Fgsi5ebKrGbHmlJu4ie+mIzq2L8q51qJ/80F0H4NgJg0PniTZfqeReuuBvMzH2uw9GSBSslUCY2WO+SW6idcUopO1hfXtgZP+2yHNLKVGI7totVE/S2CN3Fi+npiMto+ggoh5wvzERjUORgXb1h7CNol6Siv331fcKvkZlgr6niB9wl4mYvCypN4lVY3suLFE496rvwZrkYqm+3pNvOy7behtFhHssfNXTt//9Wuzz6speIZFqWfGqqJKqnmLsbfUG+XvLnnHlQtqAux8AeBjACCK6FcChAD5dLqJqCX6acX9fvQzKbR352OM6hUfQRuHnIJI9RTIWIWeHi+1kJU4h2kuWKLyAJ6ueEk440EVU6/YLRL1fOOBO5HrS2SjYYzhL1mwNHR/UuwWr3fxF9ZSFV35XYaOJPrf0z+0uXk+77NSKw8cP9PpiOaelVIyCmR8jolcAHARnDHyFmdeUj6zagZwUsClD6Mzr1QS1iO1uGmoVaY3ZgD+4ZPfYrEVoR9iYnbE0qidJRO7Ms7dCrjeJQv3iiZNNxPupE7qIu9B6PUXsF5DVD3XSJfH8wjVYutavrGhZpE3tIhBb80RSzaWB6NtrttS/MiRnizrtvqRfC8ZswMkgux7AJgATiOhD5SGptuCnGWdvcqgXG4UoPqQidvJRbRQB1ZPz/qIdVANrgFG4D5Elijc/2CQF8KV8iRqB2mZJaSCi3k/tO36uJ42NQvNcGcFvVR998pM3zQj8HjuwZyA2REXc3FfoxCjO/ukDtR+3k4S8bTv5xdwaKEB5+0DaehS/AHAmnNTiYuQzgKfLRFfNQPZ6clQrdt0YDqNWW559XvMaqrQUiMx2IRiCqoKTJ8es61oiM4ogbVFU1yZUNZ1og6ieEKVc0+V66szZRaUZl/thnXTJEAb0bInsI0B8G+RsRjZT3HO3tufQsyWt5r324JTfdSR00RerrnoCcCqA3Zm5/mW2IsEsf5D6GJVRq944+uUVL8N3bw3aKBwmoEoUMmMSp7dHMQplIi1UjVBxhCSK+NPlV7n/NT/hgMqIM0Sw7YgI5IRuJqv+arVPPv7mSowa0Ibxg3sD8JMoCmQyFEt7EqMoFjs68/XNKNyMxU5VRWdfLaieFgNoKhsVNYygRBEdJVuLiFR/KB1KXtHd8FQwSlo2AArRVi2XqoN4xLqIWgoqT6jRec6DSl6i15O0faWk6gipsLxcT+F7yMZsHWRnglptv4tunoVjf+crHpqVIAaheotCWhtNKkj3qlcJTCDv2SicBZpT16RKjIKI/uCWQd0GJ834DUR0jfgrG1U1BK/tmZHNCEZRH5wiSqKQDfQA8KP75nrHXn9vY+A8MRZl7xRf9RSjMnBPVktYCqjSQ62uiAVU8oSnSVQby7vldw27x8KNzHa8mNRnxtlC5MkuZzNGX/YAfvHwW3GvUXU0K/mIhHtwFOKljeTnfbBxO37+4DzYbip4gVq36Tz+5kos1Xi6CeRsG7btS+FWgvdYV5EkUcwC8DKcHEw/AfC8+1v8dXvY0qQq3D+jFjL3zXkf065+umY6oVj0rti4A9+6aw7ac45xWwy+15dvxO7fewi3zlgWdQvfmC35u/vG7GQV1tb2HNqaw4pkdfqrjRaLhqoaEhJF3za9oE0amw4QlcLD0TeH24RTG/3Ft/2zW7O8VqFG5MuSqg7q5HfG1OHSseRe89XbZ+OGpxfj1Xc3BPbXukPKRTfPwhG/fjLyuGOj8BcSFpX3nWKVdMz8d3UfEfUDMIKZ4yOAugl8ryckej196Z+vAnD08q1NRVrZSggxWX3vv2/g8Xkrccyeg3HcxCHe4FuxaUfM1Q7kjJth1VOyETJnM5qzlhfTMXFoHwDhlXK9ShTjd+6deG0coyAv15OuTZDa6i9sQbUaTNaey6Mlm0FTJkhfoRLFF47cFXfMWq49psMO1/PPIjVfW0rCy4z1WzuwcvMO7DGkj7cvzUIzJ6meACFRVNlGQURPElEfIuoPYA6AvxLRb8tGVS3BkyjYmyCT4iiiDLiVhp951KFHqM7SdiiGX3s7I9VZiPJ6krFpew7vrtsG2+bAKnL0ACevTz3ZKOZ9sAn/74mFgX2iDU7cawiuOye+NEswWWLwmFyPQtcmSRLFAWP6A/AnxFoNJnvCLTSkMkORPTcKoUBHi3D6lGHusejnbW3P4coH52Frh75daiUW6mPXPY9pVz8T2Hf7zHcjzvYhyu8KydYiKus7pTVm78TMmwCcDuCvzLwfgGPKRlUNQStRaD6I7AG0T0y96nJDHlhibPg5lgr3t9ZVBdMxClW/vnF7Jw7/5RPI2XbAgCnmCXU6q2WJ4rRrn8NLS9YF9on2ICIcPzE+zbMVZ6MQqiflPGGcTJr2xeJFLE5qlE+gf0+nf6gTtliARNfGDv5uylgec4zz8rnpmSW48enFWLjKKUCmFpSas3xDgW9QHix27RDyJC/K38ZBSBTkSRS1kRQwS0S7ADgDwP3lI6f2INmyvdgAXQc96MrpweuqNPHJj1UjNgvOMskISBQCGUX19IOPTMCDXz5ce4tcngPqBjEZho3ZKWmqAnS2mGb5nRJm54DqKZQ9VhQuUmwgRCHmEXfv21w7U61KFF6eMJVRiHiUiO+vy40l2jtqccHM2oSYsp3pi7e9moruSmGLlEUhzdzhBNyx52ZuJUhmXUVaRvFjOHUjFjLzTCIaC2BB2aiqEjbv6MTkHz+K5xf52Um07rGaD6J692xu16fPKDdkygSZYuVfqOoJCOZnEhDt0OFOoEfuvnNIohDY0p4LqJ4y3kpcobuGJQqd3r8lRaTX526Zhftfez/B68kvXCQnVRSSRnIEePD4+m36jMHVhnhtlY8lxSapjLXJsiTJWP+sK+55A395LmjUT0rTXm1s3uHPF2nG58btnejMM3bq4ThT1ITqiZnvZOa9mflS9/diZv5Y2aiqEt5asRkbtnXit4/6xfSmz1uF7/7ndScKMkb1pGJHQkK+ckGecAWZnlRQYAQnQ5ZGwhLFNdMXBH4DwBs/Oh5nTvUr3G7c3hlgFNGqp3Q0VQO6uTqp7KRtMx6ZuxJfvO3VQP2DMKOwHNdNhSmQML4mCAi1KkGo8ColRkgUUd8/1F4ZP8AsakL9x4thL768ra8iWCtol9LtpJlf3t/gOKIM2clX6VVd9UREv3SN2U1ENJ2I1hDRueUjqzrwV8r+6uN/b63yxPpswupHxo7O6qxgZMpkzyOgOBuFrs6wnCUWCEobvVqy6CG5w27a3okmaVL13fmCE4ZM0/ML19RUmhTdqj6bUP1miyRRBm0UwfMy5NfMlp/iq56SaIs/XisQr622JSVM+iqyFklOGuFr5q/U541KqudRbcivkqbvb97hSI5tzY7jqmOjqL7q6TjXmH0ynOp2uwH4ZtmoqhLEBNgeMcnHGbNV7MhVR6KQO4uYfIXXk/idVkQVVdmA4ABX+ERA2lDP7cxzQJ+f8WwUKt3O/2cXrMEnb5qB654MehlVE7pVuzooDx47AB/ebZD3e4OrAmrJWvHGbIuQ1xizhTdUkuqpptOeSIiaxJLUSOp1TRlLslEEz2VmHCdFgcuopYWHDvJ7pklN0uE5L/g2v1pgFCKq6EQA/2TmdXEn1yuEDl+nz2SWU3gkf5D2ThvtuTwu+vvMyFVOOaDzFRepNjxVVAH9yYvMjpMoQi6P/nanbQdUT+LSKBuFiO1YHBOVWmls0dib1EH5z4sPwt8/c4D3WwTANWWswKpf5+5pux4sskghVE9JqqV6kSiESBGVSDLSRqHstsi/Rm3LqGzJgNMPa5lVBBhFigEqtB5iaImcYeVCWkZxHxG9BWAqgOlENAhAcrRWnUFMeLo4CAbHej2p2JHL45V3NuDxeavwvf++UVpCU8L2JAoO/E6remIO1swWXiPq5BWSKALpxoNpG+rN6+m9Ddu1+0f0iy7fCfjMWE5PD+jjKGxmgMMSxbML1+CZBWvQv2dz4JrT9x3mbSdJHLUC8drq2EmqzqYLUPSvCZ4bVfoXAPI1rnqS2yWN4V2VKModmZ3WmH0ZgIMBTGXmTgBbAZxSNqqqBNEpdYzC5nivJxWfuP4FbHNd3npqUliUCzqJYoHrS24rDCMNbNtPPCYQxxiAsJfQ84vW+ucKRhGiW9UjpCaxrFi3RZ+rakREnedj9nTqaLe5kflbO/KYuXS9d1ydKDOW5bnHqjYKAbW95d91wie8fqm+vxhrzy1cq14CQK8mjcqWKnsOqcjZdk0bs2Xa0ixE1fT/NaF6IqImAOcB+BcR3QXgQgD6L1vHEA3dobEv5G1/ZRin4+/d6mdFESqLSqYzjkt8JsjWkd9Dk3KE4TBFVYIIMYaE33J2WnEoSqIQe/PM2F4lzzEZPQpk8t8/eULsdeok4KVDsYP2CLkJw/mRZC+y+uAUol+OVBjs+67Edsk/gqnj8jbjO3e/5i1yZERJIXEqG0flVbucIslGETXniLHm2LTKQxuQXvV0HYD9AFzr/u3r7utWEDq+TZqVSd7myDTj8oQsJ8ATE13P5goyioBEEaycJiQh3cpj7+E7ae9lSxOYCO6JW+EC8eoQP+VAcL9K0z2z38ee33848j61ikxGTPx69YE6CcgOEnKzBSSKTHR714vqSbz2Tj2asOvOvbz9Uavn9zdsxz9fehffufv10LEoA3hs7Yo6VT0JRprkDGBRbdSj2J+ZP8XM/3P/LgCwf9moqhJiC/rYchxFcBKQv0+bxBS8/DuZyg1m+R1sVqugCRtF+Dp11Qr4uZ78am6uvSKBMai/P3XwqNCxUOEi/etUPSdPoeK8JxFF0K0rXAQ4DCRY+Mnf1mVc9c8riLyqgaVFikxzVDvFGfGFQFWITj5X43EUgZTxElN7ev7q0HEZoplasplYY35XkZZR5IlonPjhRmZXXy9QYiQxCoLvzhh1nazCEaqnSo5lmTKbWVtXWTf5qqtWcV7ODquekiQKlefsNbyvt+2rnsLP0u3vrHLtj0JXaWKCj1rBhrx+pHQocjPKba4yirQSxaLVW/DDe+dWndkCfr+U004AMQw1ZixShOopjhEUXOSowohSPalagG8evzs+ss9Q77joJ8P79cC767aVjb60OpFvAHiCiET5s9EALigLRVVEUtlFIkKGKKR6kq/r2eIzChF0V0ntgPwKrEgUgm7d2FRdXgG4TCLZBhGSMJTfAa+nyBQeYZoAx76RJl1GuVAoo1DzayXdT7ZRBIsd+duh1NzS77i+9dm/z8LiNVtx3sGjMG5Qr+gTKwHPCyxIc1TMQNykn/FUT9ELNhWdtrbYbM1AZuay2lJ1QMlapDgzONs79WjC/FXlc8NPyygGAJgEh0GcAuAQABvLRFPVEDcnCK8UJ4lb9Eqmh6R68l1LK8kppE1ForCV1YkMVSrwzrPDXkyF5h/KWuTVSo5SPUUN8mpH1BasenJfK2oCDHs9+TYKud3kjLuxXk8x8qqgvRa0U2KatjnYP6LUR3HtHuUeG/el8nk7xFhqqU57lOrJd213fluSezAg506rjTiKK9zI7D4AjgVwPbqhMTtu9SiMjY5EEb2SkXMAVWOgyusmm4Mit1id6OIodKqnh99YgWcXrglJCEnvo/OVF8wmKjJ7a4fetbGjyrU9CpYo4E/8OsxYEnQWlFO2y00iF75S04XIXk86Vb74voKCWpgMxSTm5Ezz90fFN8Q1e5R7bJJGoJBnVBoy7bIx2wuSlVSzcnfwS/LWRgoPYY84CcD1zHwPgOaY8+sSqW0Utroy8bfl1fci17WvkgNV9XoKGrOD/2XojNnrt3XinbXbCpYoVJ24RX4kaZ8ejsSl3uGcm2Zo71VtRlGsRBHFKNSiNHK1QLmfyO61zQXaKNRHV59NBG0UMs1RklfJbRSa59RSxmL5XfQOKM7/jEWKezS8/bXAKN4johvg1KN4kIhaCri2bhAnuuWFjULDKOQPtGmHHx36+LxVJacxCarXU1dUTwKqTSKJ7+mijwUG9nKyXapSyoaI9Ni69BmVRKGrTs+YHXVhRNuo7rFyH1OlvYDXk2YUxnm3VRLyROx7PQUXTnE1JaIQVcMi7hqdMbu2JAp/W+47YltWPQUkCkn1VE57fdrJ/gw49SimMfMGAP3RDZMCxnHkHbm8r2uPCGQDEKqEBlTYmC1vMwf0nV5KD63qKboriMlI2At00ocM9f4yU+jd6qQNi2NMMu6YlVwWspxQFwVjBvbETedPjTzfd4/Vj1rVpCqrnuSV9ux3N3jb8ZHZhOMnDg4c92uo+OqKcuP3jy/ArKXBvh9wrJBok1/n0F0Hau+XRvUUkihi6MtpjNnVqqq4ePUWvPFe0MQb5Zkm+p9XF4aCWgvRZzJWeSWktCk8tjHz3cy8wP39ATNXr95nmRDnl83sSAu6AiGrNvlpr+TIbIE4g2Mh+MuzS/DKsvWx56ipAAIeFDErzViJwu2MQg2UVItBvZPcscXqOIrZqJPa8H49Yp9Vbqjf+k/nT8UxEwZHnJ1szFbbXk6ZHfUFVNWlGkdxw3lBxqU+o1T9Lwprt7Tjd4/Px2dvnhXYr8tkzIox+zOHjsYxew7GwF6+Jnvhqs2xk7hfYVFZsMVwl1w+HEdRLYnrqN88hZP/8Gxgn/y+uw32PdT8dnMZhUUIliV2/lu1kMKjUZDEkScN3Umrejruaj+1cS8doyjBOGVm/Pj+N3H6tc/Hnyetm3J20EbhucemjKMQEB1TGNlamuK7jXo8EBPgiifNEcxGndSSpJdyQ108JH1LkiZ+HdS9vnusHZhAg4n/gG9P28OrZhYoBKVhAuqCoNyOoSLjr/pNg9KtT5u8JiEiDOvb6jHWmUvX4ZjfPo2bX3gn8nniOWpOtkIlilpymJX7i5C6AeDXj85HLm8HVE86G5VFhPXbOvHsAr86ZylhGIWEJB3fCXsN0aqe5J9Zy8Lvz5ocOF6K9Vzq0qoSLR15OzCYhJ42rTFbwCvo5N6rORMf16DGPciTq2AaaRlAtesIqM9P+pbJEoWiesr4q2O5nQ4aO0B6JuHzR4zz0qxYikShQjyalf/lwjY3VU2IUUSonlTmlrEsz/tpiZtefvayDYFzerdkse/IvgB8ibZDGbBJAXdRuc9qATIt760PZizekbMDWZwtDaMQmoML/vZSWeirKqMgomlE9DYRLSSiyzTHiYiucY+/RkT7lpOeJNGtJZvRShQqVFXBTc8u6TJtUVlMVcikdeZsL40I4Azosd95AHe+HNb7q6qnsYN6etuiMwqJIkoaEOjVEmQUsupJBI8l3UOgWnrkYp8fV30NCK96gyk8wvsB30bkG3H9u+g86lSade8w74NN2Fii+tpb3UWM6p0VTFApaAlLZdkMhRirSvODXzkcd196qPscp3+pHnGxxmybU7VLtSDTvnpLe+iYXEBM7hueMbvM6sWqMQoiygD4I4ATAEwAcDYRTVBOOwHAePfvYpQ5diMp1UFL1grEUTh1eMPXlCP/ztqt7R4NcZAHZ2feDpRkXb2lHTbr0zGHfPU1nbHF9e1vTVA9nTZlOPYf3S90vbytRhtHodqDWZUyk1ydxdG0Ngpf3x5UPcmMVDxTVzhL5x7LocwBYTpO+P0zOOtPL2ppLBRb24VEEVwgBCUKTw+mKXRF3orYdwaI/u6+6imYRShe9WSH3dprKKtH3lMXctir0vbb0nI9LwVU78FyDZdqShQHAFjIzIuZuQPA7QjXuDgFwM3s4EUAfYlol3IRlCSKtmQzsFx/5Y3bOzHuuw/i+qcWh84rB3df60oUvRJSlssdpTPPAYkiLiZBlih+9NGJ2sn9mrOm4JvH747dh/SOpaE5a+GyE/b0fsudWaQKUVefUah2ip5Q4ZyE88UcGLXoUGuTRKXwCNohHOhK8epVT0EDqLqYEdfP+2BTzJukh+hjcczfj+HhkEuvEyzmbEfFSAzu0+pti8XS5f8JFgRLyh5bSIBeJSB/FzWwTkae2Vc9WUqBK4XpluuNqskohgGQdSDL3X2FngMAIKKLiWgWEc1avXp1UQQlZaNsafIlijWueHinxn2zHBKFqLTWt80xdH2wcXtoRQUEO0pH3g5klPxzjApMNmafMXWENpPpkJ1a8YUjd03FCAMJ7og8b7Aor6ej9thZe59qD2Z1wk8yZou2el1xfxQYpnhxRaXw0E26ugqL6ooS8Nvs/Y073N/+sU07OnHOTaWRJAQEPXFeRcHssUGaCaRJr+FvH7XHzgEJS96WmV1SwF0hKT8qAfk7ikWcThKVpaGMZQUWdWo/KZeLbDUZhW7IqW+Z5hxnJ/ONzDyVmacOGjRId0oionzfBZrdwu5xq9xy5Y9Z7hq4erc2IW8zDv75//C1f83RPl/AUT2lS/LbpER7RmUyTQu5DRh+Vl3RycWq8JIPj8PI/m2eR4+KahuzO0PG7Pi2SGor1aXTkiQKGTIjFZ9UV2FR9zSbg2oZmdl+4roX8OLi0pa8j6pzomPyInBVhkXhQS2/o8pYZPXrVsnJI16isNHHXawcNLZ/4vmVgPzJRTVMHaPIS96LGQq6xzaltPV1FdVkFMsBjJB+DwfwfhHnlAxJxU0sN3NjHEMhorIEOImO1JGzPaPyA69/EDovqHqytWVddcgqGUnjxNs0kOfL9Vs7vIlPTKTZjIVFV56Ib0/bPTZPTbUHc7vCaJOaoiljYUT/6NgP1VMnGyFRBNyV3U1dhcUoY7ZcHVBuw7dX+hlGS9VPc1EShbzNwF0vL8ec5RuxYqNSh5z86myCJJlmVUsZFRwab6Nw2nfi0D44ee+hoWdUA/LzhZ1Hl/sqwCgs0rqbC3RH1dNMAOOJaAwRNQM4C8C9yjn3Ajjf9X46CMBGZg7PjiWC+Bi9Y+wAlkWI4yeE8mSLFUbpHbl8bPH1AKPIcQGMIuibL0/0ujQRSZDbYOLQPt4qUF4wZSwCudkwPZdOpatXu5ZC2vaTMXlEv8hjyxXXR5G3R03hoWPOh4xzoph33dm3EUXZKGSGFDUfqpNMsYiqxR5I4QHGPbPfAwAsXr01cB5pzpfXYnFSWpAZ+b/GDuyJqaP875DLs1fWVzRttZ2e9rjCr+B456x3Mff9jdrKiO05GwvcFOIZi7RehALdzpjNzDkAX4STGmQegDuYeS4RXUJEl7inPQhgMYCFAP4E4NJy0iTE3biKdBkKTl4hXRkVZ6NYt7UDT74dnRtKrBDbO+3Y1Nuq11PapHrBtBDBlWpxqid/e+c+rZ5eWcfkSJIo1HFSSBWzYpG3GTc9s1irplP3pVkD7NQjfelbeXEsM9eApOA2wcf3G44Z3z0aU9x4AvmaOz53MA4YI1QqwfTskSvnEksUKuS98ne1LMInDxyJPVynCN3EzTGqJxmdORubd3Ti1WXrA9ePGtCGvm1+tLcIPs1YfpruajMKGYvXbMVJ1zyrVbX+4qG38JXbZwPwU/YLFDM2i0HlijlrwMwPwmEG8r7rpW0G8IVK0SM+UlKCvDi9uVWk6umCv76EOcs34q2fTAukmBYQRun2nB1brUtMEM0Zyw24S2ejUKM9gzaKwtcTqi7/8pP2xDfvfA2jB/QMnWuRb8wM6aor4PX031ffw08fmId1WzvwrWl7BI6pEkUa+1OfVr29RYeolOFRXXBwn9ZAyhhx3gFj+uPj+w3HS0vW4Wv/mo11W/24m8j8hCWaKaMlCmlb2m8RcOVpe0m/yTtHl48sbjLckcvjc7e8jOcXrcUfzp6ifR7gG4QzUt+utupJBx3TnSHlj7MURkFe25X3XUxktgRho9BVexOwiPDC4rX43WPzATiLsknD+gSO6yaTLe05PDp3ReR9F7nieHunfmb0GUU+ZGCdv3IzVm12Jg8hQbS1ZDyJIk3MguqOGbRRBM9NwwjVJjx8/CC8+N2jA+mzvXPJL7pSjaAoUQtDzvwrEGIUKe4XZZjXIbgoCUp1kZDNFxpb0owl67DATXEPxNl/UpMZCzXDqQdFQnjGTS8R9noS9LB2ooyzkbV32l7+s2BuqSABQs9vWf74lM8/6ZpncMFfyxPVXAjEIvQHH/FDyuQ+klVyPVUKhlFIEEFtcYNUGBnvf80xlTCAXXbyjZeqIVjg2/9+DRff8jIWRpQrFJfs0Lm8MnsrxPZOG53K5HXc757GAT+bjqVrtnqqnZ7NWXTmHRtFSzaD68/dL/qlEDZm69JuFIJC7DSy6imUZqGCNgrdfNqeyycGOarQ5fuKgtxOwWYOG7P9n0Hpz9uOIDNKckjDhF9bvgF/ejocK6S7T8jFVck75tGpMgpJ9SSk5cA7avrfGVOHA3BjDDR9hBF27LDZkSh8m4h/fO77m/DE28W51ZcSop36tenL/aiR2ZWCYRQS/vjEIgDhVeMh4wbgYDf3jjYSVkmpoJtXReHzLe16VZC4r05PfvML72Chu0LsyNsBQ6WsYvjM32Z6x3q2ZNCZcySK5qyFcYPCKh8Zujq8Km2FoBDeIhuz1TFfCRtFHKntnXaAUaRpirTBhEDYNnTiXkMAKO2nNIFMg7wd9Z2iVU/J9H30/z2Hnz04L/acqDgK+bmyG6vaN2T1iZgokwz7F39onPdscY3MMJg5ZCOpZRuFgCh2JlMv53nLWJQ6RX8pUVUbRa1CnShv++xBkccAP38NszMIdL723mCI6J3i2+/QqJ7+91bQyC0PukWrfRVDe86XNtqas56Nojljae0eMlR1m0xmV+Moks/120W1v1REoohTbeTyTuoSN+1JmmDDtHmsADVlOOHacxzJT65HoUKmQM3EqkMp2tB21TY65CJtFGH3TyAsIQQlCpdRSMd1zxXtJoy8gMooguc70c3OdaKr16KN4icPvAkAeH6hXzJXdkjJGNVT7eE/lx6CJ79xRGCfbqKXO6jq9XTBoaPRuzUr6WGD125pz2Frey5WohjQqzl0jcBaKVkgEdDuTrS9WrKejaKlyUpMDa4yg4DxsYiOWYjrpUXkPa9D8eiqhEQhoHtSMRJFIanRM4pEIdA3xs4hM4RgBL3+/FLwWjX+I3B/9wGqN578S66JrkoIgvkyA50i51PA6y78TJ2UEY4MD3p+5W07IFHUCqOQ+8ARuznBwkfv6dc8OUwq7uTEUVSONgHDKGIwsFcLRg+MV9kAInWyA9WYLQod+X0h2Dkn/eARTPnJY95krGMUonyogCxhyAM4Y5EkUWRgs5MxtjljBdQhZx8wEqdMHhq4pzru5EFWjE60KZv+GjngTnWfLdbr6f0N23Hwz6djwUq9TUiGoHSJ4t8POFKaLI2leatCGEXQNuRvjx7YE6e630j1aAlKFHp7hYxSeDfJRv13123DJbe87LlsC4lCjQGQH7tNYhSq5ONJFPArMiap1HTrEHlRwVBVT4y8HbxXraQZl99ulOsVeLCcZl46ISsxOhlxDjilgGEUGohJS6dy0a1CmP3Or0Zmi/oV4uMuXbMtdH1HzvYm4x2auIc211NI0PPX55Z6x2TDdobIYxwieeDmHTm0NFmByesrR4/H2IF+FS3du3LMsTSTZSEdlyQbhWqoL3aSe3bBGnywcQeu+d/CxHNXbXacGF5YvDZ0LGTMTiVRhE86YdIQ7bk9YpjQ/m5chIrgJKrfliFPiIeMGxA4tmFbuvT1svrjJ/e/iYfnrsBT81e59/clil8+/BaWujUlAjE9OdmYHby3bFzWeT2lnRhVrydxKzEGbZuRCSTVqw1OIb+eV/JUej158eQULgpmOQDSZ2MuFoZRaCCHy6vQzVtyB7UovMqz2d/39TvnaJ8pBpWcekFArLJ+e8Y+oWOyRJGzGSvcRHBCElq/rQPNGSuwcm3KEL5w5DjcdcnBmLBLH4/O4Dv528UYswvpuJZkowhLFMUN5j6u6iYp19XW9hyumb4AALQG/x2q6imNjUIjUVxxsppB34Fc5EltZ/FbfWaU11OkjUJRwchYualdPV0LuZ8J1WdPdzEivtG6rR249slFuPDvM50TpUf9S0qeqY4rOY5C2Kjk764bh7p1iK3YKMSio0dTBnkbXmS2r3pymN59c8qWFSgV5O8mGKXMCGWVXjbjq57kZil3JUhjzJbQpzWL9pztDSbdBBmV6Kx3axYbtnVi9ICeoVWebXPiStSLvNa4x3bkbbQ2WYHVp8B37n7d216/rQMfbNyBHk0ZDOvruOyu29qBfm29AjaDpqyFbMbC1NH9vdVM6F2l9yzGy6KQjivX+y2VjcI3kMZfL6tUempSt3Tk7WCMSRqJQmPMjmK2av3r4DURDwgYsJOfEWAUisAalw5GhpzzSjhTiP6oMnPhkBHV8lHusXIchTw56hiFTh0aMGZLaqzWJgu2LSQKKxBwF5dRuRx4bmG4VKn8JjpthizNOcGwvvZCoNyMwkgUEgb3acVRe+yMzxw2BgC81NgydAtcZmDPIX1w0/lT8bPTJoVUT2qdYB28XE6aFbATNGcldobNO3LI5R13WDHprdrcjuasFTBIyyteMZjamjO44uQJGONKIl01ZsfV4FYhB9ypE1exHjtycalC6FDB7ipUoFgbRRSDkU8N6+7FSluxUVD4HCCaschXq4w3LaOQJQpxD51bqrNflNyN8PCLjPfw+6Ns79B9F71aOLgtaG5tyiDvMqEM+e2nk97LjXNumhHaJ7+eH/Tr75S/kZzCQ2aWhXjaFQMjUUjIs+MCeOkRu+LSI3bVnqNbodrMaLIIx0xwPBVUrxRHoIifYkSn1rnHduYd9UfS5HvalGHotBlNGQowOTVgTP4tOmFbcwYXHjYGF7pMMugeG/3MqJiBQrye5IC7kOqpSDVyZLSwep70PN1knrcZLdng90xCH80CI+oqeRJUJ9woCSFozE4+n5nRnsvjrBtfxKtKLeq4vGEy5IwBXp3mfJBhCETFVQiEVGm+NdtjELmARBG+R1wdDkGDWIm3NmVcY3YwMlvU56425PbI27bjOSlLFIrDimAUchMUGhRaKIxEIcF2c8HEnqPp/LKxGtCn6E6biyVOoohypQSAgb2a0dqUQS5vI2tZgYpg6mpDnuzapcEkQ6Y3rk3aWvTxGYVIIU6uJ2dbTWIoSxRjvvMAvvuf15EGggEktbo8yckT9V+fW4LRlz2ADds6A++S5q2G7NQa2hfFYOTEdbJnEBAtIeiKSjn79efbNrBw1ZYQkwCKkyjE84Urqyr1RcVVCKhjQVYFCcYVmBx1EkWCWlhI1oBro2D2IrNFmy1zg2AH9NRHQQNOn3hJyrVUDsiv8sLitSEGq8ZR+IzCv/CcA0cBAPYZvlNZaDSMQoJjdI4/R109MbMbcKefTMT91FVULm97hmcZURKFqnpqUyb2poyFjds78O667chmKFAToSUbHWwnBqTKTNRsnzJG9G/ztns2d10otSxfnbFNUQeoniy3zViGvX7wCC76+ywAzgR45K+fxFqlIL34Tk/Pj0/LIDMHeRX7jxffAQC8v3F7wdmA2zRtEjWJ92vz4yXk+Ji4awqVKGzmkG1CIC2j+Oadc/DCIscrTAi2s5dtwLfumuMxDAFRUyGhDpgHQbVszA7o5WMC7gLPlZ7XkWf88ZP74v+O2Q3jd+7l5XpyjNnOOWne/bonF+KMG17AixqPuEIRpQaV32Tm0vWh452KRCGGxC59/QVJj+YMpo7qV1D6mEJgGIUEIZrGQXXfdK6z0WTpV3laEdlm/PKRt3HQz6eHjm3XSBSdeUZzNlgCsYcyGWUswoOvr8ALi9ciaxFashl8Yj8nH06c/vLrx+4GIJxbJuAeq0xAQ/v2wKtXHItDxg3A786cHHnvI3YfhF9/IuyppSJjWU6pSptxr+KBohtcm9tzeHzeSgDADU8twpI1WzF9XjB6PakIlYA8CLU5gzj4/kU4gAEIT+KfPXwMfviRCSAifOpgZzWoMslI1VOkjSKKUUQ7BaRVPS1duw1n/+nFwHN+P30B7pi1HKs26Zl0WkcEOWuBWOXL0EoUCaonZsaI/m34yjHjnTr3titRWL77epTqTIZI1nnHzHDJ4zS4/qlF+On9TrR1FGM6MqIMsIAqUWzY7iSv3HXnoIu7bOsrNQyjkCBE06RzZBARcvmgwTNJPf/vV5bjoTf09Zd0qqd2V/Uku8y1KVlYAxkmXclDMIg4/eVZB4zE0qtOCjET2Raji+ru17MZt332IK8Ggg5/u+AAfNxlVnFozhBySg4rgaiEcwJeanjFfpNU1la9HkBgZSz2yjEyQDr3WB3Uqy4/aQI+fahjD/rw7k40rqp2i1JXyTRExVTI4IjEeUB6iSJIV/D3ZkUSKtSRQNA9fd6qQEpt73gRXk+y9J0h8o3Zko1CMMm4tP1iXN396ntFOVZc9dBbuMn1rIpq61MmD8O0iUNCY3qkK7kHPMCIsNnNctxXTRxI0eq+rsIwCglCNI2DbkLN2xyYqLKBGgPh+33zrtfw7rrtof1A2D32XzOX4fF5K7GtIxd4huwqq5ZHFAkExWARjOKuSw7GXz49Nfb9dNC55ZYSWctCZ97WDiQx+KNWviLluvrd0q6UdTaKd9dt86qwddp20JhaIolCRpQ3W7SNQn/f6DgKvds1ADz0xgrcOuOdSNr0zw8+Z9P2YHr2JK8nzQ0BAN/692vaw/o4iiRGEZTq87ZfbtYzxrt0yn3lD9MX4NkFvgur7OocJ3mkQZSUa5GTml6VKO+65GAAir0mQzh18jCcvu8wfOO43UP3KQ+bMIwiAJuTVU9qTMHaLR0ug5FWMDG+8UlQbRR/cCOL31m7TVE9OZP36AFteOOHx2sjVVWJYuro/jhqj8Gh83SQx3hSQsGuImMR5q/coh1IYlfUakwwRfX9xSSQFPgnJpedejR5z7/h6UXecSfRY9dVT6BohisYRcg9NgVXSheZzZF1Tu6b8z4u/88bkRJbmhiGjQqjEPNpWoki6S3TppCRnyeX9s1Ywk6jt1HIE/FvHpuPc//su7DKKuVigz8FVFuOgEWk9WgUbd+hZF/o2ZLFb8+YjP6KEV4uAFZqGEYhQVTAisPQvj0Cvze357Bxe2eouIhAoROLqn7YY4hfFEnu/EJM7dGcRY/mjHZAi2cX42MtrwbL7aP9wOuOGu5Dv3oidCwqYhtwvte8DzYBCE9oaVd/4r6tTZY3EfzjxWWBcwr1etLBIuD3Z03WHvMYRcS16tiPtFFEcAqbOTFCXV3NCvRpzXqxNf5zgudE3TvaeKswxIRGTetBJ9tEPnPoaG874wZ0qpHZHbnkPiI/W1fPuhAIyeXSI8aFnqELatUt/uI0Ho6beZdIjIRhFBJsTk6pfeXpe2Ggks11c3suso5toekv5EjhLe05rN7se0bJnUkwCrFLG2PBgp6uMYpiUngUg807cqF9YrLR2S8WSynW1YHmp6tOJ1G0ZDORE0Ea9U4SKGLVCPhST9pbRxYuirRR6J0kZERJbHmbsbfkcpnL26H+EFWXPUr11KrYvJL6V9p0MOJbvnrFsZg2aRf//pZTvti2nbEp7pZm4pfzqqV1kNCBmT1biJoBwKLgGP3jJ/cF4KiZVMTNT0aiqBBsmxMHa5/WJpx30OjQddkIRlEo5AF7xK+ewJzlGwEA+47sG5hohNgpBpn8TFGaVXSZYuY2ubuVO+FYFCyKt1HMX+kzis68HYhDEBJFUvyKOK+tOROpnrHI97UvtrqYmgNMh0h3WIr+LXe1uFxPOrdrGVGTfd5mDOzVgs99eCwAYGtHPvScKOktSqJQVXCJqqeU40lM5Go7Z8jxesrZTvJNQX+hE39aKfXVZetDlSx3dNpeH+4VYhQUGGNCgtdJGXH9T06uWWoYRiEhn8LrCQiv3oU3hXe8SImCKDhg17i1Jg4fPxB3X3poQBQd4pZfFaKxiIQe3KcFN57nGKxLtbro05q+BnQpYbNfWF51S965d0vAQPv5W1/BhO8/4v0Wq7ekwS0miz49mrCtM69tswwR/vuFQ/G7M/fR1vxOAwJFTnjikWk9qqJUm3HusUmqp6h6E3l2FkFD3f6Wy9uhGuoqHf5zg205dVQ/AAi1YdIQSRvlLxZZ6ule9lh2xotovrgaG0DYGyqtjeK0a5/HMb99OtCXtnXkPPp0jEKXCVafXj2GUaB0Yz703LLctU4xol8b+veKjtIU0A34KIlCfOs0/MKpc+10plWSyqlFs8IY1NupUSF2iWeOGtDTs6MIcbYYI5xM7vjBvQu+vpTY3pEPqQmas5aWCQiPFTmNRJxbo7hvn9Ys8jZr0zoQEUb0b8NpU5JdfaNAFL0yTpL8wjYK8iScNKonm1lbi11GnERhWb7aLGezdgJr1QR1qvOwkIJHDwjaPJIYZFqJ4hY3SDKUhdcib0GQIb9CXJxbLBBUAwOFuxJf9dBb3vb2zrxHg071JI/tOIkiDsbrqUJ45P8+FJnjSYbuA1oBiSLePTYKbc0ZrzMe8DM/GE9MFLIkIyKz1WMybUIXnLSajMO15+wbCuwpNZLGQ6dth1RPeZu1qgPhsSKfrzKUN97biP+8uty7D+BLTUf95qnQPUuRmJMoWm2ws8v0j9g9GHgV13VEf0sTcMcpVE9R7sTCwUMY3DtytpYuXayNukA5cOwA/O7MffCDj0wM7E8aIlG2nXMOHKndH05j7veBjAXJRhE9rTr5sbqW8v6Gpxd72wtXbfG8ntS2siwK2ChE/jTLooLUxnIW5lLDMIoioFvh/PMl31NGNkIVsijo19Yc6pyAP1CaNF5Palpi2TNKuLV2hVGMGtCWfFIXcd+XDos93pGzQ0zBSckQPfnJx+QBnrcZJ//hWfzfv+aAmfHSUke1Jac+2GdE38C9SmHMJ0Qbs4f27YEZ3z0aXz16fOr7iQVB0EahP9fmYJ11HXQShUhPk7F8HXrU5KqTKNRJqylDOG3KcI3qKb59o4pgHb2nPqJZZ6