{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import xarray as xr\n", "import pandas as pd\n", "from salishsea_tools import viz_tools, places, visualisations\n", "from matplotlib import pyplot as plt, dates\n", "from datetime import datetime, timedelta\n", "from calendar import month_name\n", "from scipy.io import loadmat\n", "from tqdm.notebook import tqdm\n", "from salishsea_tools import nc_tools\n", "from dask.diagnostics import ProgressBar\n", "import cmocean\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Note that all biological rates (e.g., grazing) are scaled (multiplied by 1.111) to correct for a time splitting/Roberts-Asselin filter error in hte model as reported in Olson et al. 2020" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "from IPython.display import HTML\n", "\n", "HTML('''\n", "\n", "
''')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "plt.rcParams.update({'font.size': 12, 'axes.titlesize': 'medium'})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Load files from monthly averages" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Z1 grazing on Diatoms" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#years, months, data\n", "monthly_array_Z1diatoms_depthint_slice = np.zeros([14,12,50,50])\n", "# Load monthly averages\n", "mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')\n", "slc = {'y': slice(450,500), 'x': slice(250,300)}\n", "e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]\n", "years, variables = range(2007, 2021), ['GRMICZDIAT']\n", "# Temporary list dict\n", "data = {}\n", "# Permanent aggregate dict\n", "#aggregates = {var: {} for var in variables}\n", "#monthlydat = {var: {} for var in variables}\n", "\n", "# Loop through years\n", "for year in [2007,2008,2009,2010,2011,2012,2015,2016,2017,2018,2019,2020]:\n", " # Initialize lists\n", " for var in variables: data[var] = []\n", " # Load monthly averages\n", " for month in range(1, 13):\n", " datestr = f'{year}{month:02d}'\n", " prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}'\n", " \n", " # Load grazing variables\n", " with xr.open_dataset(prefix + '_dia2_T.nc') as ds:\n", " q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data\n", " q2 = q[0,:,:]\n", " monthly_array_Z1diatoms_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension\n", " for var in ['GRMICZDIAT']:\n", " data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data)\n", " \n", " \n", "# Loop through years for wrap files\n", "for year in [2013,2014]:\n", " # Initialize lists\n", " for var in variables: data[var] = []\n", " # Load monthly averages\n", " for month in range(1, 13):\n", " datestr = f'{year}{month:02d}'\n", " prefix = f'/data/sallen/results/MEOPAR/v201905r_wrap/SalishSea_1m_{datestr}_{datestr}'\n", " \n", " # Load grazing variables\n", " with xr.open_dataset(prefix + '_dia2_T.nc') as ds:\n", " q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data\n", " q2 = q[0,:,:]\n", " monthly_array_Z1diatoms_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension\n", " for var in ['GRMICZDIAT']:\n", " data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data)\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " # Concatenate months\n", " #for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)\n", "# # Calculate 5 year mean and anomalies\n", "# for var in variables:\n", "# aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0)\n", "# for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’]\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(14, 12)\n" ] } ], "source": [ "monthly_array_Z1diatoms_depthint_slice=np.where(np.isnan(monthly_array_Z1diatoms_depthint_slice), 0, monthly_array_Z1diatoms_depthint_slice)\n", "monthly_array_Z1diatoms_depthint_slicemean = \\\n", "np.nanmean(np.nanmean(monthly_array_Z1diatoms_depthint_slice, axis = 2),axis = 2)\n", "print(np.shape(monthly_array_Z1diatoms_depthint_slicemean))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Select 4 warmest and 4 coldest years; leave NPGO \"neutral\" years out" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "#2008, 2010, 2011, 2012\n", "NPGO_C_Z1diat=np.array([[monthly_array_Z1diatoms_depthint_slicemean[1,:]],[monthly_array_Z1diatoms_depthint_slicemean[3,:]],\\\n", " [monthly_array_Z1diatoms_depthint_slicemean[4,:]],[monthly_array_Z1diatoms_depthint_slicemean[5,:]]])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "NPGO_C_Z1diat_mean=NPGO_C_Z1diat.mean(axis=0).flatten()*86400*1.111" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "NPGO_C_Z1diat_std=NPGO_C_Z1diat.std(axis=0).flatten()*86400*1.111" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "#2015, 2018, 2019, 2020\n", "NPGO_W_Z1diat=np.array([[monthly_array_Z1diatoms_depthint_slicemean[8,:]],[monthly_array_Z1diatoms_depthint_slicemean[11,:]],\\\n", " [monthly_array_Z1diatoms_depthint_slicemean[12,:]],[monthly_array_Z1diatoms_depthint_slicemean[13,:]]])\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "NPGO_W_Z1diat_mean=NPGO_W_Z1diat.mean(axis=0).flatten()*86400*1.111" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "NPGO_W_Z1diat_std=NPGO_W_Z1diat.std(axis=0).flatten()*86400*1.111" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5.853982189725535" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NPGO_C_Z1diat_mean.max()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "6.757904071950235" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NPGO_W_Z1diat_mean.max()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Load files from monthly averages" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Z1 grazing on Nanoflagellates" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "\n", "#years, months, data\n", "monthly_array_Z1flag_depthint_slice = np.zeros([14,12,50,50])\n", "# Load monthly averages\n", "mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')\n", "slc = {'y': slice(450,500), 'x': slice(250,300)}\n", "e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]\n", "years, variables = range(2007, 2021), ['GRMICZPHY']\n", "# Temporary list dict\n", "data = {}\n", "# Permanent aggregate dict\n", "#aggregates = {var: {} for var in variables}\n", "#monthlydat = {var: {} for var in variables}\n", "\n", "# Loop through years\n", "for year in [2007,2008,2009,2010,2011,2012,2015,2016,2017,2018,2019,2020]:\n", " # Initialize lists\n", " for var in variables: data[var] = []\n", " # Load monthly averages\n", " for month in range(1, 13):\n", " datestr = f'{year}{month:02d}'\n", " prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}'\n", " \n", " # Load grazing variables\n", " with xr.open_dataset(prefix + '_dia2_T.nc') as ds:\n", " q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data\n", " q2 = q[0,:,:]\n", " monthly_array_Z1flag_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension\n", " for var in ['GRMICZPHY']:\n", " data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data)\n", " \n", "# Loop through years for wrap files\n", "for year in [2013,2014]:\n", " # Initialize lists\n", " for var in variables: data[var] = []\n", " # Load monthly averages\n", " for month in range(1, 13):\n", " datestr = f'{year}{month:02d}'\n", " prefix = f'/data/sallen/results/MEOPAR/v201905r_wrap/SalishSea_1m_{datestr}_{datestr}'\n", " \n", " # Load grazing variables\n", " with xr.open_dataset(prefix + '_dia2_T.nc') as ds:\n", " q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data\n", " q2 = q[0,:,:]\n", " monthly_array_Z1flag_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension\n", " for var in ['GRMICZPHY']:\n", " data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data)\n", " \n", " \n", " \n", " \n", " # Concatenate months\n", " #for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)\n", "# # Calculate 5 year mean and anomalies\n", "# for var in variables:\n", "# aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0)\n", "# for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’]\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(14, 12)\n" ] } ], "source": [ "monthly_array_Z1flag_depthint_slice[monthly_array_Z1flag_depthint_slice == 0 ] = np.nan\n", "monthly_array_Z1flag_depthint_slicemean = \\\n", "np.nanmean(np.nanmean(monthly_array_Z1flag_depthint_slice, axis = 2),axis = 2)\n", "print(np.shape(monthly_array_Z1flag_depthint_slicemean))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Select 4 warmest and 4 coldest years; leave NPGO \"neutral\" years out" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "#2008, 2010, 2011, 