{ "metadata": { "name": "", "signature": "sha256:f07890d9f066b5169eef7ab8243589bdabdc010942e779ff30134fcf5896b256" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Template notebook for creation of notebooks that show daily figures\n", "from most recent Salish Sea NEMO model real-time (nowcast) run.\n", "\n", "This is an interim step toward fully automated web publication of\n", "analysis and monitoring figures from nowcast runs." ] }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "How to Use This Template" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Create at `MEOPAR/nowcast/` directory tree in your EOAS `public_html/` web space:\n", " ```\n", " $ mkdir -p $HOME/public_html/MEOPAR/nowcast\n", " ```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Copy this notebook into that directory,\n", " start IPython Notebook in that directory,\n", " and open the copy of this notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Delete all of the cells above `Set-up`\n", " and replace them with a nice Heading 1 title like:\n", " `Salish Sea NEMO Model Daily Nowcast Figures`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* After the day's nowcast run has finished and the results have been downloaded:\n", "\n", " * Save a copy of your notebook with a name like `18nov14Figures.ipynb`.\n", " * Open that copy and run all of the cells in the notebook to produce the days plots.\n", " * If there have been new functions added to `nowcast.figures`,\n", " add any necessary set-up code to load the results datasets that they require,\n", " and add cells to produce their plots.\n", " * When you are happy with the day's notebook, save it and exit IPython Notebook.\n", " * Edit the `/home/dlatorne/public_html/MEOPAR/nowcast/index.html` file to add a line\n", " to the top of the `Daily Analysis and Monitoring Figures` section like:\n", " ```\n", "
  • 17nov18
  • \n", " ```\n", " replacing `~dlatorne` with your `ocean` userid, and the date (2 places) with the day's date." ] }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Set-up" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "import datetime\n", "from glob import glob\n", "import os\n", "\n", "from IPython.core.display import HTML\n", "import netCDF4 as nc\n", "\n", "from salishsea_tools.nowcast import figures\n", "\n", "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "def results_dataset(period, grid, results_dir):\n", " \"\"\"Return the results dataset for period (e.g. 1h or 1d)\n", " and grid (e.g. grid_T, grid_U) from results_dir.