Pwti1LCriL7j+62BPdu2/Y1oE7ZyVHbV/wt5me+lRNpGkRBZiHPM4LkSqI0qdNKRSGURQB3ceTV2yBlaO7nYbT9+/ZrO28QlSVGZQYbGpaYrkTnuh6fpy+b/Eqk3LnuQfCqggVHTk75IMu1y7QoVM6Nn/lZixyPaSWrvVVSze/8A5ueMpZ9cnR66qetyvF7Pf0CkPFM5zBfVpDzxE/tbpqCuux43I9JTGK9lweNzy1yIv6BYIFvMRkncvb2pW1ukresK0DG7YF4yuiVEjy3h+fMjF0PKoLRqms1MfI7epUuHO244IyO/N2yLlBVn++umw9fnTfXHz+H6+4AbTh1CMymJ3aMEB4/rAoaOCX3dELcYwhorKpnkya8SKgczeVvRZ0AXdpPCx27tOCFxavxcvvrA/sF8avoHtssLqYeOag3r6NZeSANiy96qTE5+pQrBtoMUhKn96ZD0sUuQjVk3dcYrin/PE5AMDSq04KlP688sF53racOLEzzxjUuwWr3RKpXeATuO2iA/HmB5uQVbL/psGBYwbg+ImD8c3jdw8dE/eS76imgBCwOZhw8CtHj8cZ+4/AoVf9z9v3yNwV+NMzS7B07Tb8/PS9AMjqGkn1lLe1qd9VA+3kHz8WOifKKC13NZ3jROQaK6I51XbOKMzUSiFR5O2w6unGpxbjq8fshpED2nDmjS+iI2cHJvXrn1qEj8Usyha79q+sRqKQGYWafgRw8jo9/rUPR97buY8xZtcUdBLFjedP1R4Xq540rnUDejq66o9d93xgv5Ao5MlbTAqDlZTWg3qHU1zXOqImkJ+eOgmAUD2F9cVxbRp1TGYu8kQgD/h5H2zCWCnIrFiXWMDJiXXorgOd+xTIKPr1bMYN5031ytrK8IrXSPfsHeGdxopE0dacCRXl2rTdOb5Jkihktaanesqz1jlg7vubEt8nSjKTJSHZ0NssMadCoC5yghKFr/ePkyhyNnuqJ5Hh9+5X3/MSI4qIbaGye2TuClz10Fv4yB+ejbynyBatqp4yFqFVYvLNmbBEkaYPEoyNoqagG/A79fAHqeiYzRm/7OLsdzfE3vPI3QcF7iFjt8FhY/KEXfrgRx+diF9/Ym8AwHpXzBeG0XqCOoF876Q9ccKkIZ5nV0feDqiSACc4T5dpVCBK2ohiIGr0uZycrlTSVVfia1SIO8nSmDr5i8ndthlb2319ezZjhYPmYvJsZS3yVsE52y56Mop6fZkUWTLp6dY6iapEl7Y11WBYv/BSvEQh1MnnHzza2//BRidH21aFJuEtt2JTuHSAcCoRzDqbIdzp5nECnPcPSBRSoaysZNhOgmXFSF9dhGEURUCnKlFXxT/8yAQ88OXDUnst9NCs8gROnTwstM+yCJ86ZDR2diUIkZhNLljUFRzpZjTt21b5GIqzDxiJ687dz19R5myt4Vp2IJARly01ilGMGxTt2VWqCb6Y2uOR0NgvVHuSoFtVPTVlwtp9nTFbtKEcELZ0zTY8v6i42gxpxoLMKIR6NSmqPAkZpY3Ez6i0JYDDEIVEsXMff/Eluo+6sFipYRAC93zBcdbY5GYeaMqQV9MecNq3LUGiSNN1yHg91Ra0cRQK8/j0oWMwfnDv2NXoIeMGYNGVJ+JLR+2Kn566V0jPCzgRwWlWtELfWiqJ4tvT9sDzlx3lMaJKQrSlGIwdubB7bBxsjktJod+/78i+GB/hBlwqRqHW/OgKBIOI8ggC/MWLzRxgFISw4TtWosj4Noofu7UVVBwybkB64hVQQPXkT5inTB4KAJg4dKfQNQAwvF8P7X4VqupJvPt7G/QZnAFHIhXGbN0YOHbPYHJNXXp0AcEElqzxszqraX5aAxJF2OspTR8kGImipqBbGUaluYjzdBF1LL5+3O7o37M5FIgDAN89cc9UNInym6WajLIZK5QAsVIQE5yYnDrz8YZrFTlb75kj7qVD1rKw9/C+3u+MRZ4qsFRp1gf0Kp1aUA201EG4abPiHpvXpKoRLtTyblmiEH1ezRQrcPlJ0f10sutuHBXUJ7+CvFj61rQ9MPv7x0bWPNl153SBoIGhyUHJJsoBQDZm9+8ZlqpFIksBXZ4yAcEERBEkVfWXsRSvJ0miEOelWSxaZfR6MoyiCOhWcVFupHGfV42W1dWf/pim8I+OUV195hRcdfpeGFmBuIdyw7PxCIkiH47MjkPe5pBNAwCeWbA60uc9myH0aJZiULIWPrSbo36LmkyqCaE8ivMYy0ZIFHkOq4E2KRMdM3vZfGWvpyjsHhO9L6LIVXdZAVkRpi6WQsV5ioDMTBkceBe1qFdv9/myMTvKdqjiExFFulTX4SYpjQjgMAE5tiQQR5ERxuzk51tUvsJFxj22COiyOqoubwJxaWpUP21V9fQnyZNK4P4vHYaBmpXpoN4tOOsAfaRqPeA7J+yBn0spDwDJ6yXHBamenKjtYNsO69sD5/35pchrMlbQRbFHc8bz7imGUVxz9hS0ljE9O6WQKISU25m3Ax5ezOE0HJsVSWH15nbPmJvEKH58ysTI/g8AB4zpj+lvrQrUWte9C1Aepiyvxm1Wi34F6fZSleRtTwJSmdcb723UPkf2OhvYq9nL1abWlc9KTi5A2D1Wl4k6lerJ2ChqC1rVU2QwUfQHVvXC6iDRDZpJw3by1EzdCWr6CgBodr0/OvJh99g46FxnVVXUwWODOvXmjBWY7FqyGe8atT55Gnx0n6E4buKQgq9LC/JsFDGqJ/fYg6+vCOwXld5kyG6x59z0Ig640k8hk4lJkX71mZMDXkE6nLjXLnjkqx/CCZP07SFeoWdzBkSOoTfKXlQMAhKFwijU5hPd5FePvO2NT5VJnhzhAtuUJS9gcB9FjXmBVB+jKUNBu4nCKGSI75tG9URUPhtFVSQKIuoP4F8ARgNYCuAMZl6vnDMCwM0AhgCwAdzIzL+vLKV66I3ZycFEKtoVbw5Voiihj0zNQ9dOzRln8HTk7ILKUOY0EkXO1cuLgXT6vsPwwmLfe0ctHtPS5CcdrE3Vk4M4G5h4nzc/CMY45JlDE+RaN2r4/tfCtdyzGYqMdUmTKM+yCLsPibMnBCfD5y47KvGehUD2SDpk3ICAmkdtPmGDefTNlZ5tJG3hrqxFXpaBg8YOQEfexrETHKO3GlAnL1yIgNZm/TOExJMmjsKpR5GK1IJRLYniMgDTmXk8gOnubxU5AF9n5j0BHATgC0Q0oYI0RkJno4haccWtBNTIT1XE1enZuyt0C2PhT95ZhESh1j/P2XZgEOlckeXzDxzT3xPjS5nG5HMfGosLDxvT5fuIbqVODHFeb6dPGeZdo/bLuAnGIgr49suQVYLPfvtIfOHIcaFzkiY5ITl2tdRoFN76wK8NMXpgz4BdQpX45Wp+P33AidxXA+SikLEsHD5+IO743MG46PAxuOXCAz1pS/ZqykqeV4DDSKOeIXanybROKJ+NolqM4hQAf3e3/w7gVPUEZv6AmV9xtzcDmAcgHFBQBYgJpadsgIr4kuoE+PPT9/JiE0KMQlFxqOqR7gwdQ5XjKAqVKDrzHLARqF5TfTQGSlmi+NFHJ3nPLGX8w3dO3BNXnNz19Y6YaNSJ4f4vHYZvTXNSfqg1DvZ160EMKtD7qjlrRbrhyk4Gw/u1YTeNUTtpkhMJBQtN463DLz++d2if6jQSt3j78G6DMGGXPoF9aRcKWcspinTAmP6hZ6g2iIyieoqiSUgUaRJTdkeJYjAzfwA4DAGAPg2kCyIaDWAKgBkx51xMRLOIaNbq1atLSWsIYuIIeiqkc489+4CRuONzTlSm6i7YozmD8w4a5f0ud63qWoKu9YQ/eWc+GEcxJCGo0HYlCnkVp3pN6e4h1Ie9WrJozlqeMbsrSQHLBUGSyih27tOKD40f5J5DOHRXZ7HRms3gkweMxPXn7oePR3jnRKElawX6948+OhEvfOcoHDS2P07ZJ7h2002qSRJFi/udClkMRGGykvkXSC8RCAxQatJkLMIxStyEDnEG59aAuitY0S6OkRYSR2FZdShRENHjRPSG5u+UAu/TC8C/AXyVmSMTyjDzjcw8lZmnDho0qKvkx0J8NF0EpQrdXrG60OXw/8TU4jO91jPiMqTu6MzjFw/7HlH7je7nRbaee1DY0ytnMzptO6BiUCUKXUyDGJTClTRfBomiZHDbRjct+NG8vpE06xpQp00aEmJ8URkBBFqymQADaM5a2GWnHrj94oOxkxK5ry3fmdB+ag3tQvCviw8K/Nb1o++dlF6Cy9usNSzf9Kmp2GuYPvBPIK6fqB5wsgQRx8jkb5mMOiyFyszHMPMkzd89AFYS0S4A4P5fpbsHETXBYRK3MvPd5aK1UKiRw0C0OKtVqbjXDe8XdhcUE+Au3dCzKQ665hPj7u5X31P2+26Ak0f0C12XdwPu2iSbj7pa1fnGq4PxFx/bG6fvOwz7j9YHfFUT+4103rt/TJxBNkPeaj3OfTUpoLClyYrMbqpCdyxJImvtQkCjGhSqY0q6qpWfPdyxE6n9LmdzZLnb75y4RywtcQwxroSuaLObzp+Ke794aOBYtgBG8YOPTMAz3zoy8bxiUC3dxr0APuVufwrAPeoJ5MywfwYwj5l/W0HaUiONakj+vtecPQWAk4/pipMn4C+fDsdJDOjVgl9/Yh/cetGBJaOzHhAnUaiBWpu2d0qGZsKM7x4dyEklUpD3TPBWevun0wIqADWn0MgBbfjtGZNrUgX4nRP3wINfPlybWXa3wb1x3kGj8Iezp3gTfJT7NhA/iQGO6slS7B1R0E2WiaqnLrSvemvda+pW+qNc7yRVU2PbHOnldsi4gbG0xEsUyYzimAmDA9kBAL8907RRa1Om6JruSajWCLgKwLFEtADAse5vENFQInrQPedQAOcBOIqIZrt/J1aH3CCEbSGNkUueAIdKUsKFh43BLjvpU2R8fL/hGBuTpK47Qi9RBFVBAhOH9vFE7KaMhcF9WgOJE796+2y8t2G71mAtoyWbwczLj8GM7x4NIDo9RS2iKWNhwtA+2mMZi/CTUydh7KBensu1LkhUIEmHL2p1iAk0btLSef8lq56Kn9xC9bE1HSlOHZaxCLdddCA+fchoAI7rcLH0ZGLaMS6CPo7xCgM/ly05RzpUJY6CmdcCOFqz/30AJ7rbz6JGQwmEYTVNh5L7aJz43+jQqehE28lG/+lf/zBG9m/Dv2Y6qTjEJPC9k/ZEnx5NuGb6Ary1wnGHTGIUQDBFhIhrKYVXUq1AqDDjambnEwyggtn07dGEbR35QJEnFVrVU4JEUUpGoZVoYqSc5qyFQ3YdiPfdWhF2hI0iDeIkirhcUHFeWC8udpINqkGTlYaZuYrA5BF9ce5BI3H1mZMTz5X7QE0aRWsEuqbRDfBxg3o5AUtKjEM2Y2HfkX0D57ZEMOao7yDclUuVBLAWIHT4olqfDkmOMoPdNNvCC61fzxi7SDHG7C6onlRDuO5ZuonYqzHvSRbO/jwXzyji3nOSawj/xcf2KureSWrUcsMwiiKQsQg/PXUvjOjfhlsvOhA//Ej0ClTupEklPxsZulVn3EpLeCQFC9EHu3OUEfWQXfW6ZsEouuKFU2tIkwFYSGxXnR6exP739Q9730Ek94ubtHTxFknro65I2n3bmgMSYNoRpuZQEv0vb7PW+B2HUW4izriF4JiBPbH0qpNw5v7F5WOrtot29xkRVcKhuw7Epw8dE3lcNuQZiSIahbaMWAVnY/zRde194WFjcN05+2rvKdwf44oY1RuGpWAUew933lv2wvvy0eNx4Jj+AVvZNWdPwZePHo9dY/Iw6RZD5a6/vs9w3201bdlUMfEKeo/aY2dMHdUPXzt2N4yMSF6o4stHj8fVZ072DNWlrGCo4qg9YkPNyg6TPbbMkN0w44rMNDoKnUxkrycBtX3P3H8EvnjUrnji7dW44r9vAHCi3XV1PwDggkNH48O7D+pWjGJQikJW5x40ChceNgb7jfJdjb927G6h84b3a9PulxFnmC0X2qSMBmnrsQj1klhw9G5twl2fPwRAvD1BxgGj++Ow8QNx07OLARRua/nLp6fizYRa49efuy+eXrAGP4jRWlQChlGUGQFGYVRPkSh0MeYHw+mDHicN64MpbqxBmzSA4wYzEXUrJgGkW+W2NWe8trr70kOwI6ZEaBKKXQz95NRJsTUt4hCss62f0n535j7YfXAf6TynH+gC1NImgey0RRp2550LtW0ctcdgHLVHfMT3tEm7YNqkXQq6bzlgGEWZIdewNhJFNIqVKLIZvWpP9luX1RE9IrJ0dmdcc/aUWLWn3C/3HRkOYCwExapf5NQ1hUJX8EvFaVOCGQ+Ei68uRkaORZg6Kro9RLS/6IJd8d6qdTTeqKkw5E5nJIpoiJZJO9F4Re4j0qh81K23DACnTfFjLHRFn7o7PrrPUJy4V/SqtJQBhaXMtJsWaSvQyRCTvM4wLySD3i1ZTx2lv4ezABGMlsuVka8GYCSKCiIqw6yBn/fq4g+NTXW+p3qSJiaxomtTkivKK720hspGQikXMNVYDBXDnPYb1Q/nHDgSnz8inBZdVKr7+nHx9hixCGwqc5r0WoBhFBVEXHRso6OtOYu5Pzo+Vj985Wlh901ZpTJuUE+ce9BITJu4S0G5txodhWZXjUO1FkMPfPkw9GlNL1lkMxZ+pulPgCNhLb3qpNjrf/OJffBht6b6Vafvjd9PX4CpNZgTrFQwjKKCKOWA7I6IMkQKfPLAsA+6fA2RE99iUBhKKQVUazE0cWh8ZtdS4Y7PHYyWrIV9pHTmI/q34def2Kciz68WDKOoIKrhOthdMOf7x2n39y1CP20QRCntCt19MSTKozYaDKOoIIzao3iodQ/2HdkXryzbkDpi9Q9nT8G2jnT+8Y2GkjKKGsy0a9B1GEZhUJe49aKDCpr4P7LP0OSTGhTlknQnj+iLUyebdu8OMIzCoC7Ro7l8ufcbDeVyaf3vFw5NPsmgLmAYhYFBg2LaxCF4eO6KkucgO//gURihqd5oUL8wjMLAoEFxzdlTsGFbR8ltZz8+ZVJJ72dQfRjLk4FBg6I5a2HnPo1Vm92gOBiJogK4+szJWLxma7XJMDAwMCgKhlFUAKdKuYYMDAwM6g1G9WRgYGBgEAsjURjUNG44bz+8s9ao7QwMqgnDKAxqGsdPHFJtEgwMGh5G9WRgYGBgEAvDKAwMDAwMYmEYhYGBgYFBLAyjMDAwMDCIhWEUBgYGBgaxMIzCwMDAwCAWhlEYGBgYGMTCMAoDAwMDg1gQM1ebhpKDiFYDeKfIywcCWFNCcsqBeqARMHSWGvVAZz3QCBg6dRjFzIN0B7olo+gKiGgWM0+tNh1xqAcaAUNnqVEPdNYDjYChs1AY1ZOBgYGBQSwMozAwMDAwiIVhFGHcWG0CUqAeaAQMnaVGPdBZDzQChs6CYGwUBgYGBgaxMBKFgYGBgUEsDKMwMDAwMIiFYRQuiGgaEb1NRAuJ6LIq0zKCiJ4gonlENJeIvuLu709EjxHRAvd/P+ma77i0v01Ex1eQ1gwRvUpE99cwjX2J6C4iestt04NrlM7/c7/3G0T0TyJqrQU6iegvRLSKiN6Q9hVMFxHtR0Svu8euISIqM42/cr/5a0T0HyLqW00ao+iUjn2DiJiIBlabzhCYueH/AGQALAIwFkAzgDkAJlSRnl0A7Otu9wYwH8AEAL8EcJm7/zIAv3C3J7g0twAY475LpkK0fg3AbQDud3/XIo1/B3CRu90MoG+t0QlgGIAlAHq4v+8A8OlaoBPAhwDsC+ANaV/BdAF4CcDBAAjAQwBOKDONxwHIutu/qDaNUXS6+0cAeAROoPDAatOp/hmJwsEBABYy82Jm7gBwO4BTqkUMM3/AzK+425sBzIMzkZwCZ9KD+/9Ud/sUALczczszLwGwEM47lRVENBzASQBuknbXGo194AzOPwMAM3cw84Zao9NFFkAPIsoCaAPwfi3QycxPA1in7C6ILiLaBUAfZn6BnZnuZumastDIzI8yc879+SKA4dWkMYpOF78D8C0AsndR1ehUYRiFg2EA3pV+L3f3VR1ENBrAFAAzAAxm5g8Ah5kA2Nk9rVr0Xw2nc9vSvlqjcSyA1QD+6qrIbiKinrVGJzO/B+DXAJYB+ADARmZ+tNbolFAoXcPcbXV/pfAZOCtvoMZoJKKPAniPmecoh2qGTsMoHOj0e1X3GyaiXgD+DeCrzLwp7lTNvrLST0QnA1jFzC+nvUSzrxJtnIUj6l/HzFMAbIWjKolCVeh0dfynwFExDAXQk4jOjbtEs6/qfRbRdFWNXiK6HEAOwK1iVwQt1RhHbQAuB/B93eEIeipOp2EUDpbD0REKDIcj9lcNRNQEh0ncysx3u7tXumIn3P+r3P3VoP9QAB8loqVwVHVHEdE/aoxG8dzlzDzD/X0XHMZRa3QeA2AJM69m5k4AdwM4