2012\n", "NPGO_C_Z1flag=np.array([[monthly_array_Z1flag_depthint_slicemean[1,:]],[monthly_array_Z1flag_depthint_slicemean[3,:]],\\\n", " [monthly_array_Z1flag_depthint_slicemean[4,:]],[monthly_array_Z1flag_depthint_slicemean[5,:]]])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "NPGO_C_Z1flag_mean=NPGO_C_Z1flag.mean(axis=0).flatten()*86400*1.111" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "NPGO_C_Z1flag_std=NPGO_C_Z1flag.std(axis=0).flatten()*86400*1.111" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "#2015, 2018, 2019, 2020\n", "NPGO_W_Z1flag=np.array([[monthly_array_Z1flag_depthint_slicemean[8,:]],[monthly_array_Z1flag_depthint_slicemean[11,:]],\\\n", " [monthly_array_Z1flag_depthint_slicemean[12,:]],[monthly_array_Z1flag_depthint_slicemean[13,:]]])\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "NPGO_W_Z1flag_mean=NPGO_W_Z1flag.mean(axis=0).flatten()*86400*1.111" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "NPGO_W_Z1flag_std=NPGO_W_Z1flag.std(axis=0).flatten()*86400*1.111" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5.543413180928081" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NPGO_C_Z1flag_mean.max()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "6.664183563148394" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NPGO_W_Z1flag_mean.max()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Z1 Grazing on both diatoms and nanoflagelles for Cold Years" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "NPGO_C_Z1Both=NPGO_C_Z1diat_mean+NPGO_C_Z1flag_mean" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.10268752, 0.42718894, 1.05655672, 4.58719945, 6.87334479,\n", " 7.61734177, 8.85194247, 6.29357942, 3.35244758, 0.56951175,\n", " 0.11327659, 0.08977801])" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NPGO_C_Z1Both" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "#### Z1 Grazing on both diatoms and nanoflagelles for Warm Years" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "NPGO_W_Z1Both=NPGO_W_Z1diat_mean+NPGO_W_Z1flag_mean" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.14284651, 0.52294073, 3.93385487, 7.52276735, 6.2666193 ,\n", " 7.42655869, 7.66459905, 6.1478577 , 2.3778494 , 0.37108638,\n", " 0.14533633, 0.07999317])" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NPGO_W_Z1Both" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.3279045835973626" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NPGO_C_Z1Both.mean()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.5501924577589943" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NPGO_W_Z1Both.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load monthly average files for Z1 biomass" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "\n", "\n", "#years, months, data\n", "monthly_array_microzooplankton_depthint_slice = np.zeros([14,12,50,50])\n", "# Load monthly averages\n", "mask = xr.open_dataset('/data/eolson/results/MEOPAR/NEMO-forcing-new/grid/mesh_mask201702.nc')\n", "slc = {'y': slice(450,500), 'x': slice(250,300)}\n", "e3t, tmask = [mask[var].isel(z=slice(None, 27),**slc).values for var in ('e3t_0', 'tmask')]\n", "years, variables = range(2007, 2021), ['microzooplankton']\n", "# Temporary list dict\n", "data = {}\n", "# Permanent aggregate dict\n", "aggregates = {var: {} for var in variables}\n", "monthlydat = {var: {} for var in variables}\n", "\n", "# Loop through years\n", "for year in [2007,2008,2009,2010,2011,2012,2016,2017,2018,2019,2020]:\n", " # Initialize lists\n", " for var in variables: data[var] = []\n", " # Load monthly averages\n", " for month in range(1, 13):\n", " datestr = f'{year}{month:02d}'\n", " prefix = f'/data/sallen/results/MEOPAR/v201905r/SalishSea_1m_{datestr}_{datestr}'\n", " # Load grazing variables\n", " with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:\n", " q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data\n", " q2 = q[0,:,:]\n", " monthly_array_microzooplankton_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension\n", " for var in ['microzooplankton']:\n", " data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data)\n", " # Concatenate months\n", " for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0)\n", "\n", "# Loop through years for wrap files\n", "for year in [2013,2014,2015]:\n", " # Initialize lists\n", " for var in variables: data[var] = []\n", " # Load monthly averages\n", " for month in range(1, 13):\n", " datestr = f'{year}{month:02d}'\n", " prefix = f'/data/sallen/results/MEOPAR/v201905r_wrap/SalishSea_1m_{datestr}_{datestr}'\n", " # Load grazing variables\n", " with xr.open_dataset(prefix + '_ptrc_T.nc') as ds:\n", " q = np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data\n", " q2 = q[0,:,:]\n", " monthly_array_microzooplankton_depthint_slice[year-2007,month-1,:,:] = q2 #year2015 is index 0 along 1st dimension\n", " for var in ['microzooplankton']:\n", " data[var].append(np.ma.masked_where(tmask == 0, ds[var].isel(deptht=slice(None, 27), **slc).values * e3t).sum(axis=1).data)\n", " # Concatenate months\n", " for var in variables: aggregates[var][year] = np.concatenate(data[var]).mean(axis=0) \n", " \n", " \n", "# # Calculate 5 year mean and anomalies\n", "# for var in variables:\n", "# aggregates[var][‘mean’] = np.concatenate([aggregates[var][year][None, ...] for year in years]).mean(axis=0)\n", "# for year in years: aggregates[var][year] = aggregates[var][year] - aggregates[var][‘mean’]\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(14, 12)\n" ] } ], "source": [ "monthly_array_microzooplankton_depthint_slice[monthly_array_microzooplankton_depthint_slice == 0 ] = np.nan\n", "monthly_array_microzooplankton_depthint_slicemean = \\\n", "np.nanmean(np.nanmean(monthly_array_microzooplankton_depthint_slice, axis = 2),axis = 2)\n", "print(np.shape(monthly_array_microzooplankton_depthint_slicemean))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Select 4 warmest and 4 coldest years; leave NPGO \"neutral\" years out" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "#2008, 2010, 2011, 2012\n", "NPGO_C_micro=np.array([[monthly_array_microzooplankton_depthint_slicemean[1,:]],[monthly_array_microzooplankton_depthint_slicemean[3,:]],\\\n", " [monthly_array_microzooplankton_depthint_slicemean[4,:]],[monthly_array_microzooplankton_depthint_slicemean[5,:]]])" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "NPGO_C_micro_mean=NPGO_C_micro.mean(axis=0).flatten()*5.7*12/1000" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "NPGO_C_micro_std=NPGO_C_micro.std(axis=0).flatten()*5.7*12/1000" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "#2015, 2018, 2019, 2020\n", "NPGO_W_micro=np.array([[monthly_array_microzooplankton_depthint_slicemean[8,:]],[monthly_array_microzooplankton_depthint_slicemean[11,:]],\\\n", " [monthly_array_microzooplankton_depthint_slicemean[12,:]],[monthly_array_microzooplankton_depthint_slicemean[13,:]]])\n" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "NPGO_W_micro_mean=NPGO_W_micro.mean(axis=0).flatten()*5.7*12/1000" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "NPGO_W_micro_std=NPGO_W_micro.std(axis=0).flatten()*5.7*12/1000" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, 'Cold Years')" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAHNCAYAAADIVWmmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACd6UlEQVR4nOzdd1iTZ9sG8DPsJXuDe+OedaHgqihV67Zu62u1tnXUURQV9161amu14q5Va60DWyvOOiqKA0frQgUFZO+d7498RCNhJHlCQjh/x5Gj5ln3FaRw+ozrFonFYjGIiIiIiDRET9MFEBEREVHFxkBKRERERBrFQEpEREREGsVASkREREQaxUBKRERERBrFQEpEREREGsVASkREREQaxUBKRERERBrFQEpEREREGsVAqiUWLFgAfX193L9/X+ljhIaGQiQSYdWqVQJWRkRERKReIk4dqnnR0dGoVasWevXqhZ9//lmlY/Xp0wcXLlzAkydPYGtrK1CFREREROrDM6RaYOnSpUhNTYWfn5/Kx/Lz80NiYiJWrFghQGVERERE6sczpBqWnp4OV1dXVK1aFbdv3xbkmLVr10ZiYiIiIyNhZGQkyDGJiIiI1IVnSDXs4MGDSEpKwrBhwwqtu3jxIr744gs0btwYNjY2MDU1Rb169fDNN98gMTGxyGMOHToUsbGxOHLkiBorJyIiIhIGA6mGHT9+HADg5eVVaN2MGTOwbds2GBkZoXPnzujSpQuSk5OxYsUKdOjQAampqXKPWXCsEydOqKtsonJFJBJBJBLh3LlzGtmfiIiKx0CqYZcuXYKhoSGaNGlSaN28efPw+vVrhISE4PDhwzh+/DiePXuG8ePH4969e1i7dq3cY7Zq1Qp6enq4ePGiussnUkheXh5++eUXjBw5EnXq1IG1tTWMjIzg6OiIDh06wM/PD2FhYZouU2Xnz5+Hvr4+RCIRNm/eXOL2t27dgpGREUQiEZYsWVIGFRIRaRfeQ6pBMTExcHJyQu3atfHff/+Ver+MjAxYWlqicePGuHHjhtxt3N3dERkZiaSkJFhaWgpVMpHSrl69ilGjRsl8rxsaGqJSpUpITExEfn6+dHm/fv2wf/9+we6BFolEAICzZ8/KvRqhjv2//vprrF27FmZmZrh9+zZq1aold7vs7Gy0bNkSd+/eRevWrXH58mXo6+srXCMRUXlmoOkCKrKYmBgAgI2NTZHbREZG4tixY3j48CGSk5Olv7SNjIzw6NGjIveztbVFZGQk3rx5w0BKGnfs2DEMHDgQWVlZsLOzw/Tp09G/f3/Url0bgOTMaWhoKA4fPozNmzfj119/RXp6erl+KG/JkiU4deoU7t+/j1GjRuHChQtyg+b8+fNx9+5dmJqaYteuXQyjRFQhMZBqUFJSEgCgUqVKctevXbsWfn5+yM7OVvjYBSG0YAwiTXn06BGGDx+OrKwseHh44I8//oC7u7vMNvr6+mjZsiVatmyJGTNmYOzYsRqqVjgmJibYtWsX2rRpg8uXL2P16tWYNWuWzDZXr16VTmSxYsUK1K1bVxOlEhFpHO8h1SArKysAQHJycqF1V69exddffw1TU1MEBgYiPDwcmZmZEIvFEIvFcHFxKfbYBUG0YAwiTfH390dycjJMTExw5MiRQmH0fba2tvjtt9/kfu9GRUVhxowZaNCgASwsLGBubo4GDRpg5syZiI6OVrrGhIQEzJgxAzVr1oSJiQlcXFwwcODAIm+JKa0WLVrA398fgOSe8Lt370rXZWRkYNSoUcjLy0Pnzp3xxRdfSNfl5eUhMDAQH374IZycnGBkZAQHBwd8+OGH+Pnnn1HUnVYxMTH46aef0K9fP9SvXx9WVlYwNTVFrVq1MG7cONy7d6/IWkePHg2RSITRo0dDLBZj27Zt6NChA+zs7CASiRAYGCjdNiIiAlOnTkWDBg1gbm4OY2NjuLq6okWLFpg6dSquX7+u0teNiCogMWlMdHS0GIC4Zs2ahdbNnDlTDEC8cePGQuvS09PFIpFIXNxfn5ubmxiAOCkpSdCaiRQRFRUl1tPTEwMQf/rppyod69y5c2Jra2sxADEAsZmZmdjc3Fz63sbGRnzx4kW5+xZsc/bs2ULrnj17Jq5atap0GyMjI7GlpaX0z0ePHi12/5Lk5OSIW7ZsKQYgbtKkiTg7O1ssFovFX331lRiA2NLSUvz8+XPp9lFRUeIPPvhAOiYAsZWVlcz73r17i7OysgqNNWrUKJntLC0txQYGBtL3xsbG4kOHDsmts2DfkSNHigcMGCAGINbT0xPb2NiI9fT0xDt27BCLxWLxrVu3xDY2NtJj6uvri21sbKQ/kwCIR40apfDXiYgqNp4h1SBHR0c4Ozvj+fPnyMjIkFmXkJAAAKhcuXKh/Q4ePFjkGRJAcsb11atXqF69Ou8fJY06e/as9L7njz/+WOnjvHz5En379kViYiI8PDxw6dIlpKWlITU1FRcuXEDdunWRkJCAPn36IDIystTHzcvLw8CBA/H8+XPY2Njgl19+QVpaGpKSknDv3j188MEHGDVqlNJ1A4CBgQF27doFExMT3L59GwsWLMC5c+ewceNGAMC3336LKlWqAJA84PTRRx/h2rVraN68OU6cOIG0tDQkJiYiNTUVO3fuhKOjI37//fdCl/8BoHr16vD390doaChSU1ORlJSErKwshIWFYdiwYcjKysKoUaPw6tWrIuv99ddf8dtvv2H16tVISEhAfHw8kpKS8OGHHwKQPKyVkJCA5s2b48qVK8jJyUF8fDwyMzPx33//YfXq1WjQoIFKXzMiqoA0nYgruoEDB4oBiP/++2+Z5atWrRIDEH/00UfSMypisVh87949sbOzs/RMhDx//fWX9EwHkSb5+/tLv1cjIyOVPs6ECROkZ0Ffv35daP3Lly+lZzUnTZpUaD2KOMN54MAB6bq//vqr0H5paWnimjVrqnSGtMDatWulZxRdXFzEAMR9+vSR2ea7774TAxA3aNBAnJycLPc4ISEhYpFIJDYyMhJHR0crVEOvXr3EAMSLFi0qtO7ds6vffvttkccwNTUVAxBfvnxZobGJiIrDM6Qa1qtXLwCSM0nvGjNmDJydnXHs2DHUrVsXgwcPRrdu3dC0aVN4enqiatWqRR6zoHl3z5491VY3UWnExcVJ/2xra6vUMcRiMX755RcAwIQJE+Ds7FxoG3d3d0yYMAEA8PPPP5f62AXbtm/fHl26dCm03szMDDNnzlSm7EKmTJkCLy8v5OXl4fXr13BwcMDWrVtlttm2bRsA4PPPPy/yYccWLVqgQYMGyM7OLvRzoyQFP28uXbpU5DY2Njb47LPPilxvbW0NAHj9+rVCYxMRFYeBVMMGDRoEKysr7Nu3T2a5nZ0drl+/jk8++QTZ2dn4/fffERkZiYULF2L//v3FHnP//v2wt7dX6RIpkRDEArQ5fvbsGeLj4wEAXbt2LXK7bt26AZCE4GfPnpXq2CEhIQCAzp07F7lNcesUIRKJsH79eun7OXPmwNHRUfo+JSUFd+7cAQDMnTsXzs7ORb7+/fdfAMDz588LjXP79m18/vnnaNy4MSwtLaGnpyedaerzzz8HIHkoqSitWrUqtt2Wr68vAGDUqFH4+uuvcf78eaSnp5f+C0FEJAfbPmmYqakpxowZg/Xr1+PmzZto3ry5dJ27uzv27t0rd7/w8HC5y69cuYInT55g5syZ5bqHI+kGe3t76Z/j4+Ph6uqq8DEK+vUCgJubW5Hbvfv0fkxMDKpXr17qY5f2uKp6t3PA+10EoqKipPfbFgTwkrwfBL/77jtMnjxZehyRSAQrKysYGxsDkDzZn5ycjLS0tCKP+W5IlmflypV4/Pgxzp49i7Vr12Lt2rXQ19dH06ZN0atXL4wfP77YrycRkTw8Q6oF/Pz8YGFhgeXLl6t8rOXLl8Pa2lqwy4xEqnj34ZbQ0FCVj1cwY5JQ25Vme0WPpay8vDzpn69evSpt8VbcKyAgQLrPgwcPMGXKFOTn52PgwIH4559/kJmZiYSEBERFRSEqKko63XBxZ65LasxvbW2N4OBgXLx4ETNnzkT79u1hYGCAGzduYOHChahdu3aJV3GIiN7HQKoFHB0dMWPGDBw+fBj3799X+jihoaH4/fff4efnBzs7OwErJFKOt7c39PQkP2aOHDmi1DHePWP38uXLIrd79zK0g4ODQscu7hJ2ceuE5OTkJP3zu/1KS+vQoUPIy8tD/fr18fPPP8u99B4VFaVynQU6dOiAFStW4NKlS0hMTMTRo0fRqFEjZGRkYOzYsSr1hSWiioeBVEvMmzcPeXl58PDwUPoYzZo1g1gs5tlR0hpOTk7o378/AGDfvn0y89iXpOAsXvXq1aUPRJ05c6bI7f/66y8AkvuvS3O5HgBatmwJoPBDhe8KDg4u1bFUZWNjI/3/X5EHswoUhPUmTZpI/xHwvoKvkdBMTEzQu3dv/PrrrwCAzMzMYh+cIiJ6HwMpEanV4sWLYWFhgYyMDPTr16/EPqEJCQno37+/dLYxkUiEwYMHAwB++OEHuWf5Xr16hR9++AEAMHTo0FLXVnDcS5cuSbtTvCsjI0M6tWdZGD9+PABJ8C4plL5/n2nBPal3796Ve0k+KChI7mdURG5urvT+VHlMTU2lfy7p0j8R0bsYSIlIrerUqYPdu3fDyMgI9+7dQ9OmTbFixQo8fvxYuk1eXh5CQ0Mxb9481KhRQ3qmrcDs2bNhbW2N+Ph4dO3aFZcvX5au+/vvv9G1a1ckJibC1tYW33zzTalr69+/v/RBwv79++Pw4cPSezkfPHgAHx8fmYeq1G3ChAn44IMPAAAjRoyAv7+/zG0K6enpOHfuHL744gvUrFlTZt8ePXoAAO7du4dJkyZJA2taWhp++OEHDBgwQOVbeSIiIlC7dm0sXrwYoaGhyM3Nla67c+cOhg8fDgAwNzdHx44dVRqLiCoYDfQ+JaIK6NKlS+JatWrJTG1pZGQktrW1lU4vCkAsEonEQ4cOlZkQQiyWTB367hSa5ubmMlOHWltbiy9cuCB3bBTT2P7JkyfiypUry0yvWTCOEFOHvuvZs2fSYxVMxfm+N2/eiDt37lxoClBra2uZ6TkNDAwK7TtkyBCZ/aytrcX6+vpiAOIWLVqIN27cKAYgrlq1aqF9CxrjFzft57v14/+b/Nva2oqNjIxk/k4PHjyo5FeIiCoqniElojLRvn17PHz4EPv378ewYcNQq1YtmJiYICUlBba2tujQoQPmzJmDBw8eYN++fTA0NJTZv1OnTnj48CG+/vpr1K9fH/n5+RCLxahfvz6mT5+OBw8ewNPTU+G6atSogVu3bmHatGmoXr06xGIxTExMMGDAAFy+fBm9e/cW6ktQKvb29vjrr79w9OhRDBgwAJUrV0ZWVhYyMjLg5uYGHx8ffPfdd3Jbv+3duxfr169H48aNYWxsjLy8PDRq1AjLli3D33//DQsLC5Vqc3Nzw++//46pU6eiTZs2cHFxQWpqKgwMDODh4YFJkyYhLCwMAwYMUGkcIqp4RGKxAJ2riYiIiIiUxDOkRERERKRR5SqQpqSkYObMmejevTscHBwgEolkGkMDkocj1q5dix49esDd3R1mZmaoX78+vvnmGyQmJmqkbiIiIiJ1OHfunHR64PdfV69e1XR5pVauAmlcXBy2bt2KrKws9O3bV+42GRkZCAgIQNWqVbF+/XqcPHkS//vf/7B161a0b98eGRkZZVs0ERERkZotXboUV65ckXk1bNhQ02WVWrmay75q1apISEiASCRCbGwstm3bVmgbU1NTPHv2TKa9iZeXF6pUqYKBAwfi8OHD0tYkRERERLqgdu3aaNOmjabLUFq5CqSlmVNaX19fbq+91q1bAyh+6kEiIiIiKnvlKpCqomD6vwYNGhS5TVZWFrKysqTvc3Nz8eDBA1SuXLnIqfiIiIiIhJKfn48XL17Aw8MDBgZvY5qxsTGMjY2L3G/SpEkYMmQIzMzM0LZtW8ydOxcdOnQoi5IFUSECaWRkJL755hu0bNkSvr6+RW63bNkyLFiwoAwrIyIiIirZ/PnzCz3IDUimDZ48eTK8vLxgZ2eHx48fY9WqVfDy8sKJEyfw4Ycfln2xSii3fUhjY2Ph4OBQ5F9Qgfj4eHh7eyMqKgpXrlxBjRo1itz2/TOkL1++RMOGDfHPP//AxcVFyPKJiIiICnn9+jVat26NsLAwVK5cWbq8pDOk70pMTESjRo1ga2uL27dvq6tUQen0GdKEhAR069YNkZGRCA4OLjaMAoX/sq2srAAALi4ucHd3V2utRERERAWsrKxgaWmp1L7W1tbw9fXF999/j4yMDJiamgpcnfB0NpAmJCSga9euePbsGc6cOYPGjRtruiQiIiKiMlFwAbw0D4RrA50MpAVh9OnTpzh9+jSaNWum6ZKIiIiIykRCQgKOHz+Opk2bwsTERNPllEq5C6RBQUFIS0tDSkoKAOD+/fs4dOgQAKBnz54QiUT48MMPERoaivXr1yM3N1dmpgIHBwfUrFlTI7UTERERCemTTz5BlSpV0LJlS9jb2+PRo0dYs2YNoqOjERgYqOnySq3cPdRUrVo1PH/+XO66Z8+eAQCqV69e5P6jRo0q9V9QREQEKleujJcvX/IeUiIiIlI7RbPH8uXLceDAATx79gypqamwtbVFhw4d4Ofnh1atWpVBxcIod4G0LDGQEhERUVmqqNmD3d6JiIiISKMYSImIiIhIoxhIiYiIiEijGEiJiIiISKMYSImIiIhIoxhIiYiIiEijGEiJiIiISKPK3UxN5cmbN2+QnJys6TJgaWkJBwcHTZdBREREJBcDqZq8efMGY8aMkU5xCgBpaWlIS0uDubk5zM3NFT6mWCxGYmIicnNzYWNjAwOD0v31VapUCTt27FAqlAYGBmLMmDHS98bGxrC2tkb9+vXRvXt3fPrpp3B0dJSuDwgIwIIFC6DMfAsnT57EP//8g4CAAIX3JSIiUoVIJCpxm/nz5yMgIAC7du3CyZMnERoaikePHqFKlSoIDw9Xf5E6jIFUTZKTk5GSkoKOHTvCzs4OoaGhCAkJQevWrdGsWTOFj5eTk4OgoCDo6+vD19dXJgQWJy4uDhcuXEBycrJKZ0l37NiBevXqIScnBzExMbh06RJWrFiB1atX48CBA+jatSsAYNy4cejRo4dSY5w8eRKbNm1iICUiojJ35coVuctzc3MxcuRIREZGomfPngCA3bt3IyoqCq1bt0Z+fj5ycnLKslSdxECqZnZ2dnj69Cnu3r2LLl26oG3btgofIzs7G4cOHUJGRgZGjBgBFxcXNVRavIYNG6Jly5bS9/3798fUqVPRoUMH9OvXD48ePYKTkxPc3d0r1FRnREQEvHmj/L4WFoCpqfx1sbGAIhfcVLk7rU2bNnKXf/XVV3j27Bl++OEHtG7dGgDwxx9/QE9P8hiOr68vwsLClB+YAPChJrULDQ3FpUuX0KFDB5XCaGxsLAYOHKhUGM3NzVV4n9KoUqUK1qxZg5SUFPzwww8AJJfs37/sceDAAXTv3h0uLi4wNTVF/fr18c033yAtLU26zejRo7Fp0yYAkssmBa+CSyCZmZnw8/ND9erVYWRkBDc3N0yaNAmJiYkyY1WrVg2+vr44fvw4mjVrJh3v+PHjACS3INSvXx/m5uZo3bo1QkJCZPZ/+vQphgwZAldXVxgbG8PJyQldunTBrVu3BPzKERHpFkdH5V8//VT0cevXV+xYQtu9ezc2btyITz/9FOPHj5cuLwijJByeIVWjtLQ0hISEqHxmVJUwGhMTg4SEBIX3K62ePXtCX18fFy5cKHKbR48eoWfPnpgyZQrMzc3x8OFDrFixAv/88w+Cg4MBAHPnzkVaWhoOHTokc9nExcUFYrEYffv2xZkzZ+Dn5wdPT0/cuXMH8+fPx5UrV3DlyhUYGxtL97l9+zb8/PwwZ84cWFlZYcGCBejXrx/8/Pxw5swZLF26FCKRCLNmzYKvry+ePXsG0///53nPnj2Rl5eHlStXokqVKoiNjcXly5cLBV8iItJtoaGh+Oyzz9CqVSvpCRNSHwZSNUpLS0Pr1q01FkZfv36NoKCgUj/8pAxzc3PY29vj1atXRW7j7+8v/bNYLEb79u1Rv359dOrUCXfu3EHjxo1Rs2ZNODk5ASh82eSPP/7AH3/8gZUrV2LGjBkAgG7duqFy5coYPHgwdu3ahf/973/S7ePi4nD16lW4ubkBAFxdXdG0aVP8+OOPePz4MczMzABIzsT27dsXf/31Fz766CPExcXh33//xfr16zF8+HDp8fr166fiV4mIiMqT2NhYfPzxx7CwsMDhw4dlTnqQevCcsxqZm5sr9QCTUGH04MGDsLGxgbW1tcL7K6KkJ+qfPn2KTz75BM7OztDX14ehoSE6deoEAHjw4EGJxy84izp69GiZ5QMHDoS5uTnOnDkjs7xp06bSMAoA9evXBwB4eXlJw+i7y58/fw4AsLW1Rc2aNbFq1SqsXbsWoaGhyM/PL7E+IiLSHXl5eRgyZAgiIiJw4MABVK5cWdMlVQg8Q6pGyrR2EjKM2tvbo2PHjtL7J9UhLS0NcXFxaNSokdz1qamp8PT0hImJCRYvXow6derAzMwML1++RL9+/ZCRkVHiGHFxcTAwMCjUJUAkEsHZ2RlxcXEyy21tbWXeGxkZFbs8MzNTerwzZ85g4cKFWLlyJb7++mvY2tpi2LBhWLJkCSpVqlRirUREFVFMjPL7WlgUve7BA8UeahLCzJkzcebMGaxevRre3t5lO3gFxkCqRYQOowMGDFDr/aMAcOLECeTl5cHLy0vu+uDgYLx69Qrnzp2TnhUFoNA9mXZ2dsjNzcWbN29kQqlYLEZUVBRatWqlbPmFVK1aFdu3bwcA/Pfff/jll18QEBCA7OxsfP/994KNQ0SkS9Q194q9vXqOW5T9+/dj7dq1GDx4ML7++uuyHbyC4yV7LaGOMFpwBlBdXrx4genTp8PKygqfffaZ3G0Knrh///6bgqfy31WwzftnTbt06QIA2LNnj8zyw4cPIy0tTbpeaHXq1IG/vz8aNWqEmzdvqmUMIiLSDnfu3MG4cePQsGFD6YkJKjs8Q6pm719Olqeg6X1CQgJ8fHygp6eH6OhohcaJiYlBUFAQbGxs0LFjR+mZ0dKMXxphYWHIzc1Fbm4uYmJicPHiRezYsQP6+vo4cuRIkU3327VrBxsbG0yYMAHz58+HoaEh9u7di9u3bxfatuCy/4oVK+Dj4wN9fX00btwY3bp1w4cffohZs2YhOTkZ7du3lz5l36xZM4wYMUKQz3jnzh188cUXGDhwIGrXrg0jIyMEBwfjzp07+OabbwQZg4iItE9CQgL69u2LrKwszJo1C3fv3pW7nYODA2rWrIn79+/j/v37AICoqCikp6fj0KFDAAAPDw94eHiUWe26goFUTSwtLVGpUqVi2yEBhacD/fvvvxUeKzc3FwkJCTAwMEBubm6he0YrVaoES0tLhY/7roLpQ42MjKRTh86aNQvjxo0rdgYoOzs7nDhxAl9//TWGDx8Oc3Nz9OnTBwcOHEDz5s1ltv3kk0/w999/Y/PmzVi4cCHEYjGePXuGatWq4bfffkNAQAB27NiBJUuWwN7eHiNGjMDSpUsFe/rR2dkZNWvWxObNm/Hy5UuIRCLUqFEDa9aswZdffinIGEREpH1u376NZ8+eAUCxJzlGjRqFwMBA/PLLL1iwYIHMuoEDBwJ4O70oKUYkVmbS8QoiIiIClStXxsuXL5WafejNmzdITk5WQ2WKsbS0VGnaUCIiIiobqmaP8opnSNXIwcGBQZCIiIioBHyoiYiIiIg0ioGUiIiIiDSKgZSIiIiINIqBlIiIiIg0ioGUiIiIiDSKgZSIiIiINIqBlIiIiIg0ioGUiIiIiDSKjfHVKCkpCenp6ZouA2ZmZrCystJ0GURERERyMZCqSVJSElatWoXU1FRNlwILCwvMmDFDqVAaGBiIMWPGwNjYGP/++y+qVq0qs97LywuxsbEICwsTqlylhYeHY9KkSbhy5QoSEhIwefJkTJkyBdWrV8eOHTswevRoTZco/Xo+e/YM1apVAwCMHj0a586dQ3h4uMLH27dvH2JiYjBlyhRB6yQiIipLDKRqkp6ejtTUVDRq1AjW1tYaqyMxMRF3795Fenq6SmdJs7Ky4O/vj927dwtYnbCmTp2Ka9eu4aeffoKzszNcXFwgFos1XZZa7du3D2FhYQykRERUrjGQqpm1tTXs7Ow0XYbKevTogX379mH69Olo0qSJpsuRKywsDK1bt0bfvn2ly5Q560hERERliw81UanMnDkTdnZ2mDVrVrHbbdq0CR07doSjoyPMzc3RqFEjrFy5Ejk5OTLbeXl5oWHDhrh+/To8PT1hZmaGGjVqYPny5cjPz5fZ9sWLFxg+fDgcHR1hbGyM+vXrY82aNdLtzp07B5FIhMePHyMoKAgikQgikajIMPr48WOMGTMGtWvXhpmZGdzc3PDRRx/h7t27hba9d+8eunfvDjMzMzg4OGDSpEk4ceIERCIRzp07J7PtX3/9hS5dusDS0hJmZmZo3749zpw5U8JXVvmvo5eXF06cOIHnz59LP7NIJJKuz87OxuLFi1GvXj0YGxvDwcEBY8aMwZs3b2TGCg4OhpeXF+zs7GBqaooqVaqgf//+WnH/MxERVQw8Q0qlUqlSJfj7+2Py5MkIDg5G586d5W735MkTfPLJJ6hevTqMjIxw+/ZtLFmyBA8fPsRPP/0ks21UVBSGDRuGr7/+GvPnz8eRI0fg5+cHV1dXjBw5EgDw5s0btGvXDtnZ2Vi0aBGqVauG48ePY/r06Xjy5Ak2b96M5s2b48qVK/j4449Rs2ZNrF69GgDg4uKC169fF6rx1atXsLOzw/Lly+Hg4ID4+Hjs3LkTH3zwAUJDQ1G3bl0AwOvXr9GpUyeYm5tjy5YtcHR0xP79+/HFF18UOuaePXswcuRI9OnTBzt37oShoSF++OEHfPjhh/jjjz/QpUsXhb7epfk6bt68GePHj8eTJ09w5MgRmf3z8/PRp08fXLx4ETNnzkS7du3w/PlzzJ8/H15eXggJCYGpqSnCw8PRq1cveHp64qeffoK1tTUiIyNx6tQpZGdnw8zMTKG6iYiIlMFASqU2YcIEbNiwAbNmzcI///wjczauwNq1a6V/zs/Ph6enJ+zs7DBmzBisWbMGNjY20vVxcXE4efIkWrduDQDo2rUrzp07h3379kkD6dq1axEZGYlr165Jt/vwww+Rl5eH77//HlOmTEGdOnXQpk0bGBsbw9raGm3atCn2c3Ts2BEdO3aUvs/Ly0OvXr3QoEED/PDDD9LPsG7dOsTHx+PChQvw8PAAAPj4+KBHjx4yZ1/T09MxefJk+Pr6ygTDnj17onnz5pg9ezauXbtWqq+xIl9HDw8PWFtbw9jYuNBn/uWXX3Dq1CkcPnwY/fr1ky5v0qQJWrVqhcDAQEycOBE3btxAZmYmVq1aJXMrxieffKJQvURERKrgJXsqNSMjIyxevBghISH45Zdf5G4TGhqK3r17w87ODvr6+jA0NMTIkSORl5eH//77T2ZbZ2dnacgs0LhxYzx//lz6Pjg4GB4eHoW2Gz16NMRiMYKDgxX+HLm5uVi6dCk8PDxgZGQEAwMDGBkZ4dGjR3jw4IF0u/Pnz6Nhw4bSMFpg6NChMu8vX76M+Ph4jBo1Crm5udJXfn4+evTogevXryMtLU2hGhX5Ospz/PhxWFtb46OPPpKpqWnTpnB2dpbebtC0aVMYGRlh/Pjx2LlzJ54+fapQnUREREJgICWFDBkyBM2bN8ecOXMK3Rf64sULeHp6IjIyEhs2bMDFixdx/fp1bNq0CQCQkZEhs728h72MjY1ltouLi4OLi0uh7VxdXaXrFTVt2jTMnTsXffv2xbFjx3Dt2jVcv34dTZo0KTS2k5NTof3fXxYdHQ0AGDBgAAwNDWVeK1asgFgsRnx8fKnrU/TrKE90dDQSExNhZGRUqKaoqCjExsYCAGrWrIm//voLjo6OmDRpEmrWrImaNWtiw4YNpa6XiIhIVbxkTwoRiURYsWIFunXrhq1bt8qs++2335CWloZff/1Vpl/prVu3lB7Pzs6uyPtAAcDe3l7hYxbc77l06VKZ5bGxsTItuuzs7KRh811RUVEy7wtq2LhxY5G3C8gLtkUR4utob28POzs7nDp1Su76SpUqSf/s6ekJT09P5OXlISQkBBs3bsSUKVPg5OSEIUOGlHpMIiIiZfEMKSmsa9eu6NatGxYuXCjT+L/gnlJjY2PpMrFYjB9//FHpsbp06YL79+/j5s2bMst37doFkUgEb29vhY8pEolkagSAEydOIDIyUmZZp06dEBYWhvv378ss//nnn2Xet2/fHtbW1rh//z5atmwp92VkZKRQfUDpvo7vn1Eu4Ovri7i4OOTl5cmtp+DBrXfp6+vjgw8+kJ6Jff9rTkREpC48Q0pKWbFiBVq0aIGYmBg0aNAAANCtWzcYGRlh6NChmDlzJjIzM7FlyxYkJCQoPc7UqVOxa9cu9OrVCwsXLkTVqlVx4sQJbN68GRMnTkSdOnUUPqavry8CAwNRr149NG7cGDdu3MCqVavg7u4us92UKVPw008/wcfHBwsXLoSTkxP27duHhw8fAgD09CT/nrOwsMDGjRsxatQoxMfHY8CAAXB0dMSbN29w+/ZtvHnzBlu2bCl1fYp8HRs1aoRff/0VW7ZsQYsWLaCnp4eWLVtiyJAh2Lt3L3r27InJkyejdevWMDQ0REREBM6ePYs+ffrg448/xvfff4/g4GD06tULVapUQWZmpvQp/q5duyr8tSUiIlIGA6maJSYm6uT4zZo1w9ChQ7Fv3z7psnr16uHw4cPw9/dHv379YGdnh08++QTTpk2Dj4+PUuM4ODjg8uXL8PPzg5+fH5KTk1GjRg2sXLkS06ZNU+qYGzZsgKGhIZYtW4bU1FQ0b94cv/76K/z9/WW2c3V1xfnz5zFlyhRMmDABZmZm+Pjjj7Fw4UKMGjVK5vL+8OHDUaVKFaxcuRKfffYZUlJS4OjoiKZNmyo8ZakiX8fJkyfj3r17mD17NpKSkiAWiyEWi6Gvr4/ff/8dGzZswO7du7Fs2TIYGBjA3d0dnTp1QqNGjQBIHmr6888/MX/+fERFRcHCwgINGzbE77//ju7duyv19SUiIlKUSKzrcyuqICIiApUrV8bLly8LnT0ria7MZU+FjR8/Hvv370dcXJxCl+KJiIhKokr2KM94hlRNrKysMGPGDK2Y7cbMzIxhVEkLFy6Eq6sratSogdTUVBw/fhzbtm2Dv78/wygREZFAGEjVyMrKikGwnDM0NMSqVasQERGB3Nxc1K5dG2vXrsXkyZM1XRoREZHO4CX7YlTU0+ZERESkGRU1e7DtExERERFpFAMpEREREWkUAykRERERaRQDKRERERFpVLkKpCkpKZg5cya6d+8OBwcHiEQiBAQEyN325s2b6Nq1KywsLGBtbY1+/frh6dOnZVswEREREZWoXAXSuLg4bN26FVlZWejbt2+R2z18+BBeXl7Izs7GL7/8gp9++gn//fcfPD098ebNm7IrmIiIiIhKVK76kFatWhUJCQkQiUSIjY3Ftm3b5G43b948GBsb4/jx47C0tAQAtGjRArVr18bq1auxYsWKsiybiIiIiIpRrs6QikQiiESiYrfJzc3F8ePH0b9/f2kYBSRh1tvbG0eOHFF3mURERESkgHIVSEvjyZMnyMjIQOPGjQuta9y4MR4/fozMzEy5+2ZlZSE5OVn6SklJUXe5RERERBWezgXSuLg4AICtrW2hdba2thCLxUhISJC777Jly6TTfVpZWcHDw0OttRIRERGRDgbSAsVd2i9qnZ+fH5KSkqSv+/fvq6s8IiIiIvp/5eqhptKws7MD8PZM6bvi4+MhEolgbW0td19jY2MYGxtL3ycnJ6ulRiIiIiJ6S5BAeubMGQQHB+Py5cuIiIhAbGwszMzM4ODggEaNGqFTp07w9fWFs7OzEMMVq2bNmjA1NcXdu3cLrbt79y5q1aoFExMTtddBRERERKWjdCBNTU3Ft99+ix9//BEvXryAWCwGAJiYmMDW1hYZGRkICwvDnTt3sHfvXhgYGKB3796YOnUq2rdvL9gHeJ+BgQE++ugj/Prrr1i5ciUqVaoEAHjx4gXOnj2LqVOnqm1sIiIiIlKcUoH0+++/R0BAAGJiYtCkSROMHz8ebdu2RcuWLWFhYSHdTiwW49GjR7h27Rr+/PNPHD16FEeOHEGfPn2wZs0aVK9eXeGxg4KCkJaWJn0C/v79+zh06BAAoGfPnjAzM8OCBQvQqlUr+Pr64ptvvkFmZibmzZsHe3t7fP3118p8ZCIiIiJSE5G44NSmAgwNDTFs2DDMmDEDDRo0KPV+GRkZ2L9/P5YtW4YRI0Zg3rx5ig6NatWq4fnz53LXPXv2DNWqVQMA3LhxA7NmzcKVK1dgYGCAzp07Y/Xq1ahZs2apx4qIiEDlypXx8uVLuLu7K1wrERERkSIqavZQKpA+efJEoWD3vry8PERERKBq1apKH6MsVNRvCiIiItKMipo9lGr7pEoYBQB9fX2tD6NERERE5dG2bdsgEolkbqPUdjrbh5SIiIiooomMjMT06dPh6uqq6VIUwkBKREREpCMmTJiAjh07olu3bpouRSGCBtKEhATs2rVLyEMSERERUSns2bMH58+fx+bNmzVdisIEDaQvXrzAmDFjhDwkERERUYWTkpKC5ORk6SsrK6vY7WNiYjBlyhQsX768XD4MpVAf0hcvXhS7/tWrVyoVQ0RERESAh4eHzPv58+cjICCgyO0///xz1K1bFxMnTlRzZeqhUCCtVq0aRCJRkevFYnGx64mIiIioZPfv34ebm5v0vbGxcZHbHj58GMeOHUNoaGi5zWEKBVIbGxssXboUXl5ectc/ePAA/fv3F6IuIiIiogqrUqVKsLS0LHG71NRUTJo0CV9++SVcXV2RmJgIAMjOzgYAJCYmwtDQEObm5uosV2UKBdIWLVrgzZs3qFu3rtz1mZmZUKLPPhEREREpITY2FtHR0VizZg3WrFlTaL2NjQ369OmD3377reyLU4BCgXTixIlIS0srcn2VKlWwY8cOlYsiIiIiopI5Ozvj7NmzhZYvX74c58+fR1BQEOzt7TVQmWKUmjq0oqio03cRERGRZgiVPUaPHo1Dhw4hNTVVwOrUh43xiYiIiEijVA6k+vr6JbaDIiIiIqKyExgYWG7OjgICBFJe8SciIiIiVfCSPRERERFpFAMpEREREWkUAykRERERaRQDKRERERFpFAMpEREREWkUAykRERERaZTKgXTOnDmwtrYWoBQiIiIiqogUmstenkWLFglRBxERERFVULxkT0REREQapdQZ0rFjxyo1mEgkwvbt25Xal4iIiIh0k1KBNDAwUO5ykUgkdyrRguUMpERERET0PqUC6bNnz2Te5+fnY/Lkybh69SomT54MT09PODk5ITo6GhcuXMC3336Ltm3bYt26dYIUTURERES6Q6lAWrVqVZn3y5cvx7Vr13D79m24uLhIl9etWxcdO3bEmDFj0KxZMxw6dAgzZ85UrWIiIiIi0imCPNS0fft2DBo0SCaMvsvNzQ2DBg3Cjz/+KMRwRERERKRDVG77BAAREREwMTEpdhsTExNEREQIMRwRUbmUlJSE9PR0jdZgZmYGKysrjdZARPQ+QQKpu7s7jhw5gkWLFskNpunp6Thy5Ajc3d2FGI6IqNxJSkrCqlWrkJqaqtE6LCwsMGPGDIZSItIqggTScePGwc/PD+3bt8e8efPQoUMH2NnZIS4uDhcvXsTChQsRHh6OZcuWCTEcEVG5k56ejtTUVDRq1Ehjs9slJibi7t27SE9PZyAlIq0iSCCdMWMG/vvvP+zYsQP9+vUDAOjp6SE/Px8AIBaLMWbMGMyYMUOI4YiIyi1ra2vY2dlpugwiIq0iSCDV09PD9u3bMXLkSOzcuRN37txBUlISrKys0KRJE4wcORKdOnUSYigiIiIi0jGCBNICnTp1YvAkIiIiKufOnDmD4OBgXL58GREREYiNjYWZmRkcHBzQqFEjdOrUCb6+vnB2dhZkPEEDKRERERGVT6mpqfj222/x448/4sWLF9LZN01MTGBra4uMjAyEhYXhzp072Lt3LwwMDNC7d29MnToV7du3V2lsQfqQEhEREVH59f3336NWrVrw9/eHtbU1Fi9ejODgYCQnJyM9PR0RERGIi4tDTk4OHj58iJ07d2Lw4MH4888/0bFjR/Tr16/QTJ6KYCAlIiIiquC+/PJL9OjRA3fv3kVoaCj8/Pzg5eUFCwsLme1EIhHq1KmDESNGYPfu3YiOjsaPP/6Iu3fvYvfu3UqPz0v2RERERBXcw4cPUbNmTYX3MzU1xdixYzFq1CiVJkDiGVIiIiKiCk6ZMPoufX19VK1aVen9GUiJiIiISKMYSImIiIgqsPz8fISFheHVq1eF1uXk5ODChQtqr4GBlIiIiKiCev78ORo1aoTGjRujcuXK6N27N+Li4qTr4+Pj4e3trfY6FA6k2pCiiYiIiEh1M2fOhLu7O168eIHbt28jKysL7du3l8l5Bf1I1UmhQKotKZqIiIiIVHf+/HmsXLkS7u7uaNiwIU6dOgVPT094enrixYsXACStntRNoUCqLSmaiIiIiFSXnp4OY2Nj6XuRSIQff/wR3bt3R8eOHfHkyZMyqUOhQKotKZqIiIiIVFe3bl2EhIQUWr5lyxb07NkTvr6+ZVKHQoFUW1I0EREREamuX79+2Ldvn9x1mzdvxuDBg7XvHlJtSdFEREREpDo/Pz+cPHmyyPVbtmxBfn6+2utQKJBqS4omIiIiIt2hUCDVlhRNRERERLqDjfGJiIiISEpfX1/6sHpZUTmQaqLo0ggNDUXfvn3h6uoKMzMz1KtXDwsXLkR6erqmSyMiIiLSWpq4/dJA1QNo4z2j9+/fR7t27VC3bl2sX78e9vb2uHDhAhYuXIgbN27g6NGjmi6RiIiIiP6fyoFUG+3btw+ZmZk4fPgwatasCQDo3LkzXr9+ja1btyIhIQE2NjYarpKIiIiIAB29h9TQ0BAAYGVlJbPc2toaenp6MDIy0kRZRERERCSHTgbSUaNGwdraGhMnTsTTp0+RkpKC48eP44cffsCkSZNgbm6u6RKJiIiI6P/p5CX7atWq4cqVK/j444+ll+wB4KuvvsL69euL3C8rKwtZWVnS9ykpKeosk4iIiIigo4E0PDwcH330EZycnHDo0CE4ODjg2rVrWLx4MVJTU7F9+3a5+y1btgwLFiwo42qJiIiIKjadDKTffPMNkpOTcevWLenl+Y4dO8Le3h5jx47FyJEj0alTp0L7+fn5Ydq0adL3kZGR8PDwKLO6iYiIiDRtzpw5sLa2LtMxVb6HVBNFl+TWrVvw8PAodK9oq1atAABhYWFy9zM2NoalpaX0ValSJbXXSkRERKRNFi1aBEtLyzIdU+UzpIsWLRKiDkG5uroiLCwMqampsLCwkC6/cuUKAMDd3V1TpRERERHRe3Tykv2UKVPQt29fdOvWDVOnToW9vT2uXr2KZcuWwcPDAz4+PpoukYiIiEjr5efnIyIiApGRkcjJyZG7TceOHVUeR9BAWlZFl6R37944c+YMli9fjsmTJyMpKQmVK1fGZ599Bj8/P/YhJSIiIiqGWCzG8uXLsW7dOsTFxRW7bV5ensrjCRJIy7ro0vD29oa3t3eZjEVERESkS/z8/LBy5Uo4OjpizJgxcHFxgYGB+i6sC3Lksi6aiIiIiNQnMDAQdevWxfXr12Wex1EXQVJjWRdNREREROqTmpqK4cOHl1muE2Tq0NTUVPTq1YthlIiIiEgHNG3aFK9evSqz8QQJpGVdNBERERGpj7+/P44ePYqbN2+WyXiCXLL39/dH//79cfPmTTRv3lyIQxIRlVpSUhLS09M1WoOZmRmsrKw0WgMRkVB69OiBnTt3wsfHB71790aTJk2KbJY/cuRIlccTJJCWddFERAWSkpKwatUqpKamarQOCwsLzJgxg6GUiHRCVlYWjh49itjYWGzfvh0AIBKJZLYRi8UQiUTaE0jLumgiogLp6elITU1Fo0aNNDaNcWJiIu7evYv09HQGUiLSCdOmTcPevXvRuHFjDBgwoHy0fSrroomI3mdtbQ07OztNl0FEpBMOHjyIFi1a4MqVK2WS6QQZoayLJiIiIiL1yczMhLe3d5nlOkGesi/roomIiIhIfVq0aIHHjx+X2XiCBNKyLpqIiIiI1Gfp0qU4deoUjh8/XibjCXJKc+nSpejSpQuOHz8OX19fIQ5JRERERBpy+vRpeHl5oU+fPvD29kbTpk3ldlASiUSYO3euyuMJEkjLumgiIiIiUp+AgADpn4ODgxEcHCx3O60KpGVdNBEREREBt27dwpw5c3D37l28efMGpqamqFu3LiZNmoThw4crfdyzZ88KWGXJBAmkZV00EREREUn6IFeuXBlDhw6Fm5sb0tLSsHfvXowYMQLh4eHw9/dX6ridOnUSuNLiCRJIy7poIiIiIgK8vLzg5eUls8zX1xfPnj3D1q1blQ6kZU2Qp+yJiIiISHvY29uXq3ac5adSIiIiogoiJSUFycnJ0vfGxsYwNjYucvv8/Hzk5+cjISEBBw8exB9//IHvvvuuLEoVBM+QEhEREWkZDw8PWFlZSV/Lli0rdvvPP/8choaGcHR0xNSpU/Htt9/is88+K6NqVcczpERERERa5v79+3Bzc5O+L+7sKADMnj0b48aNQ0xMDI4dO4YvvvgCaWlpmD59urpLFQQDKREREZGWqVSpktye7kWpUqUKqlSpAgDo2bMnAMDPzw+jRo2Cg4ODWmoUEi/ZExEREemY1q1bIzc3F0+fPlVovyVLlmD27NnIyckpcpvs7GzMnj0by5cvV7VMKQZSIiIiIh1z9uxZ6OnpoUaNGqXe56+//sK8efNgZ2cHQ0PDIrczMjKCvb095syZU+RkSIriJXsiIiKicmr8+PGwtLRE69at4eTkhNjYWBw8eBAHDhzAjBkzFLpcv2vXLtjY2OCLL74ocdtJkyZh2bJl2LFjBzp37qzKRwCgQiD9/PPPFd5HJBJh06ZNyg5JRERERO9o27YtduzYgZ07dyIxMREWFhZo0qQJdu/erfDUoZcvX0bXrl1LfIAKkDxk1bVrV1y+fFnZ0mUoHUi///77Um8rEomkf2YgJSIiIhLGmDFjMGbMGEGO9erVK4Uu8VevXh1Hjx4VZGylA2lp569/8eIFFi5ciCdPnsgEUyIiIiLSHnp6esU+zPS+nJwc6OkJ8ziS0oG0pPnrExISsHTpUmzatAmZmZlo27YtVqxYoexwRERERKRGrq6uCAsLK/X2YWFhMr1SVSH4Q02ZmZlYv349Vq5cicTERNSrVw9Lly5F3759hR6KiNQsKSkJ6enpmi4DZmZmsLKy0nQZREQ6zdPTE3v27EF4eDiqVatW7Lbh4eEIDg7GyJEjBRlbsEAqFouxfft2LFiwAJGRkXB1dcXKlSsxduxYwU7nElHZSUpKwqpVq5CamqrpUmBhYYEZM2YwlBIRqdGkSZOwY8cODBgwAKdOnYK9vb3c7eLi4jBw4EDk5uZi4sSJgowtSCD97bffMHv2bPz777+wtLTE0qVLMWXKFJiYmAhxeCLSgPT0dKSmpqJRo0awtrbWWB2JiYm4e/cu0tPTGUiJiNSoefPmmDJlCtavXw8PDw9MmDAB3t7ecHd3BwBERkbizJkz2Lp1K968eYNp06ahefPmgoytUiC9dOkSZs2ahatXr8LIyAhTp07FnDlzYGNjI0hxRKR51tbWsLOz03QZRERUBtasWQMTExOsWrUKS5YswZIlS2TWi8Vi6Ovrw8/PD4sXLxZsXKUDae/evXHixAno6elh1KhRWLhwoTRBExEREVH5IxKJsHTpUnz66afYsWMHLl++jKioKACAs7Mz2rdvj9GjR6NmzZqCjqt0ID1+/DhEIhGqVKmCqKgojB8/vsR9RCIRTpw4oeyQRERERFQGatasKegZ0JKodMleLBbj2bNnePbsWam2Zx9SIiIiInqf0oG0tCGUiIiIiKg4SgfSqlWrClkHEREREVVQbBBKRERERBrFQEpEREREGsVASkREREQaxUBKRERERBrFQEpEREREGiXIXPZEREREpDvGjh1b4jZ6enqwtLRE3bp14evrCzc3N6XHYyAlIiIiIhmBgYHSCY3EYnGh9SKRSGb5l19+iXnz5sHf31+p8XjJnoiIiIhkPHnyBL6+vnBycsKyZctw/vx5PHz4EOfPn8fSpUvh5OSE3r1749q1a9i6dStcXV0xf/58HDhwQKnxlDpDWprTuPKIRCJs375dqX2JiIiIqGwcOHAA//zzD27fvg1HR0fp8jp16sDT0xOjR49G06ZNcfbsWcycORM+Pj7w8PDA5s2bMXjwYIXHUyqQBgYGKrMbAykRUTmQlJSE9PR0jdZgZmYGKysrjdZAVJFt374dAwcOlAmj73J2dsbAgQPx448/YubMmXBzc4Ovry9OnDih1HhKBVLOY09EpJuSkpKwatUqpKamarQOCwsLzJgxg6GUSEMiIiJgbGxc7DYmJiaIiIiQvq9SpQoyMzOVGk+pQMp57ImIdFN6ejpSU1PRqFEjWFtba6SGxMRE3L17F+np6QykRBri5uaGo0ePYvHixXKDaVZWFo4ePSrzZH1MTAxsbGyUGo9P2RMRUSHW1taws7PTdBlEpCGffvop5syZg06dOmHu3Llo27YtbG1tER8fj8uXL2PRokV48uQJFi1aJN3n4sWLaNKkiVLjCRpIL1++jMDAQNy6dQtJSUmwtLREs2bNMHLkSHTo0EHIoYiIiIhITWbOnIkHDx5gz5496N27NwBJ39H8/HwAklZQw4YNwzfffAMAiI6ORq9evdCjRw+lxhMskE6fPh3r1q2T9qQqKPrGjRvYvn07Jk+ejLVr1wo1HBERERGpib6+Pnbt2oVRo0Zhz549uHPnDpKTk2FpaYkmTZpg2LBh6NKli3R7JycnrFu3TunxBOlDumvXLqxduxZ169bF/v378fr1a+Tm5iIqKgo///wz6tWrhw0bNmDXrl1CDFdqly5dQs+ePWFjYwNTU1PUrl1b5tQyERERERWtS5cu2LFjB27cuIFHjx7hxo0b+Omnn2TCqBAECaRbtmxB5cqVce3aNQwePBhOTk4AAEdHRwwaNAhXrlyBu7s7Nm/eLMRwpbJv3z506tQJVlZW2LVrF06ePIlZs2bJnW2AiIiIiDRHkEv2YWFh+N///odKlSrJXW9paYl+/fph27ZtQgxXosjISIwfPx6fffaZTAj29vYuk/GJiIiIqPQEmzq0pDOPBfOhloVt27YhLS0Ns2bNKrMxiYiIiMorX19f3LhxQ6l9MzIysHr1amzZskXp8QUJpA0bNsThw4eLbKSckpKCw4cPo0GDBkIMV6ILFy7A1tYWDx8+RNOmTWFgYABHR0dMmDABycnJRe6XlZWF5ORk6SslJaVM6iUiIiLSpJcvX6J169bo0qULAgMDi81LBUJCQjBlyhRUrVoV8+bNg729vdLjC3LJfsKECRgzZgzatm2LgIAAdOrUCfb29oiNjcW5c+ewYMECREREYOHChUIMV6LIyEikp6dj4MCB8PPzw/r163H9+nXMnz8fYWFhuHjxotwztsuWLcOCBQvKpEYiIiIibXHr1i3s2LEDCxcuxNixYzFu3DjUq1cPzZs3h5OTE2xsbJCRkYH4+Hg8evQIISEhSEpKgp6eHgYNGoQlS5agWrVqSo8vSCAdNWoUbt26hQ0bNmDQoEEACveq+vLLLzFq1CghhitRfn4+MjMzMX/+fGl/LC8vLxgZGWHKlCk4c+YMunbtWmg/Pz8/TJs2Tfo+MjISHh4eZVIzERERkaaIRCKMHTsWo0ePxokTJxAYGIjz589jz549hbbV09ND48aN0bdvX4wbNw6urq4qjy9YH9J169ahf//+2LFjB27duiXtVdWsWTOMGjUKnp6eQg1VIjs7Ozx69AgffvihzHIfHx9MmTIFN2/elBtIjY2NZabHKs3paiIiIiJdoaenh48++ggfffQRAODBgweIiIhAXFwcTE1N4eDggAYNGgg+ra+gMzV16NBBK2Zkaty4Ma5evVpo+btN+4moZJmZmXj+/DkSExM1VkNSUhIyMzM1Nj4RUUVWv3591K9fX+3j6ORc9v3798fWrVsRFBSEZs2aSZefPHkSANCmTRtNlUZUbqSnp+PixYs4e/asQvtlZ2cjPz8fxsbGSnXXEIvFyMrKgp6eHoyMjAAABgYGSE9PV/hYRERUPggaSPPz8xEREYHIyEjk5OTI3aZjx45CDilX9+7d8dFHH2HhwoXIz89HmzZtEBISggULFsDX11crzuISlQfW1tZo1aoVbGxsStw2NzcXwcHBSEpKQufOnWFnZ6fweHFxcQgODoaDgwM6d+4MAwMDJCQk4Pr168qUT0RE5YQggVQsFmP58uVYt24d4uLiit02Ly9PiCFLdODAASxYsABbt27FggUL4OrqiqlTp2L+/PllMj6RLjAwMEC1atWks68VJTs7G4cOHUJ+fj7Gjh0LFxcXhcd6/fo1Tp06herVq2PAgAHSs6PR0dEIDQ1Vqn4iIiofBAmkfn5+WLlyJRwdHTFmzBi4uLjAwECzdwOYmppi+fLlWL58uUbrINJ1BWE0NjYWAwcOVDqMHjx4EPb29jJhlIiIKgZBUmNgYCDq1q2L69evw8LCQohDElE5wDBKRERCEORx89TUVPTq1YthlKgCYRglIiKhCBJImzZtilevXglxKCIqBxhGiYgqJrFYjEePHiEiIkLQ4woSSP39/XH06FHcvHlTiMMRkRZjGCUi0n1Hjx7F2LFjkZCQIF0WHh6ORo0aoV69eqhatSqGDRsmnZVTVYLcQ9qjRw/s3LkTPj4+6N27N5o0aQJLS0u5244cOVKIIYlIAxhGiYgqhu+//x4REREybf+mTJmC+/fvo3PnzoiLi8PPP/+Mzp0749NPP1V5PEECaVZWFo4ePYrY2Fhs374dAAo1xBaLxRCJRAykROUUwygRUcVx7949dOvWTfo+KSkJJ0+exODBg7F//37k5OSgWbNm2L59u/YE0mnTpmHv3r1o3LgxBgwYoBVtn4hIOAyjREQVy5s3b2R+1l+6dAm5ubkYOnQoAMDQ0BDdunXD3r17BRlPkNR48OBBtGjRAleuXGEQJdIxOTk5DKNERBWMpaWlzGRH586dg56eHjw9PaXLDA0NkZaWJsh4gjzUlJmZCW9vb4ZRIh0jFosRFBSk8TAq1A88IiIqnXr16uHYsWOIj49HUlISfv75ZzRv3lzmntLnz5+XOJNfaQkSSFu0aIHHjx8LcSgi0iKJiYlISEjQaBgNDQ1lICUiKmNfffUVXr16BTc3N1SuXBmvXr3ChAkTpOvz8vJw6dIlNGnSRJDxBAmkS5cuxalTp3D8+HEhDkdEWiI3Nxc+Pj4aC6NXrlxBSEgIzM3NFd6XiIiU179/f2zatAkNGjRAnTp1sGzZMowdO1a6/syZM0hPT0ePHj0EGU+Qa+ynT5+Gl5cX+vTpA29vbzRt2lRu2yeRSIS5c+cKMSQRlQEbGxs4OjoqvJ9QYfTSpUto2bIlwsPDFd6fiIhUM3HiREycOFHuuu7du8v0KFWVIIE0ICBA+ufg4GAEBwfL3Y6BlKh8Uea+cCHDaIcOHVCjRg0GUiIiLSEWi/H48WOYmprC3d1dsOMKEkjPnj0rxGGIqJwTOoy2bdsW0dHRaqiUiIiKc/ToURw9ehRr1qyRPsgUHh4OX19fPHjwAAAwZMgQ7N69G3p6qt8BKkgg7dSpkxCHIaJyTB1hlIiINKNcztRUID8/HxEREYiMjEROTo7cbTp27CjkkESkBRhGiYh0S7mcqUksFmP58uVYt26dTBNVefLy8oQYkoi0BMMoEZHuKZczNfn5+WHlypVwdHTEmDFjOHUoUQXBMEpEpJvKeqYmQVJjYGAg6tati+vXr8PCwkKIQxKRlmMYJSLSXQUzNS1ZsgT6+vrlY6am1NRU9OrVi2GUqIJgGCUi0m1lPVOTIGdImzZtilevXglxKCLScgyjRES6r2Cmpu3btwMABg0apP0zNfn7+6N///64efMmmjdvLsQhiUgLMYwSEVUc5W6mph49emDnzp3w8fFB79690aRJE7lThwLAyJEjhRiSiMoYwygREamLIIE0KysLR48eRWxsrPTUrkgkktlGLBZDJBIxkBKVQwyjREQVV15eHmJjY5GVlSV3fZUqVVQeQ5BAOm3aNOzduxeNGzfGgAED2PaJSIfExMTg7NmzGg2jYrFY4X2IiEg1N27cwOzZs3HhwgVkZ2fL3UYkEiE3N1flsQRJjQcPHkSLFi1w5coVBlEiHZKbm4ugoCC4u7trLIzm5OQgMTFR4f2IiCqC4OBg7NmzB5cvX8bLly9hbW2Nli1bYt68eWjRooXSx7116xY8PT1hYGCA7t2749ixY2jSpAmcnZ1x8+ZNvHnzBl5eXqhataogn0OQtk+ZmZnw9vZmGCXSMQkJCbCxsdFYGM3OzkZQUJAg//omItJFW7ZsQXh4OCZPnoyTJ09iw4YNiImJQZs2bRAcHKz0cRctWgQAuHbtGo4ePQoA+PjjjxEUFITw8HBMmDABYWFhmD9/viCfQ5AE2aJFCzx+/FiIQxGRFjEwMICPj4/GwuihQ4ekoZiIiArbtGkTHB0dZZb16NEDtWrVwtKlS9G5c2eljnvp0iX07t0b9evXly4ruH3K1NQU3333HS5fvozZs2dj3759yn+A/yfIGdKlS5fi1KlTOH78uBCHIyItYW1tDUNDQ4X3EyqMxsbGwsfHh1dfiIiK8H4YBQALCwt4eHjg5cuXSh83KSkJNWrUkL43NDREamqq9L2enh68vLxw5swZpcd4lyA/5U+fPg0vLy/06dMH3t7eaNq0qdy2TyKRCHPnzhViSCIqA+93yygNIcPowIEDoacnyL+biYjKlZSUFCQnJ0vfGxsbw9jYuFT7JiUl4ebNm0qfHQUkQffdPqPOzs549OiRzDaZmZlIT09Xeox3CRJIAwICpH8ODg4u8p4FBlIi3SZ0GHVxcUF0dLQaKiUi0m4eHh4y7+fPny+Tt4ozadIkpKWlYc6cOSqN/++//0rft2/fHr/99huuXr2KNm3a4MGDB/jll19Qr149pcd4lyCB9OzZs0IchojKMXWEUSKiiur+/ftwc3OTvi/t2dG5c+di79692Lhxo0pP2ffq1QtTp07F69ev4eLiglmzZuHIkSNo3749bG1tkZCQgPz8fMyePVvpMd4lSCDt1KmTEIchonKKYZSISFiVKlUqctbLoixYsACLFy/GkiVL8MUXX6g0/oQJEzBo0CDpQ6VNmjTBmTNnsGTJEjx9+hQtWrTAl19+iV69eqk0TgE+KUBEKmEYJSLSvAULFiAgIAABAQGCnLU0NDSEk5OTzLJ27drhxIkTKh9bHj4tQERKYxglItK8RYsWISAgAP7+/oL1BS1rSp0h9fX1xYIFC5S6NyEjIwObNm2Cubk5Jk6cqMzwRKQFGEaJiDRvzZo1mDdvHnr06IFevXrh6tWrMuvbtGmj0vHz8/MRERGByMhI5OTkyN2mY8eOKo0BKBlIX758idatW8PLywsjRoxAv379SrzPISQkBHv27MG+ffuQmpqKnTt3KlUwkS5ISkoSrFWGKszMzGBlZaXwfgyjRETa4dixYwCAU6dO4dSpU4XWFzSzV5RYLMby5cuxbt06xMXFFbttXl6eUmO8S6lAeuvWLezYsQMLFy7E2LFjMW7cONSrVw/NmzeHk5MTbGxskJGRgfj4eDx69AghISFISkqCnp4eBg0ahCVLlqBatWoqF09UHiUlJWHVqlUyDYY1xcLCAjNmzFAolDKMEhFpj3PnzqnluH5+fli5ciUcHR0xZswYuLi4qHWSEqWOLBKJMHbsWIwePRonTpxAYGAgzp8/jz179hTaVk9PD40bN0bfvn0xbtw4uLq6qlw0UXmWnp6O1NRUNGrUCNbW1hqrIzExEXfv3kV6enqpAynDKBFRxRAYGIi6devi+vXrsLCwUPt4KkVdPT09fPTRR/joo48AAA8ePEBERATi4uJgamoKBwcHNGjQQKlLgkS6ztraGnZ2dpouo9QYRomIKo7U1FQMHz68TMIoIHDbp/r166N+/fpCHpKItADDKBFRxdK0aVO8evWqzMZj2yciKlZoaKjGw2hubq7C+xARkfL8/f1x9OhR3Lx5s0zGY2N8IipSWloaQkJC0KVLF42F0ZiYGCQkJCi8HxERKa9Hjx7YuXMnfHx80Lt3bzRp0qTIjkojR45UeTwGUiIqUlpaGlq3bq2xMPr69WsEBQWp9clOIiIqLCsrC0ePHkVsbCy2b98OQPJQ+7vEYjFEIhEDKRGpl7m5OZo1a6bwfkKF0YMHD8LGxoaX7ImIyti0adOwd+9eNG7cGAMGDNDOtk9EVDGYm5srvI+QYdTe3h4dO3bE8ePHFT4GEREp7+DBg2jRogWuXLlSJlep+FATEQlG6DA6YMAAGBoaqqFSIiIqTmZmJry9vcvslikGUiIShDrCqJGRkRoqJSKikrRo0QKPHz8us/EYSIlIZQyjRES6ZenSpTh16lSZ3TIlyHnYsWPHlriNnp4eLC0tUbduXfj6+sLNzU2IoYlIwxhGiYh0z+nTp+Hl5YU+ffrA29sbTZs2ldv2SSQSYe7cuSqPJ0ggDQwMlLYCEIvFhdaLRCKZ5V9++SXmzZsHf39/IYYnIg1hGCUi0k0BAQHSPwcHByM4OFjudloVSJ88eYIpU6bg+vXrmDx5Mtq1awcnJydER0fj77//xrfffovWrVtjzpw5uH37NhYvXoz58+ejdu3aGDx4sBAllGjbtm343//+B3Nzc6SmppbJmES6jGGUiEh3nT17tkzHEySQHjhwAP/88w9u374NR0dH6fI6derA09MTo0ePRtOmTXH27FnMnDkTPj4+8PDwwObNm8skkEZGRmL69OlwdXVFUlKS2scj0nUMo0REuq1Tp05lOp4gDzVt374dAwcOlAmj73J2dsbAgQPx448/AgDc3Nzg6+uL27dvCzF8iSZMmICOHTuiW7duZTIekS5jGCUiIqEJcoY0IiICxsbGxW5jYmKCiIgI6fsqVaogMzNTiOGLtWfPHpw/fx7379/nPatEKmIYFZZYDCQlGSIiwhSRkW9fnp6x8PJ6I3efuDgjLFjggXHjnqFxY17xISL1unz5MgIDA3Hr1i0kJSXB0tISzZo1w8iRI9GhQwfBxhEkkLq5ueHo0aNYvHix3GBaMB/qu0/Wx8TEwMbGRojhixQTE4MpU6Zg+fLlcHd3L3H7rKwsZGVlSd+npKSoszyicoVhVDliMRAbC4SEGOLBg1aIiPBAQoItIiLMEBlpirS0wj+Gra1zigykP/xQA3fvWmPy5Gbo1i0KEyY8ha1ttro/BhFVQNOnT8e6deukD6br6ekhPz8fN27cwPbt2zF58mSsXbtWkLEEuWT/6aef4vHjx+jUqRNOnDiB+Ph4AEB8fDyOHz+Ojh074smTJzLtoS5evIgmTZoIMXyRPv/8c9StWxcTJ04s1fbLli2DlZWV9OXh4aHW+ojKC4ZRxU2bBrRqBdjYAI6OQO/e9vjzz2E4fLg+goOd8N9/leSGUQCIjDSVu/z2bSucPu0sfX/6tDNGjmyNw4fdkJcnUsvnIKKKadeuXVi7di3q1q2L/fv34/Xr18jNzUVUVBR+/vln1KtXDxs2bMCuXbsEGU+QM6QzZ87EgwcPsGfPHvTu3RvA2xQNSFpBDRs2DN988w0AIDo6Gr169UKPHj2EGF6uw4cP49ixYwgNDZW2pCqJn58fpk2bJn0fGRnJUEoVXk5ODsMo3l5ej4w0lV5ir1IlHV27xsjdPiwMCAlRbqyiAunvv7sWWpaWZoDvvquNkyddMGXKf2jUKFm5QYmI3rFlyxZUrlwZ165dQ6VKlaTLHR0dMWjQIPTo0QONGjXC5s2bMXLkSJXHEySQ6uvrY9euXRg1ahT27NmDO3fuIDk5GZaWlmjSpAmGDRuGLl26SLd3cnLCunXrhBhartTUVEyaNAlffvklXF1dkZiYCEBylgcAEhMTYWhoCHNzc5n9jI2NZW45SE7mD3aq2MRiMYKCgpCRkaHRMJqWlqbwPsqQFzolf5Z/eb1DhzdFBtLatYHTp0s3roFBPlxcMuHung43twxUqZIud7vZsx+iQYNk/PRT9UK1PH1qga++ao4PP4zC+PFPYGubU7rBiYjkCAsLw//+9z+ZMPouS0tL9OvXD9u2bRNkPEECaYEuXbrIBE9NiY2NRXR0NNasWYM1a9YUWm9jY4M+ffrgt99+K/viiMqRxMRE6OvrY8SIERoLo6GhoWoNpKdOOeP6dRtp8CzqMro8ERFmRa6rXVv2vaGhGBYWMahRIx/Vq+fCzS0D7u4ZcHPLgKNjJvT1Sx5PX1+Mfv0i4eUVgx9+qIk//3QutM0ffzjj0iV7fPrpM/Tu/Qr6+oUnKyEiKg15kx29q7RXoEtD0ECqLZydneU2dF2+fDnOnz+PoKAg2Nvba6AyovIlNzcXvr6+GgujV65cQUhISKGrGaWRlydCVJQJXr40hUgEfPBBvNzt7tyxQnCwk8LHB4BXr0zw/3cmFdKtG7BpkySY1qoFGBpGYfXqFfD09ISdnZ1S4xWwtc2Bn99D9Or1Ghs21MbTpxYy69PSDPDtt7Vx8qQzJk9+hIYNebWHiBTTsGFDHD58GIsWLYKFhUWh9SkpKTh8+DAaNGggyHiCBdLs7Gz89ttvuH79OhITE5GXl1doG5FIhO3btws1ZJFMTEzg5eVVaHlgYCD09fXlriOiwmxsbIrsL1wcocLopUuX0LJlS4SHh8vdRvIEux4iI6vjzJlqiI93QESEGV6+NMWrV6bIzZU8t1mnTkqRgbRyZfmXx4tScHldcoYzHdnZ8p8NbdBA8irw+rVCw5RK48ZJ2Lr1Bo4ccUVgYOHL+I8fV8KXXzZHjx6vMX78U+ELICKdNWHCBIwZMwZt27ZFQEAAOnXqBHt7e8TGxuLcuXNYsGABIiIisHDhQkHGEySQPn/+HN26dcOTJ0+KPb1bVoGUiIRhYKD4jwghw2iHDh1Qo0YNhIeHIyLCADdvAv/9B/z7r+T1339AYqITgMnFHu/lS1OIxYC8q0uVK2cUWqavnw9XV0nolLzSpZfXnZyyCl0GL6NbXOXS1xdjwIBIeHu/wQ8/1JB5Cr/A6dNOGDToJSwtNVAgEZVLo0aNwq1bt7BhwwYMGjQIQOEH1r/88kuMGjVKkPEECaRTp07F48ePMWLECIwdOxbu7u5K/SJTt8DAQAQGBmq6DCKdpUoYzc8HUlJMcP/+WWkYbdu2LaKjowEAR45UwoYNytWVkWGA+Hgj2NkV7tdZq1YK+vWL+P/AKQme8kKntrOzy8bs2W8v4z979vYS24ABEahePR1xcRoskIjKnXXr1qF///7YsWMHbt26JX1gvVmzZhg1ahQ8PT0FG0uQ1BgcHIwuXbpg586dQhyOiMqh0obR1FRDvH5tidevK8n8NyrKAvr6mahff5E0jL6renXlnhq3tMxB5crpSEvTh7xbN52ds/Dll4+VOrY2atKk4DK+GwIDq8HMLA8jRz7XdFlEVE516NBB0BmZiiJIIM3Pz0ezZs2EOBQRlUPywqhYDDx86IBHj+wRFVUJr15JwmdKikmRx8nJsUDLlt3Rtm3hSTOqVy96NiJ9/Vy4uqahWrVsVK6cjsqVJfd3Vq6cDiurXEE+Y3liYCDGwIER6Nw5Bq9fm8DMrPA9/QCQmQn8/DMwYgRK9ZQ/EZG6CBJI27ZtiwcPHghxKKIKITMzE8+fP5f2yNWEpKQkZGZmqnwceWE0OdkYGze2w717he9nLIm7e2cAha8tV6+eg8qVgTp1gLp13/7XxiYGe/cuQ6dOHVR+el3X2Nlly71NocDq1cDcucDGjcDmzcAHH5RhcUSkVcaOHQuRSISlS5fCyclJZnbN4gj1fJAggXT58uXw9PTEoUOHMGDAACEOSaSz0tPTpe3H9PT0lJ61KDc3F7m5uTAwMFD6nm2xWIwZM2YotS8gP4yGh9tg7doOiI0t3CakNKKiKqF27cKB1MxMjBcv5NWQBz298nW/pzYIDweWLpX8+eZNoE0bYNw4YPJkTkFKVBEFBgZCJBJh1qxZcHJyKvUzN1oVSI8dOwZvb28MHjwYnTp1QrNmzWBlZVVoO5FIhLlz5woxJFG5lp+fD3t7e/Ts2VOpMBkWFobbt2+jefPmaNiwocL75+bm4uTJk0hNTVV43wJF3TP66JFdiWFUXz8fjo6pMDF5jrS0UDRoYIgOHRzg4pICKyvVz9pSyaZOBTLeazCwbRtw6JAjmjdvh3btNFMXEWnGs2fPAABubm4y78uKIIE0ICBA+udz587h3LlzcrdjICWSMDY2xpAhQ+Du7q7wvleuXMGTJ0/Qo0ePQg/+lEZ2djYOHTokDcXKKO4Bpq5dH+PpUzucP18DAGBtnY5mzV7B1TUFzs7JcHVNgYNDKq5fv4xLly7B17fgAaY3StUCaP4WCKFufyhLX30laZ31/t1WiYl6CA4ehOfP4zF9+jPUq5eimQKJqExVrVq12PfqJkgglTcrEhEVzdraGoaGhgrv925/TlXCaGxsLHx8fPD3338rfIySnqYXiYAxY64jIsISBgb5mDz5b1hby4Y1VT/Hu9LT03Hx4kWFfw6JxWJkZWUJdtuEiYkJ0tMVa7KvSd7ewK1bwLffAgEBhXupPnlii88/t0GvXq8xbtzTCvlwGBGVHUECaadOnYQ4DFGFocz8v0KG0YEDB0JPT/4MQ8UpbWsnI6N8zJhxAWZmOTAwkJ1bU8gwWsDa2hqtWrWCjY1NqbaPi4tDcHAwHBwc0LlzZ5Vvm3Bzc8P169cVPoamGRkB06cDQ4ZI/nvggOx6sViE48ddceGCA8aNe4pevV5DiW8bIipHxGIxLly4gDdv3qBp06aoVasWAODx48dYvnw5bt68ifz8fHTs2BFz5syBk5NyUy+/T/u61xNRIUKHURcXF2nD+dJ6P4zevFkTFhbZaNhQ/nEsLbME/xxFMTAwQLVq1Ur1g/H169c4deoUqlevrtJMUu/eNhEdHY3Q0FBlStcK7u6S9k//+x8wYUIuHj+W/dWQnGyItWvr4uRJF0yZ8gh16/IyPpEuSktLw4cffogrV64AkJw8WbVqFXr27Im2bdvK3BZ1584dHDt2DDdu3ICtra3KYysVSDXdGoCoIlFHGFXUu2G0X7+B+PXXFvj99wawsMjC4sV/wNGx5Lkz1RVGFSH0tKaa+hzq0qUL8NdfbzBs2HXcuNETmZmyvyIePrTExInNsW1bCGrU0OB8qUSkFmvWrMHly5fRrFkzeHt74+zZs/D398eFCxdgYGCA7du3o3Xr1oiPj8e3336Lw4cPY/ny5Vi5cqXKYysVSDXdGoCootCGMBoTE4OzZ8/C3t4ePj6fYMOGTrh92xUAkJpqjHXrPBEQcBrGxvKbrwvxOcRi1ds6MYyWjpER0LJlMEaMMMD+/S1x/ryjzPq2beMYRol01OHDh1G9enVcvXoVhoaGyMnJgYeHB37//Xfs27cPgwcPlm7boUMHNGzYEMePH9dcINV0awCiikAbwmhubi6CgoLg7u6Otm3HYeHCzoiOriSzzfPnNrh8uSq8vZ+q5XPk5OSo/PQ8w6ji7O0zEBBwHzduvMaGDbXx8qUZjIzy8MUXujPNKhHJevLkCUaPHi196NbQ0BAffvghtmzZgi5dushsKxKJ4O3tjZ9++kmQsZUKpJpuDUCk67QhjAJAQkICnJ2dUb36VCxa5InMTNnOAPr6+Rg58ga8vNQTRrOzsxEUFITcXOWf8GYYVU2LFgnYvv06Dh1yh0gEuLjIb28lFgPp6fowNy/6TLmQkpKStKKrgZmZmdy+20TlUXp6OhwcHGSWFbQHlNcm0MHBAVlZhZ8XUAYfaiLSMtoSRgFAX98Q+vqLsXFj4S7plpaZmDz5EurXl98/VKjPkZCQUOqn59+nbWG0vPZLNTQUY+jQl8Vuc+GCA9atq43x45+iR48otT6Nn5SUhFWrVqk0sYNQLCwsMGPGDIZS0hnvd4FRpiuMMgQJpLt27YKZmVmx04beuXMHt27dwsiRI4UYkkgnaVMYTUkR4dWrzQgLKxxGq1ePw7Rpl2BnJ/8MVXnol1oa7JdaOhkZ+ti0qSaSkoywalU9nDgheRq/dm31BMb09HSkpqaiUaNGsLa2VssYpZGYmIi7d+8iPT2dgZRIRYIE0tGjR0MkEqF3797Yu3cvzMzMCm1z5MgRLFy4kIGUqAjaFEb//RcYMMAd8fE1Cq3r0OEZxo27DiMj+Zdmy1O/1OKwX2rp7d5dFW/emEjf379vhYkTm+PTT59h8OCXajtbam1tDTs7O/UcnKiC2rNnD65evSp9//ix5L7xnj17Ftq2YJ0QBLtk7+LigqNHj6J9+/Y4fvy49IEnIiqZNoXR48eBYcOA5GTZEKenl49hw0LRo8d/KOoKjjb2S9WWMAroZr9UsRiIijIptDwvTw9bt9bEjRs28PN7CDu7bEHHJSL1ePz4sdygeerUKbnbC3VJX7BAOn78eNjZ2WHq1Klo1aoVfvvtN7Ru3VqowxPpLG0Ko0uWAHPnSkLGuywssjB58t9o0KDocKgNn0Obw6giytPnEImAefPuo0ePKHz7bS1ERspeIbtxwxafftoSs2b9i7Zt49RWBxGpTpNdkwR9qGnSpEmoXbs2Bg0aBC8vL2zfvh1Dhw4VcgginaINIe5dOTmFw6ir6xvMmnUFDg5F957Uhs/xbr9UbQ9xxSlPYfRdrVvH46efrmPXrmrYt68KxOK3Z02Skowwe3YjfPxxBCZMeAojo/xijkREmqLJrkmC39nTvXt3XL16Fa6urhg+fDjmz58v9BBEOiE0NFTjIe79dkrz5gG9e7997+BwBpMnH9D6MFrQL1WTIY7N+wEjIzHGjXuGtWtvwcGh8NP8R464Y+LE5ggPL/ycARFVbGq51bxevXr4559/4OnpicWLF2Pw4MFa0S+OSFukpaUhJCRE42cUExISZJbp6QG7dwMNGgDffBOLevUWwsio6B6g2hBGAUhbQ2kqxLF5v6ymTZOwbVsIPD0LtwR7+tQCn33WAr//7lrobDwRVVxq60Nqa2uLv/76C5999hl27Nih1NOhRLoqLS0NrVu31ui9lkFBQXL/v7S0BG7cACIiknD5ctHH0JYwCkgeFvLx8dFIiGPzfvksLXOxYME9HDvmgk2baiE7W1+6LjtbH+vW1cG//1bCjBn/arBKItIWgpwhrVq1qtxecAYGBti+fTtWrFiBvLyymb2DqDwwNzdHs2bNFN5PiBAXHv4Gy5bVhb7+B0X2cDQ2Lv4Y2hRGAUn7n4Kp7hTB5v3qJRIBvXu/xg8/3ECNGoV7krZvH6uBqohIGwkSSJ89e4avvvqqyPUzZszAq1ev8PSp/OkFiSoac3NzhfcRIsSFhaVh8WIfxMb2wuPHK5GTY6vwMbQtjALKtR0Runm/MleBdDmMvqtatXRs2XITH38cIV3Wt28k2rXjU/dEJCH4dfS8vDzExsbKndu0rKafItI1QoS48+cNsH37QOTmSmaUSUqyxP37C5CTU/pjaGMYVQab95c9I6N8fPXVY7RqlYCDB90xYcITTZdERFpEsEB648YNzJ49GxcuXEB2tvwGyCKRSKX7rIgqIlVDnFgMHDjggt9/9wSgL7MuLa0GnjxJRL16JR+HYVRC15v3q1vbtnFo0yauyMkVxGLgwQPOvkRU0QgSSG/dugVPT08YGBige/fuOHbsGJo0aQJnZ2fcvHkTb968gZeXl0b7WxGVR6qGuOxsfWzc2BA3bngUWufkFIfKlb9CvXoLSzwOw6gE+6UKo7iLZX/+6YTly+ujfn0zTJrEq2pEFYUg95AuWrQIAHDt2jUcPXoUAPDxxx8jKCgI4eHhmDBhAsLCwtiTlEgBqoaf2Fgz+Pt3khtGW7SIwJQpB2BmFiFnT1na2C9VGdoQRnWlX6q6REaaYsOG2gCABw9ao3t3e1y/ruGiiKhMCBJIL126hN69e6N+/frSZQU/9ExNTfHdd9/B1dUVs2fPFmI4Ip2navh58MABs2d3Q0RE4TnT+/e/i6lTL8LEpOS5xbW1X6qitCGMArrRL1Vd8vKAxYvrIyPj7YW78HADtGsHrFgB5HNyJyKdJkggTUpKQo0aNaTvDQ0NkZr6tsWHnp4evLy8cObMGSGGI9JpqoQfsRj444/aWLLEG6mpsrPhmJrm4OuvL6B//zCU9hmctLQ0tGzZUiv7pZaWtoRRoPz3S1UnfX1gwIAImJvL1pebC3zzDdC9O/DqlYaKIyK1EySQOjo6ypzBcHZ2xqNHj2S2yczM5GxNRCVQJfxkZ+th69YPsHNnS+Tnyz685OKSjIUL/0SLFpEK1aPJfqkFD/7Y2NgU2S+1JNoURoHy3S+1LHTpEoMffwxBnTqF20GdOQM0bgwcO6aBwohI7QQJpB4eHvj337ezbbRv3x5//vknrl69CgB48OABfvnlF9QrzaO8RBWUKuEnK0sfixZ1wfnzNQqta9YsEosW/Qk3t2SFa9JUv9R3n0L38fHReJ/Rit4vtSy5uGRi0aLzaN36D4hEsve7xsUBvXsDs2dbIjdX8WBPRNpLkEDaq1cvXLhwAa9fvwYAzJo1C2KxGO3bt4eDgwMaNWqExMRE3kNKVARVw4+xcR6cnQs/oNS3bxi+/voCzMwUaDaqAqHD6IABAzR6RlHXugI4OjqqoUrh6euL0bZtEA4dioe7e+H1gYHm+PnnqXj5slLZF0dEaiFIIJ0wYQIiIyNhZyfpHdekSROcOXMGPXr0gL29Pbp27Ypjx47h448/FmI4Ip0iVIjLyfkCtrZhAABj4xxMmXIRgwbdLfX9oqpSRxjV1L2WuhhGNfU5VNG2bTZu3wb69Su8Li7OFbNmdcHRo67Q4sYBRFRKgly7MTQ0hJOT7NO87dq1w4kTJ4Q4PJHOEjLEOTraY/jwe/j+eweMGnUDlSsnqaFi+RhGhaUrn0MItrbAoUPAjz8CU6YAGRlv12Vn62P9+jqIjDTF559z5iei8kyQcyf6+voYNmyYEIciqjBycnIED3H29vnw9w+ukGFUG/qlCoFhtDCRCBg/HggJkTzY9C5Dw3x07x6lmcKISDCCBFJLS0tUrlxZiEMRVQhisRhBQUEKh4aEBFOsX98eyclGgoS4tLQ0hfd5l7aEUW3ol6orzfu1mYcHcO0a8Omnb79vx49/glq1VPs+JiLNE+SSfevWrXH79m0hDkVUISQmJkJfXx8jRowodWiIizPFkiWdERVliYgIE7i6boWzs2pnFFUJpNoSRgFJIG3dujWb9+twGC1gYgIsWpSMN2/2Ijm5O/r3V6yVGRFpJ0HOkC5YsADBwcHYuXOnEIcj0nm5ubnw8fEpdWiIjTXDokVdEBVlCQB49coR//23GT4+nyh9r2VISIhSbZ0A7QqjgOb7pepS8/7yonr1+/jiixsoqpNWbq4IV67YlW1RRBqSkpKCmTNnonv37nBwcIBIJEJAQICmy1KIIGdI//zzT3h5eWHs2LHYuHEjWrduDScnp0I990QiEebOnSvEkETlmo2NTalb8Lx5Y47FizvjzRsLmeWmpvYQi00BZMjfsQgF4adly5YIDw9XaF9A+8IooPl+qTY2NkpfsmcYVY+dO6thz56q6NYtCpMnP4K5eZ6mSyJSm7i4OGzduhVNmjRB3759sW3bNk2XpDBBAum7KfzmzZu4efOm3O0YSIkkSns2LTraHEuWdEFsrGzgcnFJhL//WdjYZCo07rvhp0aNGgoHUm0Mo8oQ+nN07NgRx48fV/gYDKPqceuWNfburQIAOH3aGffuWWHOnPvw8EjRcGVE6lG1alUkJCRAJBIhNja24gbSs2fPCnEYInpHdLQFFi/ujLg42TDq6ioJo9bWyofRtm3bIjo6WqH9GUbfev9zKHP/KMOoemRk6GHJkvoQi99eoXv1yhRffdUMY8aEY8iQF9DXL+YAROWQMrPAaRtBAmmnTp2EOAwR/b/Xry2wZEkXxMebySx3d0/AnDlnYWWVpdDxtCH86GoYrcj9UrWRqWk+Jk58grVr6yAt7e2vuLw8PWzbVgM3btjAz+8BHByyNVglUclSUlKQnPx2ymdjY2MYGxtrsCL1KqM5XIiotF69qoRFiwqH0cqV4+HvH1zmYVQd/VIrchjVlX6p2qxz5xhs2xaCBg0K9+MNDbXBuHGtcOkSH3gi7ebh4QErKyvpa9myZZouSa1UOkMaHx+PzMxMuLi4SE8XX758GZcuXSq0bePGjdGjRw9VhiPSeRERlliypDOSkkxllletGofZs8+hUiXFzuqoGkYL+qVmZGRovM+oKrQljBb0S+3SpUu57pdaHjg7Z2LDhlvYubMq9u6tivz8t5c0k5MNMXduI/TpE4mJE5/A2Dhfg5USyXf//n24ublJ3+vy2VFAhUAaHx+PGjVqoEWLFjhz5ox0+enTp7Fw4UKI35tc2MrKCk+ePIGtra3y1RLpsJcvrbBkSWckJ5vILK9WLRazZ5+DhUWOQsdTNYwCyvVLfZdQZxTZL1V7+qWWJ/r6YowdG44WLRKwZEl9vHkj+//W0aNuuHLFDiNHPkePHlHQ1xcXcSSislepUiVYWlpquowyo/Ql+927dyMlJQUrV66Uu37Hjh3S19q1a5GUlIQ9e/YoXSiRLnv50gqLFxcOozVqvMGcOZoJo4Di/VLfJdS9luyXqj39UsurJk2SsG1bCDw93xRaFxNjgtWr62LUqFa4dMleA9UREaDCGdKTJ0+ifv36aNGihdz1o0aNknm/b98+nDhxAl999ZWyQxLpLEvLTFhaZiEl5W0grVkzBn5+F2BmppkwCijWL/VdQj74w36p2tEvtbyztMzFggX3cOKEC777rhaysmQftY+MNMPr1yZF7E1E6qb0GdK7d++iXbt2pd6+adOmuHv3rrLDEek0K6ss/O9/+2FiEg4AqF07Gn5+5zUaRoHS90t9l9BPoWvyjKKuPYjl4+OjE+1hlCUSAb6+r/HDDzfQtKnsrQv29lno0+eVhiojUl1QUBAOHTqEY8eOAZDcg3ro0CEcOnQI6enpGq6uZEqfIY2Li5N75qRjx46YPXt2oeWOjo6Ij49Xdjginfb69WucOnUQHTpcRlbWXIwZcwsmJoqdyRI6jCpDHS2R2C9Vs/1SdVHVqulYu/Y2btywwfbt1fHwoSVGjAiHkZH8h5tyc0UwMOD9paTdJk6ciOfPn0vfHzx4EAcPHgQAPHv2DNWqVdNQZaWjdCA1MTGRm7i9vb3h7e1daHl6erpGfqgTaTvZ0NAFRkYhCh9DV8OoohhG39KGz6HNRCKgZcsEtGiRgGvXbNGyZdFhfd26OoiLM8LYsc9Qp05qGVZJVHrK3NqkTZS+ZO/u7q7QJfg7d+7ItC9Qp+DgYIwdOxb16tWDubk53Nzc0KdPH9y4caNMxicqzqNHhhCLJfevaUOIE4I2fA72S31LGz5HeSESAW3axBd5BjQiwhSnTjnj2jU7fPZZS8yf3wDh4WZytyUi5SkdSD09PXHhwoVSJfKnT5/i/Pnz6Nixo7LDKWTLli0IDw/H5MmTcfLkSWzYsAExMTFo06YNgoODy6QGInkuXQIGDHDHw4ezERX1RuMh7v32bMrQhjBa0C+1vIc4hlHts2NHNZkephcuOODTT1th6dJ6iI5WrvsDERWm9CX7iRMnYuvWrRgyZAiCgoJgY2Mjd7v4+HgMGTIE+fn5mDBhgtKFKmLTpk2F7m/t0aMHatWqhaVLl6Jz585lUgfRu86fB3r1AtLS9JCW1hVbt2aiXbswDBjQT2NnFBMTExXe713aEEYB7eiXqivN++mttDR93L5tXWh5fr4Ip087Izi4O+rXr4QRI/TACbOIVKP0GdImTZpg2rRp+Oeff+Dh4YEFCxbg/PnzePToER49eoRz585h/vz5aNCgAUJCQjB58mSlnpZVhryHrSwsLODh4YGXL1+WSQ1E7woOBnx8gHczS0KCL6ytZ2vsXsugoCCVWgBpSxgFNN8vVZea99Nb5uZ52L37GsaPf4JKlQp3vMjL00NYWHu0b++IadOAN4XbnBJRKanUIXnVqlUwNDTE6tWrsXDhQixcuFBmvVgshp6eHqZPn47ly5erVKiqkpKScPPmzWLPjmZlZSEr6+084SkpKWVRGum406eB3r2BzEzZ5Q0aPEL37uEKH0+oB38SEhKKvLJREm0Ko4Dm+6XqUvN+kmVqmo+hQ1/io49e4eDByjh40B0ZGbK/OrOyRFi3Dti6FZgyBZg+HbC21ki5ROWW0mdIAUAkEmHZsmV48OABvvnmG3h5eaFevXqoW7cuOnbsCD8/P9y/fx8rV66Enp5KQ6ls0qRJSEtLw5w5c4rcZtmyZbCyspK+PDw8yrBC0kWnTgEffVQ4jNrZncfo0UEwNFRsDm0hn0L38fHRij6jutAvtWXLlhpves8wql4WFnkYMyYc+/Zdw6BBL2FklFdom7Q0YMkSoHp1YOlSIJUP5BOVmiBzyNWqVQtLliwR4lBqMXfuXOzduxcbN24scmYpAPDz88O0adOk7yMjIxlKSWknTwIffwxkZ8su9/FJRUrKAhgY9FboeEK3RFLmH4naGEaVIfTnqFGjhsItVxhGyydr6xxMnPgEAwa8xPbtTjh9uhry82VnfUpMBObNAwYOBGrX1kydROWNZk9bloEFCxZg8eLFWLJkCb744otitzU2NoalpaX0ValSpTKqknTNsWNA376Fw+iQIcC6ddHQ0yt8dqU4utKfUxfDaHn++yDlOThk43//u4WRI5dg0KB0vP/vu9GjGUaJFKHTgXTBggUICAhAQECA3NmjiNThyBGgf38g571nIIYPB3bvBhS9uqwr4YdhVEJX+qWShJVVPNavT0JYGDBggGSZkZHkDCkRlZ7OBtJFixYhICAA/v7+mD9/vqbLoQri0CFg0KDCYXTUKCAwsHyG0ZiYGI2HOPZLfYthVDvVrw8cPAjcvAl89x1QpYr87TIzgR49JP9wFeDbmkhnCHIPqbZZs2YN5s2bhx49eqBXr164evWqzPo2bdpoqDLSZQcOAMOGAXnvXY0fOxb48UcUuqRXEm0Io7m5uQgKCoK7u7tGzyiyX6qENvRLpeI1ayZ5FWXLFuCPPySvli2BxYuB7t0lM0YRVWQ6GUiPHTsGADh16hROnTpVaL0QZ1uI3pWcDEyaVDiM/u9/wPffl88wCgAJCQlwdnbW6L2WutYv1dfXt9z2SyXVpKYCy5a9fR8SIjlb6ukpeTrf01NztRFpmk5esj937hzEYnGRLyKhWVoCQUGS/xaYOLF8h1FA0k7Jx8dHow/+sF+qdvRLJdXt3i2/ef7Fi0DHjpJweuNG2ddFpA10MpASaUKrVpLLcJUqAV9+CWzaVL7DKABYW1vD0NBQ4f3YL1U+TX8OZfulkjA++wzYv7/op+8LLuP37w/cu1e2tRFpGgMpkYDatAFu3QI2bFD8njBtC6OAZPILRQn9OTR5RlHXugKU1fTNJJ+enqT12/37wPbtRT/49OuvQKNGwIgRwJMnZVsjkaYwkBIJrEYN3QijytCGz8Ew+pY2fA4qzMBA8rDjf/8BGzcCTk6FtxGLgT17gHr1JGdWIyPLvk6issRASqSgTZuA9euFO542hDghaMPn0JUQpyufg4pnbAx88YXkLOjy5YC8W6Vzc4GtWyWzvhHpMgZSIgVs2CD5BTJ1qqTXoKq0IcQJQRs+hzb0SxUCw2jFY24OzJoFPHsmaahvYVF4G3//sq+LqCzpZNsnInVYuxb4+uu377/8EtDXlzxNr4zQ0FDcvXtX431GVaUNYVQb+qXqSvN+AMjMzMTz589V7v+qrKSkJGRmZmpkbE2ysgIWLJD8bFmxQvKP3sxMoG1b4KOPNF0dkXoxkBKVwsqVkjMY74uLU+54aWlpCAkJQZcuXTR6RjEhIUHh/d6lDWEU0Hy/VF1q3p+eno4zZ84gODhYqYfaxGIxsrKyoKenp/QsUrm5udDT08OMGTOU2r+8s7cHVq2SXIlZvFjyIFRRfxU3bkieyB82TPIPZKLyioGUqATLlgGzZxdevnQp4Oen3DHT0tLQunVrjd5rGRQUpFQbogLaEkYBzfdL1aXm/QBga2uLtm3bKtz/NS4uDsHBwXBwcEDnzp2V+v4KCwtDSEgILN9t6ltBuboCmzcXvV4sBqZPB86dk/yjeckSoHdvzvpE5RMDKVExFi2S3NP1vpUrAVVO3pibmyvVgkfIB39sbGyUDlHaFEYBzfdL1aXm/QBgYmKCatWqwUne499FeP36NU6dOoXq1aur9DmePHmCjh07Ijw8XOH9K5rTpyVhFJCcJe3bV9J6btkywMtLg4URKYEPNRHJIRYD8+fLD6Nr16oWRgEo1Zxc6KfQfXx8tKLPqC70S9Wl5v3KYL/UspefL//KzdWrgLe3ZNanmzfLvi4iZTGQEr1HLAbmzgUWLiy87ttvJfd1lTV1tETS9AxMutQVgM37y//nKG9EIskDUI0by1//xx9AixbA4MGSfqdE2o6BlOgdYrHkvtAlSwqv27RJ8vRrWdOV/py6GkbL69+HEHTlc5RHIhHQqxcQGgrs3SuZkEOeX34BPDyA8eOBiIiyrZFIEQykRP8vNxeYMkXSbuV9P/wAfP55mZekM+GHYfQt9kt9Sxs+R3mnpwd88gnw4IHkAShn58Lb5OUBP/4I1K4tud1I2e4gROrEQEr0/5Yvl1ySf5dIJJlzevz4sq9HW8JoaGioxkOcrvVL1WSI06V+qfSWkZGkJ/Ljx5KHmqytC2+TmQmsXi05mxocXOYlEhWLgZTo/332mewMKSIRsGOHZM7psqYtYbSgX6qmzyjqUr9UGxsb9ktlGFUbc3Pgm2+Ap08l/zU1LbyNnh7A58ZI2zCQEv0/Bwdg2jTJn/X0gF27gFGjyr4ObQmjgCSQtmzZkv1S2S8VAMNoeWJjIzlT+uSJ5Mzpu/8LzZolWU+kTRhIqUK5exc4eLDo9V9/DXTvDpw9CwwfXnZ1FdCmMApoT79Ua3nXH0tBm8IowH6pDKNlz8VFcm/pw4eSe03d3ICvvip6+3//lTzcSVTWGEipQnj6VBIwmzQBPv0UiI2Vv52lpaRdSseOZVsfoH1hFGC/VPZLlWAYLf9q1pQ8jX//PmBmJn+bqCigeXOgXbu3DfeJygoDKem0168lT8fXrSv5YSwWAykpkgeYtIk2hlFlsF+qsNgvlYRW3IysixcD6elsrk+awUBKOikhQXJDf82awJYtkpZO7/ruO+3pyccw+pY2hB9dDaPl9e+DysbTp5L2du9ic30qSwykpFPS0oClS4Hq1SX9RDMyCm9TqZJkyj0rq7Kv733aEhpUpS2fQxtCnBC04XPoSr9UKp3Xr4EqVeSvY3N9KgvKP7pKpEWys4GtWyWXnKKj5W9jbCzG6NFp+OKLVNjZiZGaCqSmqqceMzMzWJWQeHNycrQixKlKW8JoaGgo7t69yzAqYL9Ud3f3ct0vlUqvfXtJc/3t2yXTJkdFya4vaK6/ezfwxReSK1B2dpqplXQTAymVa3l5kntD588HwsPlbyMS5aFBg2to3foPmJgkYds29ddlYWGBGTNmFBlKxWIxgoKCkJGRofE+o6rQljBa0C+1S5cubN4vUL9UZ2fnct0vlRRX0Fx/5Ehg40bJVab3/xoKmutv3SqZ9WnKFNn+zUTKYiClcisxEejQAbh3r+ht2rV7iSFD7sPVNRVA4zKqKxF3795Fenp6kYE0MTER+vr6GDFihEbPKKoSSLUljAKSQNq6dWs272e/VBJAQXP9zz4DVq4ENmwofPtTcjIwd64kuM6dC0yaJJlMhEhZDKRUbllbS3rqyQukzZpFYeLECNSunQrA+P9f2iM3Nxe+vr4avdcyJCREqbZOgHaFUUDz/VJ1qXk/UL77pZJwCprrf/UVsGiR5JL9+/9OiIkBTp+WXMYnUgUfaqJybelS2fetWmVjwIBvMWfO3/8fRrWTjY2NxlvwtGzZUiv6jOpCv1Rdat4PlN9+qaQeBc31HzyQNNd/l0gELFkif7/sbPkPlhLJw0BKWu/x46JnDmnRAhgwQNLw/vhx4Lff4uDm9rRsC1SCNjQn1/QMTLr0IJYuNe9Xhjb0SyX1q1VLcs/+rVtAr16SZcOHAw0byt/+1CnJWdZu3YBVqyT75eeXVbVU3vCfoKS1nj8HFiwAdu4EDhyQBE95tm2TtHLS05O0LtFF6miJFF1UO4IiMIy+9f7nUOb+UYZRCXmfQ9HvTSpbBScALl4sulUUAPz5J5CVBfz1l+QFAI6OQNeukimau3UDXF3LpmbSfjxDSlonJgaYPBmoUwfYsUPyL+q5cwvfu1TAykoSRnWVrvTn1NUwWl7/PoSgK5+DlOPpCVStWvT606cLL4uJAfbtA0aPljwD0LAhMG0aEBQk6SNNFZcO/xqn8iYpSRI8a9QAvv1Wcv9RgYcPJf3vKhptCD/sl/qWUN0NdCHEMYxScaKiJLdbleTePWDdOqBnT8DWFujcWTK1c1iY+msk7cJL9qRxGRmSqTyXLwfi4+VvY24uaTNSkWhDGGW/1LfYL/UthlEqibMzEBsLnD0ruXT/55/As2fF75OdLdn+7FngxQvJg1RUcTCQksbk5AA//SSZFeTVK/nbGBoCEyYAc+YATk5lW58maUMYBdgvtQD7pb7FMEqlZWMD9OsneQHAkyeSy/h//gkEB0uuihWlW7ei1128CDRrxob8uoaBlMpcfr7kIaV584q+pKOnB4wYAQQEANWqlWV1mqctYRRgv1SA/VLfxTBKqqhZU/KaMEHyTMD165Jwevo0cPWqZOY9ANDXB7y95R8jIQHw8pJs067d24ejmjeXLKPyi4GUytSZM8DXXwO3bxe9zccfS+ak9/Aou7q0hTaFUUB7+qWGFzUvbDG0LYwC2tEvVdlL9gyjJCQDA6BtW8lr/nzJ2dJz5yQBNTFRMvGJPGfPSk5q5OcD589LXnPmSO4/7dLlbUAt7mEr0k4MpFSm/v236DDapYuk0X3r1mVbk7bQtjAKaEe/1Bo1aigcSLUxjCpD6M/RsWNHHD9+XOFjMIySullZAX36SF7F+fNP+cvj44GDByUvQNKlpSCcenkBlpaClktqwKfsSWVisaT/Z3Cw5OGkSZMkvUHlGTcOqF5ddlmrVm/71DGMak8YVYY2fA6G0bfe/xyanA6UYZSEkJYmObtakv/+k/w+6tMHsLOTtKhatOjtbQGkfXiGlEotP1/SrP7BA+D+fcl/C/78/s3pvXtLwuf7jIwkDzGNGCG5JL94MdC3r2T6uYpKG0KcELThczCMvqUrfx9FyczMxPPnz5GYmCjYMRWVlJSEzMxMjY1fEe3eLXn6/vz5t/efPnxY/D65ucClS5Kn/ufOLZs6SXEMpFSk8+clTzMWBM+HD0s/L/GDB0WvGzoUMDGR3Cta0W9C14bQIARt+Bzsl/qWUN0N7t69q5VhND09HRcvXsTZs2dL3DY3Nxe5ubkwMDBQ+oGu7Oxs5Ofnw9jYuNAUsQYGBkhPTy9y36SkpGLXlxUzMzNYWVlpugxBVKoE+PpKXgDw8uXbp/f/+guIi5O/X3FP7pPmMZBWYOnpwJs3Rd/8vWdP0ZfeS/LkCZCZKQme79PXL3oa0IokJiYGZ8+e1XifUVVpQxjVln6pqtKWMFoe+qVaW1ujVatWsLGxKXKbsLAw3L59G82bN0fDoiZcL6GG4OBgJCUloXPnzrCzs5NZn5CQgOvXrxe5f1JSElatWoXU1FSFxxaahYUFZsyYoTOh9F2VKwNjx0pe+flAaOjbgHrpkqTFICC5p5S0FwNpBZCY+PYs57uX28PDJXMSh4bK30/Rp9xNTYF69ST71a8v+SEgL5CS5BddUFAQ3N3dNXpGUdXLndoQRgHt6JeqK837gfLRL9XAwADVqlWDUxENiq9cuYInT56gR48eKn2O/Px8jB07Vu7niI6ORmhRP0AhOZObmpqKRo0awbqox8bLQGJiIu7evYv09HSdDKTv0tMDWrSQvL75RnLP6YULknDaqZOmq6PiMJDqCLFYMkewvPs7X78uer9//5X8i1LeXPD168vfx9pasq4geBb8t0oV3Z5TXkgJCQlwdnbW6L19QUFBKs3aoy1hFNB8v1Rdat4PsF+q0LcbWFtbFzq7SmXD3Bzw8ZG8SLsxkOqAHTuA6dOLnnazOBkZkgeV3n/yHQAaNpQ0Jy4InAXh08mpYj+EJAQDAwP4+Pho9EGThISEYi93Fkebwiig+X6putS8H2C/VHYFICp7DKQ6oFIl5cJogSdP5AdSd3dJK6cCBTfnR0UpP5aqdOXGfGtra4234PHx8cHff/+t8DG0LYwCmu+XqkvN+5XBfqlEpCoGUh1Q1KX1dxkYALVqyV5ir18fqFtXckmjJNpyc76u3Jj//pO6pSH0L1s9Je6v0MYwqgw27xeOOj5HSfePysMwSlS+MZDqgNq1JU+u5+VJHiKqV0/2Env9+pIwqsrvKm24Ob8i3Zj/PnX8so2OjlboGAyjb73/ORT9WjKMvqUN31cMo0Sax0CqA4yMJE8QVqsmaeGkzt6evDm/7GnDL1ttCA1C0IbPwX6pb2nD3wfDKJF2YCDVEZ07a7oCUgdt+GXLfqlvsV+qhLaEUW1o3q9KpwoieotNeoi0lDaE0YJ+qZo+o6hL/VITEhI03vReFdoSRgua92v6H2vK3O9KRIUxkBJpIW0IowCkraHYL1W4fqk+Pj7slypQ8/6WLVtq9DYWVfulEtFb/D+JSMtoSxgF2C8VYL/UAtoURgHNN+9XtV8qEcliICWdk5mZiefPn6t8mVdZSUlJyMzMVGpfbQqjAPulsl+qhLaFUUDzzftV6ZdKRIXpbCBNTU2Fv78/fvnlF8THx6NevXr45ptvMGTIEE2XRmqUnp6Oixcv4uzZswrtl52djfz8fBgbGyvVI1QsFiMrKwt6enowMjKCgYEB0tPTFTqGtoVRgP1Sda0rAPular5fKpE66ELm0dlA2q9fP1y/fh3Lly9HnTp1sG/fPgwdOhT5+fn45JNPNF2ejIIZkDRNl2ZBatWqVaku8+bm5iI4OBhJSUno3LmzUi2t4uLiEBwcDAcHB3Tu3BkpKSm4fv26QsfQxjCqDPZLFQ77pQpHVz6HOmnD76HS/A4qL3WWtfKUeYqik4H05MmTOH36tPQvBAC8vb3x/PlzzJgxA4MHD4a+Opt1KkBbZkACdGcWJAMDA1SrVg1OTk7FblfwSyo/Px9jx45V+pfUqVOnUL16dekvqejoaISGhpb6GAyjEtoSGnQ1jCqK/VLf0obPoU7a8nuopN9B5aXOslaeMk9xdDKQHjlyBBYWFhg4cKDM8jFjxuCTTz7BtWvX0K5dOw1VJ0sbZkACKt4sSNryS0obQpwQtOFzaEO/VCFow/cV+6W+pern0PQ97UDJ97Vrw++h0vwOKi91lrXylHmKo5OBNCwsDPXr1y/0AEHjxo2l6+X95WRlZSErK0v6PikpCYDkB5K6xMTEIC4uDs+fP0d8fLzaxilJSkoK4uLi8Pr1a+Tl5RVaX1Dn7du3UalSJQ1UWHKNgOTvKjMzE8+ePSvyF0BOTg7Onj2LpKQkeHt7Izk5GcnJyQrVEhsbi7Nnz8LKygqNGzfGs2fPpOsSEhKQmZmJ169fw9jYuMgaT506hSdPnqBJkyawtbXFv//+q1ANqn6OhIQEpKWllVhncV9LQPL/0+3bt9X2OUrz9UxLS8Mvv/wCR0fHQn8fpaXK50hISEBGRkaRNRbUWdLXs7jvKyE+R0lfy4I6Y2JikJubix49egj+/0dpJCQkICEhQaXvTXX/f15QZ3Ffz/DwcJw+fRrHjh2DgYGB0mepcnJykJ+fDyMjI6XvcQeA4cOHF/vzXZO/h0rz87281KmqgsyRlJQES0tL6XJjY2O532fKZh6tI9ZBtWvXFn/44YeFlr969UoMQLx06VK5+82fP18MgC+++OKLL7744kurXvPnzxc082gbnTxDChT/dHBR6/z8/DBt2jTp+9zcXDx48ACVK1dW6knfspKSkgIPDw/cv39fY2cvS6M81FkeagRYp9BYp3DKQ40A6xQa6xROfn4+Xrx4AQ8PD5mznkVd1QCUyzzaRicDqZ2dHeLi4gotLzjFb2trK3c/eafD27dvL3yBAiu4DOXm5iZzel/blIc6y0ONAOsUGusUTnmoEWCdQmOdwqpSpUqpt1U282gb7T3tp4JGjRrhwYMHhWbQuHv3LgCgYcOGmiiLiIiISFC6knl0MpB+/PHHSE1NxeHDh2WW79y5E66urvjggw80VBkRERGRcHQl8+jkJXsfHx9069YNEydORHJyMmrVqoX9+/fj1KlT2LNnT7nox6UIY2NjzJ8/v9j7S7RBeaizPNQIsE6hsU7hlIcaAdYpNNapObqSeURi8f/3g9AxqampmDNnjsw0Wn5+fuVqGi0iIiKikuhC5tHZQEpERERE5YNO3kNKREREROUHAykRERERaRQDKRERERFpFAOplgoMDIRIJEJISIimS5GroD55r+nTp5f6OKNHj4aFhYXaazx37lyh9WKxGLVq1YJIJIKXl5daalDGt99+C5FIpDW948rr11Hb/x+SR5WaRSIRAgIChC8K2vc9Kc+1a9fw8ccfo0qVKjA2NoaTkxPatm2Lr7/+WtOlyXX16lUMHDgQLi4uMDIygrOzMwYMGIArV64ofKz79+8jICAA4eHhKtdV8D1oYmKC58+fF1rv5eWlFd8H7/8OMjExgbOzM7y9vbFs2TLExMRoukRSEAMpqWTHjh24cuWKzOurr77SdFkyKlWqhO3btxdafv78eTx58kTrpo/76aefAAD37t3DtWvXNFzNW+Xt60jC0dbvyQInTpxAu3btkJycjJUrV+LPP//Ehg0b0L59exw4cEDT5RWyceNGtG/fHhEREVi5ciX++usvrF69GpGRkejQoQO+++47hY53//59LFiwQJBAWiArKwv+/v6CHU9dCn4HnT59Gps2bULTpk2xYsUK1K9fH3/99ZemyyMFMJCSSho2bIg2bdrIvBSZ8qwsDB48GIcPH5ZOGVdg+/btaNu2raD1ZmRkqLR/SEgIbt++jV69egGA3ACoivT0dKX3LcuvI2kPdX9PCmHlypWoXr06/vjjDwwZMgSdOnXCkCFDsHr1arx48ULT5cn4+++/MWXKFPTs2RMXL17EiBEj0LFjRwwfPhwXL15Ez549MXnyZPz9998arbNHjx7Yt28fbt++rdE6SlLwO8jT0xP9+/fHunXrcOfOHZibm6Nfv36Ijo7WdIlUSgyk5URISAiGDBmCatWqwdTUFNWqVcPQoUMLXVIpuIxx9uxZTJw4Efb29rCzs0O/fv3w6tWrMq35wIEDaNu2LczNzWFhYYEPP/wQoaGhcre9d+8eunTpAnNzczg4OOCLL75QKTy9a+jQoQCA/fv3S5clJSXh8OHDGDt2bKHtFyxYgA8++AC2trawtLRE8+bNsX37drzfIa1atWrw9fXFr7/+imbNmsHExAQLFixQqdaCX/bLly9Hu3bt8PPPP8t8HcLDwyESibBy5UosWbIEVapUgYmJCVq2bIkzZ87IHCsgIAAikQg3b97EgAEDYGNjg5o1aypdmzq+jp9++ilsbW3l/l137twZDRo0ULre93l5ecm9pWD06NGoVq2a9H3B13j16tVYu3YtqlevDgsLC7Rt2xZXr14VrJ7SKG3N6lTS9+S5c+fk3s5R8HUMDAyUWf7jjz+iTp06MDY2hoeHB/bt26fy54mLi4O9vT0MDArP9aKnJ/trrjQ/lwpuJVLHz6Vly5ZBJBJhy5Ytheo1MDDA5s2bIRKJsHz5cunyhw8fYujQoXBycoKxsTGqVKmCkSNHIisrC4GBgRg4cCAAwNvbW3oJ+/2vu6JmzpwJOzs7zJo1q9jtMjMz4efnh+rVq8PIyAhubm6YNGkSEhMTpdv07dsXVatWRX5+fqH9P/jgAzRv3lylWt9XpUoVrFmzBikpKfjhhx+ky0NCQtC7d2/Y2trCxMQEzZo1wy+//FJo/8jISIwfPx6VK1eGkZERXF1dMWDAAIZbNWMgLSfCw8NRt25drF+/Hn/88QdWrPi/9s48KIrj7eNfYHdBTgWVQ8OiIohXSWRjFBBRCAIiFiIqgiBlpMCDBDWIWlIQFcGLpECBClCIF0LQeBRQScQrRli1PCgUYyIiEVBQ5ChEWJ/fH767r+OuRmHJYqU/VfPH9Dwz892e7t6e7ufpSUBtbS1EIhEaGhrk7JcuXQo+n4+DBw8iMTERZ86cQUBAgNJ1SSQSdHV1cTYA2Lp1KxYuXIjRo0fjyJEjyMnJQUtLCxwdHVFRUcG5RmdnJzw8PDBjxgwcO3YMK1asQFpaGubPn68Ujfr6+vD19ZVNOwKvOlXq6uoK71FVVYXQ0FAcOXIEBQUF8PHxwcqVK/Htt9/K2V69ehVr167FqlWrUFRUhLlz53ZbZ3t7Ow4dOgSRSISxY8ciJCQELS0tyMvLk7NNTk5GUVERkpKSsH//fqirq8Pd3V2h/5mPjw8sLS2Rl5eH1NTUbuvrjXyMiIjA06dPcfDgQc65FRUVKCkpwfLly7utt6ekpKTg559/RlJSEg4cOIC2tjZ4eHjg2bNnKtP0b/MhZfJ9SE9Px7JlyzB+/HgUFBRg48aNiI2NVeib/CFMnjwZpaWlWLVqFUpLS9HZ2anQTtXtkkQiQUlJCezs7DB06FCFNp988gkmTpyI06dPQyKR4Pr16xCJRLh06RLi4uJQWFiI+Ph4dHR04MWLF/D09MTWrVsBvCqzUtcp6Yh2d9HT08PGjRtRXFyM06dPK7QhIsyZMwc7duxAYGAgTp06hcjISGRnZ2P69Ono6OgAAISEhKC6ulruOrdv30ZZWRmWLFnSI62K8PDwgIaGBs6dOwcAKCkpgb29PZqampCamoqffvoJEyZMwPz58zmd97///hsikQhHjx5FZGQkCgsLkZSUBAMDAzx9+lTpOhmvQYw+SVZWFgEgsVis8HhXVxe1traSjo4Offfdd3LnhYeHc+wTExMJANXW1ipVn6KturqaeDwerVy5knNOS0sLmZiYkJ+fnywtKCiIAHB+AxHRli1bCABduHChxxrFYjGVlJQQACovLyciIpFIRMHBwURENGbMGHJyclJ4DYlEQp2dnRQXF0dGRkb08uVL2TGhUEgaGhpUWVnZbY2vs2/fPgJAqampRPQqv3R1dcnR0VFmc+/ePQJAZmZm1N7eLktvbm4mQ0NDcnFxkaXFxMQQANq0aVOPdPV2Pjo5OdGECRM49mFhYaSvr08tLS1K0S29jyJ9QUFBJBQKZfvSPB43bhx1dXXJ0svKyggAHTp0qNuaekszEREAiomJUaqe9ymT0jJRUlLCOVeaj1lZWUT0qgyYmJjQpEmTOHb3798nPp8v93s+hIaGBnJwcJC1QXw+n6ZMmULx8fGyMtQX2qW6ujoCQAsWLHin3fz58wkA1dfX0/Tp06l///706NGjt9rn5eUpfAbd4fUy2NHRQcOHDyc7OztZnXVycqIxY8YQEVFRUREBoMTERM41cnNzCQClp6cTEVFnZycZGxuTv78/x+6bb74hgUBADQ0NPdL5NoyNjcnGxoaIiEaNGkW2trbU2dnJsZk1axaZmpqSRCIhIqKQkBDi8/lUUVHxwZoYPYONkH4ktLa2IioqCpaWluDxeODxeNDV1UVbWxtu3bolZz979mzO/vjx4wFAYdRkT9i3bx/EYjFnKy4uRldXFxYvXswZOdXS0oKTk5PC0ZBFixZx9v39/QG8eqtVBk5OThgxYgQyMzNx8+ZNiMVihdPMAHD69Gm4uLjAwMAAGhoa4PP52LRpExobG+UiN8ePHw8rKyulaMzIyEC/fv1kn3rT1dXFvHnzcP78efzxxx8cWx8fH2hpacn29fT04OXlhXPnzkEikXBsezJq+ya9kY8RERG4du2azGeuubkZOTk5CAoK6rUVGN4HT09Pzjege6sO9WU+pEz+E5WVlairq4Ofnx8n3dzcHPb29j3SaWRkhPPnz0MsFmPbtm3w9vbGnTt3EB0djXHjxqGhoaFPtktvg/7PraW9vR1nz56Fn58fBg0a1Kv3VIRAIMDmzZtx+fJlhVPb0hHP4OBgTvq8efOgo6MjcyPi8XgICAhAQUGBbIZBIpEgJycH3t7eMDIy6hX90ny8e/cubt++LXuerz9/Dw8P1NbWorKyEgBQWFgIZ2dn2NjY9IomxtthHdKPBH9/fyQnJ2Pp0qUoLi5GWVkZxGIxBg0apDCQ5s0KrqmpCaDnQTdvYmNjAzs7O84m9bMRiUTg8/mcLTc3V87FgMfjyek1MTEB8Mo3TBmoqalhyZIl2L9/P1JTU2FlZQVHR0c5u7KyMnzxxRcAXvm6/fbbbxCLxdiwYQMA+fwzNTVVir67d+/i3Llz8PT0BBGhqakJTU1N8PX1BQDONDnw//nzZtqLFy/Q2traKxqB3slHb29vWFhYICUlBcArP+i2tjaVTtcD/14d6qt8aJn8J6R12djYWO6YorTuYGdnh6ioKOTl5eHhw4f4+uuvUVVVhcTExD7RLg0cOBDa2tq4d+/eO+2qqqqgra0NHo8HiUTy1un9f4MFCxbg008/xYYNG+RcIRobG8Hj8eQ6y2pqajAxMeHkU0hICJ4/f47Dhw8DAIqLi1FbW9sr0/UA0NbWhsbGRpiZmcme/Zo1a+SefXh4OADInv/jx49Vmt//ZeQ9wBl9jmfPnuHkyZOIiYnBunXrZOkdHR148uSJCpUpZuDAgQCA/Px8CIXCf7Tv6upCY2Mjp/Gvq6sDIN8p6AnBwcHYtGkTUlNTsWXLFoU2hw8fBp/Px8mTJzkjkMeOHVNor6amphRtmZmZICLk5+cjPz9f7nh2djY2b94s25fmz+vU1dVBIBDIjSoqS6MUZeejuro6li9fjvXr12Pnzp3Ys2cPZsyYAWtra6Xq1tLSUuj/qcgHu6+gSs3vWyalz1fqL/g2jdK6rCgwRFF57il8Ph8xMTHYvXs3ysvL4e3tDUC17ZKGhgacnZ1RVFSEmpoahR2fmpoaXLlyBe7u7jA0NISGhgZqamq6dT9loKamhoSEBLi6uiI9PZ1zzMjICF1dXXj8+DGnU0pEqKurg0gkkqWNHj0an332GbKyshAaGoqsrCyYmZnJXlyVzalTpyCRSDBt2jTZf1J0dDR8fHwU2kvbm0GDBqk0v//LsBHSjwA1NTUQkWyERsoPP/wgNz3bF3BzcwOPx8Off/4pN3oq3d7kwIEDnH1pkIsyF1ofMmQI1q5dCy8vLwQFBSm0UVNTA4/H40zVtre3IycnR2k63kQikSA7OxsjRoxASUmJ3LZ69WrU1taisLBQdk5BQQGeP38u229pacGJEyfg6OjI0d4b9EY+Ll26FAKBAIsWLUJlZSVWrFihdN0WFha4c+cOp+PU2NiIixcvKv1eykJVmj+kTEqj42/cuMG5xvHjxzn71tbWMDExkZv6ra6u7vHvqa2tVZgudWcyMzPrM+1SdHQ0iAjh4eFy7bdEIkFYWBiICNHR0ejXrx+cnJyQl5f3zpeQ3h69d3FxgaurK+Li4jgzMDNmzAAA7N+/n2P/448/oq2tTXZcypIlS1BaWooLFy7gxIkTCAoK6pX2qrq6GmvWrIGBgQFCQ0NhbW2NkSNH4vr162999tJ1lN3d3VFSUiKbwmf8e7AR0j6Ompoa9PX1MXXqVGzfvh0DBw6EhYUFzp49i4yMDPTv31/VEuWwsLBAXFwcNmzYgL/++gszZ87EgAEDUF9fj7KyMujo6HCWRxIIBNi5cydaW1shEolw8eJFbN68Ge7u7nBwcFCqtteXUlGEp6cndu3aBX9/fyxbtgyNjY3YsWOH3MuAMiksLMTDhw+RkJCg8I9u7NixSE5ORkZGBnbv3g3g1UiLq6srIiMj8fLlSyQkJKC5ubnHy069L8rOx/79+2Px4sXYu3cvhEIhvLy8lKZVOkIcGBiItLQ0BAQE4Msvv0RjYyMSExOhr6+vtHspC1Vr/pAyOWvWLLi4uCA+Ph4DBgyAUCjEr7/+ioKCAs456urqiI2NRWhoKHx9fRESEoKmpibExsbC1NRUbnmmD8HNzQ1Dhw6Fl5cXRo0ahZcvX+LatWvYuXMndHV1ERER0WfaJXt7eyQlJeGrr76Cg4MDVqxYAXNzc1RXVyMlJQWlpaVISkrClClTAAC7du2Cg4MDJk2ahHXr1sHS0hL19fU4fvw40tLSoKenJ/tyUnp6OvT09KClpYVhw4YpdYYpISEBEydOxKNHj2TLsbm6usLNzQ1RUVFobm6Gvb09bty4gZiYGNja2iIwMJBzjYULFyIyMhILFy5ER0eHnO9pdygvL5f5gz569Ajnz59HVlYWNDQ0cPToUdnIbVpaGtzd3eHm5obg4GAMGTIET548wa1bt3D16lXZyhHSlQymTp2K9evXY9y4cWhqakJRUREiIyMxatSoHmtmvAVVRVMx3k1KSgoBoJs3bxIRUU1NDc2dO5cGDBhAenp6NHPmTCovLyehUEhBQUGy894Wefi2SNju8j4RjseOHSNnZ2fS19cnTU1NEgqF5OvrS7/88ovMJigoiHR0dOjGjRs0bdo06tevHxkaGlJYWBi1trb2ukYi+ejwzMxMsra2Jk1NTRo+fDjFx8dTRkYGAaB79+7J7IRCIXl6evZIIxHRnDlzSCAQvDOKdsGCBcTj8ejSpUsEgBISEig2NpaGDh1KAoGAbG1tqbi4mHOONMr+8ePHPdLX2/ko5cyZMwSAtm3b1iO9Ut6sQ0RE2dnZZGNjQ1paWjR69GjKzc19a5T99u3b5a6JXohkV4ZmZWv7kDJZV1dHtbW15OvrS4aGhmRgYEABAQF0+fJlTpS9lPT0dLK0tCSBQEBWVlaUmZlJ3t7eZGtr2229ubm55O/vTyNHjiRdXV3i8/lkbm5OgYGBctHSqm6XpPz+++/k6+tLxsbGxOPxaPDgweTj40MXL16Us62oqKB58+aRkZERCQQCMjc3p+DgYHr+/LnMJikpiYYNG0YaGhoK8/19eVd99/f3JwCyKHsiovb2doqKiiKhUEh8Pp9MTU0pLCyMnj59qvD60mvY29t3S9+bOqWbQCCgwYMHk5OTE23dulVh2b1+/Tr5+fnR4MGDic/nk4mJCU2fPl22ioSUBw8eUEhICJmYmBCfzyczMzPy8/Oj+vr6HmlmvBs1ojdW+2b0CSIiIpCcnIympib2SUaGjKqqKgwbNgzbt2/HmjVrVC1HqaxevRp79+7FgwcPlDKy8zHWoY9Rc09pamqClZUV5syZI+ejqCqCg4ORn58vFyDIYDB6DzZl38e4cuUKxGIxMjMzMXv27P/MnxLjv8ulS5dw584d7NmzB6GhoT3ujH6Mdehj1Nwd6urqsGXLFjg7O8PIyAj379/H7t270dLSgoiICFXLYzAYKoR1SPsYvr6+ePbsGWbPno3vv/9e1XIYjF5n8uTJ0NbWxqxZszgrCXSXj7EOfYyau4OmpiaqqqoQHh6OJ0+eQFtbG59//jlSU1OV+plYBoPx8cGm7BkMBoPBYDAYKoUt+8RgMBgMBoPBUCmsQ8pgMBgMBoPBUCmsQ8pgMBgMBoPBUCmsQ8pgMBgMBoPBUCmsQ8pgMBgMBoPBUCmsQ8pgMBgMBoPBUCmsQ8pgMBgMBoPBUCmsQ8pgMBgMBoPBUCn/A3i85elTs/2zAAAAAElFTkSuQmCC\n", "text/plain": [ "