\n", " \"\"\"\n", " filename_pattern = 'SalishSea_{period}_*_{grid}.nc'\n", " filepaths = glob(os.path.join(results_dir, filename_pattern.format(period=period, grid=grid)))\n", " return nc.Dataset(filepaths[0])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "run_date = datetime.date.today()\n", "# Results dataset location\n", "results_home = '/data/dlatorne/MEOPAR/SalishSea/nowcast/'\n", "results_dir = os.path.join(results_home, run_date.strftime('%d%b%y').lower())" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load the results datasets:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "grid_T_hr = results_dataset('1h', 'grid_T', results_dir)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Display the figures:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "HTML('

    {:%d%b%y} Figures

    '.format(run_date))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "

    17Nov14 Figures

    " ], "metadata": {}, "output_type": "pyout", "prompt_number": 5, "text": [ "" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "fig = figures.ssh_PtAtkinson(grid_T_hr)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAEZCAYAAABYcdk5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XHV5+PHPQ9BEBYmIBUXaYNwKKuCCVH+GW5Vc5Fat\niop1IbVVqyXBulQlpMYCblVLEje0VqlVXOoGvyshEQnBnwsuhNU1EtkEVAiCNJHl+f1xzk0mw8zc\nyZ3lzJ37eb9e95U5y5zznbnPPXnmO8/5fiMzkSRJkjR1u1TdAEmSJGm6M6mWJEmSOmRSLUmSJHXI\npFqSJEnqkEm1JEmS1CGTakmSJKlDJtXSDBQRn4qIk5ps+0hEnNjvNg2SVu/PsIqIR0XEhoj4fUQc\nV3V72hURt0bEvDb3vTsiHtbbFkmaqUyqpQpExKaIuL1MCK6PiE9GxP3Kbesi4u+mcMyRMmn457r1\niyLigrrds/y5h8x8bWaevLPn75WIWB4Rn26wvpcJUtP3ZzIRcUJE/LL83V4dEZ/rctsmzvPcMgm+\nJSJ+ExHntptcNvHPwLmZef/M/GB3Wtlak9ic+Pt4RjvHyMzdM3NTr9rSCxHxoIg4IyKujYjNEfGt\niDi0bp+/iYhfRcRtEfGViHhAzbYXRcS3I+IPEXFei/O8ovw7aXk9iYiPRcRPIuKuiDi2bttjIuKc\nMsbubuO1tdy/fD231vzcGRErJzuuNB2YVEvVSOCvMnN34PHAE4ETa7ZNxbHAZcAr2tw/pniefuvr\nDFURMWvi4RSeeyzwMuAZ5e/2icA3uti8ifM8HDgd+KfM3APYH/gQcNcUjrVr+fDPgCu61sjOTPlD\nzTSxG/A9ir/9B1D8LsdrPlgfCHwUeCmwN3A78OGa5/8O+ADw7mYnKJPwEyiuCZO9lxuA1wE/arDv\nH4HPAe1+0G+5f2buVn4Q2h3YB/hf4AttHlsaaCbVUsUy8zrgbOAxEXEy8DTgg2UvTls9OOV/xi8A\n/gH404h4Qrn+z4GPAH9RHu+miafUPHf3iDgvIk4tl7eVPpS939dExBsi4oaIuC4iFtU896iIuLws\nGbgmIt5Ys+1VEfHziPhdRHwtIh5cs+3uiHhNRPwsIm6OiFY9o5MmtxExOyJOLXv+ro2If4+Ie5fb\n7tEDWdvLXb7ej0TE1yPiNmCk3C3L7ZdFxF/VPPdeEfHbiDioQVOeCJyTmVcCZOYNmfkfNc/dIyI+\nUb6P10TESRGxS7ltfkR8szz2byLivyNijyYv+WDgysw8rzzPbZn55cy8uuY1bStfKX+PV9csb4qI\nf46Ii4HbIuLc8nV/sPxdPiIixiLioih6wq+KiLfXvYf/p+wtvbncfmzN7+J9ZS/r9eV7O6fJ62hL\nRLwyIq6IiJsiYnVE/GnNttrf5QMj4qyyzRdGxMn1v3vgiPq4a/F3Ut+Oh0TEmWVM/zwi/r5m2/KI\n+EJEnF6+h5dN/B3Wy8wrM/PUMj4yMz8O3Bt4ZLnLS4EzM/NbmfkHYBnw/ImkOzPPzcz/AX7d4m17\nF7CCIgFvKTM/nJnfBLY02PazzPwkbX7g2sn9jwZuyMxvtXNsadCZVEvVCYCI2A84CvhRZp4IXAD8\nY9mbs6TNYz2f4j+nbwNnUfRak5k/pki0v1Meb89y/wQyIh4InAtckJmvr91Wc+y9gfsDD6HoffpQ\nTbL3CeDVmXl/4EDgm+VrejrwTuCFwIOBX1H0XtUao0hCHwe8KCJG23ytRER9or0UOBQ4qPw5lO09\n/+14CXBSZu4G1P8HfzpF7/OEo4BrM/PiBsf5LvCKiHhTRDwxtvd6T/gURU/efOAQYCHw9zXbT6F4\nv/4c2A9Y3qS9PwQeHREfKBPm3eq2t9PTe0z5WvbIzGewPe7un5k/B24DXlb2hI8Br42I5wJExJ8B\nX6dI2vaiSPI3lMd9N/Bwit/Dw4F9gX+ZpC1Nled8G/C88lwXAGc02f1DwK0UMXssxbc29e/DPeKu\nxd9Jvc8BV1H8jo4G3hkRf1mz/dll2/YAzgTaKqOJiIMpkupflKsOALbFV2b+EtjK9qR7suMdStEL\n/tF29q/QscB/Vd0IqVtMqqVqBPDViLiZIklYR5GE1m7fGccCXywffxE4JiYvY9i3PO/nM7M+6al9\nzh3Av2bmXZl5NkWy9ahy2x+BAyPi/pl5S2ZeVK5/KfCJzNyQmX+kSIr+oraHEXh3Zv6+7F09jyIx\na+ZFZc/izeV7Vt+T+DdlG3+bmb8F3gG8vMXx6n01M78DkJlb696DzwBjNYnry4F71HiXz/0MsBgY\npXhvb4iyxj0i9gaeRVGy8b+Z+RvgVIrklszcWPZA3lG+hn8HDm9ynispepb3pfjq/DdRU5df1/6G\nhwBWZua1Na93h+dk5vmZeXn5+FKKhHKiPX8DrM3Mz5dxcVNmXlx+2HkV8IbM3JyZt1H0mB7Toi2H\n1f5uy99vbZz8A/CuzPxpZt5dHu/g8sPo9oYX8f584O2ZuaVMlE9v8D40i7uWf3Pl+Z4CvCUz/1h+\nqPoPdiy3uiAzV2dmAv9N8cGipYi4P0U8Lc/MW8vVuwG31O36e2D3No43i+LDxXFlOwZS+cFsAcXv\nSBoKJtVSNRJ4bmY+IDPnZeZxdclN2/8Zlv/Zj7A9qV4NzAH+qtlzKBKIsXK/0yY5xe/KZGbC7RT/\n6UNRcnIUsCmKGywPK9dP9E4DUH6F/TuKJHDC9U2O2cjny/dq20/d9ofUno+iN/Ehk7yubc0Drm66\nsSjP+X/A0RExFziSItFutv9nM/MIit7KfwBOioiFFDXL9wJ+XZM8fhR4EBRJd0R8riwLuYUi0Xpg\ni/N8LzNfnJl/QlEytICix75djV7ztriLiCdHURZ0Y0RsBl5T0579gF82eP6DgPsCP6x5jWdT9DA3\n890Gv9urarb/GbCi5ngT5Qz71h3nQcCuda/rmgbnq4+7+zXYp5GHADeVsTzhqrp23FB37DlRlvc0\nEhH3ofhm6duZ+Z6aTbdRxE+tPSh64SfzOuCSzLyw9lQ155y4UfD3EfHQNo7XVES8NLbfcDi+k09/\nOcWHkF9Nuqc0TZhUS4NnZ3uXXk7xt/z1iPg1cCVFsjxxF3+j4yXwceCc8nn3nUobMvMHmfnXFAnN\nV9l+w9F1wLyJ/coe1AcC17Zz3AZtmaznfofzUfR0Xlc+/gNFojfRln2m0IaJEpAXUiRArWpZASh7\ncP8HuISiNOYqiq/wH1iTQO6RmY8tn/JOihsNH1OWXEz8XieVmT8AvlKeB+peM8UNYfd42iSH/SzF\n7/ShmTmX4gPAxO/hKooSlnq/pbjx7ICa1zi3LA+aqqsoSoxqE+/7ZeZ36/b7DXAnRcI/YT/aN9n7\ncR2wZ12pzZ/SOHGfVETMpnh/r8rM19RtvpyaXu6ImE9RHvKzNtr8dOB5EfHr8nrwFOD9Ud6fkdtv\nFLx/Zk6p7dtOnvmZ8li7Z+bYTj79FdhLrSFjUi0NnhtonLA0cyxF7e1BNT8vAI6KiD3L4z00Iu5V\n85wAyMzjgJ8CZ9XcTBa0UX4SxQ17L42IPTLzLopetInRJ84A/jYiDiqTh3dS9Ehe1exwrU41WVvK\n850YEXtFxF4UNbwTJRoXU5SoHFS+xuVtHL9+3VcoalSX0KIGNCKOjeLmzd0jYpeIeBZFovu9zLwe\nWAN8oGb7/IhYUD59N4pk+PcRsS/w5hbneWpE/H1ETPRyP5qinnci0dxA8ft/QPkh4vVNDtXqde8G\n3JyZfyxrdP+mZttngWdGxAsjYtcobhA8qPxG4+PAqTVt27fsqZ+qjwInRMQB5fH2iIgX1u9UxuCX\ngeURcZ/yPXk5rZPl2lhv9HdSe/yrgW8D74riZszHAa+kKPPYKeU5/oeiN3tRg10+Azw7iptB7wec\nBHxpope8jJ05FN987FK2Z6Ldi4BHU1wHDgZ+QBHzTb/FKP+W51DkBPeOiDllKc/E9jkUSf3Ejaiz\nJ3l9LfePiKdQ9Px/scHTpWnLpFoaPCsoSg1uiu0jclwWES+p37Est9gP+FBm3ljzcxbFTU/HUNyI\neDlwfUTcWD619ka2V1P0tn21/M+v/ia3VknJy4Ary3KFV1PUUpOZ51KMWPAlih6+/dmxrrb+mK1u\nrGu2rXbdyRTJwyXlzw/KdWTmz4B/pRja7qcUNez1r69lezJzC0XCNq/8t5nfUwxj9ivgZoqb9v4h\nixtIoeiduzfFyAg3USQVE73I76BI3G+hKAn4UpPXDbAZeA5waUTcSlFi8WXgveX2T1N8mNhEUQ70\nuRbHqlW7z+uAf42I31P8Lj+