pAbpFCiUruXwVT/y/rKCiD4F4GQA57hqmlqjcRycxcEcdywNB/AKEQ2pJToNo3AwE8B4IhpDRM0AzgJwb7WIcT0Y/gxgHjP/Vjp0L4BPudufAnCPtP8sImohojEAxsMxdpUNzPwdZh7OzKPhtNf/mPncWqLRpXMFgHeJaHd319EA3qw1OuGonA4iojb3+x8NxzZVa3QKFESXq57aTEQHue93vnRNWUBE0wB8G8BHmXmbQntN0MjMrzPzzsw82h1Ly+E4sqyoJTrL6slRT38AToTjXbQIwOVVpuUwOKLkawBmu38nAhgAYDqABe7//tI1l7u0v40ye0Bo6D0CvtdTzdEIYDKAWW57/hdAvxql80cA3gLwBoBb4Hi7VJ1OAP+EYzfphDORXVgMXQCmuu+2CMD/g5sZoow0LoSj4xdj6Ppq0hhFp3J8KVyvp2rSqf6ZFB4GBgYGBrEwqicDAwMDg1gYRmFgYGBgEAvDKAwMDAwMYmEYhYGBgYFBLAyjMDAwMDCIhWEUBgYGBgaxMIzCoGFATrrxS93toUR0V7VpKhZENJmITqw2HQaNAcMoDBoJfQFcCgDM/D4zf7y65HQJk+EEYaaGm5XWwKBgGEZh0Ei4CsA4IppNRHeK4jFE9Gki+i8R3UdES4joi0T0NTfb7ItE1N89bxwRPUxELxPRM0S0R9SDiGiwWyxnjvt3iLv/a+QUJnqDiL7q7htNwYI73yCiH7rbTxLRL4joJSKaT0SHu2lmfgzgTPddziSinuQUxZnp0n2K9G53EtF9AB4tR6MadH+YFYZBI+EyAJOYebKbvv1+6dgkOOncW+Gkfvg2M08hot/ByaVzNYAbAVzCzAuI6EAA1wI4KuJZ1wB4iplPI6IMgF5EtB+ACwAcCCcD6AwiegrA+gS6s8x8gKtq+gEzH0NE3wcwlZm/CABEdCWcfFufIaeS20tE9Lh7/cEA9mZmXR0EA4NEGEZhYODgCXaKRG0moo0A7nP3vw5gbzfl+yEA7iS/6mRLzP2OgsNgwMx5ABuJ6DAA/2HmrQBARHcDOBzJCShF9uCXAYyOOOc4ONl8v+H+bgUw0t1+zDAJg67AMAoDAwft0rYt/bbhjBMLwAZmntyFZ0TVNc4hqAZujaAtj+gxSwA+xsxvB3Y6ks/WAuk0MAjA2CgMGgmb4dQgLxjsFI5aQkSfAJxU8ES0T8wl0wF83j03Q05J1qcBnOqmEu8J4DQAzwBYCWBnIhpARC1w6icU+i6PAPiSm3YaRDSlsDc0MIiGYRQGDQNmXgvgOddw/KsibnEOgAuJaA6AuYivq/4VAEcS0etwVEYT2amD/jc4dSNmALiJmV9lp1DRj91998NJNZ6EJwBMEMZsAD8B0ATgNff9flLE+xkYaGHSjBsYGBgYxMJIFAYGBgYGsTDGbAODLoCILgfwCWX3ncz8s2rQY2BQDhjVk4GBgYFBLIzqycDAwMAgFoZRGBgYGBjEwjAKAwMDA4NYGEZhYGBgYBCL/w/3XUXmbv3ncAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "ssh.sossheig.plot();"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sossheig</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>time_counter</th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>-0.125347</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>-0.038566</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>-0.063083</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0.001806</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0.104299</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1456</th>\n",
       "      <td>-0.048620</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1457</th>\n",
       "      <td>-0.078037</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1458</th>\n",
       "      <td>0.019949</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1459</th>\n",
       "      <td>-0.058769</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1460</th>\n",
       "      <td>-0.205427</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1461 rows × 1 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "              sossheig\n",
       "time_counter          \n",
       "0            -0.125347\n",
       "1            -0.038566\n",
       "2            -0.063083\n",
       "3             0.001806\n",
       "4             0.104299\n",
       "...                ...\n",
       "1456         -0.048620\n",
       "1457         -0.078037\n",
       "1458          0.019949\n",
       "1459         -0.058769\n",
       "1460         -0.205427\n",
       "\n",
       "[1461 rows x 1 columns]"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ssh_pd = ssh.to_dataframe()\n",
    "ssh_pd = ssh_pd.drop('xbT', 1)\n",
    "ssh_pd = ssh_pd.drop('yb', 1)\n",
    "ssh_pd.to_csv('day_avg_ssh.csv')\n",
    "ssh_pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<AxesSubplot:xlabel='time_counter'>"
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEHCAYAAACtAv3IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABuJElEQVR4nO29ebgcVZ0+/p6q3u6WPSEkARKWACFAwMiu7MjiiDjDiMsgIuMwDo7LwIA6LuMywtddx4EfigPqCILgBgjIJqJsgYR9CxDgJpA9N7lrd1Wd3x9Vn6pzTp3q5d7u20ud93nypG93dfep6lOf8573szHOOQwMDAwMOh9WswdgYGBgYDA5MAbfwMDAICUwBt/AwMAgJTAG38DAwCAlMAbfwMDAICXINHsA5TBr1iy+cOHCZg/DwMDAoG3w6KOPbuKcz9a91tIGf+HChVixYkWzh2FgYGDQNmCMvZr0mpF0DAwMDFICY/ANDAwMUgJj8A0MDAxSgpbW8A0MDDofpVIJ/f39GB0dbfZQ2gqFQgELFixANput+j3G4BsYGDQV/f396Ovrw8KFC8EYa/Zw2gKcc2zevBn9/f1YtGhR1e8zko6BgUFTMTo6ipkzZxpjXwMYY5g5c2bNuyJj8A0MDJoOY+xrx3iumTH4KcOq17dhww6jlRoYpBHG4KcM7/7hX/CuH/yl2cMwMOhoXH311bjgggtqes95552HZ555pkEj8mGctinC0JgDAHhzu2H4Bgathh//+McN/w7D8FOEzYPFZg/BwKDlMDQ0hNNOOw0HHnggli5dil/+8pe46667cNBBB2H//ffHueeei7GxMQDAJZdcgiVLluCAAw7AhRdeCAC44YYbsHTpUhx44IF4+9vfHn7uunXrcPLJJ2OvvfbCv//7v4fP33HHHTj88MNx8MEH48wzz8Tg4CAA4JhjjglLyVx11VVYvHgxjjnmGPzjP/5jzbuFJBiGnyKMOm6zh2BgUBb/+fun8cy67XX9zCXzpuCLf7Nf4uu33XYb5s2bh1tuuQUAMDAwgKVLl+Kuu+7C4sWLcfbZZ+Pyyy/H2WefjV//+td47rnnwBjDtm3bAABf/vKXcfvtt2P+/PnhcwCwatUqrFy5Evl8HnvvvTc+/vGPo6urC1/96ldx5513oqenB5dddhm+/e1v4wtf+EL4vnXr1uErX/kKHnvsMfT19eG4447DgQceWJdrYRh+ilB0vGYPwcCg5bD//vvjzjvvxMUXX4w///nPWLNmDRYtWoTFixcDAD70oQ/hvvvuw5QpU1AoFHDeeefhpptuQnd3NwDgyCOPxDnnnIMf/ehHcN2IVB1//PGYOnUqCoUClixZgldffRUPPvggnnnmGRx55JFYtmwZrrnmGrz6qlzr7OGHH8bRRx+NGTNmIJvN4swzz6zbuRqGnyKMGYNv0OIox8QbhcWLF+PRRx/Frbfeis985jM46aSTtMdlMhk8/PDDuOuuu3Ddddfhv//7v3H33XfjiiuuwEMPPYRbbrkFy5Ytw6pVqwAA+Xw+fK9t23AcB5xznHjiibj22msTx8M5r+v5iTAMP0UQGX4jJ5WBQTth3bp16O7uxgc/+EFceOGF+Otf/4o1a9Zg9erVAICf/exnOProozE4OIiBgQGceuqp+O53vxsa9pdeegmHHnoovvzlL2PWrFl4/fXXE7/rsMMOw1/+8pfws4eHh/HCCy9IxxxyyCH405/+hK1bt8JxHNx44411O1fD8FOEohsZ/DWbh7FoVk8TR9M56N86jKLjYffZvc0eisE48OSTT+Kiiy6CZVnIZrO4/PLLMTAwgDPPPBOO4+Ctb30rzj//fGzZsgWnn346RkdHwTnHd77zHQDARRddhBdffBGccxx//PE48MADw8VAxezZs3H11Vfjfe97X+gI/upXvxrKRwAwf/58fPazn8Whhx6KefPmYcmSJZg6dWpdzpW1MtNbvnw5Nw1Q6oc7n1mP837qX8/fX3AU9l9Qn0mUdiy8xHf2rbn0tCaPpD3x7LPPYt999232MFoKg4OD6O3theM4OOOMM3DuuefijDPOiB2nu3aMsUc558t1n2sknRRBZPheCy/0BgZpx5e+9CUsW7YMS5cuxaJFi/Dud7+7Lp+bOknn5ifW4cIbHseqL5yEQtZu9nAmFaKGbwy+gUHr4pvf/GZDPjd1DP+/bnkWoyUPmwbHmj2USYds8Js4EAMDBa0sLbcqxnPNUmfw6RJZKazON+aaKB2D1kOhUMDmzZvNnKwBVA+/UCjU9L7USTokZaTQ3qNkGH5DwTk3ZX7HgQULFqC/vx8bN25s9lDaCtTxqhakzuCnmUQYp21jUXI5chlj8GtFNputqWuTwfiROkmH4KaQ4hqnbWPheCaT2aC1kTqDT2YujfemnGnbxIF0KEquuagGrY30GfzgnnRTaPGMpNNYOG4KWYRBWyF1Bp84fholnZJrnLaNhGMuqkGLI3UGn4htGhmuI0gOaTz/RqNkGL5BiyN9Bj/4P40MX2SgJua5/nCMhm/Q4kidwSdmm0aD7wqe6jQ6rRsNE6Vj0OpIncFPtaTjGUmnkTBROgatjhQa/DQzfNHgN3EgHQoj6Ri0OlJn8Cn1PY0M12j4jUXJSDoGLY4UGnz//zQGVLguD8/fMPz6wyyiBq2O1Bl8qpKZRgeb43Fkbf8nT+MOp9Ewi6hBqyOFBt//P4X2Hq7nIWcMfsOQRr+QQXshdQYf8C1+Gksr+AzfP/8Unn7D4RmDb9DiSJ3BDzXsFN6cjmsknUYihVPKoM2QPoMf/J/G7bfrceQyZPCbPJgORBp3jQbthfQZfIrSSeHN6RgNv6Ew19Sg1ZE6g09ROmmUdFwhSseEENYfaZxTBu2F1Bn8UNJJocFzPI5shhLPmjyYDoS5pgatjroYfMbYyYyx5xljqxljl5Q57q2MMZcx9nf1+N7xgDJt06rh19NpyznH0+sGJvw5k41n39iO597cXvfPTeOcMqgf7nj6TTz/5o6GfseEDT5jzAbwQwCnAFgC4H2MsSUJx10G4PaJfmc9kEa9VU68mvjn/fyh13Da9+/H/S9umviHTSJO+d6fcfJ3/1z3zzUymcFE8NGfPYp3fPe+hn5HPRj+IQBWc85f5pwXAVwH4HTNcR8HcCOADXX4znEj1aUVPB46bSdqnFyPY+WrWwEAr24ZmvDYOgFplAkN6oOB4dKkfE89DP58AK8Lf/cHz4VgjM0HcAaAKyp9GGPso4yxFYyxFRs3bqzD8GRYoaSTPovveF6YeDVRB+O/XrsSN61cCwBgoWck3TCSjsF48frWYQBAxmrsvVQPg68boTrzvwvgYs65W+nDOOdXcs6Xc86Xz549uw7Dk2GlmOHLiVcT+6xbnnyjDiPqLBiCbzBevDkwCgCY3Zdv6Pdk6vAZ/QB2Ef5eAGCdcsxyANcFDtNZAE5ljDmc89/U4ftrQui0TeHd6Ufp1D8OnxmCD8AwfIPxY6Tkc2FKjGwU6mHwHwGwF2NsEYC1AM4C8H7xAM75InrMGLsawM3NMPZAtB1JY8y063HkQw2/fp9r7L2PNAYCGNQHY44vOVgNZk8TXk445w6AC+BH3zwL4HrO+dOMsfMZY+dP9PPrjlDSSd/N6bieqaVTJV7ZNFSzY9tcU4PxohgY/EbvluvB8ME5vxXArcpzWgct5/ycenzneBEy/BTenK6SePXi+h3Yc05vKHONF50m6TyyZgvOvOIBfP09++N9h+xa9lhxUUghhzCoE8YcX9KxW53htxusFCdeiXH4972wESd+5z7c8Gh/k0fVeli9YRAA8FgQdloOIm9I45wyqA+K7SLptBvSXDxNjMN/eZNv1B5/fduEPzfNdk7cKZrEK4PxYrIknfQZfKSzeBrnXGL4tHV03Ilfh1KHxrhWc/OJV88wfIPxgpy2jUb6DH5K4/DJFpHBt4KEhHoY61IdFo1WQi1EXWT4HXYZDCYRpSARtNGkIXUGn5A2SYcMeybItLUtauZuGL4KOp9qMojFaaRKOn9dvQnXr3gdBgaV4AZsodHBJKkz+HQ90ybpEHPIWAwWEyQdpcTEr1f24xPXrazps50ONfhWFWnu5Zy27//xQ/j3Xz1R17EZdCaIeDXaLKXO4NMKmjaGTxMqY1t+JEBCPsKnfvk4frtKTZQuj2KHaRnFwODbVdwdXFDxU8YhDOoIIhlG0qkz6HKmLQ5fZvgsdNaOJwxMlS46juE7/vlVExMt3p9pm1MG9QPdn8bg1xl0U6ZN0iHpxrYYGBN06gSbVm7iqbp/PfwArQRV5ioHKfGqw65DJbwxMIJjv3kv+oNKjwbjBwU+NDq0N3UGn65nh5HSilAZfiXH5GgpXtj03uc3YPWGwVgoZ3GSQsomCyTpVCP7SWGZKWP4v1rRj1c2DeHah19r9lDaHlSuvdFzKHUGP2T4Kbs5yUjbgdM2NNIJDF9n8M/530dwwrf/FBrE8LM7rLcASTrVkAIuHJMygh86tdN23o1Ayat+zk0EqTX4aUuSCRm+7TN8MtpJGv5oGdauavZkIDsFtPupRqKRnLYpm1M0d9J23o0A3VNG0qkzQkknbQzfI4ZvBRq+/3eSW3JMYfjiRFQTrTpNwy/VIOmk2WlLUUy1kqftoyX89aX26oPcaIROW2Pw6wu6nmmreyJp+BYL/05y2n71lmelv0UZR0206jRDR3JWVQxfyrTVH9+pcy1k+DWe3sd+/hje/6OHJq2PazuASFSjlYe6lEduJ6RV0iGd3WJMknFEey8aprufk3vNjxYjI68y+nY1+JzzWGnojTvG8JsgD6Fmhh/88dDLm3Hns+vD5/0aRh1WQxqiwa/t93963QCAzvP9TARkjxotj6XY4Dd5IJMMuifJaUsQjf9QMbnl8Igg8RDD/4/T9sX/PfRa2y6eHgdUO/zQK5vDx9Wcly7x6r1XPigd4/cSHv84WxVUnqPW358Ob89Z0xiEfiOTaVtf0AVtV1Y6XtD5WgwyqxUebh0qJr5fZGMU8bNgehdsi7Vt826doZralQ0fVzNHqqmH36lMlohDrfdSWnfZ5eAYDb8x4CmdbHS6vqQTPS/G4W8ro6mKNivyB1iwWPteS52hEuWqqhg+Fx/rj++0PAUCG6ekQ9S+04ruTQTOJEk6KTT4/v9pi9IRnbSijCPerEU3WdIRrxeVcrWDEM92vZY6g+66osGv/BleFU7bEU1OQyeA5lGtP79h+HE4oaRjDH5dkdbSCjyUdGSnrXjTFYN4+kMWzohF77gCxVezdts1CkVnoKPwVVadpCM89jjw0sbB2DG6JLZOQq3lmLyQ4bfnvGkEQqctb2xUVwoNPv2frslG5021dAgScw9YRiFng3N5URTZLmn4GcuCLYR4tht0iz7p7fmMVdV5iZ/heRyvb4nXlRkpdqZ0wcfpdjUMPw5R3mrkZUmhwU9nlA6dd0zS8eIGvyvrT4uS6KjVMXzbj+lv1/uWxj1acvHpX67Cum0j4bnlMta4nJE5TU3lTpV0xvu785Dhp+wmLINafUfjRerCMnlqGb4o6UTPu1qDb8deE522YuVNi7XvtaTz2+fztwEAxlwPx+49B0ANDJ/Lu6BsJm7wO1XSccdpsIuTVPu9lTEwXMI37ngOl5yyL3rzGakg4cBICbP78g353tQx/LRG6ZBdUjV82WnrP+7K+TxAYh08zkAyFoPN2kvSkcoZKwtV1mKhryJXpcEXP8LjXFuqop2uTy0gG3XH0+vxpxc21vz+Tg1XrQY3rezHzx98DT+460UA/rWY1esb+bXbRhr2vakz+OnV8MU4/Oh5ieEH4YOFQNKRI1bimbZ24LRtp2spDvWRNVukdo65jBU6EnN2dZKOpywgOkdkNQb/tc3Dbef8Jjlw81ARH/rJwzW/Xy2znSb0Ffx8j42DYwD8OTK1yydajdwRptDgp5Ph0+kyNUpHuAyqpCPrihAeC3H4liz3tDpEA33BL1ZK7Ry7snZ4bvmMXR3Dlz5br0tXClt9+JUtePs37sENj/ZX/L5WwkSL5qXtHhRBizvlwZRcjgLddw1cCFNn8I2GX43TNq7hOwkMv9rwxVZBORszqzcfnlsuY6Ga+06ViHQyRSXD9vz6HQCAVa9vq/yFLYSJ/u6lVBt8/3+L+ffg4JiDad0+6y81kEGlzuBHcfhNHsgkQ4zDT5J0Ig2fGL4QKiYxfP8PisNvp8Srckaq6HphAkw+Y1VZLVP4bG98kg4XFuN2wkSZqJu2m1AAhbQy5peLdj2OnfoKAGQptd5IncGnS9lORqoeIKUhlnili8MPGP6IUExNV0sn0vAbNuy6o9zPPuZ4MsOvKkpHfMy1RrCywff/T2o32aqY6D2U5sQr8TffGpQ0mRVE5jTSmZ06g59eDT9gkZb/j0Ds8i1f+SMu/cNzACJJ58Tv3IdHX90qvR+IJB2/e1Z7ZS2XY/hjJTc02PmMXWWmrSjp6G/WTmX4E/3d/+lnj+K5N7fXaTTtBbqHGIt2OgWN76zeSJXB55ynVsOvVFphs1ApsyDU8v3T8xuC46LPItmDNPx2WjzLGnzHg+t5YAzI2tWdl2jfOef6+jwVPkd0qLcTVMM0nnnwi4fS2QDdlQy+/1w+yOEwTts6oZpStp0KsVomS4jSAfxwxIxQJH7biL/dFPXWolBaod3CMsv97GOOh5LHo65gNTJ81+Paz6/0OWIWdDtB/d2v+NNLNX9GoRMbBVSBKJqLCZFhlvJa/ZEqgy9nRbaPkaoH5Cgd4XnlOmRthowV3wGIc5DK/VJD9HYy+Emx7n2FDMYcF67H/RpBjNXutOX6HUS1cy2poXyrQj2vlzbEC8dVQl6TmZwG0O5IzFSna9FI25Sqqy1exzayUXVBYhy+avAzVtjJCIiMkKhNhwY/DMts1Kjrj6SxTilkMVbyUHK98LyqYviK01a3oFSWdNpTw1fPyxrHCaSV4ZMsyoR+Ejli+Mbg1wfS9jtlFp8nMXy1vIBtISN4dcn46+rmU+XNTnDaTunKBho+D+v8VxMsoWbaaiWdDtXw1fNasvOUmj9D7DCWJlCEEkNELPIZSrwykk5doMZMpwli8TRWhuHnbJnh06FaSYfKI7fR4plk8EnScUjSsartaSt8tjc+SaddNXz1dx+P9pzWipm0Y/Y4D21Rzkg69UU13Yk6FZ4Uhx89r16HrM0kpy1JOq5G0rEYfK27ja5l0lC7sjaKjp94VYukozJ83VsqfY5Y2K6doCYIjaeVY1rr6dB5ux7XOG2NwR83jvvWvfiXXzwGQNZv0+a0dQUWqZZWEHXnjK1q+MH7RYYfGEUW7BbaKWEyaXHKZaww8Sp0RleYI3c/tx4PvLRZ+uxxafiCA6+doC5kxSrYunp9qnlPJ4KMuuPxmKTTyAzkjjf4L28cwi1PvAFAYWMpM/h0o1F2LMFVYseztoWsoOHrGP6Y44WLgm21V05D0s+ey1hBaQVeNcM/9+oV+Mbtz0ufPR4Nv11ryqjnVY3xprd88oS9AKRX0qH7yfN4SJhy7cLwGWMnM8aeZ4ytZoxdonn9A4yxJ4J/f2WMHViP760VaghdmiDH4QvPe3ICTc5mEsMnyI1SeBi6abVZPfykhT5vWygGTtuMbdV8XhReNx4Nn4xeIzMsGwH1vLYHORvVvCdj+eG/aTX4tMiLDN+2fELW0qUVGGM2gB8COAXAEgDvY4wtUQ57BcDRnPMDAHwFwJUT/d7xgKdZw0+olul6XDI0GSXxyhUmJqHouOGiYLVZtUx1qEftOQu//OhhPsN35LDMWnaBGcsaP8MPtO9GFs1qBNR7qH9r5cYdUYkPhqxtpbaeDkXiuILT1mL+ItjqpRUOAbCac/4y57wI4DoAp4sHcM7/yjnfGvz5IIAFdfjeilD1QqnQVZuxqWqx5Au34YLAZyFCjsOPnnc5lwwNAySGTze1FJbpeMgEvVvtNiuepi5Oe8zuwaG7zwwlHTfQ8GuNPqIFQqvhV/icdmX4avjg4JhT8T20+NnMDw5IK8MPnbZuJKnawa6n1UsrzAfwuvB3f/BcEj4C4A9JLzLGPsoYW8EYW7FxY+1t00So7EEMf+tUhj9cdHFz4LMQwRMYvufJNdwZQ8VMW1HDt1h7OcBVg08LVy6QdEoeh00lI2qwRZlgp6ObVpXIRTF04LWX8VMNUzXG2xN8STnbSq3B10k6FmPI2NVVaR0v6mHwdbEF2hEzxo6Fb/AvTvowzvmVnPPlnPPls2fPntDA1BuIJlvWauxFbUWI20ZWxmnLIGv4Tmjw5bDMbJtKOurPTvIVSTquR5JObaTACjKOddeiEnMPt/dtNidVZ3PJqSKMNZhGjAWSThXv6UTQby7G4duT4NfI1OEz+gHsIvy9AMA69SDG2AEAfgzgFM75ZvX1RkC9f+herFWf7QSITltJ0lE0fABSpq2nYfhF14NtR07bdrqWquRCEUlZ24LjcazbNoo5ffmam7NngjlVi4b/X7c+i5GiG76n3fTskhJ3X42hCh2UDMhm0ivp6MIybcuXuVpd0nkEwF6MsUWMsRyAswD8TjyAMbYrgJsA/APn/IU6fGdVUG80utczdnvpztWiXBPsUM6y4pKOdJ0YJKdtEsOnRaH9Mm3lv0WGDwCvbBry4/CppESVE4VaPdYSpXPlfS/jZw++Gv5u7cbwxR10zraqCssU9epsle/pRJTCXZ0XXhPfaWu1ttOWc+4AuADA7QCeBXA95/xpxtj5jLHzg8O+AGAmgP9hjK1ijK2Y6PdWOTbpb7oZM21mpKpFuYkillYQG6C4XGb4DLKGHzJ8xWkbafjttXjqagcBctVGqpYJJMs66tzKlJG2qi2P/OuVa8se12oQdyT5rFVVpq0YpZOzrdRm2o6W/HpUYqZthhh+A3059ZB0wDm/FcCtynNXCI/PA3BePb6rFqiGKDT4tgXPqxxR0G4od8NFko7cSs/zZPbOGLQavnhjjjke+gqZ8PPaSdKJOW0tmeETiOG7HoeuoKN6yqGGr7kWuufE30p8dbTktk0FSdEwFbJ2dZKOidLBfS9sxEOvbAHgX48xJ+p4lW2wI7ujM22TJJ1smzD8p9YOYM2moaqPHytr8COGr1YNlRk+kzR8uk7i1rvoipm2PrO9/ek38ebAaNVjbRbUn12M0iGMlKI8gyTWrls4kqpl6nZe24ajDmPiy+u3t/41JIgkoJCtLqZenIfd2UxVoZydht89Hrk4XY9jLGD7+YwVRIu1sKTTykiUdGwLnJfXvFsB7/zB/Tjmm/dWffyY40p/P7V2IGSXYoEuImbUxk/dVktx+MFrIuvwNXz/GBZIOv/0s0dx1pUPVD3WZiEu6cQZ/nDRiSSdhN2L+jnlNHwdw6fG1err5RbtVoM4J3pymepKK1ARP4thRk8OW4TWmmmBKB+6Hsdo8Jvnsxaymcb6NTra4KssPnTaWuVv5naFKBP0bx3GO39wPz5z05MA5AJdarEmdQspxeEHx4rhc6KGbwsO4GoyLZuNmNPWIg0/klGGx1zBaZvwOcrzGcuC5+lJhI7hbxUYvjgPx0rtY/DF85o/rauq+0ksIzC9Jyddh7RAlOwcj4e/ec62ghIfbtJbJ4yONvjJGn55h1y7QmSHtFW+7ek3AchhmWSUiNWKCwVjcuciuolLiqQTRelE3y9G97Qq4olX/pi7ctGJOB4HnUrSHElm+PGql7rPECUdRypM17ibvd6gneHUriwWzeqBm5BpLEKMSClkrbZa4OqFWb358LGv4buBw9YK80Eahc42+IrF90KG7592h9l76eYhRr5j1JcOxCxjug6kW4tbSNWQEYsTj3E9HjJ8MYlL1P5bFbE4/MCyiwxfdFxXK+n4ob4cHDxW1951fUP4iuCPESUduU5R+xjAouvhfYfsgpWfPxFTgs5VlUi+mmmbxrBM8qEdt8+c0GlL5Ctrs9avltmqUG9KrjL8TpN03IgdlsKOOv7fnHMwRpp7MsOfKbAPIFo0Y7KPHTltCboqm62GJElnrzm90vNWJaetYqcoPNVn+IrB5xw3PNqPY795Lx562c85FKUMNQKqXeAEOz3LYhUXSAC457kN+PxvngIQRem0W/2geoDut66sHfjQIoNvGP4EIM4lLkRQhBp+m1N8zjkeWbMlXMhEhq86YkVDpDZNpgn2r8ftia+evlR6H8kNKusQa+kQsu0g6Xh6hj9nSgF//NTbw+drddpGmbY81qrQ8zhWvrYNAPDC+h0AgIERkeF74XvaTdJRF/5yBv/DVz8ShiNSaQXX420V1lsPjDkesjbzgyaCKLkoPNg2TtvxQq3hTlspYnXtPtFuemwtzrziAfw+KJY25ooGP15HiIwz2SqSdIhVHrvPHEzvycnvCz6m5HqScadrKLLZdmb4QBSiCchx+PrP0Wv4XGH4FoN0Q9PniYuz63EUAkmpnRh+yfPCxDU6v2qThijTlj4nTSBJ1Lb8xDNRIs02uJZORxt8Ua91PC80Xp0i6azZ7GvCFKsvGhGVJbich3p7kqSTtePTgW7gouNJOrfYACV6rvWnk6rh27Y4fv/x7N58yPCT4/Dlv6lch+fJDD9rW0rfW/9/kcmXXI6uXPsZfEdphAMkRzWpsC1hkUhZtq3rcdiMhd3ifEIQEKgG1/lq/Tt0AhAlm5IbxUgTk2sXSScp8oHsCp2XaETUm4hzxIwYGXzaGYgM/f6Lj8XBu04DfUzJ9VDIRtMlKp4WfUdbSDrKpRTbOe4yoxtfO2Mp/ueDB9fstKUichzyIpgNygcQySCDLslvnoeubHsZfE6Gihi+XRvDt5jA8FPmuHU9Hvg9/Lo5IsO3WWOTQjva4Itzz3E9KdMWaO0oHa4sVjpEjN3/W3T2xEpDe5GkQy/lFYYvxt8vmN6Nad25sOxCyeVS/HDI7MSG520h6ejDMgkfOHQ3zOkrVHbaJmbaygw/E+i0JJ9RDRVZfuPIB4spZV22Glas2YILfvFYyD7J2ZpVGH61xsqXdPz3tFuV0InC4yTpRNVqxfupketfZxt8YfK5XsTwq3EwNRviTZDEmsiwhE5bweDHm78I2+4w8UpmWKoGbwvdd3yGb0uv+WOI3tP65j4501ZF5LRN+hzl+KDFIefydcjaVujMBYDRYBfWbhr+h69+BDc/8QZ2jPr5HTRnws5nNd5TaWb4HvclnUzQl8P1xFIlySSjHqhL8bRWhWTwhbR3mmitbPBFI5/I8BUTO1aO4QvMM0nDVzV4WwjhLLqeUlEynmnbyjsmgjpGnd8CiBLKEiUdT8/wxe054DNgf9vu/33z42/g+kdej8Xh9xXiIbItBTrd4NRoTmZriNIRQd2dgPFp+J+56QkcsmgGzjhoUrql1hWu5xMl24pKm0iSjtHwxwfxwrleVDKsUmGsVoDE8BMYkNgaDZCNhdpJiHMuyBT+c2HiVfA+W2G7thAnHWf4FKUTHd/K15OgjrE7p+c86m6o0ufYdiTpSAY/Y0k1dtZuG5GMPeAvzhZjyGWslmX4BNpN0pykBbNSGKsKSdIZR5TOtQ+/jk/98vGa39cK8DwO20Jo8KmPMmCcthOCeN3EOiftEKUjGvlqk1PE2O6xWFimTtLxDThF9GRUSUfoZlVyuOS01UXptPDlDKGOsSevL0Vc2Wkr/50RWhzK2ce+LFZuMXRdPzs3b1stG4dPo6e5SAW/aE7Uek/ZFsYt6SQRoHaByylKh4UaPhEo47SdAGJhmaHTNojDT7iwA8OlppepFY184g0RjJ+OfDFI6gFk5x8PGKZVQdJRNfyMVY7hk4YfHd/KCyhB/c178gkMv0JynnquJH95nixzUVhmuWtTCkI5s5nWbepN9xIRAHI+05xQk/pUqEba7+5UOSyTc47frlorLYSjSpHAdoNHUTrMb3biCk5bWgQahY7W8MULJzYLjtiI/n3Hf/tebBosYs2lpzV8jEkQb/wkDZ9OL7wJhZtClAZ8h3XkYKUbjNjZmCZKB5B7/xZdL3QsiseKi0Q71EVRQ1y7E5qNhCGsCTdfLJ7fYuDcX6jlUFULoyW37O7HDQy+Xwu9Na9hjOGHNdz96xclXulPVJ0bGcsvBax7TcQDL2/GJ65bhQN3mYbHX9+Gey48Jmy+AwDPvrEDC6Z3135CTUQUpePvCktCfwmrTOe0eqCjGb7IzlxPLJ5WXp/dNOjXOREZ82TDqULDD/vNakoYj5bkxB4xLJPeR7HfSQzfjjF8XRx+9J5WZaci4glTSU7bGiWdkER4UnhqJug5oFs46Hr6WcwMw0UH16/ox3nXrMCDQc2dVgHdKm5o8GVJJ6+QBxVqVcyMzcKddnmG7///+OvbAPjdokaK0dzuybVHdzARLpd3OH71WeO0nTDiTlsKy6wuSufE79zXuMFVQDVROhQjf/m9L+FTv1wlMSXxxiu6XqgbAtECks+qGr4SpSOwDTUOn25WUdJpVXYqolr2VCmuPCbpWOSA5LHEK5dz7efQgusEGv72IOTxzmfX46wrH6xqnJONqDSELOnQ/8NFfQcrlcVnbRYukuWIgrrrpHLCBNVX1Q4g8kXEYKykMvzGNWfqaIMvbi+pzgkQhZIl3fwLZ/pbxF1nNG+rWE0cvnh+v165VrpxZIbvhbqh+L6I4fvH6hj+psEifrNyrR8rrtHwRePWHga/uuPCSC7hlEZLLm554o3QJyIdLyymavZxktOWrj9JOq0MIks0d4hQUKguRTuNJiSOqQw/a1tVOW3VHYPHOUaKwjwvtqaTm/DImi3YNDgmPUehu0kMH2hcAERHG3zXlRl+rAFKwlWlAmLNvAnFbS4Z/+2jJemGUscv3jg/feBV6XlXCBek96nbcJ2GDwCf/OUq6XjxNbXheasXpKuWOYVx+MLx37nzBfzLLx7DP1z1cCyeX9w1SpKOZYX+o25FfqD6OX61zNa2+HS+dA+FmbY2GXxi+AkGX4k+ythWSLzKSToqifA4x4hwD4y0aGYy4cwrHsAp3/uz9JzL/R0d3TtjjhtF6VTI/5goOtrgiwzYFSIlMhWidGiSDY01bzKJsckkwRzwpTukyaM6yJKkn5LDw4JN4nFhWKbjxTpdAXK0CQDJaUsRPmo1hVZ33NJvfuSeM3HyfnMTj7M0Tltq0n7/6k0xiSYjlAmI1dLxOFwOTO+WK5GSwfdDZsd7RpOD0GkbzB2SE8lodWXLG3x1bmat6jJtVYZvMSaRnlY2+EQuNu4Yiz1PTltA7hFdqaTHRJGeKB2B4ZOxSppnZPCTtqeTAclpK5yH2DXJVW6ikYSbreh6flhmyPD98xPDMrOaSpdqIpak4duk4cvHFJXwzVYDraNfP+MA7DozWbLTOW1Fg60rj0zHy2GZQZ18L6qISegSrlOL2/vQ4tP1cELy5I+cGH7SHFRlyazA8Etl2KzY1Mf/25MZfgtLOkkObNdTGb4X3mu1JrDVig5n+HLyEhn4Sho+sdSRktsw50klyLX8y2faEnaMlrQ16UuuJxmiJfOmAIhCEotCWJgIVeIRo3RymigdACi1uI4vtnosB53TduepBQDA2/aaFZsXdK1KrqcUT7PCsh4WA+789NE4YMFUAPICql7HlkMwPLoeREhChk8GP4EkqQw/YwsMv8ycUbX/ouNJRKyZpEzEnc+sx8JLbsEGIX8nqV+vyyF1CRMZfkgcjNO2dqgM31V0xyS9mRi+6/GmVfITx56kcaosYKjoopCJ/6S+wY+2i5d/8C341fmHh/HM4oQTodbqkapl2u0p6dB9VKmyZ+S0FUNdxdwG/fGOppYOpc9bjGHPOb2YO8VfOCSG3+IGn0ZHu0NHkUdJ7kuSdNS5mrWtqJZOmdIKKksuOp6k67eKpHPzE+sAAPc8vyF8Lilr2vM4bBax+THHiwVBqLv3eqGjDb4ohazZPBxOrFDS0ayiy7/6R7wxEK3SzZpQ4tiqidIhqLIBEETpcB46hKYUsli+cIbEMFT5BojXOBEZPi2aquFUa/i0GojhV9LMdUyLEtsefmVLhSgdJdPWk2vszA12ChuF6A3V3uc0C3czQeOjhS7U8IUaMF1ZGyMJYZlqLknGYmFp5XKkSnXaFh1PcpiLETvNxLRA7hP9fuUkHVHDVzNtAcPwxwWRVXz210/i8ntfAlC+WiYlXfUFKffbR0qxYyYDniTpcG3ylatZCMSuVISi4rQlWIKGqGP46s0mfnY2QdKptgFGM/DLR14LGVglCUUsFfCN25/DyxsHsSlwvo05XjwOX3TaKolXTpDpTDczNUwfFoyDxYBL37N/+Pf07uy4zrFRoN2eozD8rHCu3TkbQ0lOW03eQnVO27iGLxrDoTH9AjPZoPBU0cgnMXw1SgeAEKUT31nWEx1t8FUG/PS67QCiH0dlaeLEWzirBwDQv3WkkUNMhCTpeJ5WKtFJPSILJ5QUpy2BFoC120a0Gr5q8MVSwrkESaeV6+lcfOOTuP3p9QAqa/g0R/q3juCH97yEc/73Eby6OarbQnXhCWJPV7W0AtXSIdlmTiDp9AolAizGcNYhu+KVr5+KMw6aH5PTmo2I4XPpf3HezJ1awLpt+vtFJSeMRYlX5cIydZIO3bezevPSLqmZCLvHiTV/BAlw23AxfOwpDB+IlyoxDH8ccBOYQ8Tw5ecHhZt4UWjwm1OcSW3PKE4emlQ646qLkFGdtgR5wsWnQtzgy1IFoGP4rWvwRVRi+GqOwtCYI9Uq2j4q7/yIoTnKdc4EGr7f9MJ/7qQlO+FrZyzFhSftHR5Hb2GMoStnt9x1jDR82WkrzpudpxawfrveAJNs897lu+DCkxYDiOaQjszc98JG/Gbl2rikEyQRAsDcqflYUlOzoHaPA+TFauVr28LHlBMjM/zJidLpyLDMouPhgZc3J940odNWWUXFm5iybddta07VTHFL57hyOvnQmIt8xtaygCSD73EeM3Li3zqGr35WTmD4VPhKfV8rM3wRlQw+OVRJky65srNQZfhkzB0lDj9j+52wxMYojDF84NDd8GT/QHic6LT166m0ljTGFEMUMnxbJg1JUgQtEOcetQh7z+0DEN2HOoZ/9k8eBgAcv88c6XkvkMcAoC+fbRmGT9dHMviC/09MuvMCB35Gw/DDOPwG/fwdyfCvX/E6PvSTh3HTY2u1r4dhmcrkJP0e8Mvm5mxLYnWTCdVpK4Z4USianuFrmLrrl+1VSbxYC16n4b/7oPnS39mM6LRlwf/yh7aPwS//Oi12g4HOXnJ5kGPgn++gavBD4+VJ1zkn1ItRI3HE49TFt9WuI42OSJQahw/4xj9JinCURC16zFh5v89dz22Q/qam34A/f1slDj9cCIXzFxm++HMSw5d+87BzWHRMI9CRBn/LkG+4n3lju/Z1YqrqRd0ssIVcxk8MaVZcuRyHz6XJQ5FDOmbUpWP4jlxagSCWldUx/LfsNh2fPGGv8G+dhp9XoklaTYpIQqUwyKxtIWMxDAZOQcfzGT7VjFEdjWJ5YPFGpgJ1Jbe8pCa+kmlFgx8M0AsZvsaAl6n0SHNV7SGcta2aQnnF7mHduUzLNIyh8xZJpFTkTXjsetTiUb52QOW+AhNFRxr8SsiGmbZKpqqwBStk7bAhxaubh/Dcm/rFo1EQ5SbH9RRnUDLDz5fR8FUZw7YYlu82PXysg2jkdRp+uzB8dTdXTSmDQtbGYCDzlVyOkuuFC6pq8O0Eg0+PN+4Yi11j+Tj5s1pt4Qx7KSgM365yZxKWNVHmS9ZiNfW0FQvRdedah+GHVWU9PcMXfXDU4lCV/oDGt19NpcHPJWj4ov7WlbUD9sFx9Dfuxcnf/fOkZt2K9sTxuHby6LbCYr2bOz99tP9Zml6rhJ2ndQGAxDZEiEZe0vCDx2q8uDomzlujoJrKIqvJbM3YTLpRi44n1LBPzrQVo6Ho4dptI7EoKd3CAMhlqVsFIcPnkYYvlvgFyht8yulQpcNau3z5DN9/3J3LNDUbXgQtgLKGrw/RpN226PCm8FZTWmEcqLTNS4rSEY1CIWshZ8uT8b4XN9VvkBUgx+GPT8OfFsRyU6anKikAwkTTROkAKsOPs33V4Ktj+tLvnsbun71V+9mTCZL5CFUZfItJPpyi44WJbYkM35U7Xom7RnW9lRZg4WGmFRl+8D+xccfj8f4JVUg6qsHPWFZN2eyiht+ds+Hx1pARw97Prt7IiwlZ5LQVL1+Yua6p4VRPdKTBH02oYUHIZfROW1GvL2RtX8MXfsDhSUzykJy2LtfWD6kUpSOyBbVsL4GYvc5p678u6PYZDcO3y2v41wRlmpvdDUssOgdUV/o6Y1nSQlsUJB11J6MWTztk4QxMKWQk525Mw09g+Jblt0tshZ0RQY3ScTT1l8o7bRMkHZtVbEr+noOj4AHX4yGjL5dAOdlwtQY/eiz6B3UMP14P3xj8qlFpAiWFZYpMoxBIOuLKLCbKNBqS09bz9JJOhcQrkS14XM/w6QZMMvhiJqXE8JPCMhPYWlKNlcmCGs9dDcO3FYZfcjm6clR/KEHSCWrbX3/+4XjiS+/AgJCprS644hAsheEDjYvUGA/COHwuMvz4AlapiXlM0rErSzo9uei+o/7MgFj1tvnXKZJ04hp+PmNhs7DDJFJgSwyfdtqG4deMcuVWGYtKBKg3lCjpkIZ/57Pro8+dRJbqKQy/WqetGKWTsWSGr9PwyaAna/hJDN8/vq+QQV8+g4++fXd/rAnXvtnONXVc1ThtMzaLVTyk4nTqXKAFhHNIN/KbQvXEcpKOmFlbbQvOyQQtTmEfZY/H5kw5DT9i+IqkY7Oy9ysg14cSJZ2wgUoLXKeoFagch88YMLMnJ+VtUPc5UUZVJR3D8GtAyfESi0/15jOJ9SpKriLpKJ+hsrpGQq6W6WnDMitl2opp2h7XV4iMogP010u8QcUQzLztf0/WtvDkf74Df/eWBYljAoChhKJakwV111ethq/6g8QuVUmfJz6++OR9wse6FpLheyzx+WDMLWDIIsj3jF8VVNHwyxl8CstU3pOzrYqhzyKJ8QJJh7HWlHTEneSo4yGfsdCTz0i9fqm/tNQ3Iea0bcw462LwGWMnM8aeZ4ytZoxdonmdMca+H7z+BGPs4Hp8bxIcj2NKgvzSJxh8daLEonTUSpB1+BXufGY9jvvWvRVTwsM2hBkLJY9LWXvE8HUGIa8x+FQaWkfiK2n4SU7bPuX6RmGJ+mvUbIavssjxaPiA2AdY2TGISVTCtVw6f2qoQZfLdJYybZvI8L9354t48OXNsectleG7GkmnLMPXd1Wj4nLlIJI3v3uYXHysFQr2aTX8kp8R353PhPkc/rFyPXxA6BFtyZ9Xb0zY4DPGbAA/BHAKgCUA3scYW6IcdgqAvYJ/HwVw+US/txxKrofefILBL2SjVVS5piUlSkeNMa+Hwb/24dfw8sYhPP76trLH0Q9eyNoxhk+PtQxfuDnCkr1lnLZZpUpf7HXhGsiMVI22KK89Nputqgy/mvrztsVixbsKCXH4LIHhi++Jx+EL7xeeV6/lfS9sxG9X6bPG6wnX4/jOnS/grCsfjL0WFU+LqmXq8gqS/A4ll2u7qvlROpV8btH3UFimLZQmaCWGrzpt8xkLvXlb8mFRqXKpbwLttBvstK2HF/IQAKs55y8DAGPsOgCnA3hGOOZ0AD/lvnv9QcbYNMbYzpzzN+rw/TE4Lk+UdHrydriKxiUdwWmbi0s69dTwKzJ8HjF8RymeRmxZl6EodVESGH6y0zZgFgn2T9Vcr/7wW/HalnhBOUtYXLTn02QWNp4FJ2Oz2DVOknSkBCTlWlJuhC7xjaBG6YjfQXVlTl8ml7qoN8rNSfIxiPXwY3p82cQrfVc1NfRZBzGaxXH9vA7G5FDYZoPu16IwljHHQz5roTuXwebB6J6JnLbR9Zgsp209DP58AK8Lf/cDOLSKY+YDiBl8xthH4e8CsOuuu45rQCXXi7FzQiFrJ2azSXH4GTusgxK9PvEfgW7mrcPl6+zTYpTPBpKO4/pNI2wrlHTGNM1Z1IJnGYuFDdy1TtvgOiURCpWVHbP3HO1xNGETE2+afFOOxyjoZK4uoVSCiCQNH0juHaBL0BK/d7LXyHK9H6pi+IHB9zX26LUf3rMav165ThsY0J23K5KfOMMPwhorzLnJhJ7h+5JOryLpRE5bweAH9xkRiuEG+bzqoeHruKH6C1RzjP8k51dyzpdzzpfPnj17XAMqeTwW70vIZSxtv1IgisM/cs+ZyAo9NynWXA3tGw/oMyqFKdK8yWdslBwv3B525ewwVFDXUUetpWNZUQMOnYxBxiXpllFrnyRBLC2gQ7NZ2Hh0Xl3J6CjTVnXaRo/V6xyWvlU+zk7U8JujTZdblGl0UpROgqynToFv3P48Ng2OaUnYLtO78drm8iXIxXuZelP7Gn5UkrrZ0Gv4fmZ2d06WdMhpq6uWOaPH75xViRCOF/Uw+P0AdhH+XgBg3TiOqRsc10PWYth35yk4M4geIeQFg6+L0lk4sxv/d95hYCwy+HST1yMRhlb6pFZwBFqMcrblV8t0XOSzNgoZCyNFD5xzrcFXq2XajAkt9uLfk6nA8JMWzthxVvlrpLZLnGyMZ4eh2xEl1dKRSwzI7wlL35Yrnia81Oj0+iSUW2BoJJWidAB53CJJ0l3P3WZ2Y/uoIzUIUSEaRprLFqvsN5pMkFqg1sPXMXzabaud0QBgetAqUc0MrxfqYfAfAbAXY2wRYywH4CwAv1OO+R2As4NoncMADDRKvwd8Npm1LfzhE2/DN848UMoGzWdsYWLK7ysqUlBk8PVx++MBbZuTWsER/PRrBNm+3GcLGQuFrM/wydhfeNJiPPb5E8P3aSUdL9INVUQMXn9u42X4oyUXD7+yJXy9UU2Zq8V4fAg6PxAlXqm9e0WjFDfs/ueol19OvIrf/JNtyMotimTQwuJpbrwtpqVxOIrRWWrUGwDMC2o5les7kVUYPnVva6UoHdrBxiUdPyyz6HjhazR+8frROYatEhvUS3vCBp9z7gC4AMDtAJ4FcD3n/GnG2PmMsfODw24F8DKA1QB+BOBjE/3ecii6skNp1RdPxNfOWAqAJB3/+VjilcOVRCP/wNDg1+EGpCYrlcIUw/TrkOF7yGdt9OQz2DHqhI3Wu3KZcBvoj1X+SX1d1Qt1QxV00yStZdU2047Ylj+pv/jbp/H3/98D4evNvinHw/DFfgEEamSh9kkQ+/3qQg+B+DWWJB3x+QTm2ujEv3IZ6qGzNkww4jEykFEWfUDe2el2i10J11OEeD3FrPFWZPhqNF0+Y4VzhnoYE/nSNSBijCGXsTDWoN+6LrUCOOe3wjfq4nNXCI85gH+px3dVA8eTmXp3LhPqivmMBcYYLKaXdLKaejFkROti8Ef8rV2lAm9iV5xSkGmbz1jYZUYXVr22Dcd+897g3GSjpDYxt8lpmxClk01gn4SCpim6DirDf379Dun1dnTadufit8dOUwrIZyypvy0QtUQEkjNq1SCBpDBXMZxWhBqM0L91GGOOh5xtYZcZ3Zgoys1vql9DOzV1NwzoC3+J113nBCdGK9aKUschBk+4gYbPpDj85ht8GoNk8EuRpAP4yYdTu7NhEqTM8KPHfjJa60bptBwcTVLI2/achWW7TMP7DvEjf8gQiii5njS5om1WfRh+0fHCLNlKWbuk82VtC8NFB6Mlny3M7s1j3UC0/d135ynS+1RJxxYlHW2mrf+czkEJyIasHEK2FdzglcomTzYo8acWVa4nF1/sClkLs/vyseb24sKoLqxJGj5jLByTpOELhlNk9eKiedez6/GRa1aEf6+59LRqTysR5UocuIqko8t1ERn31qEiDv7qH3HZ3x4Qva6RB2m+ioZSnSvi3HS5HwVkW9HzrcDwxUxbutdGHdcPyySDP+aEJNNmLNYekpDLWCi6LSrptCKKClMHgIWzevCbfzkSS+dPBeBfYN2WWafhkww00WSIHULP3EpdfkJPfpCJSCFePcJN9k9H744DF0yV3keGVqy+53peqBuqiCJI9BR/vAw/1gmryQw/KfGnHLo1yXv5jBU7N0BeGJOidHRRUrQIiLV0RA1/67BcdIsgNsWuF8pJOmSoxJoxaqVUkeE/sXYAnAM/uPvF8HVt1FMwv0TNWp0r4r0cVn4VGX6T5tbgmIOr7n8ldCQTorDpKPEK8P12tHDalkwMMrbM9hvF8DvS4Dsu1zqIRGRsFguzLCo1eHIh+2V16UIk9swtOR4Ghkv44T2rtQyFNHeqF05JHKLB//ARi2JGhP4koyQxfI3BoZs2SR/WNUXXgbbYYXNr5fo3e9utSxSqBF22ds62kdMsghLD15QcAPTJbVFru+g5MYlNnKOiQW5E1FN5py3CMQG+01qVdMQsUTofcfy6608LpZhYqM6VZbtMw6zePPabNwWO6/mSCGt+HP5FNzyOr9z8DFa+vlVadGgXH5K0XMTwaaxJcfgAMfzG7Ig71OB7FcMJKdxRRNHlWobPmD/BJhqWSZUT6Qf91h+fxzdufx53PP0mXI/jZw+skWrd+5KOXy9c1QMBP2lFRXfWRiFr4Yvv2g8AGXwvsXga3XBJE0zHZpMgLorqN1UqWd1olDQyXyWo/hEAyGZYSArE9bOchs/C5zUM34q/Foa4ci4ZElFyaUTUUznZzVM0fNXfBchOWzL+pQoafiTpiAxfHsfUrixW/McJOHTRTHjc9ydYlrirbM7cenLtQPhYZPirgt0XOW2JpA2OOeFxthD2DagM3xj8mlDy4uxDRUazbVK3qeKErkdjaYo1njulIHWx2jRUxO1Pv4nP//ZpfO8ufwscNTq2IklHYfjdGvadsS0895VT8PfL/bQH22L4c9CpS8fwZ/cWAPgJMDpYFsPS+VNw6Xv2r3h+GStqZqFeqWYzfMerTAJU9GictjnbQl6pewLIC6O6sNKpl2P4Og3fcWUNXzSESRLcRCAuLmrbQJr7rhCNokbpiKU86N0yw9dJOpUZfvR+BsfzwuJpzY7SoV4HYyVPGsN5P/V9K+qufLjoSDtgqZaOyPBtqy5Jnjp0pNPW1+IrSDqWFdsWq+8TFw3Lqk7SeWrtAKYUsth1ZtyAbg9qYs/oyWG05IbfzzkP9f1XN/udmfzaIxSHHzVS6BVYvXgD3XPhMdrx7Bh1wuYLOnu3/4Kp+Mk5y3HEHrMSz+nmj78t8TUR+YylTQYDJkdnHS25+MJvn8InT1gcxneL318zw9fsoHIZK2T4lu/YAeBLWnT+KpMXt/EqQg1fE6LnO22FiBdh/qnyiFrOYDwQF5ei60kRX2T/xYxSVcMXyzoTY5cMvnaHGYRlihp+wn1mWwyeh7B4WqX6TY0GXa9Rx4Xrcew6ozusM+W4/iJQyNih839wzA3LZahzRC1D3qgQ3I40+P7NXUHSycR7aZYc2WmbE+Knq20s/c4f3A9AHzVBRn1Wbw4vbxoKGf5w0Q0nPDEd1/MXpazlF09zOQ9ievU/2aJZPdrnxZocSbue4/bZqeJ5VYN8xk4MN52MTNt7n9+I61f0Y2jMxQ8/cLD0mlPFrk+FWqYC8K+h6BgX8yEjgy+/p9y8ofve0jF8z1MYvsjA5c8Zc7yq/S1JEA0nZYkSiNm7nt9uc8OOsVgklljWmea2KE2UY/hjCb4K6fOZz/CpeFqzNXxytI+W/F3HnnN6sWO0hEMXzYy6XYkMf8zBl2/2a0qqO7SYpNMght+Zkk5VDD/eS7Pocm0cPh0/0Ym1Y9RBxmLoK2RRdLywKchw0Q17nz4V6IJeoFPSNpZqa/cklH1OgljDo1ZJo1YUss1l+GImY/z79dUay0GXdJazrZDZqhIZsVWVbJDfRex6RCBWLkXpCHH7oj4tGX9lLiZd91og3g+qwfEEg/+Rax4BECcQotNWl0ilY/gZ2/KbxVfL8HkUYqxL9JpM0M8/WnLhev74dp3Zg+FSlAmfz9ghcRgcc3DjY/0A4rs9cbHOZYykUxOe/fLJicXACLbF8Ien3sRw0QlZc9FxZQ1flHTK9OvUQec43jFaQl8hE5aEXbfNj+UeGnNCxrZlqAhO1S0Dx86Y46EY6IFJdf6rgVr9s97IZ+yQ2anXajJuSoqO0EknfkG92s5fTWKjz5YkHQFkgFSyseecXgDArN587PPKMnyXS/ka4jVUDYK/s8omngvnHC+sH8Tec/sSjxF3vOLnc84lSecvq/0GKboWhzRutXEMkNxlLJ+xZA1fGIc438Wdj1g8rdmlt8ccz5dgGUNPzsZI0Ql3uvmMBcvynxerkapkQYzy8ntpt261zJaDGvKkw3Nv+pmgv3jotfC5klJHn9g+R/luPjps17C5HaMO+grZcAV/ZZOv1485LgbH/MngeBwjJT9e17IYpnVnsWPUCbfYunT/alGrpFEr8llLq90C44/SGS25+NYdz0vFp5KwcYdfZleXMOUX1LPwi/MOxW/+5ciqvjuprISa60CgOacu9MsXzsBPzz0Enzxhr9hnhRE8YqatoOGLDN9NYPsAtAZWxPfvWo13fPc+vKBkQIsQv0vcMYjTXkpWVG4HMaNYt+NIzObO2tKOQBzH14VgAfr8ois7bZsVhx/WF3KjZKvunI2hMTdcwCh6qyefwTbR4CtTS8q0LeMLmyg6kuHXArEqnSoFiYxYl5mrQjRyI5riR4OjDvoKGWRtC9tGSiFrKjoetgxFk2H7iIOxkotCxg6r5wHktB3/T9ZoSUdkauqEHS/Dv+WJN/CDu1djuOji8+9UG6nJIIPPNNW4qen2EXsmO6dVJIWkigz/TxcdEz6/aFYP+reOaKWLty/Wl/ouV7LaVcMypce1Xd/bnn4TALC1TBXGJIYvEh0xNFn9Tp3Tthr0FjKhpAlEBvyqDy3H8ftG/iUy+CXHk8Iym6Xh09eW3KALl8XQnfP710YM3ycf+awlyau6rGtCNU1hxovUG3wygp7HY4698DGvjuGLBdF01e52BAY/l7Ekp1vR8bB2W5SqT6UUClkL03tkg1+rhi+i2sqX40U+YwtJJ/EIqPGAjOtapZSBDhuDRho6/Xg8cfiJDF/Q8HebGTnLSbKptuAcEEk5uo5Xrsclp2eS8fdfK399aUzldkpOgsEXfSKiHyJeGyhy2o5W2HGImFLISlnoxPBVgkK/X8n1pOJpzdLwo1LRHpygo1c+4xt22nHRXMlYluSnKKdAmMSrBmB+ELZHhoiiSORkCGJyVKKg/MQaEiJidBN++2jJl3QUw/ubVevw7Bvbw79HSn7UTiFrY4bI8LN2OL7zj96j8kkqUMPo6o2skL2sMrzxsjC6Saqp6UMMf1Sz2I4nDj+J4dNY1JuWHG+1LCtkM3XNMBxXTbySwyZFVDJ6JHNtH01urCFLOtE1FO36uoFo4VUTEUWnbS0Mf0pXRpJA6ZyTyi+XXE8qnuZxju2jpapkv3oiqivE4QV5Mz7Dd0MNngiabTFJdqOxH7N3fOfXyNIKqWX4v73gSCz/6p0YDn4YMlSiUaTpRkkSlcIyxS2bbsKLDL8cRksuRh0XU7uymNYdOeLIAI23UFajNXwxukDVlMdbLZNu4moWq8jgxxfbejL8MPFK+Twyqjo5Lwl0VbQaPpcTr8Ts2lLMR1L++lLW8ECZTkqJko4w78V2hOp5VnLaJqEvn8WG7YPh32RIYx217EjD785Z0vcd8KU70JvP4Kn/fEfV3zsRvCj4QhyXhx3A/O5WTriwTunyTWzGYpJNoHvxqg+9NfbZO0/twq51qH6qQ2oN/qzePGb15jDmeLj5iXXYPyiqJt7kNNGpUFO5m2rNpiFs2BFVsdQZnR2jJUwpZCXDK1ZwnD+tC2u3jWCk6AWSji3Vuq+lzIEOtUap1Ipcxg6ZZ0zDH+cWlQxPNTlFZPB1Btf1uDauvhzEKJ2/XHJcuOjQHFEJQFj3vEKvAxGU0ZrRGPx//9UTks8mKURTfU0H2n3oggnCz5Cad+glHXFeq7+xyLh1slrST+gzfFHSCa6JmskbTIKi46I3b0eZvcH4Bscc/HbVWmzcMYbz3rZ7wrfVBxf96glhvB6coPZVd96Gx4GNQd2sKQWfsNkWk64d+eZ00s6nTlyMT50Ye7ouSK3BB3xd7YZH+3HdI6/jnCMWApBZcFjK1PKz+pIY/tahIo755r3YKwi/A+IMn3OOwbE4w5/Zk8emwTEwBnzr7w/EWVc+iJGSvyXsysWdthOBLsywnhBTwot1knTo5q/0dsf1wt2Azn/iuB7sGv0f4vWeL2Tu0u+nnhN1w6rU3EYHHcMHZM29VEbDr/b6bivD8EVZaMtQMZQVdTWk3nPQfFxyyj7Sc5LTtmYNX5R0Ag1fyWeINPygWqamFeQnrlsFAA03+CJ+cPdqTClkYFtRuZP1QQlzMvgZi0m/5Zwp8RDdyUBqNXzAZxA0WSgjVXRshnUvgsp8rsfx5sAoHnhps/Q55HB9cUO0LVUZ/lDRhccRRukQpgeSzVF7zgqdfsNFvxzCzJ5c2BEImLjBnkiETzUQw8liTttxGnxaQCoVrhsWjHySpFOr0zpJRqLnVd28ewKSjqzh67/XKaPhV5LMaEfwk7+8gs2BLLNtuIh/+cVjoTwhfua/3fB4mDWuu/RffNd+mDOlID1HTlvP04dlJqGvkMVw0Q3H6AhES4RlRRq+VB65CU7bg3edLv29fdRBxopq31OhxN5CXMP/1+P2xB6ze9EMpNrgi4Z3hLzqAquj5iJnHDwfFvNr6Vz0q8fxvh89KMk3WzUNmFWGT/HPFIdPmNrlG/yurB0a9w3bx1B0PMzszUmfMVGG35VrfFhmyY03WLc1Wc3VgoxcpagFkVXr5ATH8yqW21ChS+ACEJZHVhehd+w3F1MKGbz/0F2r/g7aNIrGTVfkDlCjdPzrccK+cwBUZvjie69f4Wd7/nrlWtzyxBu4+q9rcPMT62K5E6sDAqN+tsWAPg15EBm3znGeJMtRbsmDL2+Wxqr6nMQoHcsSJZ743JhoZdtK2D5aws5T5QXPd9oGDH/7KHrzmSg3w7LCeblk3pSGjq0cUm3wRVZFXnVxku0yoxtrLj0N7zxgXui0JcP98kY/aeqx17bi//vTy7HPVre07/mfvwLwt3gic5wSGPyefCbUmL9267MAosWAUG33KRF77xRlVk6W01Y1zt05W8tA1YqMOtDNXynVnH4/PxdAJ+nUnmmbBFqwVWY5d2oBT3zpHdhnbvU3NF0D0cjbCeMUv89xOY7bZw4+duyeACrXKiq6HpbtMg0ze3J4JogIo4/7v4dewwW/WIlNg2PaktDq7zS1K6svBCfF4Ve/wL8ZyB//GFSZjMIy9YltJOnQEHTf1ajEJcK24SKmdcuEzLai+ksbto+hryBnCdO8rJV41BPpNviCARzUGHwRFIc/rcv/kakswnv+56+4f/Wm2PEqw6fF5a2LpksMn1h9V86OORWLipHM2bVLOr/4x0MxL2AipCc2Crmgjrd6s/XkMlKW6L9d/zguv/cl7PW5P+De5zcAAC677Tl85qYnY59JC0Ulhk+O0hk9Oa2G7ni1R+kkIUnDHw9CSUdqd5fE8D3sGC3hqMvuxpNrB5C1hRLBFSQdx+XI2RYO2nWaFGEiYstQUSv7qQmH0xVDF407cmbrotSSYs+JyND8TwrLDDNtHVnS0X1X0fGkhcpxPfx6ZX/datRsGy5hapd8rWzLCu3H5qEx6X7L2Cy8LxodPFEOqTb4oqZLDDEpFI/i8Klk7oYdY9rjCKqOvPfcPhy/zxzM6StIiwqF+PXk7Jhkc+QeM/0xBcfMVbaQ1WBmbx73XnQs7rnwGCmJqxHIZfy2karB7cnbITvdPlrCjY/147LbnoPjcfz8Qb+0xeX3voRrH34t9pmhpFPhRqWbaWpXFqOaY6tpiqPD4bvPxMUny87JSMOvg/EIbJKYeJVkGEuu70OifrpZ2wqNbCUdu+T6Hb9m9ORCx63K3DcPFkPNWYT60VO79cRBdNrqIpWSmC3llPzdWxYE7y+feDXquMjaVtgTWOezOeV79+HMKx4I//7Zg6/iU798HDcFxctqxRsDI/jBXS+G0uSo48b6JfjlzP0xbxosxhh+lHNhGH5TIN5YNEGTHHvE8Gnyb9he3uCrrGPbcCncAmbt+M3dlcvAshgKAds5bp852D1w7Pz8vENx3lGLMLtvfJ79XMZKLJ9cT9BiuUNJ7unJZ0LNefOg6u/gWL898oeoRqhUpaRDr0/p8iuReh7HjY/2Y+Elt+ADP34waIpTO7O69qOH4Z+PkZPc8o1g+JrEKxWux6VIj5xthWzx2odfw6evX5Uok1FToL5CNgyBVKWvrcNFrTav6uHTupIMvn9dRooOnugfiL2exGz7ClkUslZYXiApDp8WRc6BXMZ/bDOmZfjrBkax4tWt0bkFJSXWbB7WjqES/u36x/GtP74QdrkqBqXUV/zHCeExtmVJhHGKcJ2k39cw/OZA7DJTKcHHr6UDDAY3y/rAaaseP7MnB0vDOnzNz58A4qSge4m0U9rWThHYwSGLZuA/KtSRaQXQtVBjvbtzdrhNV+PHPS47vWMZpG51Tlt6nfweY46Hnz34KgDgL6s3+/2K6+TDSNLwx4NQwxcMQlIjk5LnYWhMLHcdSTp/emEjbnpsbaJ2XQo6VE0JImIc14vN0eGiq62pr4Yjq9o1gfwQ/++257Wvl2sin8/Y4aKdJOmoNeMBfxGoRqahXd+aoGBhrSAJ9/Vgd1UKSqmLFVBtxqQ51qOp9OmP3Rj8pkCcQMNVafjRDffGthHc9tSbMQkol7FijUD82vduGIIpSjdkAHsUg9/XYL29EYgYvmzws0GbRiDO1DnnkhEbHpPZWtL7VIQMP7huoyVXKuY4MFKqm9Oafr8qfM5Vo5pa/Y7LpfIdoqRD0DmsAV8mydqWFDqqO1Ynaao7GTWYgEBD2ZxQoK0cs/Wbx7jBWMngy2PR9f21LL2kQ6DdCWUYP/TK5sRjy4Gc1JTcJxII+ulsy+95TCgI11I8F9tIOs2BqBEOhZKO/pL49fCjncBjr23D+T9/NFa/oytoIi5Owm0j/g0wNWBGvfnohiEpibZ/xLB0WmqrI0nSyQoN41VW7HG5K9ewYoRoQawUdRFJOkHyU8nFUiX8TW26PV7UUhytEuhqlDP4ZOcc15PqpGcFSYeQlANQcjkythU6SMccTxu+qgv9pZ+Mhphk8EWjdvw+c/CRoxZJry+cmSwr5rNWGNkWJl4p5yZ+fiVJh0DnSAvl1uFS1SHCQ2MOvnLzMxguOuHuhXIYiq4XjcGi/y3ZP5cVjXxlyW4y0H5WpY7Iai58LqP/MTIWgxfUqi+HnrxfPEmchOQkI+1TdOZE/Wp9Q09MotFJUo0AMR5i+B87Zg9YjOHFDTvCYlBxSUdl+PICWm1YZtH1P6NPYPiqtFRvSaceqMaRxxDkMng8JCY0DtV4JGX5UulvMuhjTlzSAfSEhyQdMvzTEpy24ilM7c6GO4Mj95yJjxy1CMcsnqM/Qfi/DS3qyYlX0eOI4bOyZGC46KI7l5F2M9tGStpmNCqu/usaXHX/K5jRkwuJGfmg/Ovpj8GX4DhsS55jYqKk0fBbALoLnxT6aFt+M3HX42Vv+IzNYgz/w//rt4SbEzhdRYN/8tK5AKIIHNqCtqPBpxBT6jFw/L5zcOE79kZWqO8da9zheBLD/8lf1kilossx/LufWx8eW3RkDX+46GJgpIS5QjZovQx1PauOuhoNXwe/1SVXGH680U8SIXFcjqxlhUao6HjaY3XXKK7hV2b4UwqRwT9pyVwct89OiYlsgG8cb3nyDRz+9bvC3zqeeBX9Ta/ZFQw+LYDiuVKj8UqguTdSdMNd6+Yhn+GXBEmH2L/FmHT9CokM30g6TYEuTC+bwPDFxAldRyXCPnOnxDR8MkrzgnosvfkMTlk6Fz86ezned8iuuO+iY7Fsl2kAInYzkbr3zcJOgXH9xu2+046Mi1jfW03AGi46Emu99uHX8I/XrAj/ppIM6kLBOce5V6/AMd+4B0Bk8MnAbx0uYmCkhJ2EUNZ6OcvqyfBJXihUSKrLWv6iGZd0qtPwKSwzFzJ8V1tzSLeYqRo+5aKoEJPH+gqZqhczwPexAMAbA6N4acMgGIu/Txwa3acWY9rzIJCUM1J0w3pI1TpuaVEpeV44R5/oH4AX9CkgiTDKpmWypCMyfMnhbCSdpkAn6ZRz2pKnvyefwVahCNVRe87CV969FJsGx7B03lScdeUDIcOnpuRv22sWdglKnjLGcPkH3xK+f9eZUSlUt40Z/sKZcklXkg/EompqWd/hMTcm42wTonacMjsD/3ku/U07pS1DRWwfKWHvnfrwePCeejlt62nwyZaWq5PEglpOjiuHZWbtuKST5MAkCSKUdEp6SUc9N8/jMed0X4J/SSSuVBfef1w5YVDc1a3eMCj1eCWIzk6K+KkUpTMcMnwvrEa7tUwBOREUQTU05sD1OBZM70L/1hG8uGEwqM1Ekg6Nj0nGXPSHSKUzjIbfHGgZfjmDHzJ8+bLtM7cPi2b1hLHuIsOnAlQXvWPvqsbUzgZfDdcjIyZKOmqy0pDC8AGgIBiIpHBO1VlOhp/qm2we9Bn+rL5oTPUy1PlxZDxX/MwyDN/X8K2w3zEhp3PaJmr4PNDw/bH7Gn78WHX+lzwvxvB1oZuALFV052x86sTF6Ctk8K4D5yWemw7rBka0jmFxB5EL2XV5hz5dj9GSiz1m98BiMqEohx3BHPvtynUAgOW7TUf/1hG8utnfIeQVhi82uBdfB/RyVDOQaklHt7VK0mczosFXGomrN0Be0fCB5MgGFbQNbscoHQB43yFR4TAyYmJjFLVcxHAxzvDFEhNUI8bvKhS9V+yBOua44efP7svDYr7WOjBSkq57vW60nryN3Wf14HtnLavL5wHJRpSQtVlYWoHgx+HL55So4QdhmfSbFKuM0vGTDf3rvsdsn9DMSUgAFIfSlbXRm8/gkycsrjnDeceoE0ZbiRCZMUlglaJ0SAIbKfqZsT35TNnOWJxz/PGZ9fjNyrVhiWMy/NTOkmLyyX7QQpSxmJRrkBd+UxOl0wLQOU/KZdqSvVH1dVV/zWdsbHKK0kSsto7N9kDLnNngMgiNQrdUztm/Lj7D9y+eGhI3XHQxXHKRCaJQANn4iVUej/3Wvfj+WQfhwF2mSTftH59Zj6LrBltqC9O7c+jfOgLX49J1r5ezNWNbuPvCY+ryWQTV0C7bZRpWvb5N+E7/+ojn7fdpkD9HZ/A551FYpqDh6yQdtfyG36Db/w0+d9q+2HN2X6wscjgegYF3VSHjlIOOIGUkuSRoJ8lY2dr7dD1GSi66cnaw+46Of3NgFId9/S78/COH4qi9ZuHFDYNhETcVi3fqQy5j4cm12wFAidLx5SXRMS0zfOO0bTriHXX0Mg8gr9CqpKOys0LWwljJDRtv7zdvStV1bKiuyILpXRWObE10a+r3k9OWKy37AJ9BDgyXpFLQohETj3918zC+/ge/kqhYq+XCGx6XEmF6C5mQhTWC4dcTy3ebDiBu8G84/3D85JzlAHyNmJy2YlJbXyEDxmTdWN/P1zfYOclpq5d0xB0a4C/QRHRyti35m1SI90it3cW++DdyJrmOIImJVwVh9ygmo6kYFqJ0Clk7Vk31gZf9wodX/vllXHbbc1KZDxVzp+axcGY3Xto4GH43EDmTVW1e9MtIDN+EZTYHqgEoZxDEH0wNS8urkk7AIqiU8tffs3/VY/rUiYux5tLTEtPrWx0is8uFTlv/XEouj0k6gN8nVbzBRQamJmrRa2IoZ1fWxq1PvhmyqO5cBuu2+TeuaPDr6WytF64656245txDYpnVWdvCjB4hbT+o5bRj1MFJS3bCF965BO86cH74GmG46OLBlzdLO6lSmMgUhWU+0T8QFmETMbUri1v+9SicvszX3R2Phxp+JSWCTYDhL5guLyRahm/FGX5X1i7bDY0crkXHQ1fWRj5roX/LSDh/3hzwwyzve2EjLr/3pbDU+eKd/DpW7142L4z8mtGTx4yeXLgohKGhTE7AIog7fxOH3wJQtbRymfLisZUakxSyFkZKLl4KaubvKbQ+7HR0aXRLMrQl19NmOap12Ac17e4IUYcyn6UdvvtMbB0uYe22kVBr7c3bWDegY/itt4hO7cri6MWzta+J480EstiO0RJm9eVx7lGLwusr6sZP9G/DWVc+iM//9qnwOZLTxCidK/70kvRdd/3b0fjFeYcCAPabNxVHBJVaHUHDLxdHr6KST0KFuhjrIoF0Gn6lhWWkGJWQ6MpZKGRsPLxmS1hJ840BedGjneGxe/tJYqMlD7+74Eh85fT9sHBmN2b25MNuVjlF0inP8PUO3MlGqg0+TUr6ncqFd4mTXSyNIH4OYVp3FluGitgyVEQuY6E7lx5XiS4