/bafiw9FRwBspyjEuorjxD+AtFLH33TIu1tL8BrtJb6jMzK8C7wE+\nVx7vUoqa9UZtPo6iTOJ6il7QMyjq/hvtW3/+Rn8n9V5CEQPXUbzf/5LFqBnNXkuz1/YUivKrI4DN\nNSUUTy1f8xUUpUOfoUj270Px+5jwCrYPs/c0im8HTiufe0vNdeCG8vX/vqZeu5G15fEOAz5WPn4a\nQBRjn9/O9qH5/hf4cbMDtbn/K6j5kCANi6jyPoaI+E+KC8uNNV+B1m4fAb7G9tq9L+UATUohaeaI\niGXAIzKz3XHAVbGIeA/wJ5n5t1W3RdLw23XyXXrqk8AqWg+pc35mPqdP7ZGkeyjLaF7Jzo0ooj6L\niEcBsyl6s59E8Tvb6dlJJWkqKi3/yMwLKL4ibWW6zPomaQhFxKsobpY7O52kYtDtTlE2cxtFycv7\nMvPMapskaaaotPwDttVfndWk/ONwirq1ayhGDXhTWWsmSZIkDYyqyz8m8yNgv8y8vbyL/qu0OaOU\nJEmS1C8DnVTX3q2cmWdHxIcjYs/M3GE2tYgY2FmjJEmSNDwys2Fp8kAn1VFM63tjZmY5TmrUJ9QT\nqi5j0fS2fPlyli9fXnUzNM0ZR+qUMaRuMI56p2YI93uoNKmOiDOAw4G9IuJq4O0Ug9mTmacBRwOv\njYg7Kca9PKbZsaRObNq0qeomaAgYR+qUMaRuMI6qUWlSnZn3mMyibvuHgA/1qTmSJEnSlDijogQs\nWrSo6iZoCBhH6pQxpG4wjqpR+ZB63RAROQyvQ5IkSYMrIpreqGhPtQSsW7eu6iZoCBhH6pQxpG4w\njqphUi1JkiR1yPIPSZIkqQ2Wf0iSJEk9ZFItYf2ZusM4UqeMIXWDcVQNk2pJkiSpQ9ZUS5IkSW2w\nplqSJEnqIZNqCevP1B3GkTplDKkbjKNqmFRLkiRJHbKmWpIkSWqDNdWSJElSD5lUS1h/pu4wjtQp\nY0jdYBxVw6RakiRJ6pA11ZIkSVIbrKmWJEmSesikWsL6M3WHcaROGUPqBuOoGibVkiRJUoesqZYk\nSZLaYE21JEmS1EMm1RLWn6k7jCN1yhhSNxhH1TCpliRJkjpkTbUkSZLUBmuqJUmSpB4yqZaw/kzd\nYRypU8aQusE4qoZJtSRJktQha6olSZKkNlhTLUmSJPWQSbWE9WfqDuNInTKG1A39jKPx8fWMjp7I\nyMhyRkdPZHx8fd/OPWh2rboBkiRJmn7Gx9dz/PHnsHHjKdvWbdy4FICxsQVVNasy1lRLkiRpp42O\nnsiaNSc3WL+M1atPqqBFvdeqptqeakmSJO20rVsbp5Fbtszq6XnHx9ezcuUatm7dldmz72TJkoUD\n0TNuTbWEdYzqDuNInTKG1A39iqPZs+9suH7OnLt6ds6JkpM1a07m/POXs2bNyRx//DkDUcttUi1J\nkqSdtmTJQubPX7rDuvnzT2Dx4iN6ds6VK9fsUMMNsHHjKaxatbZn52xXpeUfEfGfwBhwY2Y+tsk+\nK4FnAbcDizLzoj42UTPEyMhI1U3QEDCO1CljSN3QrziaKLlYtWoZW7bMYs6cu1i8+MielmJUVXLS\njqprqj8JrAL+q9HGiDgKeHhmPiIingx8BDisj+2TJElSE2NjC/paz1xFyUm7Ki3/yMwLgJtb7PIc\n4PRy3+8BcyNi7360TTOLdYzqBuNInTKG1A3DHEdVlJy0q+qe6snsC1xds3wN8FDghmqaI0mSpKpU\nUXLSrkFPqgHqxwJsOCD1okWLmDdvHgBz587l4IMP3lZTNPGJzWWXWy1PGJT2uDz9lkdGRgaqPS5P\nv+WJdYPSHpddHsTlsbERxsYW1Gxf0LPzbdiwgc2bNwOwadMmWql88peImAec1ehGxYj4KLAuMz9X\nLv8EODwzb6jbz8lfJEmS1FOtJn/Zpd+N2UlnAq8AiIjDgM31CbXUDROfTqVOGEfqlDGkbjCOqlH1\nkHpnAIcDe0XE1cDbgXsBZOZpmfn1iDgqIn4B/AH42+paK0mSJDVWeflHN1j+IUmSZrpBnb57mLQq\n/5gONypKkiSphYnpu2tnG9y4sRh6zsS6Pwa9plrqC+vP1A3GkTplDGmqdpy+ex0wONN3zxQm1ZIk\nSdPcIE/fPVOYVEvsOEasNFXGkTplDGmqdpy+e2Tbo0GYvnumMKmWJEma5gZ5+u6ZwqRawjpGdYdx\npE4ZQ5qqsbEFrFgxyujoMg46aBGjo8tYsWIwpu+eKZqO/hERl7bx/N9k5tO72B5JkiRNwdjYgm3T\nd1tK1H9Nx6mOiCuAZwENx+IrnZmZj+tFw3aG41RLkiSp16Y6TvWrM/NXkxz4HztqmSRJkjQEmtZU\nZ+a3JntyZl7Q3eZI1bCOUd1gHKlTxpC6wTiqxqQ3KkbEsyPiooi4OSJuLX9+34/GSZIkSVUbH1/P\n6OiJLfdpWlO9bYeIjcDzgMsy8+7uNa97rKmWJElSL+w4BXzzmup2htS7Brh8UBNqSZIkqVd2nAK+\nuXaS6rcAZ0fE2yLijeXPGzpuoTRArD9TNxhH6pQxpG4wjrqr2RTw9drZ6yTgVmAOcO8O2iRJkiRN\nKztOAd9cOzXVl2XmY7rRqF6xplqSJEm90G5NdTs91V+PiNHMPKe7TZQkSZIG28RU76tWLeOcFtlw\nOzXVr6Ooqd7ikHoaVtafqRuMI3XKGFI3GEfdNza2gNWrT2q5z6Q91Zm5W9daJEmSJA2hpjXVEfHg\nzPx1yye3sU8/WFMtSZKkXouY2jjV420cu519JEmSpKHWKqk+qKaGuuEPsHe/Gir1kvVn6gbjSJ0y\nhtQNxlE1mtZUZ+asfjZEkiRJmq4mHad6OrCmWpIkSb3Wqqa6vXkXJUmS1Lbx8fWsXLmGrVt3Zfbs\nO1myZOG28Y41nNoZp1oaetafqRuMI3XKGBoOEzPwrVlzMuefv5w1a07m+OPPYXx8fV/ObxxVY9Kk\nOiI+3c46SZIkwcqVa8oprbfbuPEUVq1aW1GL1A/t9FQ/pnYhInYFntCb5kjVGBkZqboJGgLGkTpl\nDA2HrVsbV9du2dKfMSCMo2o0Taoj4oRy2LzH1g2jdyNwZt9aKEmSNI3Mnn1nw/Vz5tzV55aon5om\n1Zn5zszcHXhfZu5e87NnZr61j22Ues76M3WDcaROGUPDYcmShcyfv3SHdfPnn8DixUf05fzGUTUm\nHf0jM98aEfsCf1a7f2b2p9pekiRpGpkY5WPVqmVs2TKLOXPuYvHiIx39Y8hNOk51RLwHeDFwBbDt\ne4vMfHZvm9Y+x6mWJElSr7Uap7qdpPpnwGMzc2svGtcNJtWSJEnqtVZJdTujf2wE7t3dJkmDxfoz\ndYNxpE4ZQ+oG46gaTWuqI2JV+fB2YENEnAtM9FZnZi7pdeMkSZKk6aBp+UdELAISaNTFnZl5escn\njzgSOBWYBfxHZr6nbvsI8DXgl+WqL2XmyQ2OY/mHJEmSeqqjmupeiYhZwE+BZwLXAt8HXpKZP67Z\nZwR4Q2Y+Z5JjmVRLkiSppzqqqY6ISyPikvLfiZ9vRcS/R8QDO2jXocAvMnNTZt4BfA54bqMmdHAO\nqS3Wn6kbjCN1yhhSNxhH1Zh0nGpgNXAn8FmKBPcY4L7ADcCngKkOrbcvcHXN8jXAk+v2SeApEXEx\nRW/2mzLziimeT5IkSeqJdobUuygzD2m0LiIuzczHTunEES8AjszMV5XLLwOenJmLa/bZHbgrM2+P\niGcBKzLzkQ2OZfmHJEmSeqpV+Uc7PdWzIuLJmfm98mCHsr1spPHk9u25FtivZnk/it7qbTLz1prH\nZ0fEhyNiz8y8qf5gixYtYt68eQDMnTuXgw8+mJGREWD71yAuu+yyyy677LLLLrvc7vKGDRvYvHkz\nAJs2baKVdnqqnwR8EtitXHUr8HfA5cBYZn6h5QGaH3dXihsVnwFcB1zIPW9U3Bu4MTOzTOa/kJnz\nGhzLnmp1ZN26ddv+iKSpMo7UKWNI3WAc9U5HPdWZ+X3gMRGxR7l8S83mKSXU5XHujIjjgHMohtT7\nRGb+OCJeU24/DTgaeG1E3EkxXvYxUz2fJEmS1Cutxql+eWZ+OiLeSHHD4LZNFONUf6AfDWyHPdWS\nJEnqtan2VN+3/Hd3dkyqJUmSJNWobPKXbrKnWp2y/kzdYBypU8aQusE46p1OJ395VEScGxGXl8uP\ni4gTu91ISZIkabpqZ/SP9cCbgY+WY1MHcFlmHtiPBrbDnmpJkiT1Wkc91cB9J8aohuIOReCObjVO\nkiRJmu7aSap/ExEPn1iIiKOBX/euSVL/TQz4LnXCOFKnjCF1g3FUjXZmVDwO+Bjw6Ii4DrgSeGlP\nWyVJkiRNI22P/hER9wN2qZ06fFBERC5cuJQlSxYyNrag6uZIkiRpCE1pnOpy0pcJWbN+4CZ/AViz\n5mQ2blwKYGItSZKkvmpVU707sFv575vLf2vXDZyNG09h1aq1VTdD05D1Z+oG40idMobUDcZRNZr2\nVGfm8onHEfHczHxHX1rUoS1bZlXdBEmSJM0wbdVUR8RFmXlIH9ozJRGRExUqo6PLWL36pIpbJEmS\nBsX4+HpWrlzD1q27Mnv2nd6DpSmbUk31dDR//gksXnxk1c2QJEkDYnx8Pccffw4bN56ybZ33YKkX\nmtZUR8SlEz/Ao2qXI+KSPraxLaOjy1ix4kj/QDQl1p+pG4wjdcoY6r6VK9fskFDD8N+DZRxVo1VP\n9bP71oousORDkiTV27q1carjPVjqtlY3Km7qYzukSo2MjFTdBA0B40idMoa6b/bsOxuunzPnrj63\npH+Mo2q0M025JEnStLRkyULmz1+6w7riHqwjKmqRhpVJtYT1Z+oO40idMoa6b2xsAStWjDI6uozD\nD18+I+7BMo6q0dboHxFxX2C/zPxpj9sjSZLUVWNjC4Y6idZgmHSc6oh4DvBvwOzMnBcRhwDvyMzn\n9KOB7YiIbGe8bUmSJGmqWo1T3U75x3LgycDNAJl5EfCwrrVOkiRJmubaSarvyMzNdevu7kVjpKpY\nf6ZuMI7UKWNI3WAcVaOdmurLI+KlwK4R8QhgCfDt3jZLkiRJmj7aqam+H7AUWFiuOgc4KTO39Lht\nbbOmWpIkSb3WqqZ60qR6OjCpliRJUq91dKNiRHwjIubWLO8ZEed0s4FS1aw/UzcYR+qUMaRuMI6q\n0c6NinvV3qiYmTcBe/euSZIkSdL00k5N9Q+B52fmr8rlecCXM/PxPW9dmyz/kCRJUq+1Kv9oZ/SP