Ej5hQ0fFikg7g114Rr2FSH1cguqnIGbfztLie3J3LhKGEU7qyoeGsZ8LUZCA0KPBlG8fzsH3UiRlDsWEK7Wz++Mz68Dm65mKmLeG7712GNZeehj1m9+KIPWeFz5NRWr99FF+92ZfRrBp2nbVKOupi3KW5Z2wNwy8X8pm1GYZLbqjjd2Xt8HueXufr8Kr+vy3woS0MIu62DBcxZ0oB/3D4QjDml5emuZVTonTUTmVi5JXI6psZltled0CdQZOSdPtyDFBk+EvmTcEHDt01lHYKyk1E7POq+18pm6TVidDdqCLDFw04Xe9twyXpxh2SDL4nZywyhrXbRvDImi0AgHlT474OMYpqalcWc/r8RaFetXQmC2TU/PaMDMNjfjSSWsJYnJubglov26VdUsTwRSa9++wevPug+drvJgN1yY1PhB2yalkva5V01AVCV9NHMvhK0xQdunMZjBTdMDSzkJU7r3HOY1VYaTdw0K7TAACn7b+z9Lroi6PrHhVPUxathCidZqK97oA6gyYN/XDlGKC4JevK2vjaGfuHxaDUqJ0PCD1N08TuAaBbcwMSwx9TGL6oW3flbDz6HyfgPQfPx1DRxW9XrQXgSwriNbQshiMvvTvsy6pj+KJTfWp3Fgtn+frw4Giyc68VMWeKr+F73GfcVEY6Xkk1bvC1Gr7FJJmhXEVW+s22DEVhoLX4lWpl+OpYdJKQLOlEneKS0J2zMTTmCJKOLR0/OObEQjqJrO02owfPfeVknH34btLrM7rlOQtEu3/VqIt2oVV2lxMaBWNsBmPsj4yxF4P/p2uO2YUxdg9j7FnG2NOMsU9M5DvrCVv5ocrWyNGEW9FEUiMK9pzTh/cu3wVAdVmGnQTdDUiT3dfwI4YlJpcVsjZm9uaxOOjB+4nrVoXv6ZYSsSJDxhiwU5/G4AefazGgN5fBBcfuBQDYZ+e+2LGtDDJqf798ATI2CzNEkzJdgSjT1uPAs29sxzdufy6sbZS1LWRtFmaG6pqdEOieGBGc40nN1XWo1eBPKZQPdVa/n+7BcvdXV87GcMkNjXhX1paM8MBISSvjMuZ/fyFrxxY5MbmQvjuspaMafGFstfo0GoWJ0s9LANzFOb+UMXZJ8PfFyjEOgH/jnD/GGOsD8Chj7I+c82cm+N0TRmjEAxtUbZSOujB05eLvo+5U7ZpANV5oDX5wvYquzPDFm1q9eQiOy6WbWgzHtBnD9J5osZ0aNoQPmsgEzbYP32Mm1lx62rjPqZl46b9OhcWAD/3vI2GGaJyZ68MNPvDjh7BlqIgf3uM7aDM2A2MsCE30ymZzk9wmZkHXouGryYmVoN4nWoZvaxh+Nnrfj85eDs45PvqzR/0xkKQjaPjvOnAe7nthIwDgqMvu0Y89l0nczYhBAPTdlpB4JaJLk5PSbEx0FKcDuCZ4fA2Ad6sHcM7f4Jw/FjzeAeBZAHrhcJKxfOEMAMARe/oRCeXS220Nw//v9x+Mc45YiN1nxaNwiIWljeGXc9qWHFkz3UlI4CFGqLIkx/MkSUeMuXY8Lt2A9110bDAG/3hdPZZ2g235RjorJKapDD+pEcsWpREJXQ/acZUr0KeLJKlFh641u7Y7l8HVH35r+LeO4et22SLZOmHfOThpv7m47ZNvw18vOQ49eRuDo05o8As5G3/3lgW44oMHlx1LOZloqkbS4cGCS3LZ7y84CuccsVBaUMvZlsnEROnnTpzzNwDfsDPGkgteA2CMLQRwEICHJvi9dcEes3ux6gsn4pl123H70+vL6mwZDcPfc04vvvSu/bTH081U69a23dGdTXbaFl0XY46HWb15fPFvluDg3abjyEvvBhA5e8XrTBmiEsNXOmJRrPq7l80Lb0baSjcz3rneEI1tzOBX+RndAevOZ21AE+0jQnftGh3WeszekfnQLdbic9QwSCQDxMr3mes3vpnWlcNLGwcxKkg6AMIihkkoF2gh9vOleUmhwrQI7b9gKvZfMFV6X7nieJOJigafMXYngLmalz5XyxcxxnoB3Ajgk5zz7WWO+yiAjwLArrvumnRY3TCtOxcmTpW7cXQhYeUwPdD63p4QY92pKGjkLapKWnI5xkoe8hkLf3PgPKkol47hU5KVFMGjZFXO6Mnh5o8fFWr/QLTYtmJm7XghnkufEhac1LhcBRnHMCO5gQx/otBJOuLcIL9ZuR309J4str1WkiQdoHJdq3KBFpKkQwyfKp6WYfGVyl9PFioafM75CUmvMcbWM8Z2Dtj9zgA2JByXhW/s/49zflOF77sSwJUAsHz58jp2DU3Gkp2nIJex8K/H7ZV4TDkNX4eT9tsJ1330MBy6aEZdxtgu0KXE07VzPY4xx41VGQSiG/fw3aPrRTXSRc1aV/9l6XyZTZHBb5VQuHpAZNxJzNzvC+thalc2vHYiVONYzr+kY/jVJAwdvXh22PdhIqhWAilnvKd157BtuBg5bXPVGvwyko6k4fvHUWJaOYWgbRh+BfwOwIcAXBr8/1v1AObvs64C8Czn/NsT/L6GoCtn44WvnlL2GJ2GXw5Z28Jhu8+c8NjaDTpmlhGidIqOp10w6ebZc04fLvvb/XHxjU+GRiupOmMSiLnWElXS6hD1dtVQEyua1p3F+u1jmDetS2vwaZdABqqchp/VGPdqJLJrzj2k4jHVICmq5Z/evjvmC3Wmyhnv6d1ZlFwetiUM+0Ur500LJaG73M5HMOp0Patp9NIpTttLAZzIGHsRwInB32CMzWOM3RoccySAfwBwHGNsVfDv1Al+76RD0vA7SCpoFEQWStqvz/C9WO0hQHaU0Y1JvYDnTo2HXi6dPwVX/sNbYs8DkZzmVil1tAOoemo+Y8WkKjpN6kSlC7f85pkHhv0a6PhyYZl6hj95C2iSgfzMqfvi7MMXhn9XYvgA8PKmQWQsFmrzagSO2t+21mTJjNCMJQkd4bTlnG8GcLzm+XUATg0e3w8xM6RNISZe1VJTJI2458JjJINvixq+4yKvWTBF5zbd7BRlMqWQxffOWoY1m4bxnTtfAAD8w2G74aT9dK6liAF3koZPi5huDSMNnzK/xR60333vMuw6sxsH7xqlyFBUSXkNPz7Hm63h61DO4FNs/9PrtmP+9K7EyKGdpuSljlu1Zgn/6OzluH7F62Ur3LZKxFjn3BENRgfZjoZj0aweiTWR4XU8D0NjrvaG0lXZpMzSnnwGpy+bj32FxCldCQfCbjO6cf7Re+CH7z9oYifSQqCCfWopACCSdHaf7YcHi3LOaQfsLBl7IOoCNbuMVKYzjpNZ9Ktqg5/QUB2I5sjqDYMxxnneUYsAAAcsmIqPHbOn9FqlHfwdn3o7/lcIId1zTi8+e+q+ZTORO4Lhpwl2EyvctTtEp+3mwbGwc5IIyeAHLQQ37vDLBBATFTXncuGulsVwySn7THzgLYTp3ZX7KewdlPTdNlLCF/9mCYbGHO0u54R9d8JNK9eG7SB10DH8yQxzVetTJaEcwxelGTUU8z/euQSfPXXfcLd+y78ehftf3ISv/+G5it+5eKc+KSqsGnSK0zY1aGZbsnYHOQAv+8NzWDcwGuthC8gGnBj+zx98FQBCJ50YPZG2hLYZ5RroBBR/j6AM97lHLsKHj1yUePjX/3Z/nH3EwsTOVYBeDmtFSaecIRVJxMUnxwmAKM3uN28qHn99AEByIttEQPO72WHaxuBXiVrSyg1kEDNcF/QIVQtSAbIBJ4O/YccYTlk6N3Q2Sgw/ZQZf7cEgguxTdy6DV75+asUiZ/mMjWW7TCt7TLOdtvWoPSP6KMolmRHcoH+y3YCdTFfOxu8uOLLpvTGMTlElaLIbpl871Gv2tr0ilnP8Pn52pRi7LWqo7zxgXvg4zQyfJB3qxKRDNqiVUw8022lbj+/aWSidXS4ElRA2imnQeR6wYFrTq+cahl8laNVvlap37YRydVV+8P6DsGNU1ppFBxexe0Aue5y2khWFrI0fn70cB+wyNfYaRenU06mq+80mo+2m2My+Wtx/8bFaaUfM9ygXkRQeE+wCykld7Q5j8KsEMZ5WSaBoJ4g1WL531jLpte5cJsZ6xGzdvedGzrFuoQJj2iQdADhhyU7a50uBgaxn+n6zdrIPffZ4vLZluKb3qP1wRRy3zxzc/dyGqu7bvz14AYqOh78PSpt3IozBrxKUtWkYfu0QDXpS/1YRuhh+QJZ6mr01biVQj4B6LoLitb7pY0fEWgE2CjN785jZW1tmdTl8/30HwXV5VbsT22L44GFx/1Inwdw1VYIMT6vE07YT5Jo5laccLaoqKxNv2rS1jiwHUkDqmdwjRrCocfzthGqknDTBXI0qQQW8dE24DapHNYXnAOCqDy3HXnOSY50nQ09uN6RR5jKoDcbgV4kFM3yP/+IyRsigfjh+X71efeM/H47BsXgcv4HxLxlUhjH4VWJKIYsb//kI7FUmLM6g8XjLbukqN10NPnnCXvjunS+aXY9BRbBqmyc0A8uXL+crVqxo9jAM6oDn39yBTYNjOHLPWc0eikGV+OkDazCtO4d3HTiv8sEGLQPG2KOc8+W61wzDN5gU7D23D3vDyGHtBLEMsUFnwIh+BgYGBimBMfgGBgYGKYEx+AYGBgYpgTH4BgYGBimBMfgGBgYGKYEx+AYGBgYpgTH4BgYGBimBMfgGBgYGKUFLZ9oyxjYCeHUcb50FYFOdh9MImHHWF+0wznYYI2DGWW9M5jh345xr65C3tMEfLxhjK5JSi1sJZpz1RTuMsx3GCJhx1hutMk4j6RgYGBikBMbgGxgYGKQEnWrwr2z2AKqEGWd90Q7jbIcxAmac9UZLjLMjNXwDAwMDgzg6leEbGBgYGCgwBt/AwMAgJeg4g88YO5kx9jxjbDVj7JImjmMXxtg9jLFnGWNPM8Y+ETw/gzH2R8bYi8H/04X3fCYY9/OMsXdM8nhtxthKxtjNrTpOxtg0xtivGGPPBdf18BYd56eC3/wpxti1jLFCK4yTMfYTxtgGxthTwnM1j4sx9hbG2JPBa99ndeytmDDGbwS/+ROMsV8zxqY1c4xJ4xReu5Axxhljs4TnmjLOGDjnHfMPgA3gJQC7A8gBeBzAkiaNZWcABweP+wC8AGAJgP8H4JLg+UsAXBY8XhKMNw9gUXAe9iSO99MAfgHg5uDvlhsngGsAnBc8zgGY1mrjBDAfwCsAuoK/rwdwTiuME8DbARwM4CnhuZrHBeBhAIcDYAD+AOCUBo/xJACZ4PFlzR5j0jiD53cBcDv8hNFZzR6n+q/TGP4hAFZzzl/mnBcBXAfg9GYMhHP+Buf8seDxDgDPwjcGp8M3XAj+f3fw+HQA13HOxzjnrwBYDf98Gg7G2AIApwH4sfB0S42TMTYF/k12FQBwzouc822tNs4AGQBdjLEMgG4A61phnJzz+wBsUZ6uaVyMsZ0BTOGcP8B9i/VT4T0NGSPn/A7OuRP8+SCABc0cY9I4A3wHwL8DEKNhmjZOFZ1m8OcDeF34uz94rqlgjC0EcBCAhwDsxDl/A/AXBQBzgsOaOfbvwp+knvBcq41zdwAbAfxvID39mDHW02rj5JyvBfBNAK8BeAPAAOf8jlYbp4BaxzU/eKw+P1k4Fz4TBlpsjIyxdwFYyzl/XHmpZcbZaQZfp381Ne6UMdYL4EYAn+Scby93qOa5ho+dMfZOABs4549W+xbNc5NxjTPwt9CXc84PAjAEX4JIQrOu53T4jG4RgHkAehhjHyz3Fs1zrRArnTSupo2XMfY5AA6A/6OnEsYy6WNkjHUD+ByAL+heThjPpI+z0wx+P3wNjbAA/na6KWCMZeEb+//jnN8UPL0+2Moh+H9D8Hyzxn4kgHcxxtbAl8COY4z9vAXH2Q+gn3P+UPD3r+AvAK02zhMAvMI538g5LwG4CcARLThOQq3j6kckqYjPNxSMsQ8BeCeADwTyR6uNcQ/4i/zjwb20AMBjjLG5rTTOTjP4jwDYizG2iDGWA3AWgN81YyCBt/0qAM9yzr8tvPQ7AB8KHn8IwG+F589ijOUZY4sA7AXfodNQcM4/wzlfwDlfCP963c05/2ALjvNNAK8zxvYOnjoewDOtNk74Us5hjLHuYA4cD99/02rjJNQ0rkD22cEYOyw4v7OF9zQEjLGTAVwM4F2c82Fl7C0xRs75k5zzOZzzhcG91A8/aOPNVhpnQyMWmvEPwKnwI2JeAvC5Jo7jKPjbsycArAr+nQpgJoC7ALwY/D9DeM/ngnE/jwZ76xPGfAyiKJ2WGyeAZQBWBNf0NwCmt+g4/xPAcwCeAvAz+NEZTR8ngGvh+xVK8A3SR8YzLgDLg3N7CcB/I8jYb+AYV8PXwOk+uqKZY0wap/L6GgRROs0cp/rPlFYwMDAwSAk6TdIxMDAwMEiAMfgGBgYGKYEx+AYGBgYpgTH4BgYGBimBMfgGBgYGKYEx+AYGBgYpgTH4Bm0H5pdJ/ljweB5j7FfNHtN4wRhbxhg7tdnjMEgHjME3aEdMA/AxAOCcr+Oc/11zhzMhLIOfkFc1giqcBgY1wxh8g3bEpQD2YIytYozdQE0oGGPnMMZ+wxj7PWPsFcbYBYyxTwfVNR9kjM0IjtuDMXYbY+xRxtifGWP7JH0RY2ynoOnG48G/I4LnP838BidPMcY+GTy3kMmNOy5kjH0peHwvY+wyxtjDjLEXGGNvC8p/fBnAe4NzeS9jrIf5zTUeCcZ9unBuNzDGfg/gjkZcVIPOh2EKBu2ISwAs5ZwvC0pP3yy8thR+KeoC/JT8iznnBzHGvgO/Vsl3AVwJ4HzO+YuMsUMB/A+A4xK+6/sA/sQ5P4MxZgPoZYy9BcCHARwKv+LhQ4yxPwHYWmHcGc75IYGE80XO+QmMsS8AWM45vwAAGGP/Bb+e0bnM7+z0MGPszuD9hwM4gHOuq8NuYFARxuAbdBru4X7DmR2MsQEAvw+efxLAAUG56iMA3MCibnL5Mp93HPyFApxzF8AAY+woAL/mnA8BAGPsJgBvQ+VCfVQx9VEACxOOOQl+9dILg78LAHYNHv/RGHuDicAYfINOw5jw2BP+9uDPdwvANs75sgl8R1LfUQeyTFpIGJuL5HuPAfhbzvnz0pP+TmSoxnEaGEgwGr5BO2IH/D7BNYP7TWheYYydCfhlrBljB5Z5y10A/jk41mZ+q8X7ALw7KIHcA+AMAH8GsB7AHMbYTMZYHn799lrP5XYAHw/K5YIxdlBtZ2hgkAxj8A3aDpzzzQD+EjhIvzGOj/gAgI8wxh4H8DTK9z3+BIBjGWNPwpdi9uN+r+Kr4detfwjAjznnK7nf8OTLwXM3wy+RXAn3AFhCTlsAXwGQBfBEcH5fGcf5GRhoYcojGxgYGKQEhuEbGBgYpATGaWtggLBB9pnK0zdwzr/WjPEYGDQCRtIxMDAwSAmMpGNgYGCQEhiDb2BgYJASGINvYGBgkBIYg29gYGCQEvz/Gyef7NDEmacAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "low_pass_ssh = ssh_pd.rolling(4, center=True).mean()\n",
    "low_pass_ssh.to_csv('low_pass_ssh.csv')\n",
    "low_pass_ssh.plot()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [],
   "source": [
    "ssh2015.close()\n",
    "ssh2016.close()\n",
    "ssh2017.close()\n",
    "ssh2018.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "py39",
   "language": "python",
   "name": "py39"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.2"
  },
  "toc": {
   "colors": {
    "hover_highlight": "#DAA520",
    "running_highlight": "#FF0000",
    "selected_highlight": "#FFD700"
   },
   "moveMenuLeft": true,
   "nav_menu": {
    "height": "12px",
    "width": "252px"
   },
   "navigate_menu": true,
   "number_sections": true,
   "sideBar": true,
   "threshold": 4,
   "toc_cell": false,
   "toc_section_display": "block",
   "toc_window_display": false,
   "widenNotebook": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}