\npcAFEbG+XF4AvLpbjZMkSZKmu0nLPzJzNfAE4PPA54DHl+ukoWH9mbrBOFKnjCF1g3FUjXZ6qgHu\nBG4E5gAHlF3f6yd5jiRJkjQjtFNT/SqKCV8eCmwADgO+k5lP733z2mNNtSRJknqtoyH1gOOBQ4Ff\nZeZfAocAt3SxfZIkSdK01k5SvSUz/xcgIuZk5k+AR/W2WVJ/WX+mbjCO1CljSN1gHFWjnZrqayLi\nAcBXgbURcTOwqaetkiRJkqaRpjXVEbF/Zl5Zt24EuD+wOjP/2PvmtceaakmSJPXaVGuq/6d88rkT\nKzJzXWae2a2EOiKOjIifRMTPI+ItTfZZWW6/OCIO6cZ5JUmSpG5qlVTPioilwKMi4g0R8caanzd0\neuKImAV8EDgSOAB4SUT8ed0+RwEPz8xHUEw485FOzys1Yv2ZusE4UqeMIXWDcVSNVkn1McBdwCxg\nd2C3mp/du3DuQ4FfZOamzLyDYmKZ59bt8xzgdIDM/B4wNyL27sK5JUmSpK5pOU512Zv8osw8o+sn\njjgaGM3MV5XLLwOenJmLa/Y5C3hXZn67XP4G8JbM/GHdsaypliRJUk+1qqluOfpHZt4VEW8Cup5U\nA+1mwfUNN3uWNFDGx9ezcuUatm7dldmz72TJkoWMjS2oulmSpD5qZ0i9tWVi/XngDxMrM/OmDs99\nLbBfzfJ+wDWT7PPQct09LFq0iHnz5gEwd+5cDj74YEZGRoDttUUuu9xsecOGDbz+9a8fmPa4PH2W\n3/WuFXzwg9/nuuv+Gyi2XXbZx/jYx2BsbEHl7XN5ei2feuqpQ///13e+czHr1v2GrVt35Q9/2Mjz\nn/9E3va24wemfcOwPLFuUNoznZc3bNjA5s2bAdi0aROttDNN+SYa9A5n5v4tnziJiNgV+CnwDOA6\n4ELgJZn545p9jgKOy8yjIuIw4NTMPKzBsSz/UEfWrVu37Y9I2hmjoyeyZs3J5dI6YKRcv4zVq0+q\nqFWarob9WjQ+vp7jjz+HjRtP2bZu/vylrFgx6rc7XTTscVSljqYpz8x5mbl//U+njcrMO4HjgHOA\nK4DPZ+aPI+I1EfGacp+vA7+MiF8ApwGv6/S8UiNefDRVW7fWfuE3su3Rli2z+t4WTX/Dfi1auXLN\nDgk1wMaNp7Bq1dqKWjSchj2OBtWk5R8RcSyNe6r/q9OTZ+bZwNl1606rWz6u0/N0k7WTkmrNnn1n\nw/Vz5tzV0/N6LdJ0tOOH0O38EKph0E5N9ZPYnlTfB3g68COg46R6umn0tdXGjUsB/M9smvOrsuHR\n72RzyZKFbNy4tLwurANGmD//BBYvPrJn5/RaNLyG/VpU1YfQmWbY42hQTZpU1/cUR8RcipsWZ5zm\nX1st8z8yaQBUkWxOHHfVqmVcf/3V7LPPuSxefGRPrwleizRd7fghtNDrD6FSv7TTU13vdqDjmurp\nyK+thpef6IdDVcnm2NiCviazXouG17Bfi2o/hG7ZMos5c+7q+YfQmWjY42hQtVNTfVbN4i4UU4p/\noWctGmB+8AxcAAASJklEQVR+bSUNtpmSbHot0nTW7w+hUr9MOvoH8P6an3cCCzLzLT1t1YBasmQh\n8+cv3WFd8bXVERW1SN1SO7anpq+qk81+xZHXouHltUjdYBxVo52a6nUAEbEXsADYAlzd22YNJr+2\nkgbbTKnX9FokSYOn6eQvETEOvCUzL4uIBwMXAd8H5gMfz8x/718zW3PyF0kTxsfXs2rV2ppk8wiT\nTUlSV7Sa/KVVUn15Zh5YPj4BeHRmviIidge+nZmP7VmLd5JJtSRJknptqjMq3lHz+JmUk7Rk5q3A\n3d1rnlQ968/UDcaROmUMqRuMo2q0qqm+JiIWA9cChwCrASLivpM8T5IkSZpRWpV/7A38K7AP8KHM\nXFOu/0vgCZn5vr61chKWf0hS7zk1uqSZrlX5R9Me58y8AXhNg/XnAed1r3mSpEHn1OiS1Fo741RL\nQ8/6M3XDMMdR89kq11bUouE0zDGk/jGOqmFSLUma1EyZrVKSpsobDiVgZGSk6iYMpZlWgzvMcVT1\nbJUzxTDHkPrHOKrGpEl1RNwH+DvgQGBOuToz85W9bJik6c0a3OEyU2arlKSpaqf849PA3sAosA54\nKHBbD9sk9Z31Z903E2twhzmOxsYWsGLFKKOjyzj88OWMji5jxQqnRu+2YY4h9Y9xVI12yj8enplH\nR8RzM/P0iPgs8K1eN0zS9GYN7vAZG1tgEi1JTbTTU/3H8t9bIuKxwFzgQb1rktR/1p9130yswTWO\n1CljSN1gHFWjnaT64xGxJ3AicCZwBfDenrZK0rS3ZMlC5s9fusO6ogb3iIpaJKne+Ph6RkdPZGRk\nOaOjJzI+vr7qJknT1qTlH5n58fLh+cD+vW2OVI1169b5yb7LJsoEVq1axpYts5gz5y4WLx7uGlzj\nSJ3qZwx5M/Hw8lpUjXZG/9gHOAXYNzOPjIgDgL/IzE/0vHWSpjVrcKXB1fxm4mX+3UpT0E75x6eA\nNcBDyuWfA//UqwZJVfATvbrBOFKn+hlD3kw8vLwWVaOd0T/2yszPR8RbATLzjohofAeSJEldNNMm\nEOqnmXgzsdRL7fRU3xYRD5xYiIjDgFt61ySp/xzTU91gHHXXRM3vmjUnc/75y1mz5mSOP/6cob6Z\nrp8x5M3Ew8trUTXa6al+I3AW8LCI+DbFcHpH97RVkqQZz5rf3pqJNxNLvRSZOflOEfcCHlUu/jQz\n7+hpq3ZSRGQ7r0OSNH2MjCzn/POX32P94YcvZ926e66XpF6LCDIzGm1rWv4REYdGxIOhqKMGngC8\nE3h/OW61JEk9Y82vpOmkVU31acBWgIhYALwbOB34PfCx3jdN6h/rz9QNxlF3zcSaX2NI3WAcVaNV\nTfUumXlT+fjFwGmZ+SXgSxFxce+bJkmayaz5lTSdNK2pjojLgEPKIfR+Crw6M88vt12emQf2sZ0t\nWVMtSZKkXmtVU92qp/oM4PyI+C1wO3BBebBHAJu73kpJkmYox+OWpr+mSXVmnhIR3wT2AdZk5t3l\npgAW96NxKnix7b1169Y5A5U6ZhwNh35fcyfG4y6GD1wHjLBxY1FL7rVeU+G1qBotx6nOzO80WPez\n3jVH9Xa82Ba82Goq/HAmTa6Ka67jcUvDoZ3JX1QhL7b9Meyf6P1w1h/DHkczQRXX3K1ba/8rHtn2\naMuWWT05n4af16JqtDNNuSq048V2Oy+22hnNE4W1FbVIGkxVXHMdj1saDpUk1RGxZ0SsjYifRcSa\niJjbZL9NEXFJRFwUERf2u52DwIttfwz7mJ5+OOuPYY+jmaCKa+6O43GvA4Z/PG71lteialTVU/1W\nYG1mPhI4t1xuJIGRzDwkMw/tW+sGyEyc/EDd54czqT1VXHPHxhawYsUoo6PLOOigTzE6uowVKxyP\nW5pumo5T3dOTRvwEODwzb4iIfYB1mfnoBvtdCTwxM383yfGGepzq8fH1rFq1tmbygyO82GqnNKqp\nnj//BP/jlhrwmiupmVbjVFeVVN+cmQ8oHwdw08Ry3X6/BG4B7qKY0fHjTY431Em11A0mCpIkdWaq\nk790etK1FGNc19vhe7XMzIholhE/NTN/HREPAtZGxE8y84JGOy5atIh58+YBMHfuXA4++OBtd79O\n1Ba57HKz5Q0bNvD6179+YNrTi+WxsRHGxhbUbF8wUO0bhuWJx4PSHpen3/Kpp57q/18ud7w8sW5Q\n2jOdlzds2MDmzcWch5s2baKVKss/RjLz+oh4MHBeo/KPuue8HbgtM9/fYJs91erIunXrtv0RSVNl\nHKlTxpC6wTjqnUEs/3gv8LvMfE9EvBWYm5lvrdvnvsCszLw1Iu4HrAHekZlrGhzPpFqSJEk9NYhJ\n9Z7AF4A/BTYBL8rMzRHxEODjmTkWEQ8Dvlw+ZVfgM5n5ribHM6mWJElST7VKqnfpd2MAMvOmzHxm\nZj4yMxdm5uZy/XWZOVY+/mVmHlz+PKZZQi11Q20dmjRVxpE6ZQypG4yjalSSVEuSJEnDpJLyj26z\n/EOSJEm9NnDlH5IkSdIwMamWsP5M3WEcqVPGkLrBOKqGSbUkSZLUIWuqJUmSpDZYUy1JkiT1kEm1\nRH/rz8bH1zM6eiIjI8sZHT2R8fH1fTu3ess6RnXKGFI3GEfV2LXqBkgzyfj4eo4//hw2bjxl27qN\nG5cCMDa2oKpmSZKkDllTLfXR6OiJrFlzcoP1y1i9+qQKWiRJktplTbU0ILZubfzl0JYts/rcEkmS\n1E0m1RL9qz+bPfvOhuvnzLmrL+dXb1nHqE4ZQ+oG46gaJtVqyJvpemPJkoXMn790h3Xz55/A4sVH\nVNQiSZLUDdZU6x4a3Uw3f/5SVqwY9Wa6LhgfX8+qVWvZsmUWc+bcxeLFR/i+SpI0DbSqqTap1j14\nM50kSdI9eaOidspMvJnO+jN1g3GkThlD6gbjqBom1boHb6aTJEnaOZZ/6B4a11SfwIoVR1r7K0mS\nZixrqrXTvJlOkiRpRybV0iTWrVvHyMhI1c3QNGccqVPGkLrBOOqdVkl14zvSpBlifHw9K1eu4YYb\nrmHvvb/BkiUL7ZGXJEk7zZ5qzViOxy1JknaGQ+pJDaxcuWaHhBpg48ZTWLVqbUUtkiRJ05VJtQZG\nv6dG33E87nXbHg3zeNzqLceGVaeMIXWDcVQNa6o1EBqVYmzcuBSgZ6UYjsctSZK6xZpqDYQqpkZ3\nPG5JkrQzHP1DA6+KqdEnEudVq5bVjMdtQi1JknaeNdUaCFWVYoyNLWD16pNYvnyE1atPMqFWR6xj\nVKeMIXWDcVQNk2oNhCVLFjJ//tId1s2ffwKLFx9RUYskSZLaZ021BoZTo0uSpEHmNOWSJElSh5z8\nRZqE9WfqBuNInTKG1A3GUTVMqiVJkqQOWf4hSZIktcHyD0mSJKmHKkmqI+KFEXF5RNwVEY9vsd+R\nEfGTiPh5RLyln23UzGL9mbrBOFKnjCF1g3FUjap6qi8Fngesb7ZDRMwCPggcCRwAvCQi/rw/zdNM\ns2HDhqqboCFgHKlTxpC6wTiqRiXTlGfmT6CoS2nhUOAXmbmp3PdzwHOBH/e6fZp5Nm/eXHUTNASM\nI3XKGFI3GEfVGOSa6n2Bq2uWrynXSZIkSQOlZz3VEbEW2KfBphMy86w2DuFwHuqbTZs2Vd0EDQHj\nSJ0yhtQNxlE1Kh1SLyLOA96YmT9qsO0wYHlmHlkuvw24OzPf02BfE3BJkiT1XLMh9Sqpqa7TrLD6\nB8AjImIecB3wYuAljXZs9uIkSZKkfqhqSL3nRcTVwGHAeEScXa5/SESMA2TmncBxwDnAFcDnM9Ob\nFCVJkjRwhmJGRUmSJKlKgzz6x6ScHEbdEBGbIuKSiLgoIi6suj0afBHxnxFxQ0RcWrNuz4hYGxE/\ni4g1ETG3yjZq8DWJo+URcU15PbooIo6sso0abBGxX0ScV06od1lELCnXez2qwLRNqp0cRl2UwEhm\nHpKZh1bdGE0Ln6S49tR6K7A2Mx8JnFsuS600iqMEPlBejw7JzNUVtEvTxx3AP2XmgRQltf9Y5kJe\njyowbZNqaiaHycw7gInJYaSp8GZXtS0zLwBurlv9HOD08vHpwF/3tVGadprEEXg9Upsy8/rM3FA+\nvo1igrx98XpUiemcVDs5jLolgW9ExA8i4lVVN0bT1t6ZeUP5+AZg7yobo2ltcURcHBGf8Gt7tasc\nLe0Q4Ht4ParEdE6qvcNS3fLUzDwEeBbFV2dPq7pBmt6yuAPca5Sm4iPA/sDBwK+B91fbHE0HEbEb\n8CXg+My8tXab16P+mc5J9bXAfjXL+1H0Vks7JTN/Xf77G+ArFKVF0s66ISL2AYiIBwM3VtweTUOZ\neWOWgP/A65EmERH3okioP52ZXy1Xez2qwHROqrdNDhMR96aYHObMitukaSYi7hsRu5eP7wcsBC5t\n/SypoTOBY8vHxwJfbbGv1FCZAE14Hl6P1EJEBPAJ4IrMPLVmk9ejCkzrcaoj4lnAqcAs4BOZ+a6K\nm6RpJiL2p+idhmKG0c8YR5pMRJwBHA7sRVGv+C/A14AvAH8KbAJelJmbq2qjBl+DOHo7MEJR+pHA\nlcBrampjpR1ExP8B1gOXsL3E423AhXg96rtpnVRLkiRJg2A6l39IkiRJA8GkWpIkSeqQSbUkSZLU\nIZNqSZIkqUMm1ZIkSVKHTKolSZKkDplUS5rxykmkLq1btzwi3hgRH4yIiyLi8oi4vXx8UUS8ICIO\njYj1EfGTiPhRRHw8Iu5Td5yRiDirbt2nIuIF/XhtOyMi/i0ifhwRF0fElyNij5ptb4uIn5evdWHN\n+lMi4qqIuLXJMV8QEXdHxOObbF9Qvnd31L8nEbE6Im6uf/8aHKPhfuXvZuL3dW1EfKXZMSSpUybV\nktRYAmTmcZl5CHAUsDEzDymXv0UxucKbM/PRmfl4YDWwe5vH7niSgIjYtdNj1FkDHJiZBwE/o5hE\ngog4gGLW2gOAI4EPlzO5QTHpTcOptMvZSo8HvtvinL+imPHtsw22vRd4eRvtbrhfZi6o+X19h2Iq\nZ0nqCZNqSWpP1C3/I/CpzPzexIrM/FJm3tjmsQIgIp5R9tReEhGfiIh7l+s3RcSe5eMnRsR55ePl\nEfHpiPgWcPo9Dlz0Nl9aHu9F5bqRiFgXEV8se6L/u1GjMnNtZt5dLn4PeGj5+LnAGZl5R2ZuAn4B\nPLl8zoWZeX2T13kS8G5gK/d8/ybO+avMvBS4u8G2bwK3NTl22/tFxP2Bp+NUzZJ6yKRakqbmQOCH\nbe77tJoyhIuAZwMZEXOAT1JMIfw4YFfgteVzWvVkPxp4Rma+tHZlWT5xEPA44JnAv0XEPuXmgyl6\njQ8AHhYRT52kza8Evl4+fghwTc22a4B9Wz25LPfYNzMnjlHl9L1/DXwjMydN0CVpqkyqJal5wjdZ\nItiw97WBCybKEMpShDPL5z4KuDIzf1HudzqwoI22npmZWxtseyrw2SzcCJwPPKl8zoWZeV1mJrAB\nmNf0RUUsBf6YmY1KMmrb0ez5uwAfAN5Uu7rFsXrtJcAZFZ5f0gxgUi1J8DvgAXXrHgj8psVzLgee\n0OF56xPTqFl3J9uv0XPq9ru9xTHrk9eJ49Um4XdR9Irf88kRiyjqx2t7wa8F9qtZfmi5rpndKXry\n10XElcBhwNci4gkRcXLZY/+jBs9rlKjvsK68OXSi1/+vJnkuEbEXxQeL8RbtlaSOmVRLmvHKsoBf\nR8RfApS1zKMUNyM280Hg2IjYdpNeRDw/Iv6k3dMCPwXmRcT8ct3LKXqXATYBTywf146K0arH9wLg\nxRGxS0Q8iKLX+8JJnrP9wBFHAm8GnpuZW2o2nQkcExH3joj9gUeUx238wjJvycwHZeb+mbk/xY2K\nz8nMH2bmiWWPff1oINvqzBusrz32hTW9/v+32X41jgbOysw/NmuvJHWDSbUkFV4BLCtrns8Flmfm\nlXX7bOsNLcsrjgHeVw4zdwVwBFA/tFzTkT7KEo6/Bb4YEZdQ9E5/tNz8DmBFRHy/XD9xjFbH+wpw\nCXBx+RreXLaz0XMaHWMVsBuwtuwJ/nB53CsoRjq5AjgbeF1ZRkJEvDcirgbuExFXR8S/NGpbMxHx\npPL5RwOn1Q5tGBEXlOd9RnnsI5oco9V+L8bSD0l9EOV1UZIkSdIU2VMtSZIkdcikWpIkSeqQSbUk\nSZLUIZNqSZIkqUMm1ZIkSVKHTKolSZKkDplUS5IkSR0yqZYkSZI69P8BKCOdHslDsCIAAAAASUVO\nRK5CYII=\n", "text": [ "" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }