{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Comparison of 201905 Model Phytoplankton to HPLC Phytoplankton Abundances from Nina Nemcek"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"papermill": {
"duration": 2.59497,
"end_time": "2020-11-16T18:41:27.623510",
"exception": false,
"start_time": "2020-11-16T18:41:25.028540",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"import numpy as np # this module handles arrays, but here we need it for its NaN value\n",
"import pandas as pd # this module contains a lot of tools for handling tabular data\n",
"from matplotlib import pyplot as plt\n",
"from salishsea_tools import evaltools as et\n",
"import datetime as dt\n",
"import os\n",
"import gsw\n",
"import pickle\n",
"import netCDF4 as nc\n",
"import cmocean\n",
"from scipy import stats as spst\n",
"from pandas.plotting import register_matplotlib_converters\n",
"register_matplotlib_converters()\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: crypto+hapto+prasino grouping was actually determined based on comparisons to 201812 model run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load data and matched model output"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"papermill": {
"duration": 0.021207,
"end_time": "2020-11-16T18:41:27.664289",
"exception": false,
"start_time": "2020-11-16T18:41:27.643082",
"status": "completed"
},
"tags": [
"parameters"
]
},
"outputs": [],
"source": [
"modSourceDir= '/results2/SalishSea/nowcast-green.201905/'\n",
"modver='201905'\n",
"Chl_N=1.8 # Chl:N ratio\n",
"startYMD=(2015,1,1)\n",
"endYMD=(2018,12,31)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"papermill": {
"duration": 0.021268,
"end_time": "2020-11-16T18:41:27.741462",
"exception": false,
"start_time": "2020-11-16T18:41:27.720194",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"start_date = dt.datetime(startYMD[0],startYMD[1],startYMD[2])\n",
"end_date = dt.datetime(endYMD[0],endYMD[1],endYMD[2]) #dt.datetime(2019,6,30)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"papermill": {
"duration": 0.020773,
"end_time": "2020-11-16T18:41:27.779566",
"exception": false,
"start_time": "2020-11-16T18:41:27.758793",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"datestr='_'+start_date.strftime('%Y%m%d')+'_'+end_date.strftime('%Y%m%d')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"papermill": {
"duration": 0.056725,
"end_time": "2020-11-16T18:41:29.562101",
"exception": false,
"start_time": "2020-11-16T18:41:29.505376",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"with nc.Dataset('/ocean/eolson/MEOPAR/NEMO-forcing/grid/mesh_mask201702_noLPE.nc') as mesh:\n",
" tmask=np.copy(mesh.variables['tmask'][0,:,:,:])\n",
" navlat=np.copy(mesh.variables['nav_lat'][:,:])\n",
" navlon=np.copy(mesh.variables['nav_lon'][:,:])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"papermill": {
"duration": 0.022584,
"end_time": "2020-11-16T18:41:27.819353",
"exception": false,
"start_time": "2020-11-16T18:41:27.796769",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"def subval(idf,colList):\n",
" # first value in colList should be the column you are going to keep\n",
" # follow with other columns that will be used to fill in when that column is NaN\n",
" # in order of precedence\n",
" if len(colList)==2:\n",
" idf[colList[0]]=[r[colList[0]] if not pd.isna(r[colList[0]]) \\\n",
" else r[colList[1]] for i,r in idf.iterrows()]\n",
" elif len(colList)==3:\n",
" idf[colList[0]]=[r[colList[0]] if not pd.isna(r[colList[0]]) \\\n",
" else r[colList[1]] if not pd.isna(r[colList[1]]) \\\n",
" else r[colList[2]] for i,r in idf.iterrows()]\n",
" else:\n",
" raise NotImplementedError('Add to code to handle this case')\n",
" idf.drop(columns=list(colList[1:]),inplace=True)\n",
" return idf"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"papermill": {
"duration": 0.032863,
"end_time": "2020-11-16T18:41:27.869564",
"exception": false,
"start_time": "2020-11-16T18:41:27.836701",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"matched_201905_20150101_20181231_NewALLO.pkl\n"
]
}
],
"source": [
"if os.path.isfile('matched_'+modver+datestr+'_NewALLO.pkl'):\n",
" data=pickle.load(open( 'matched_'+modver+datestr+'_NewALLO.pkl', 'rb' ) )\n",
" print('matched_'+modver+datestr+'_NewALLO.pkl')\n",
"else:\n",
" # define paths to the source files and eventual output file\n",
" flist=('/ocean/eolson/MEOPAR/obs/NemcekHPLC/bottlePhytoMerged2015_NewALLO.csv',\n",
" '/ocean/eolson/MEOPAR/obs/NemcekHPLC/bottlePhytoMerged2016_NewALLO.csv',\n",
" '/ocean/eolson/MEOPAR/obs/NemcekHPLC/bottlePhytoMerged2017_NewALLO.csv',\n",
" '/ocean/eolson/MEOPAR/obs/NemcekHPLC/bottlePhytoMerged2018_NewALLO.csv')#,\n",
" #'/ocean/eolson/MEOPAR/obs/NemcekHPLC/bottlePhytoMerged2019.csv')\n",
"\n",
" dfs=list()\n",
" for fname in flist:\n",
" idf=pd.read_csv(fname)\n",
" print(fname,sorted(idf.keys()))\n",
" dfs.append(idf)\n",
" df=pd.concat(dfs,ignore_index=True,sort=False); # concatenate the list into a single table\n",
"\n",
" df.drop(labels=['ADM:MISSION','ADM:PROJECT','ADM:SCIENTIST','Zone','Zone.1','Temperature:Draw',\n",
" 'Temperature:Draw [deg C (ITS90)]','Bottle:Firing_Sequence','Comments by sample_numbeR',\n",
" 'File Name','LOC:EVENT_NUMBER','Number_of_bin_records'\n",
" ],axis=1,inplace=True)\n",
"\n",
" #df=subval(df,('Dictyochophytes','Dictyo'))\n",
" df=subval(df,('Chlorophyll:Extracted [mg/m^3]','Chlorophyll:Extracted'))\n",
" #df=subval(df,('Dinoflagellates','Dinoflagellates-1'))\n",
" df=subval(df,('Fluorescence [mg/m^3]','Fluorescence:URU:Seapoint [mg/m^3]','Fluorescence:URU:Seapoint'))\n",
" df=subval(df,('Lat','LOC:LATITUDE'))\n",
" df=subval(df,('Lon','LOC:LONGITUDE'))\n",
" df=subval(df,('Nitrate_plus_Nitrite [umol/L]','Nitrate_plus_Nitrite'))\n",
" df=subval(df,('PAR [uE/m^2/sec]','PAR'))\n",
" df=subval(df,('Phaeo-Pigment:Extracted [mg/m^3]','Phaeo-Pigment:Extracted'))\n",
" df=subval(df,('Phosphate [umol/L]','Phosphate'))\n",
" df=subval(df,('Pressure [decibar]','Pressure'))\n",
" #df=subval(df,('Raphidophytes','Raphido'))\n",
" df=subval(df,('Salinity','Salinity [PSS-78]','Salinity:T1:C1 [PSS-78]'))\n",
" df=subval(df,('Salinity:Bottle','Salinity:Bottle [PSS-78]'))\n",
" df=subval(df,('Silicate [umol/L]','Silicate'))\n",
" #df=subval(df,('TchlA (ug/L)','TchlA'))\n",
" df=subval(df,('Temperature','Temperature [deg C (ITS90)]','Temperature:Secondary [deg C (ITS90)]'))\n",
" df=subval(df,('Transmissivity [*/metre]','Transmissivity'))\n",
"\n",
" df['Z']=np.where(pd.isna(df['Depth [metres]']),\n",
" -1*gsw.z_from_p(df['Pressure [decibar]'].values,df['Lat'].values),\n",
" df['Depth [metres]'])\n",
" df['p']=np.where(pd.isna(df['Pressure [decibar]']),\n",
" gsw.p_from_z(-1*df['Depth [metres]'].values,df['Lat'].values),\n",
" df['Pressure [decibar]'])\n",
" df['SA']=gsw.SA_from_SP(df['Salinity'].values,df['p'].values,df['Lon'].values,df['Lat'].values)\n",
" df['CT']=gsw.CT_from_t(df['SA'].values,df['Temperature'].values,df['p'].values)\n",
" df.rename({'TchlA':'TchlA (ug/L)','Raphido':'Raphidophytes','Dinoflagellates-1':'Dinoflagellates',\n",
" 'Dictyo':'Dictyochophytes'},axis=1, inplace=True, errors='raise')\n",
" df['dtUTC']=[dt.datetime.strptime(ii,'%Y-%m-%d %H:%M:%S') if isinstance(ii,str) else np.nan for ii in df['FIL:START TIME YYYY/MM/DD HH:MM:SS'] ]\n",
"\n",
" PATH= modSourceDir\n",
"\n",
" flen=1\n",
" namfmt='nowcast'\n",
" #varmap={'N':'nitrate','Si':'silicon','Ammonium':'ammonium'}\n",
" filemap={'nitrate':'ptrc_T','silicon':'ptrc_T','ammonium':'ptrc_T','diatoms':'ptrc_T','ciliates':'ptrc_T','flagellates':'ptrc_T','vosaline':'grid_T','votemper':'grid_T'}\n",
" #gridmap={'nitrate':'tmask','silicon':'tmask','ammonium':'tmask'}\n",
" fdict={'ptrc_T':1,'grid_T':1}\n",
"\n",
" data=et.matchData(df,filemap,fdict,start_date,end_date,namfmt,PATH,flen)\n",
"\n",
" with open('matched_'+modver+datestr+'_NewALLO.pkl','wb') as f:\n",
" pickle.dump(data,f)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['FIL:START TIME YYYY/MM/DD HH:MM:SS', 'LOC:STATION', 'Lat', 'Lon',\n",
" 'LOC:WATER DEPTH', 'Sample_Number', 'Temperature', 'Salinity',\n",
" 'Oxygen:Dissolved:CTD', 'pH:SBE:Nominal', 'Salinity:Bottle',\n",
" 'Flag:Salinity:Bottle', 'Flag:Chlorophyll:Extracted',\n",
" 'Flag:Nitrate_plus_Nitrite', 'Flag:Silicate', 'Flag:Phosphate',\n",
" 'Cruise', 'Oxygen:Dissolved', 'Flag:Oxygen:Dissolved', 'Diatoms-1',\n",
" 'Diatoms-2', 'Prasinophytes', 'Cryptophytes', 'Dinoflagellates',\n",
" 'Haptophytes', 'Dictyochophytes', 'Raphidophytes', 'Cyanobacteria',\n",
" 'TchlA (ug/L)', 'Pressure [decibar]', 'Transmissivity [*/metre]',\n",
" 'PAR [uE/m^2/sec]', 'PAR:Reference [uE/m^2/sec]',\n",
" 'Oxygen:Dissolved:SBE [mL/L]', 'Oxygen:Dissolved:SBE [umol/kg]',\n",
" 'Chlorophyll:Extracted [mg/m^3]', 'Phaeo-Pigment:Extracted [mg/m^3]',\n",
" 'Nitrate_plus_Nitrite [umol/L]', 'Silicate [umol/L]',\n",
" 'Phosphate [umol/L]', 'Bottle_Number', 'Oxygen:Dissolved [mL/L]',\n",
" 'Oxygen:Dissolved [umol/kg]', 'Depth [metres]', 'Fluorescence [mg/m^3]',\n",
" 'Oxygen:Dissolved:CTD [mL/L]', 'Oxygen:Dissolved:CTD [umol/kg]',\n",
" 'Depth:Nominal [metres]', 'Alkalinity:Total [umol/L]',\n",
" 'Flag:Alkalinity:Total', 'Carbon:Dissolved:Inorganic [umol/kg]',\n",
" 'Flag:Carbon:Dissolved:Inorganic', 'Z', 'p', 'SA', 'CT', 'dtUTC', 'j',\n",
" 'i', 'mod_nitrate', 'mod_silicon', 'mod_ammonium', 'mod_diatoms',\n",
" 'mod_ciliates', 'mod_flagellates', 'mod_vosaline', 'mod_votemper', 'k'],\n",
" dtype='object')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.keys()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['SI', '59', '102', '75', '72', '69', 'ADCP', '65', '63', '62',\n",
" '56', '46', '42', '39', 'GE01', '27', '2', '3', 'BS', '6', '9',\n",
" '12', '14', '16', '22', '11', 'CPF2', 'CPF1', '24', '28', '38',\n",
" '41', 'BS17', '19', 'GEO1', 'BS11', 'SC-04', '66', 'BI2', 'JF2',\n",
" 'HARO59', 'SI03', '15', 'SC04', '40', 'qu39', 'Van1', 'BS-11',\n",
" 'adcp', 'QU39', 'CPF-2', 'CPF-1', 'Haro 59', 'BS2', 'IS-2', 'PEN1',\n",
" 'PEN2', 'PEN3'], dtype=object)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['LOC:STATION'].unique()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"papermill": {
"duration": 0.026848,
"end_time": "2020-11-16T18:41:27.913839",
"exception": false,
"start_time": "2020-11-16T18:41:27.886991",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"data['other']=0.0\n",
"for el in ('Cryptophytes', 'Cyanobacteria', 'Dictyochophytes', 'Dinoflagellates',\n",
" 'Haptophytes', 'Prasinophytes', 'Raphidophytes'):\n",
" data['other']=data['other']+data[el]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"papermill": {
"duration": 0.104595,
"end_time": "2020-11-16T18:41:29.169217",
"exception": false,
"start_time": "2020-11-16T18:41:29.064622",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"def yd(idt):\n",
" if type(idt)==dt.datetime:\n",
" yd=(idt-dt.datetime(idt.year-1,12,31)).days\n",
" else: # assume array or pandas\n",
" yd=[(ii-dt.datetime(ii.year-1,12,31)).days for ii in idt]\n",
" return yd\n",
"\n",
"data['yd']=yd(data['dtUTC'])\n",
"data['Year']=[ii.year for ii in data['dtUTC']]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"papermill": {
"duration": 0.022354,
"end_time": "2020-11-16T18:41:28.515306",
"exception": false,
"start_time": "2020-11-16T18:41:28.492952",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"# define log transform function with slight shift to accommodate zero values\n",
"def logt(x):\n",
" return np.log10(x+.001)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Determine which HPLC groups have the highest biomass"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2.1757399193548412"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Diatoms-1'].mean() ## Highest biomass"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.3043850806451614"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Diatoms-2'].mean() ## include"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.03817540322580645"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Cyanobacteria'].mean() ## exclude due to low biomass"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.4574556451612899"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Cryptophytes'].mean() ## include"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.21607862903225808"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Prasinophytes'].mean() ## include"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.23795766129032253"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Haptophytes'].mean() ## include"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.039802419354838664"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Dictyochophytes'].mean() ## exclude due to low biomass"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.10347580645161288"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Dinoflagellates'].mean() # exclude due to low biomass"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.40433064516129036"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Raphidophytes'].mean() ## Include"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"data['Month']=[ii.month for ii in data['dtUTC']]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"monthlymean=data.groupby(['Month']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Month\n",
"2 0.120424\n",
"3 3.233714\n",
"4 4.943088\n",
"5 2.529966\n",
"6 2.168265\n",
"7 0.551176\n",
"8 2.249000\n",
"9 0.941815\n",
"10 1.593719\n",
"11 0.785317\n",
"Name: Diatoms-1, dtype: float64"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"monthlymean['Diatoms-1']"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"monthlymean['HPLCDiatoms']=(monthlymean['Diatoms-1']+monthlymean['Raphidophytes']+monthlymean['Diatoms-2'])"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"monthlymean['HPLCFlag']=(monthlymean['Cryptophytes']+monthlymean['Haptophytes']+monthlymean['Raphidophytes'])"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Month\n",
"2 0.337182\n",
"3 3.697286\n",
"4 5.422284\n",
"5 3.205103\n",
"6 3.780675\n",
"7 0.780706\n",
"8 4.946000\n",
"9 1.361207\n",
"10 2.194649\n",
"11 0.897024\n",
"Name: HPLCDiatoms, dtype: float64"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"monthlymean['HPLCDiatoms']"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ksuchy/anaconda3/envs/py39/lib/python3.9/site-packages/pandas/core/groupby/groupby.py:1510: RuntimeWarning: divide by zero encountered in true_divide\n",
" result.iloc[:, cols].values / np.sqrt(self.count().iloc[:, cols]).values\n"
]
}
],
"source": [
"monthlysem=logt(data.groupby(['Month']).sem())"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"monthlymean['L10mod_diatoms']=logt(monthlymean['mod_diatoms']*Chl_N)\n",
"monthlymean['L10mod_flagellates']=logt(monthlymean['mod_flagellates']*Chl_N)\n",
"monthlymean['L10Diatoms-1']=logt(monthlymean['Diatoms-1'])\n",
"monthlymean['L10Diatoms-2']=logt(monthlymean['Diatoms-2'])\n",
"monthlymean['L10Cryptophytes']=logt(monthlymean['Cryptophytes'])\n",
"monthlymean['L10Prasinophytes']=logt(monthlymean['Prasinophytes'])\n",
"monthlymean['L10Haptophytes']=logt(monthlymean['Haptophytes'])\n",
"monthlymean['L10Raphidophytes']=logt(monthlymean['Raphidophytes'])\n",
"monthlymean['L10TotalChla']=logt(monthlymean['TchlA (ug/L)'])\n",
"\n",
"monthlymean['L10HPLCDiatoms']=logt(monthlymean['HPLCDiatoms'])\n",
"monthlymean['L10HPLCFlag']=logt(monthlymean['HPLCFlag'])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Month\n",
"2 -2.432694\n",
"3 -1.367311\n",
"4 -0.199868\n",
"5 0.144985\n",
"6 -0.174303\n",
"7 -0.161647\n",
"8 -0.892479\n",
"9 -1.197468\n",
"10 -1.436750\n",
"11 -1.700827\n",
"Name: L10mod_diatoms, dtype: float64"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"monthlymean['L10mod_diatoms']"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"# define inverse log transform with same shift\n",
"def logt_inv(y):\n",
" return 10**y-.001"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model vs Obs Plots for various model-obs groups"
]
},
{
"cell_type": "markdown",
"metadata": {
"papermill": {
"duration": 0.028767,
"end_time": "2020-11-16T18:41:32.112120",
"exception": false,
"start_time": "2020-11-16T18:41:32.083353",
"status": "completed"
},
"tags": []
},
"source": [
"### Correlation Coefficient Matrix"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"papermill": {
"duration": 0.040984,
"end_time": "2020-11-16T18:41:31.918310",
"exception": false,
"start_time": "2020-11-16T18:41:31.877326",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"data['mod_diatoms_chl']=Chl_N*data['mod_diatoms']\n",
"data['mod_flagellates_chl']=Chl_N*data['mod_flagellates']\n",
"data['mod_ciliates_chl']=Chl_N*data['mod_ciliates']\n",
"data['mod_TChl']=data['mod_diatoms_chl']+data['mod_flagellates_chl']+data['mod_ciliates_chl']\n",
"data['CPH']=data['Cryptophytes']+data['Prasinophytes']+data['Haptophytes']\n",
"data['DD']=data['Diatoms-1']+data['Diatoms-2']\n",
"dfVars=data.loc[:,['Diatoms-1', 'Diatoms-2','Cyanobacteria','Cryptophytes', 'Prasinophytes', \n",
" 'Haptophytes', 'Dictyochophytes','Dinoflagellates','Raphidophytes','DD','CPH','TchlA (ug/L)',\n",
" 'mod_diatoms_chl','mod_flagellates_chl','mod_ciliates_chl','mod_TChl']]"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"papermill": {
"duration": 0.046279,
"end_time": "2020-11-16T18:41:32.187547",
"exception": false,
"start_time": "2020-11-16T18:41:32.141268",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Diatoms-1 | \n",
" Diatoms-2 | \n",
" Cyanobacteria | \n",
" Cryptophytes | \n",
" Prasinophytes | \n",
" Haptophytes | \n",
" Dictyochophytes | \n",
" Dinoflagellates | \n",
" Raphidophytes | \n",
" DD | \n",
" CPH | \n",
" TchlA (ug/L) | \n",
" mod_diatoms_chl | \n",
" mod_flagellates_chl | \n",
" mod_ciliates_chl | \n",
" mod_TChl | \n",
"
\n",
" \n",
" \n",
" \n",
" Diatoms-1 | \n",
" 1.000000 | \n",
" 0.129174 | \n",
" -0.044520 | \n",
" -0.104293 | \n",
" -0.155529 | \n",
" -0.089528 | \n",
" -0.038014 | \n",
" 0.068507 | \n",
" 0.186019 | \n",
" 0.986013 | \n",
" -0.143394 | \n",
" 0.799078 | \n",
" 0.329545 | \n",
" -0.107524 | \n",
" 0.086555 | \n",
" 0.240522 | \n",
"
\n",
" \n",
" Diatoms-2 | \n",
" 0.129174 | \n",
" 1.000000 | \n",
" 0.087055 | \n",
" 0.065789 | \n",
" 0.041872 | \n",
" 0.045439 | \n",
" 0.204256 | \n",
" 0.030159 | \n",
" 0.089479 | \n",
" 0.292639 | \n",
" 0.067138 | \n",
" 0.278908 | \n",
" 0.068727 | \n",
" -0.136186 | \n",
" -0.003254 | \n",
" -0.009364 | \n",
"
\n",
" \n",
" Cyanobacteria | \n",
" -0.044520 | \n",
" 0.087055 | \n",
" 1.000000 | \n",
" 0.455047 | \n",
" 0.673585 | \n",
" 0.265069 | \n",
" 0.134517 | \n",
" 0.111427 | \n",
" 0.471045 | \n",
" -0.028299 | \n",
" 0.565312 | \n",
" 0.323326 | \n",
" -0.064953 | \n",
" 0.271249 | \n",
" 0.028373 | \n",
" 0.083302 | \n",
"
\n",
" \n",
" Cryptophytes | \n",
" -0.104293 | \n",
" 0.065789 | \n",
" 0.455047 | \n",
" 1.000000 | \n",
" 0.629727 | \n",
" 0.330846 | \n",
" 0.059123 | \n",
" 0.105006 | \n",
" 0.151756 | \n",
" -0.089512 | \n",
" 0.850031 | \n",
" 0.145622 | \n",
" 0.107619 | \n",
" 0.283430 | \n",
" 0.018542 | \n",
" 0.238735 | \n",
"
\n",
" \n",
" Prasinophytes | \n",
" -0.155529 | \n",
" 0.041872 | \n",
" 0.673585 | \n",
" 0.629727 | \n",
" 1.000000 | \n",
" 0.273744 | \n",
" 0.115485 | \n",
" 0.043839 | \n",
" 0.193154 | \n",
" -0.142939 | \n",
" 0.760689 | \n",
" 0.115373 | \n",
" -0.114043 | \n",
" 0.288055 | \n",
" -0.032531 | \n",
" 0.043383 | \n",
"
\n",
" \n",
" Haptophytes | \n",
" -0.089528 | \n",
" 0.045439 | \n",
" 0.265069 | \n",
" 0.330846 | \n",
" 0.273744 | \n",
" 1.000000 | \n",
" 0.028364 | \n",
" -0.005455 | \n",
" -0.014300 | \n",
" -0.078695 | \n",
" 0.718854 | \n",
" 0.040637 | \n",
" -0.024129 | \n",
" 0.309359 | \n",
" 0.041182 | \n",
" 0.139303 | \n",
"
\n",
" \n",
" Dictyochophytes | \n",
" -0.038014 | \n",
" 0.204256 | \n",
" 0.134517 | \n",
" 0.059123 | \n",
" 0.115485 | \n",
" 0.028364 | \n",
" 1.000000 | \n",
" 0.070478 | \n",
" 0.073749 | \n",
" -0.002326 | \n",
" 0.079637 | \n",
" 0.084752 | \n",
" -0.061454 | \n",
" 0.083663 | \n",
" -0.033596 | \n",
" -0.014315 | \n",
"
\n",
" \n",
" Dinoflagellates | \n",
" 0.068507 | \n",
" 0.030159 | \n",
" 0.111427 | \n",
" 0.105006 | \n",
" 0.043839 | \n",
" -0.005455 | \n",
" 0.070478 | \n",
" 1.000000 | \n",
" 0.224567 | \n",
" 0.071130 | \n",
" 0.063264 | \n",
" 0.247006 | \n",
" 0.051962 | \n",
" 0.131246 | \n",
" 0.028659 | \n",
" 0.114278 | \n",
"
\n",
" \n",
" Raphidophytes | \n",
" 0.186019 | \n",
" 0.089479 | \n",
" 0.471045 | \n",
" 0.151756 | \n",
" 0.193154 | \n",
" -0.014300 | \n",
" 0.073749 | \n",
" 0.224567 | \n",
" 1.000000 | \n",
" 0.194417 | \n",
" 0.130332 | \n",
" 0.697246 | \n",
" 0.198755 | \n",
" -0.038571 | \n",
" 0.003086 | \n",
" 0.153761 | \n",
"
\n",
" \n",
" DD | \n",
" 0.986013 | \n",
" 0.292639 | \n",
" -0.028299 | \n",
" -0.089512 | \n",
" -0.142939 | \n",
" -0.078695 | \n",
" -0.002326 | \n",
" 0.071130 | \n",
" 0.194417 | \n",
" 1.000000 | \n",
" -0.126991 | \n",
" 0.817431 | \n",
" 0.329332 | \n",
" -0.126575 | \n",
" 0.082919 | \n",
" 0.230362 | \n",
"
\n",
" \n",
" CPH | \n",
" -0.143394 | \n",
" 0.067138 | \n",
" 0.565312 | \n",
" 0.850031 | \n",
" 0.760689 | \n",
" 0.718854 | \n",
" 0.079637 | \n",
" 0.063264 | \n",
" 0.130332 | \n",
" -0.126991 | \n",
" 1.000000 | \n",
" 0.127898 | \n",
" 0.004846 | \n",
" 0.377130 | \n",
" 0.017882 | \n",
" 0.196614 | \n",
"
\n",
" \n",
" TchlA (ug/L) | \n",
" 0.799078 | \n",
" 0.278908 | \n",
" 0.323326 | \n",
" 0.145622 | \n",
" 0.115373 | \n",
" 0.040637 | \n",
" 0.084752 | \n",
" 0.247006 | \n",
" 0.697246 | \n",
" 0.817431 | \n",
" 0.127898 | \n",
" 1.000000 | \n",
" 0.343112 | \n",
" -0.045938 | \n",
" 0.063879 | \n",
" 0.281355 | \n",
"
\n",
" \n",
" mod_diatoms_chl | \n",
" 0.329545 | \n",
" 0.068727 | \n",
" -0.064953 | \n",
" 0.107619 | \n",
" -0.114043 | \n",
" -0.024129 | \n",
" -0.061454 | \n",
" 0.051962 | \n",
" 0.198755 | \n",
" 0.329332 | \n",
" 0.004846 | \n",
" 0.343112 | \n",
" 1.000000 | \n",
" 0.188324 | \n",
" 0.462767 | \n",
" 0.842638 | \n",
"
\n",
" \n",
" mod_flagellates_chl | \n",
" -0.107524 | \n",
" -0.136186 | \n",
" 0.271249 | \n",
" 0.283430 | \n",
" 0.288055 | \n",
" 0.309359 | \n",
" 0.083663 | \n",
" 0.131246 | \n",
" -0.038571 | \n",
" -0.126575 | \n",
" 0.377130 | \n",
" -0.045938 | \n",
" 0.188324 | \n",
" 1.000000 | \n",
" 0.552138 | \n",
" 0.682743 | \n",
"
\n",
" \n",
" mod_ciliates_chl | \n",
" 0.086555 | \n",
" -0.003254 | \n",
" 0.028373 | \n",
" 0.018542 | \n",
" -0.032531 | \n",
" 0.041182 | \n",
" -0.033596 | \n",
" 0.028659 | \n",
" 0.003086 | \n",
" 0.082919 | \n",
" 0.017882 | \n",
" 0.063879 | \n",
" 0.462767 | \n",
" 0.552138 | \n",
" 1.000000 | \n",
" 0.696784 | \n",
"
\n",
" \n",
" mod_TChl | \n",
" 0.240522 | \n",
" -0.009364 | \n",
" 0.083302 | \n",
" 0.238735 | \n",
" 0.043383 | \n",
" 0.139303 | \n",
" -0.014315 | \n",
" 0.114278 | \n",
" 0.153761 | \n",
" 0.230362 | \n",
" 0.196614 | \n",
" 0.281355 | \n",
" 0.842638 | \n",
" 0.682743 | \n",
" 0.696784 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Diatoms-1 Diatoms-2 Cyanobacteria Cryptophytes \\\n",
"Diatoms-1 1.000000 0.129174 -0.044520 -0.104293 \n",
"Diatoms-2 0.129174 1.000000 0.087055 0.065789 \n",
"Cyanobacteria -0.044520 0.087055 1.000000 0.455047 \n",
"Cryptophytes -0.104293 0.065789 0.455047 1.000000 \n",
"Prasinophytes -0.155529 0.041872 0.673585 0.629727 \n",
"Haptophytes -0.089528 0.045439 0.265069 0.330846 \n",
"Dictyochophytes -0.038014 0.204256 0.134517 0.059123 \n",
"Dinoflagellates 0.068507 0.030159 0.111427 0.105006 \n",
"Raphidophytes 0.186019 0.089479 0.471045 0.151756 \n",
"DD 0.986013 0.292639 -0.028299 -0.089512 \n",
"CPH -0.143394 0.067138 0.565312 0.850031 \n",
"TchlA (ug/L) 0.799078 0.278908 0.323326 0.145622 \n",
"mod_diatoms_chl 0.329545 0.068727 -0.064953 0.107619 \n",
"mod_flagellates_chl -0.107524 -0.136186 0.271249 0.283430 \n",
"mod_ciliates_chl 0.086555 -0.003254 0.028373 0.018542 \n",
"mod_TChl 0.240522 -0.009364 0.083302 0.238735 \n",
"\n",
" Prasinophytes Haptophytes Dictyochophytes \\\n",
"Diatoms-1 -0.155529 -0.089528 -0.038014 \n",
"Diatoms-2 0.041872 0.045439 0.204256 \n",
"Cyanobacteria 0.673585 0.265069 0.134517 \n",
"Cryptophytes 0.629727 0.330846 0.059123 \n",
"Prasinophytes 1.000000 0.273744 0.115485 \n",
"Haptophytes 0.273744 1.000000 0.028364 \n",
"Dictyochophytes 0.115485 0.028364 1.000000 \n",
"Dinoflagellates 0.043839 -0.005455 0.070478 \n",
"Raphidophytes 0.193154 -0.014300 0.073749 \n",
"DD -0.142939 -0.078695 -0.002326 \n",
"CPH 0.760689 0.718854 0.079637 \n",
"TchlA (ug/L) 0.115373 0.040637 0.084752 \n",
"mod_diatoms_chl -0.114043 -0.024129 -0.061454 \n",
"mod_flagellates_chl 0.288055 0.309359 0.083663 \n",
"mod_ciliates_chl -0.032531 0.041182 -0.033596 \n",
"mod_TChl 0.043383 0.139303 -0.014315 \n",
"\n",
" Dinoflagellates Raphidophytes DD CPH \\\n",
"Diatoms-1 0.068507 0.186019 0.986013 -0.143394 \n",
"Diatoms-2 0.030159 0.089479 0.292639 0.067138 \n",
"Cyanobacteria 0.111427 0.471045 -0.028299 0.565312 \n",
"Cryptophytes 0.105006 0.151756 -0.089512 0.850031 \n",
"Prasinophytes 0.043839 0.193154 -0.142939 0.760689 \n",
"Haptophytes -0.005455 -0.014300 -0.078695 0.718854 \n",
"Dictyochophytes 0.070478 0.073749 -0.002326 0.079637 \n",
"Dinoflagellates 1.000000 0.224567 0.071130 0.063264 \n",
"Raphidophytes 0.224567 1.000000 0.194417 0.130332 \n",
"DD 0.071130 0.194417 1.000000 -0.126991 \n",
"CPH 0.063264 0.130332 -0.126991 1.000000 \n",
"TchlA (ug/L) 0.247006 0.697246 0.817431 0.127898 \n",
"mod_diatoms_chl 0.051962 0.198755 0.329332 0.004846 \n",
"mod_flagellates_chl 0.131246 -0.038571 -0.126575 0.377130 \n",
"mod_ciliates_chl 0.028659 0.003086 0.082919 0.017882 \n",
"mod_TChl 0.114278 0.153761 0.230362 0.196614 \n",
"\n",
" TchlA (ug/L) mod_diatoms_chl mod_flagellates_chl \\\n",
"Diatoms-1 0.799078 0.329545 -0.107524 \n",
"Diatoms-2 0.278908 0.068727 -0.136186 \n",
"Cyanobacteria 0.323326 -0.064953 0.271249 \n",
"Cryptophytes 0.145622 0.107619 0.283430 \n",
"Prasinophytes 0.115373 -0.114043 0.288055 \n",
"Haptophytes 0.040637 -0.024129 0.309359 \n",
"Dictyochophytes 0.084752 -0.061454 0.083663 \n",
"Dinoflagellates 0.247006 0.051962 0.131246 \n",
"Raphidophytes 0.697246 0.198755 -0.038571 \n",
"DD 0.817431 0.329332 -0.126575 \n",
"CPH 0.127898 0.004846 0.377130 \n",
"TchlA (ug/L) 1.000000 0.343112 -0.045938 \n",
"mod_diatoms_chl 0.343112 1.000000 0.188324 \n",
"mod_flagellates_chl -0.045938 0.188324 1.000000 \n",
"mod_ciliates_chl 0.063879 0.462767 0.552138 \n",
"mod_TChl 0.281355 0.842638 0.682743 \n",
"\n",
" mod_ciliates_chl mod_TChl \n",
"Diatoms-1 0.086555 0.240522 \n",
"Diatoms-2 -0.003254 -0.009364 \n",
"Cyanobacteria 0.028373 0.083302 \n",
"Cryptophytes 0.018542 0.238735 \n",
"Prasinophytes -0.032531 0.043383 \n",
"Haptophytes 0.041182 0.139303 \n",
"Dictyochophytes -0.033596 -0.014315 \n",
"Dinoflagellates 0.028659 0.114278 \n",
"Raphidophytes 0.003086 0.153761 \n",
"DD 0.082919 0.230362 \n",
"CPH 0.017882 0.196614 \n",
"TchlA (ug/L) 0.063879 0.281355 \n",
"mod_diatoms_chl 0.462767 0.842638 \n",
"mod_flagellates_chl 0.552138 0.682743 \n",
"mod_ciliates_chl 1.000000 0.696784 \n",
"mod_TChl 0.696784 1.000000 "
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfVars.corr()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Strongest correlations:\n",
"Model diatoms and:\n",
"- Total chla: 0.343112\n",
"- Diatoms-1: 0.329545\n",
"- Diatoms-1+Diatoms-2: 0.329332\n",
"\n",
"Model flagellates and:\n",
"- crypto+hapto+prasino: 0.377130\n",
"- haptophytes: 0.309359\n",
"- prasinophytes: 0.288055\n",
"- cryptophytes: 0.283430\n",
"- cyanobacteria: 0.271249 (but remember that cyanobacteria abundances are low)"
]
},
{
"cell_type": "markdown",
"metadata": {
"papermill": {
"duration": 0.028561,
"end_time": "2020-11-16T18:41:31.976144",
"exception": false,
"start_time": "2020-11-16T18:41:31.947583",
"status": "completed"
},
"tags": []
},
"source": [
"### Variance-Covariance Matrix"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"papermill": {
"duration": 0.049078,
"end_time": "2020-11-16T18:41:32.054432",
"exception": false,
"start_time": "2020-11-16T18:41:32.005354",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Diatoms-1 | \n",
" Diatoms-2 | \n",
" Cyanobacteria | \n",
" Cryptophytes | \n",
" Prasinophytes | \n",
" Haptophytes | \n",
" Dictyochophytes | \n",
" Dinoflagellates | \n",
" Raphidophytes | \n",
" DD | \n",
" CPH | \n",
" TchlA (ug/L) | \n",
" mod_diatoms_chl | \n",
" mod_flagellates_chl | \n",
" mod_ciliates_chl | \n",
" mod_TChl | \n",
"
\n",
" \n",
" \n",
" \n",
" Diatoms-1 | \n",
" 17.030227 | \n",
" 0.383433 | \n",
" -0.014114 | \n",
" -0.180451 | \n",
" -0.176579 | \n",
" -0.147258 | \n",
" -0.029133 | \n",
" 0.111324 | \n",
" 2.290018 | \n",
" 17.413661 | \n",
" -0.504288 | \n",
" 19.195920 | \n",
" 2.849766 | \n",
" -0.540311 | \n",
" 0.080426 | \n",
" 2.389881 | \n",
"
\n",
" \n",
" Diatoms-2 | \n",
" 0.383433 | \n",
" 0.517381 | \n",
" 0.004810 | \n",
" 0.019841 | \n",
" 0.008286 | \n",
" 0.013027 | \n",
" 0.027284 | \n",
" 0.008542 | \n",
" 0.191999 | \n",
" 0.900814 | \n",
" 0.041154 | \n",
" 1.167819 | \n",
" 0.103589 | \n",
" -0.119279 | \n",
" -0.000527 | \n",
" -0.016217 | \n",
"
\n",
" \n",
" Cyanobacteria | \n",
" -0.014114 | \n",
" 0.004810 | \n",
" 0.005901 | \n",
" 0.014656 | \n",
" 0.014236 | \n",
" 0.008116 | \n",
" 0.001919 | \n",
" 0.003371 | \n",
" 0.107947 | \n",
" -0.009303 | \n",
" 0.037008 | \n",
" 0.144586 | \n",
" -0.010456 | \n",
" 0.025373 | \n",
" 0.000491 | \n",
" 0.015408 | \n",
"
\n",
" \n",
" Cryptophytes | \n",
" -0.180451 | \n",
" 0.019841 | \n",
" 0.014656 | \n",
" 0.175789 | \n",
" 0.072638 | \n",
" 0.055288 | \n",
" 0.004603 | \n",
" 0.017336 | \n",
" 0.189807 | \n",
" -0.160610 | \n",
" 0.303715 | \n",
" 0.355411 | \n",
" 0.094552 | \n",
" 0.144700 | \n",
" 0.001750 | \n",
" 0.241003 | \n",
"
\n",
" \n",
" Prasinophytes | \n",
" -0.176579 | \n",
" 0.008286 | \n",
" 0.014236 | \n",
" 0.072638 | \n",
" 0.075690 | \n",
" 0.030017 | \n",
" 0.005900 | \n",
" 0.004749 | \n",
" 0.158524 | \n",
" -0.168293 | \n",
" 0.178345 | \n",
" 0.184770 | \n",
" -0.065746 | \n",
" 0.096499 | \n",
" -0.002015 | \n",
" 0.028737 | \n",
"
\n",
" \n",
" Haptophytes | \n",
" -0.147258 | \n",
" 0.013027 | \n",
" 0.008116 | \n",
" 0.055288 | \n",
" 0.030017 | \n",
" 0.158861 | \n",
" 0.002099 | \n",
" -0.000856 | \n",
" -0.017002 | \n",
" -0.134231 | \n",
" 0.244167 | \n",
" 0.094285 | \n",
" -0.020153 | \n",
" 0.150141 | \n",
" 0.003696 | \n",
" 0.133684 | \n",
"
\n",
" \n",
" Dictyochophytes | \n",
" -0.029133 | \n",
" 0.027284 | \n",
" 0.001919 | \n",
" 0.004603 | \n",
" 0.005900 | \n",
" 0.002099 | \n",
" 0.034487 | \n",
" 0.005154 | \n",
" 0.040856 | \n",
" -0.001849 | \n",
" 0.012603 | \n",
" 0.091620 | \n",
" -0.023915 | \n",
" 0.018919 | \n",
" -0.001405 | \n",
" -0.006401 | \n",
"
\n",
" \n",
" Dinoflagellates | \n",
" 0.111324 | \n",
" 0.008542 | \n",
" 0.003371 | \n",
" 0.017336 | \n",
" 0.004749 | \n",
" -0.000856 | \n",
" 0.005154 | \n",
" 0.155056 | \n",
" 0.263792 | \n",
" 0.119866 | \n",
" 0.021229 | \n",
" 0.566188 | \n",
" 0.042876 | \n",
" 0.062930 | \n",
" 0.002541 | \n",
" 0.108347 | \n",
"
\n",
" \n",
" Raphidophytes | \n",
" 2.290018 | \n",
" 0.191999 | \n",
" 0.107947 | \n",
" 0.189807 | \n",
" 0.158524 | \n",
" -0.017002 | \n",
" 0.040856 | \n",
" 0.263792 | \n",
" 8.899071 | \n",
" 2.482017 | \n",
" 0.331329 | \n",
" 12.107873 | \n",
" 1.242441 | \n",
" -0.140106 | \n",
" 0.002073 | \n",
" 1.104408 | \n",
"
\n",
" \n",
" DD | \n",
" 17.413661 | \n",
" 0.900814 | \n",
" -0.009303 | \n",
" -0.160610 | \n",
" -0.168293 | \n",
" -0.134231 | \n",
" -0.001849 | \n",
" 0.119866 | \n",
" 2.482017 | \n",
" 18.314475 | \n",
" -0.463135 | \n",
" 20.363739 | \n",
" 2.953355 | \n",
" -0.659590 | \n",
" 0.079900 | \n",
" 2.373664 | \n",
"
\n",
" \n",
" CPH | \n",
" -0.504288 | \n",
" 0.041154 | \n",
" 0.037008 | \n",
" 0.303715 | \n",
" 0.178345 | \n",
" 0.244167 | \n",
" 0.012603 | \n",
" 0.021229 | \n",
" 0.331329 | \n",
" -0.463135 | \n",
" 0.726227 | \n",
" 0.634466 | \n",
" 0.008653 | \n",
" 0.391340 | \n",
" 0.003431 | \n",
" 0.403424 | \n",
"
\n",
" \n",
" TchlA (ug/L) | \n",
" 19.195920 | \n",
" 1.167819 | \n",
" 0.144586 | \n",
" 0.355411 | \n",
" 0.184770 | \n",
" 0.094285 | \n",
" 0.091620 | \n",
" 0.566188 | \n",
" 12.107873 | \n",
" 20.363739 | \n",
" 0.634466 | \n",
" 33.885888 | \n",
" 4.185330 | \n",
" -0.325619 | \n",
" 0.083726 | \n",
" 3.943436 | \n",
"
\n",
" \n",
" mod_diatoms_chl | \n",
" 2.849766 | \n",
" 0.103589 | \n",
" -0.010456 | \n",
" 0.094552 | \n",
" -0.065746 | \n",
" -0.020153 | \n",
" -0.023915 | \n",
" 0.042876 | \n",
" 1.242441 | \n",
" 2.953355 | \n",
" 0.008653 | \n",
" 4.185330 | \n",
" 1.205209 | \n",
" 0.160073 | \n",
" 0.076402 | \n",
" 1.441683 | \n",
"
\n",
" \n",
" mod_flagellates_chl | \n",
" -0.540311 | \n",
" -0.119279 | \n",
" 0.025373 | \n",
" 0.144700 | \n",
" 0.096499 | \n",
" 0.150141 | \n",
" 0.018919 | \n",
" 0.062930 | \n",
" -0.140106 | \n",
" -0.659590 | \n",
" 0.391340 | \n",
" -0.325619 | \n",
" 0.160073 | \n",
" 0.599467 | \n",
" 0.064289 | \n",
" 0.823829 | \n",
"
\n",
" \n",
" mod_ciliates_chl | \n",
" 0.080426 | \n",
" -0.000527 | \n",
" 0.000491 | \n",
" 0.001750 | \n",
" -0.002015 | \n",
" 0.003696 | \n",
" -0.001405 | \n",
" 0.002541 | \n",
" 0.002073 | \n",
" 0.079900 | \n",
" 0.003431 | \n",
" 0.083726 | \n",
" 0.076402 | \n",
" 0.064289 | \n",
" 0.022616 | \n",
" 0.163307 | \n",
"
\n",
" \n",
" mod_TChl | \n",
" 2.389881 | \n",
" -0.016217 | \n",
" 0.015408 | \n",
" 0.241003 | \n",
" 0.028737 | \n",
" 0.133684 | \n",
" -0.006401 | \n",
" 0.108347 | \n",
" 1.104408 | \n",
" 2.373664 | \n",
" 0.403424 | \n",
" 3.943436 | \n",
" 1.441683 | \n",
" 0.823829 | \n",
" 0.163307 | \n",
" 2.428820 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Diatoms-1 Diatoms-2 Cyanobacteria Cryptophytes \\\n",
"Diatoms-1 17.030227 0.383433 -0.014114 -0.180451 \n",
"Diatoms-2 0.383433 0.517381 0.004810 0.019841 \n",
"Cyanobacteria -0.014114 0.004810 0.005901 0.014656 \n",
"Cryptophytes -0.180451 0.019841 0.014656 0.175789 \n",
"Prasinophytes -0.176579 0.008286 0.014236 0.072638 \n",
"Haptophytes -0.147258 0.013027 0.008116 0.055288 \n",
"Dictyochophytes -0.029133 0.027284 0.001919 0.004603 \n",
"Dinoflagellates 0.111324 0.008542 0.003371 0.017336 \n",
"Raphidophytes 2.290018 0.191999 0.107947 0.189807 \n",
"DD 17.413661 0.900814 -0.009303 -0.160610 \n",
"CPH -0.504288 0.041154 0.037008 0.303715 \n",
"TchlA (ug/L) 19.195920 1.167819 0.144586 0.355411 \n",
"mod_diatoms_chl 2.849766 0.103589 -0.010456 0.094552 \n",
"mod_flagellates_chl -0.540311 -0.119279 0.025373 0.144700 \n",
"mod_ciliates_chl 0.080426 -0.000527 0.000491 0.001750 \n",
"mod_TChl 2.389881 -0.016217 0.015408 0.241003 \n",
"\n",
" Prasinophytes Haptophytes Dictyochophytes \\\n",
"Diatoms-1 -0.176579 -0.147258 -0.029133 \n",
"Diatoms-2 0.008286 0.013027 0.027284 \n",
"Cyanobacteria 0.014236 0.008116 0.001919 \n",
"Cryptophytes 0.072638 0.055288 0.004603 \n",
"Prasinophytes 0.075690 0.030017 0.005900 \n",
"Haptophytes 0.030017 0.158861 0.002099 \n",
"Dictyochophytes 0.005900 0.002099 0.034487 \n",
"Dinoflagellates 0.004749 -0.000856 0.005154 \n",
"Raphidophytes 0.158524 -0.017002 0.040856 \n",
"DD -0.168293 -0.134231 -0.001849 \n",
"CPH 0.178345 0.244167 0.012603 \n",
"TchlA (ug/L) 0.184770 0.094285 0.091620 \n",
"mod_diatoms_chl -0.065746 -0.020153 -0.023915 \n",
"mod_flagellates_chl 0.096499 0.150141 0.018919 \n",
"mod_ciliates_chl -0.002015 0.003696 -0.001405 \n",
"mod_TChl 0.028737 0.133684 -0.006401 \n",
"\n",
" Dinoflagellates Raphidophytes DD CPH \\\n",
"Diatoms-1 0.111324 2.290018 17.413661 -0.504288 \n",
"Diatoms-2 0.008542 0.191999 0.900814 0.041154 \n",
"Cyanobacteria 0.003371 0.107947 -0.009303 0.037008 \n",
"Cryptophytes 0.017336 0.189807 -0.160610 0.303715 \n",
"Prasinophytes 0.004749 0.158524 -0.168293 0.178345 \n",
"Haptophytes -0.000856 -0.017002 -0.134231 0.244167 \n",
"Dictyochophytes 0.005154 0.040856 -0.001849 0.012603 \n",
"Dinoflagellates 0.155056 0.263792 0.119866 0.021229 \n",
"Raphidophytes 0.263792 8.899071 2.482017 0.331329 \n",
"DD 0.119866 2.482017 18.314475 -0.463135 \n",
"CPH 0.021229 0.331329 -0.463135 0.726227 \n",
"TchlA (ug/L) 0.566188 12.107873 20.363739 0.634466 \n",
"mod_diatoms_chl 0.042876 1.242441 2.953355 0.008653 \n",
"mod_flagellates_chl 0.062930 -0.140106 -0.659590 0.391340 \n",
"mod_ciliates_chl 0.002541 0.002073 0.079900 0.003431 \n",
"mod_TChl 0.108347 1.104408 2.373664 0.403424 \n",
"\n",
" TchlA (ug/L) mod_diatoms_chl mod_flagellates_chl \\\n",
"Diatoms-1 19.195920 2.849766 -0.540311 \n",
"Diatoms-2 1.167819 0.103589 -0.119279 \n",
"Cyanobacteria 0.144586 -0.010456 0.025373 \n",
"Cryptophytes 0.355411 0.094552 0.144700 \n",
"Prasinophytes 0.184770 -0.065746 0.096499 \n",
"Haptophytes 0.094285 -0.020153 0.150141 \n",
"Dictyochophytes 0.091620 -0.023915 0.018919 \n",
"Dinoflagellates 0.566188 0.042876 0.062930 \n",
"Raphidophytes 12.107873 1.242441 -0.140106 \n",
"DD 20.363739 2.953355 -0.659590 \n",
"CPH 0.634466 0.008653 0.391340 \n",
"TchlA (ug/L) 33.885888 4.185330 -0.325619 \n",
"mod_diatoms_chl 4.185330 1.205209 0.160073 \n",
"mod_flagellates_chl -0.325619 0.160073 0.599467 \n",
"mod_ciliates_chl 0.083726 0.076402 0.064289 \n",
"mod_TChl 3.943436 1.441683 0.823829 \n",
"\n",
" mod_ciliates_chl mod_TChl \n",
"Diatoms-1 0.080426 2.389881 \n",
"Diatoms-2 -0.000527 -0.016217 \n",
"Cyanobacteria 0.000491 0.015408 \n",
"Cryptophytes 0.001750 0.241003 \n",
"Prasinophytes -0.002015 0.028737 \n",
"Haptophytes 0.003696 0.133684 \n",
"Dictyochophytes -0.001405 -0.006401 \n",
"Dinoflagellates 0.002541 0.108347 \n",
"Raphidophytes 0.002073 1.104408 \n",
"DD 0.079900 2.373664 \n",
"CPH 0.003431 0.403424 \n",
"TchlA (ug/L) 0.083726 3.943436 \n",
"mod_diatoms_chl 0.076402 1.441683 \n",
"mod_flagellates_chl 0.064289 0.823829 \n",
"mod_ciliates_chl 0.022616 0.163307 \n",
"mod_TChl 0.163307 2.428820 "
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfVars.cov()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### largest covariances:\n",
"Model diatoms and:\n",
"- TChlA: 4.185330\n",
"- Diatoms-1+Diatoms-2: 2.953355\n",
"- Diatoms-1: 2.849766\n",
"- Raphidophytes: 1.242441\n",
"\n",
"Model flagellates and:\n",
"- crypto+hapto+prasino: 0.391340\n",
"- haptophytes: 0.150141\n",
"- cryptophytes: 0.144700"
]
},
{
"cell_type": "markdown",
"metadata": {
"papermill": {
"duration": 0.030535,
"end_time": "2020-11-16T18:41:32.395616",
"exception": false,
"start_time": "2020-11-16T18:41:32.365081",
"status": "completed"
},
"tags": []
},
"source": [
"### Corr Coeff matrix with log transformed values:"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"papermill": {
"duration": 0.047132,
"end_time": "2020-11-16T18:41:32.473848",
"exception": false,
"start_time": "2020-11-16T18:41:32.426716",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Diatoms-1 | \n",
" Diatoms-2 | \n",
" Cyanobacteria | \n",
" Cryptophytes | \n",
" Prasinophytes | \n",
" Haptophytes | \n",
" Dictyochophytes | \n",
" Dinoflagellates | \n",
" Raphidophytes | \n",
" CPH | \n",
" TchlA (ug/L) | \n",
" mod_diatoms_chl | \n",
" mod_flagellates_chl | \n",
" mod_ciliates_chl | \n",
" mod_TChl | \n",
"
\n",
" \n",
" \n",
" \n",
" Diatoms-1 | \n",
" 1.000000 | \n",
" 0.158963 | \n",
" -0.183906 | \n",
" -0.200691 | \n",
" -0.330748 | \n",
" -0.178564 | \n",
" -0.022753 | \n",
" 0.257098 | \n",
" -0.044532 | \n",
" -0.240631 | \n",
" 0.620741 | \n",
" 0.381332 | \n",
" -0.121685 | \n",
" 0.098088 | \n",
" 0.158253 | \n",
"
\n",
" \n",
" Diatoms-2 | \n",
" 0.158963 | \n",
" 1.000000 | \n",
" -0.070727 | \n",
" -0.017724 | \n",
" -0.081120 | \n",
" -0.206987 | \n",
" 0.260879 | \n",
" 0.110120 | \n",
" -0.069205 | \n",
" -0.095680 | \n",
" 0.117311 | \n",
" -0.054775 | \n",
" -0.295843 | \n",
" -0.045642 | \n",
" -0.179840 | \n",
"
\n",
" \n",
" Cyanobacteria | \n",
" -0.183906 | \n",
" -0.070727 | \n",
" 1.000000 | \n",
" 0.308677 | \n",
" 0.391266 | \n",
" 0.322685 | \n",
" 0.341206 | \n",
" 0.001006 | \n",
" 0.323720 | \n",
" 0.387215 | \n",
" 0.114417 | \n",
" -0.177385 | \n",
" 0.423884 | \n",
" 0.162395 | \n",
" 0.141110 | \n",
"
\n",
" \n",
" Cryptophytes | \n",
" -0.200691 | \n",
" -0.017724 | \n",
" 0.308677 | \n",
" 1.000000 | \n",
" 0.705089 | \n",
" 0.328445 | \n",
" 0.337350 | \n",
" 0.256664 | \n",
" 0.383761 | \n",
" 0.872284 | \n",
" 0.077971 | \n",
" -0.057914 | \n",
" 0.290401 | \n",
" 0.036045 | \n",
" 0.120324 | \n",
"
\n",
" \n",
" Prasinophytes | \n",
" -0.330748 | \n",
" -0.081120 | \n",
" 0.391266 | \n",
" 0.705089 | \n",
" 1.000000 | \n",
" 0.299601 | \n",
" 0.401870 | \n",
" 0.140807 | \n",
" 0.462423 | \n",
" 0.698793 | \n",
" -0.023818 | \n",
" -0.289977 | \n",
" 0.340049 | \n",
" 0.021557 | \n",
" 0.023916 | \n",
"
\n",
" \n",
" Haptophytes | \n",
" -0.178564 | \n",
" -0.206987 | \n",
" 0.322685 | \n",
" 0.328445 | \n",
" 0.299601 | \n",
" 1.000000 | \n",
" 0.204290 | \n",
" 0.047297 | \n",
" 0.189056 | \n",
" 0.576696 | \n",
" 0.063931 | \n",
" -0.102367 | \n",
" 0.250856 | \n",
" 0.062734 | \n",
" 0.100466 | \n",
"
\n",
" \n",
" Dictyochophytes | \n",
" -0.022753 | \n",
" 0.260879 | \n",
" 0.341206 | \n",
" 0.337350 | \n",
" 0.401870 | \n",
" 0.204290 | \n",
" 1.000000 | \n",
" 0.267118 | \n",
" 0.337107 | \n",
" 0.328808 | \n",
" 0.131390 | \n",
" -0.229019 | \n",
" 0.120689 | \n",
" -0.086112 | \n",
" -0.078591 | \n",
"
\n",
" \n",
" Dinoflagellates | \n",
" 0.257098 | \n",
" 0.110120 | \n",
" 0.001006 | \n",
" 0.256664 | \n",
" 0.140807 | \n",
" 0.047297 | \n",
" 0.267118 | \n",
" 1.000000 | \n",
" 0.354625 | \n",
" 0.246911 | \n",
" 0.416244 | \n",
" 0.176141 | \n",
" 0.109616 | \n",
" 0.039243 | \n",
" 0.135781 | \n",
"
\n",
" \n",
" Raphidophytes | \n",
" -0.044532 | \n",
" -0.069205 | \n",
" 0.323720 | \n",
" 0.383761 | \n",
" 0.462423 | \n",
" 0.189056 | \n",
" 0.337107 | \n",
" 0.354625 | \n",
" 1.000000 | \n",
" 0.370869 | \n",
" 0.227029 | \n",
" -0.102750 | \n",
" 0.287205 | \n",
" 0.039728 | \n",
" 0.080884 | \n",
"
\n",
" \n",
" CPH | \n",
" -0.240631 | \n",
" -0.095680 | \n",
" 0.387215 | \n",
" 0.872284 | \n",
" 0.698793 | \n",
" 0.576696 | \n",
" 0.328808 | \n",
" 0.246911 | \n",
" 0.370869 | \n",
" 1.000000 | \n",
" 0.125576 | \n",
" -0.084175 | \n",
" 0.324159 | \n",
" 0.059914 | \n",
" 0.130502 | \n",
"
\n",
" \n",
" TchlA (ug/L) | \n",
" 0.620741 | \n",
" 0.117311 | \n",
" 0.114417 | \n",
" 0.077971 | \n",
" -0.023818 | \n",
" 0.063931 | \n",
" 0.131390 | \n",
" 0.416244 | \n",
" 0.227029 | \n",
" 0.125576 | \n",
" 1.000000 | \n",
" 0.405982 | \n",
" 0.160721 | \n",
" 0.208456 | \n",
" 0.367118 | \n",
"
\n",
" \n",
" mod_diatoms_chl | \n",
" 0.381332 | \n",
" -0.054775 | \n",
" -0.177385 | \n",
" -0.057914 | \n",
" -0.289977 | \n",
" -0.102367 | \n",
" -0.229019 | \n",
" 0.176141 | \n",
" -0.102750 | \n",
" -0.084175 | \n",
" 0.405982 | \n",
" 1.000000 | \n",
" 0.674353 | \n",
" 0.749027 | \n",
" 0.831184 | \n",
"
\n",
" \n",
" mod_flagellates_chl | \n",
" -0.121685 | \n",
" -0.295843 | \n",
" 0.423884 | \n",
" 0.290401 | \n",
" 0.340049 | \n",
" 0.250856 | \n",
" 0.120689 | \n",
" 0.109616 | \n",
" 0.287205 | \n",
" 0.324159 | \n",
" 0.160721 | \n",
" 0.674353 | \n",
" 1.000000 | \n",
" 0.914387 | \n",
" 0.947829 | \n",
"
\n",
" \n",
" mod_ciliates_chl | \n",
" 0.098088 | \n",
" -0.045642 | \n",
" 0.162395 | \n",
" 0.036045 | \n",
" 0.021557 | \n",
" 0.062734 | \n",
" -0.086112 | \n",
" 0.039243 | \n",
" 0.039728 | \n",
" 0.059914 | \n",
" 0.208456 | \n",
" 0.749027 | \n",
" 0.914387 | \n",
" 1.000000 | \n",
" 0.959662 | \n",
"
\n",
" \n",
" mod_TChl | \n",
" 0.158253 | \n",
" -0.179840 | \n",
" 0.141110 | \n",
" 0.120324 | \n",
" 0.023916 | \n",
" 0.100466 | \n",
" -0.078591 | \n",
" 0.135781 | \n",
" 0.080884 | \n",
" 0.130502 | \n",
" 0.367118 | \n",
" 0.831184 | \n",
" 0.947829 | \n",
" 0.959662 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Diatoms-1 Diatoms-2 Cyanobacteria Cryptophytes \\\n",
"Diatoms-1 1.000000 0.158963 -0.183906 -0.200691 \n",
"Diatoms-2 0.158963 1.000000 -0.070727 -0.017724 \n",
"Cyanobacteria -0.183906 -0.070727 1.000000 0.308677 \n",
"Cryptophytes -0.200691 -0.017724 0.308677 1.000000 \n",
"Prasinophytes -0.330748 -0.081120 0.391266 0.705089 \n",
"Haptophytes -0.178564 -0.206987 0.322685 0.328445 \n",
"Dictyochophytes -0.022753 0.260879 0.341206 0.337350 \n",
"Dinoflagellates 0.257098 0.110120 0.001006 0.256664 \n",
"Raphidophytes -0.044532 -0.069205 0.323720 0.383761 \n",
"CPH -0.240631 -0.095680 0.387215 0.872284 \n",
"TchlA (ug/L) 0.620741 0.117311 0.114417 0.077971 \n",
"mod_diatoms_chl 0.381332 -0.054775 -0.177385 -0.057914 \n",
"mod_flagellates_chl -0.121685 -0.295843 0.423884 0.290401 \n",
"mod_ciliates_chl 0.098088 -0.045642 0.162395 0.036045 \n",
"mod_TChl 0.158253 -0.179840 0.141110 0.120324 \n",
"\n",
" Prasinophytes Haptophytes Dictyochophytes \\\n",
"Diatoms-1 -0.330748 -0.178564 -0.022753 \n",
"Diatoms-2 -0.081120 -0.206987 0.260879 \n",
"Cyanobacteria 0.391266 0.322685 0.341206 \n",
"Cryptophytes 0.705089 0.328445 0.337350 \n",
"Prasinophytes 1.000000 0.299601 0.401870 \n",
"Haptophytes 0.299601 1.000000 0.204290 \n",
"Dictyochophytes 0.401870 0.204290 1.000000 \n",
"Dinoflagellates 0.140807 0.047297 0.267118 \n",
"Raphidophytes 0.462423 0.189056 0.337107 \n",
"CPH 0.698793 0.576696 0.328808 \n",
"TchlA (ug/L) -0.023818 0.063931 0.131390 \n",
"mod_diatoms_chl -0.289977 -0.102367 -0.229019 \n",
"mod_flagellates_chl 0.340049 0.250856 0.120689 \n",
"mod_ciliates_chl 0.021557 0.062734 -0.086112 \n",
"mod_TChl 0.023916 0.100466 -0.078591 \n",
"\n",
" Dinoflagellates Raphidophytes CPH TchlA (ug/L) \\\n",
"Diatoms-1 0.257098 -0.044532 -0.240631 0.620741 \n",
"Diatoms-2 0.110120 -0.069205 -0.095680 0.117311 \n",
"Cyanobacteria 0.001006 0.323720 0.387215 0.114417 \n",
"Cryptophytes 0.256664 0.383761 0.872284 0.077971 \n",
"Prasinophytes 0.140807 0.462423 0.698793 -0.023818 \n",
"Haptophytes 0.047297 0.189056 0.576696 0.063931 \n",
"Dictyochophytes 0.267118 0.337107 0.328808 0.131390 \n",
"Dinoflagellates 1.000000 0.354625 0.246911 0.416244 \n",
"Raphidophytes 0.354625 1.000000 0.370869 0.227029 \n",
"CPH 0.246911 0.370869 1.000000 0.125576 \n",
"TchlA (ug/L) 0.416244 0.227029 0.125576 1.000000 \n",
"mod_diatoms_chl 0.176141 -0.102750 -0.084175 0.405982 \n",
"mod_flagellates_chl 0.109616 0.287205 0.324159 0.160721 \n",
"mod_ciliates_chl 0.039243 0.039728 0.059914 0.208456 \n",
"mod_TChl 0.135781 0.080884 0.130502 0.367118 \n",
"\n",
" mod_diatoms_chl mod_flagellates_chl mod_ciliates_chl \\\n",
"Diatoms-1 0.381332 -0.121685 0.098088 \n",
"Diatoms-2 -0.054775 -0.295843 -0.045642 \n",
"Cyanobacteria -0.177385 0.423884 0.162395 \n",
"Cryptophytes -0.057914 0.290401 0.036045 \n",
"Prasinophytes -0.289977 0.340049 0.021557 \n",
"Haptophytes -0.102367 0.250856 0.062734 \n",
"Dictyochophytes -0.229019 0.120689 -0.086112 \n",
"Dinoflagellates 0.176141 0.109616 0.039243 \n",
"Raphidophytes -0.102750 0.287205 0.039728 \n",
"CPH -0.084175 0.324159 0.059914 \n",
"TchlA (ug/L) 0.405982 0.160721 0.208456 \n",
"mod_diatoms_chl 1.000000 0.674353 0.749027 \n",
"mod_flagellates_chl 0.674353 1.000000 0.914387 \n",
"mod_ciliates_chl 0.749027 0.914387 1.000000 \n",
"mod_TChl 0.831184 0.947829 0.959662 \n",
"\n",
" mod_TChl \n",
"Diatoms-1 0.158253 \n",
"Diatoms-2 -0.179840 \n",
"Cyanobacteria 0.141110 \n",
"Cryptophytes 0.120324 \n",
"Prasinophytes 0.023916 \n",
"Haptophytes 0.100466 \n",
"Dictyochophytes -0.078591 \n",
"Dinoflagellates 0.135781 \n",
"Raphidophytes 0.080884 \n",
"CPH 0.130502 \n",
"TchlA (ug/L) 0.367118 \n",
"mod_diatoms_chl 0.831184 \n",
"mod_flagellates_chl 0.947829 \n",
"mod_ciliates_chl 0.959662 \n",
"mod_TChl 1.000000 "
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dflog=pd.DataFrame()\n",
"for el in ['Diatoms-1', 'Diatoms-2','Cyanobacteria','Cryptophytes', 'Prasinophytes', \n",
" 'Haptophytes', 'Dictyochophytes','Dinoflagellates','Raphidophytes','CPH','TchlA (ug/L)',\n",
" 'mod_diatoms_chl','mod_flagellates_chl','mod_ciliates_chl','mod_TChl']:\n",
" dflog[el]=logt(data[el])\n",
"dflog.corr()"
]
},
{
"cell_type": "markdown",
"metadata": {
"papermill": {
"duration": 0.030079,
"end_time": "2020-11-16T18:41:32.247688",
"exception": false,
"start_time": "2020-11-16T18:41:32.217609",
"status": "completed"
},
"tags": []
},
"source": [
"### Cov matrix with log transformed values:"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"papermill": {
"duration": 0.056303,
"end_time": "2020-11-16T18:41:32.334217",
"exception": false,
"start_time": "2020-11-16T18:41:32.277914",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Diatoms-1 | \n",
" Diatoms-2 | \n",
" Cyanobacteria | \n",
" Cryptophytes | \n",
" Prasinophytes | \n",
" Haptophytes | \n",
" Dictyochophytes | \n",
" Dinoflagellates | \n",
" Raphidophytes | \n",
" CPH | \n",
" TchlA (ug/L) | \n",
" mod_diatoms_chl | \n",
" mod_flagellates_chl | \n",
" mod_ciliates_chl | \n",
" mod_TChl | \n",
"
\n",
" \n",
" \n",
" \n",
" Diatoms-1 | \n",
" 1.707049 | \n",
" 0.223426 | \n",
" -0.191222 | \n",
" -0.156507 | \n",
" -0.337293 | \n",
" -0.224417 | \n",
" -0.022976 | \n",
" 0.263191 | \n",
" -0.054699 | \n",
" -0.169667 | \n",
" 0.364806 | \n",
" 0.476603 | \n",
" -0.084867 | \n",
" 0.038920 | \n",
" 0.104432 | \n",
"
\n",
" \n",
" Diatoms-2 | \n",
" 0.223426 | \n",
" 1.157251 | \n",
" -0.060550 | \n",
" -0.011380 | \n",
" -0.068113 | \n",
" -0.214188 | \n",
" 0.216906 | \n",
" 0.092818 | \n",
" -0.069990 | \n",
" -0.055547 | \n",
" 0.056765 | \n",
" -0.056367 | \n",
" -0.169885 | \n",
" -0.014911 | \n",
" -0.097714 | \n",
"
\n",
" \n",
" Cyanobacteria | \n",
" -0.191222 | \n",
" -0.060550 | \n",
" 0.633347 | \n",
" 0.146625 | \n",
" 0.243042 | \n",
" 0.247024 | \n",
" 0.209872 | \n",
" 0.000628 | \n",
" 0.242199 | \n",
" 0.166302 | \n",
" 0.040958 | \n",
" -0.135042 | \n",
" 0.180073 | \n",
" 0.039249 | \n",
" 0.056720 | \n",
"
\n",
" \n",
" Cryptophytes | \n",
" -0.156507 | \n",
" -0.011380 | \n",
" 0.146625 | \n",
" 0.356259 | \n",
" 0.328485 | \n",
" 0.188575 | \n",
" 0.155626 | \n",
" 0.120032 | \n",
" 0.215341 | \n",
" 0.280974 | \n",
" 0.020934 | \n",
" -0.033067 | \n",
" 0.092525 | \n",
" 0.006534 | \n",
" 0.036274 | \n",
"
\n",
" \n",
" Prasinophytes | \n",
" -0.337293 | \n",
" -0.068113 | \n",
" 0.243042 | \n",
" 0.328485 | \n",
" 0.609223 | \n",
" 0.224942 | \n",
" 0.242433 | \n",
" 0.086112 | \n",
" 0.339321 | \n",
" 0.294348 | \n",
" -0.008362 | \n",
" -0.216512 | \n",
" 0.141680 | \n",
" 0.005110 | \n",
" 0.009428 | \n",
"
\n",
" \n",
" Haptophytes | \n",
" -0.224417 | \n",
" -0.214188 | \n",
" 0.247024 | \n",
" 0.188575 | \n",
" 0.224942 | \n",
" 0.925289 | \n",
" 0.151881 | \n",
" 0.035647 | \n",
" 0.170967 | \n",
" 0.299372 | \n",
" 0.027662 | \n",
" -0.094195 | \n",
" 0.128808 | \n",
" 0.018326 | \n",
" 0.048811 | \n",
"
\n",
" \n",
" Dictyochophytes | \n",
" -0.022976 | \n",
" 0.216906 | \n",
" 0.209872 | \n",
" 0.155626 | \n",
" 0.242433 | \n",
" 0.151881 | \n",
" 0.597360 | \n",
" 0.161760 | \n",
" 0.244945 | \n",
" 0.137147 | \n",
" 0.045678 | \n",
" -0.169324 | \n",
" 0.049793 | \n",
" -0.020213 | \n",
" -0.030679 | \n",
"
\n",
" \n",
" Dinoflagellates | \n",
" 0.263191 | \n",
" 0.092818 | \n",
" 0.000628 | \n",
" 0.120032 | \n",
" 0.086112 | \n",
" 0.035647 | \n",
" 0.161760 | \n",
" 0.613904 | \n",
" 0.261217 | \n",
" 0.104403 | \n",
" 0.146699 | \n",
" 0.132020 | \n",
" 0.045846 | \n",
" 0.009338 | \n",
" 0.053734 | \n",
"
\n",
" \n",
" Raphidophytes | \n",
" -0.054699 | \n",
" -0.069990 | \n",
" 0.242199 | \n",
" 0.215341 | \n",
" 0.339321 | \n",
" 0.170967 | \n",
" 0.244945 | \n",
" 0.261217 | \n",
" 0.883823 | \n",
" 0.188160 | \n",
" 0.096005 | \n",
" -0.092404 | \n",
" 0.144130 | \n",
" 0.011343 | \n",
" 0.038407 | \n",
"
\n",
" \n",
" CPH | \n",
" -0.169667 | \n",
" -0.055547 | \n",
" 0.166302 | \n",
" 0.280974 | \n",
" 0.294348 | \n",
" 0.299372 | \n",
" 0.137147 | \n",
" 0.104403 | \n",
" 0.188160 | \n",
" 0.291239 | \n",
" 0.030483 | \n",
" -0.043455 | \n",
" 0.093382 | \n",
" 0.009820 | \n",
" 0.035571 | \n",
"
\n",
" \n",
" TchlA (ug/L) | \n",
" 0.364806 | \n",
" 0.056765 | \n",
" 0.040958 | \n",
" 0.020934 | \n",
" -0.008362 | \n",
" 0.027662 | \n",
" 0.045678 | \n",
" 0.146699 | \n",
" 0.096005 | \n",
" 0.030483 | \n",
" 0.202329 | \n",
" 0.174689 | \n",
" 0.038590 | \n",
" 0.028476 | \n",
" 0.083405 | \n",
"
\n",
" \n",
" mod_diatoms_chl | \n",
" 0.476603 | \n",
" -0.056367 | \n",
" -0.135042 | \n",
" -0.033067 | \n",
" -0.216512 | \n",
" -0.094195 | \n",
" -0.169324 | \n",
" 0.132020 | \n",
" -0.092404 | \n",
" -0.043455 | \n",
" 0.174689 | \n",
" 0.996790 | \n",
" 0.547935 | \n",
" 0.528631 | \n",
" 0.718548 | \n",
"
\n",
" \n",
" mod_flagellates_chl | \n",
" -0.084867 | \n",
" -0.169885 | \n",
" 0.180073 | \n",
" 0.092525 | \n",
" 0.141680 | \n",
" 0.128808 | \n",
" 0.049793 | \n",
" 0.045846 | \n",
" 0.144130 | \n",
" 0.093382 | \n",
" 0.038590 | \n",
" 0.547935 | \n",
" 0.662337 | \n",
" 0.526045 | \n",
" 0.667923 | \n",
"
\n",
" \n",
" mod_ciliates_chl | \n",
" 0.038920 | \n",
" -0.014911 | \n",
" 0.039249 | \n",
" 0.006534 | \n",
" 0.005110 | \n",
" 0.018326 | \n",
" -0.020213 | \n",
" 0.009338 | \n",
" 0.011343 | \n",
" 0.009820 | \n",
" 0.028476 | \n",
" 0.528631 | \n",
" 0.526045 | \n",
" 0.499697 | \n",
" 0.587392 | \n",
"
\n",
" \n",
" mod_TChl | \n",
" 0.104432 | \n",
" -0.097714 | \n",
" 0.056720 | \n",
" 0.036274 | \n",
" 0.009428 | \n",
" 0.048811 | \n",
" -0.030679 | \n",
" 0.053734 | \n",
" 0.038407 | \n",
" 0.035571 | \n",
" 0.083405 | \n",
" 0.718548 | \n",
" 0.667923 | \n",
" 0.587392 | \n",
" 0.749744 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Diatoms-1 Diatoms-2 Cyanobacteria Cryptophytes \\\n",
"Diatoms-1 1.707049 0.223426 -0.191222 -0.156507 \n",
"Diatoms-2 0.223426 1.157251 -0.060550 -0.011380 \n",
"Cyanobacteria -0.191222 -0.060550 0.633347 0.146625 \n",
"Cryptophytes -0.156507 -0.011380 0.146625 0.356259 \n",
"Prasinophytes -0.337293 -0.068113 0.243042 0.328485 \n",
"Haptophytes -0.224417 -0.214188 0.247024 0.188575 \n",
"Dictyochophytes -0.022976 0.216906 0.209872 0.155626 \n",
"Dinoflagellates 0.263191 0.092818 0.000628 0.120032 \n",
"Raphidophytes -0.054699 -0.069990 0.242199 0.215341 \n",
"CPH -0.169667 -0.055547 0.166302 0.280974 \n",
"TchlA (ug/L) 0.364806 0.056765 0.040958 0.020934 \n",
"mod_diatoms_chl 0.476603 -0.056367 -0.135042 -0.033067 \n",
"mod_flagellates_chl -0.084867 -0.169885 0.180073 0.092525 \n",
"mod_ciliates_chl 0.038920 -0.014911 0.039249 0.006534 \n",
"mod_TChl 0.104432 -0.097714 0.056720 0.036274 \n",
"\n",
" Prasinophytes Haptophytes Dictyochophytes \\\n",
"Diatoms-1 -0.337293 -0.224417 -0.022976 \n",
"Diatoms-2 -0.068113 -0.214188 0.216906 \n",
"Cyanobacteria 0.243042 0.247024 0.209872 \n",
"Cryptophytes 0.328485 0.188575 0.155626 \n",
"Prasinophytes 0.609223 0.224942 0.242433 \n",
"Haptophytes 0.224942 0.925289 0.151881 \n",
"Dictyochophytes 0.242433 0.151881 0.597360 \n",
"Dinoflagellates 0.086112 0.035647 0.161760 \n",
"Raphidophytes 0.339321 0.170967 0.244945 \n",
"CPH 0.294348 0.299372 0.137147 \n",
"TchlA (ug/L) -0.008362 0.027662 0.045678 \n",
"mod_diatoms_chl -0.216512 -0.094195 -0.169324 \n",
"mod_flagellates_chl 0.141680 0.128808 0.049793 \n",
"mod_ciliates_chl 0.005110 0.018326 -0.020213 \n",
"mod_TChl 0.009428 0.048811 -0.030679 \n",
"\n",
" Dinoflagellates Raphidophytes CPH TchlA (ug/L) \\\n",
"Diatoms-1 0.263191 -0.054699 -0.169667 0.364806 \n",
"Diatoms-2 0.092818 -0.069990 -0.055547 0.056765 \n",
"Cyanobacteria 0.000628 0.242199 0.166302 0.040958 \n",
"Cryptophytes 0.120032 0.215341 0.280974 0.020934 \n",
"Prasinophytes 0.086112 0.339321 0.294348 -0.008362 \n",
"Haptophytes 0.035647 0.170967 0.299372 0.027662 \n",
"Dictyochophytes 0.161760 0.244945 0.137147 0.045678 \n",
"Dinoflagellates 0.613904 0.261217 0.104403 0.146699 \n",
"Raphidophytes 0.261217 0.883823 0.188160 0.096005 \n",
"CPH 0.104403 0.188160 0.291239 0.030483 \n",
"TchlA (ug/L) 0.146699 0.096005 0.030483 0.202329 \n",
"mod_diatoms_chl 0.132020 -0.092404 -0.043455 0.174689 \n",
"mod_flagellates_chl 0.045846 0.144130 0.093382 0.038590 \n",
"mod_ciliates_chl 0.009338 0.011343 0.009820 0.028476 \n",
"mod_TChl 0.053734 0.038407 0.035571 0.083405 \n",
"\n",
" mod_diatoms_chl mod_flagellates_chl mod_ciliates_chl \\\n",
"Diatoms-1 0.476603 -0.084867 0.038920 \n",
"Diatoms-2 -0.056367 -0.169885 -0.014911 \n",
"Cyanobacteria -0.135042 0.180073 0.039249 \n",
"Cryptophytes -0.033067 0.092525 0.006534 \n",
"Prasinophytes -0.216512 0.141680 0.005110 \n",
"Haptophytes -0.094195 0.128808 0.018326 \n",
"Dictyochophytes -0.169324 0.049793 -0.020213 \n",
"Dinoflagellates 0.132020 0.045846 0.009338 \n",
"Raphidophytes -0.092404 0.144130 0.011343 \n",
"CPH -0.043455 0.093382 0.009820 \n",
"TchlA (ug/L) 0.174689 0.038590 0.028476 \n",
"mod_diatoms_chl 0.996790 0.547935 0.528631 \n",
"mod_flagellates_chl 0.547935 0.662337 0.526045 \n",
"mod_ciliates_chl 0.528631 0.526045 0.499697 \n",
"mod_TChl 0.718548 0.667923 0.587392 \n",
"\n",
" mod_TChl \n",
"Diatoms-1 0.104432 \n",
"Diatoms-2 -0.097714 \n",
"Cyanobacteria 0.056720 \n",
"Cryptophytes 0.036274 \n",
"Prasinophytes 0.009428 \n",
"Haptophytes 0.048811 \n",
"Dictyochophytes -0.030679 \n",
"Dinoflagellates 0.053734 \n",
"Raphidophytes 0.038407 \n",
"CPH 0.035571 \n",
"TchlA (ug/L) 0.083405 \n",
"mod_diatoms_chl 0.718548 \n",
"mod_flagellates_chl 0.667923 \n",
"mod_ciliates_chl 0.587392 \n",
"mod_TChl 0.749744 "
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"dflog.cov()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Individual phytoplankton groups compared to model groups (1:1 correspondence not expected)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.001584893192461114, 10, 'r = 0.33')"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAAGcCAYAAAAWKgniAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e3wU1f3//5pJllyAhGSDEcLNCFRjuLSURG1EQgiQ1o9YbW0pFuKlWj/0ZvsN9QaCVkX5tH768RNtq9ZgRdTKr2I/lXCNICpJ1AoGsBgQSFAXciEh5EKyM78/6C6zszO7M7Mzs2d2388+eNjdzM6cmbP7fp3zfp/zfnOiKIogCIIgCIIgCIIgCIIgCIIgCIIgYgo+2g0gCIIgCIIgCIIgCIIgCIIgCIIgzIeCQARBEARBEARBEARBEARBEARBEDEIBYEIgiAIgiAIgiAIgiAIgiAIgiBiEAoCEQRBEARBEARBEARBEARBEARBxCAUBCIIgiAIgiAIgiAIgiAIgiAIgohBKAhEEARBEARBEARBEARBEARBEAQRg1AQiCAIgiAIgiAIgiAIgiAIgiAIIgahIBBBEARBEARBEARBEARBEARBEEQMkhjtBhCRIwgCPv/8cwwdOhQcx0W7OQRBEIYRRRGnT5/GyJEjwfO0ToElSGsIgogVSGvYhbSGIIhYgbSGXUhrCIKIFfRoDQWBYoDPP/8co0ePjnYzCIIgTKOpqQmjRo2KdjMICaQ1BEHEGqQ17EFaQxBErEFawx6kNQRBxBpatIaCQDHA0KFDAZzr8LS0tCi3hiAIQh+dnZ04fPgwRFFEQkICrrrqKr9dI9iBtIYgCCfT19eHxsZGnD17Fl6vFyUlJaQ1DEJaQxCEkxEEAYcOHUJXVxd6e3sxb9480hoGIa0hCMLpNDc34+TJkzhz5gy+9a1vadIaCgI5mMrKSlRWVsLr9QIA0tLSSMAIgnAUnZ2dOHHiBAYPHoxhw4YhKysLAGhbPkOQ1hAE4XT6+vpw9OhRDBo0CGlpabjwwgsBkNawBGkNQRBORxAEfPrppwCA9PR0TJw4EQBpDUuQ1hAEEQs0NTWhp6cHQ4YMwZgxYwBo0xpOFEXR6sYR1tLZ2Yn09HR0dHSQgBEE4Rg6OzvR2NgIURQxbNgw5Obm4vTp02TPGIW0hiAIJ9LX14eDBw/i7NmzSE5OxsSJE9HT00P2jFFIawiCcCK+AFBXVxcSEhIwYcIEeL1esmeMQlpDEIRTaWpqwokTJwAAY8eOxaBBgzTbM6pORxAEQdiOUgCIVskRBEEQZqIUAHK5XNFuFkEQBBFDKAWABg8eHO1mEQRBEDGGPADky6SjFQoCEQRBELZCASCCIAjCaigARBAEQVgNBYAIgiAIO4g0AARQEIggCIKwEQoAEQRBEFZDASCCIAjCaigARBAEQdiBGQEggIJABEEQhE1QAIggCIKwGgoAEQRBEFZDASCCIAjCDswKAAEUBCIIgiBsgAJABEEQhNVQAIggCIKwGgoAEQRBEHZgZgAIoCAQQRAEYTEUACIIgiCshgJABEEQhNVQAIggCIKwA7MDQAAFgQiCIAgLoQAQQRAEYTUUACIIgiCshgJABEEQhB1YEQACKAhEEARBWAQFgAiCIAiroQAQQRAEYTUUACIIgiDswKoAEEBBIIIgCMICKABEEARBWA0FgAiCIAiroQAQQRAEYQdWBoAACgIRBEEQJkMBIIIgCMJqKABEEARBWA0FgAiCIAg7sDoABFAQyNFUVlYiLy8P06dPj3ZTCIIgAFAAKBYhrSEIgjUoABR7kNYQBMEaFACKPUhrCIJgETsCQADAiaIoWnJmwjY6OzuRnp6Ojo4OpKWlRbs5BEHEKWYEgMiesQv1DUEQLGBGAIjsGbtQ3xAEwQJmBIDInrEL9Q1BEKwQaQBIjz2jnUAEQRBExNAOIIIgCMJqaAcQQRAEYTW0A4ggCIKwA7t2APmgIBBBEAQRERQAIgiCIKyGAkAEQRCE1VAAiCAIgrADuwNAAAWBCIIgiAigABBBEARhNRQAIgiCIKyGAkAEQRCEHUQjAARQEIggCIIwCAWACIIgCKuhABBBEARhNRQAIgiCIOwgWgEggIJABEEQhAEoAEQQBEFYDQWACIIgCKuhABBBEARhB9EMAAEUBCIIgiB0QgEggiAIwmooAEQQBEFYDQWACIIgCDuIdgAIoCAQwQBPPvkkLrnkEiQlJeGiiy7CypUr0d/fH/ZzTU1N+Pa3v43c3FwMHjwY6enp+OpXv4r//d//xcDAQMCx69atw4wZM5CdnY2kpCSMHDkS//Ef/4F3333XqtsiiJiEAkCEkzGqNwDQ39+PlStXYty4cUhKSsIll1yCJ598Mui4cePGgeM4xX/Jyclm3xJBxCQUACKcjFGt+eCDD7BkyRJMmjQJQ4cORXZ2NmbPno3t27crHn/48GFcf/31GDZsGIYMGYLS0lJ8+OGHZt8OQcQsFAAinAz50QjCObAQAAKAxKhclSD+zcMPP4xly5bh7rvvxpw5c1BfX4/7778fx48fx5/+9KeQnz1z5gzS0tKwbNkyjBkzBmfPnsWbb76Jn/70p/joo4/w7LPP+o9tbW3FN77xDfz85z9HVlYWvvjiC/zud7/DjBkzsG3bNlx99dVW3ypBOB4KABFOJhK9AYD//M//xF/+8hc89NBDmD59OjZt2oSf//znOH36NO69917/cX/729/Q19cX8Nljx47he9/7Hr797W+bfl8EEWtQAIhwMpFozbp161BXV4dbbrkFU6ZMwZkzZ/CHP/wBJSUlWLNmDRYtWuQ/9uTJk7jqqquQkZGBP//5z0hOTsajjz6KmTNnor6+Hl/5ylesvlWCcDQUACKcDPnRCMI5sBIAAgCIhOPp6OgQAYgdHR2mnO/MmTOmnCccLS0tYnJysnj77bcHvP/www+LHMeJ+/btM3TeG2+8UUxMTBR7e3tDHnfq1CnR5XKJP/zhDw1dhyDiiY6ODvGDDz4Q33//fbGxsVEUBMGy65hpzwjzsKJvnKI3DQ0NIsdx4iOPPBLw/o9+9CMxJSVFbG1tDfn5FStWiADErVu3GrsBgogTent7xb1794rvv/++2NDQIJ49e9aS65DWsEs8a43H4wl6b2BgQJw8ebJ48cUXB7xfUVEhulwu8ciRI/73Ojo6xKysLPHGG2+M4C4IIvbxer3iJ598Ir7//vviP//5T7Grq8uS65DWsEs8a40a5EcjCPM5duyY+P7774vvv/++ePLkSUuuoceeUTq4OGfFihXgOA4ffvghvvOd7yAjIwMXX3yxLdeurq5Gb28vbr755oD3b775ZoiiiNdff93QeYcPHw6e55GQkBDyuKFDhyI5ORmJibQhjiBCQTuACDNwst68/vrrEEVR8fM9PT2orq5W/awoinj++eeRm5uLWbNmGb4Hgoh1aAcQYQZO1poLLrgg6L2EhARMmzYNTU1NAe//7W9/w6xZszB27Fj/e2lpabj++uvx97//PSilD0EQ56AdQIQZOFlr1CA/GkGYC1M7gP4N/WoJAMD111+P73//+/jxj3+MM2fOhDxW66QiISEhpKO4oaEBADBp0qSA90eMGIGsrCz/38MhiiK8Xi9Onz6NzZs3o6qqCr/61a8URcnr9UIQBBw/fhyPPvooRFHEkiVLNF2HIOIRCgARZuNEvWloaMDw4cNx4YUXBrw/efLkgPMrsXXrVhw9ehS/+c1v6LdDECpQAIgwGydqjVrb3n77bVx22WX+93p6enDo0CHFFKOTJ09GT08PDh8+jIkTJ+q+HkHEMhQAIszGyVpDfjSCsA4WA0AAQDuBGODpp5/G1772NbhcLqxYsSIqbVi8eDFWrVqF2bNnY/78+arHHTlyBC6XS9O/HTt2hLxma2srkpKSFAdemZmZaG1t1dT2xx57DC6XC5mZmViwYAF+8Ytf4JFHHlE89rLLLsOgQYNw0UUX4e9//zuqq6sxbdo0TdchiHiDAkCxB+mNMb1pbW1FZmZm0PuDBw/GoEGDQn7+ueeeQ0JCAsrLy0NegyDiFQoAxR6kNZHNbaSsWLECjY2NeOCBB/zvtbe3QxRFRV3yvWfkWgQRy1AAKPYgrSE/GkGwCKsBIIB2AjHBiBEjsHLlSrzwwgtRa8MNN9yg6biRI0eivr5e07FaCpKGcihrdTaXl5dj9uzZaGtrw/bt27F69Wp0dHTgySefDDp2/fr1OHPmDI4dO4Y//OEPKCsrwxtvvIGZM2dquhZBxAsUAIpNSG/0/y2Sz7e1teH111/HvHnzkJOTE/YaBBFvUAAoNiGt0f83JZ599lk8/PDD+NWvfqXoXDTzWgQRy1AAKDYhrdH/NynkRyMI82E5AARQEIgJrrvuOgDAhg0botaGESNGaDpu0KBBmDp1qqZjw+USdbvd6O3tRXd3N1JTUwP+1tbWpnllwYUXXuhP0TNnzhxkZGTg7rvvxi233IKvfvWrAcf6UikUFBTguuuuw1e/+lX8/Oc/x549ezRdiyDiAQoAxS6kN8b0xu1246OPPgp6/8yZMzh79qziamwAePHFF9HX14fbbrst9A0QRBxCAaDYhbQmsrkNADz//PO44447cPvtt2P16tUBf8vIyADHcYqrvdva2gBAVZcIIt6gAFDsQlpDfjSCYAnWA0AApYPTzenTp7F06VLMmTMHw4cPB8dxqltPu7q68Itf/AIjR45EcnIypk6dipdfftneBmtEq4PXzG2svhymH3/8ccD7X375JVpaWpCfn2/oXgoKCgAABw8eDHlcYmIivva1r4U9jiDiCQoAsQPpDTt6M2nSJJw8eRJffvllwPu+86l9/rnnnkN2djauueaakOcniHiDAkDsQFrDjtb4eP7553Hbbbdh8eLF+MMf/hB0LykpKRg/fnzQdXzXTklJQW5urqZrEUQsQwEgdiCtYU9r5JAfjSCM44QAEBAjO4E2bNiAPXv2YPny5ZZfq7W1FX/6058wZcoUXHfddXj22WdVj73++utRX1+PVatWYeLEiXjppZewYMECCIKAH/zgB5a31QrM3MY6b948JCcno6qqCoWFhf73q6qqwHGcf2WHXmpqagAA48ePD3lcb28vdu/eHfY4gogXKADEFqQ37OjN/Pnzcf/992PNmjX49a9/HfD5lJQUzJs3L+gz77//Pvbu3YulS5cqFlgliHiFAkBsQVrDjtb4jr3ttttw00034dlnn1Udh33729/Gf//3f6OpqQmjR48GcM7J+v/9f/8frr32WtIdIu6hABBbkNawpTVKkB+NIIzhlAAQECNBoNdffx0vvPCCLUGgsWPHor29HRzHoaWlRVW83nzzTWzZssUvWABQXFyMo0ePoqKiAt/73vfCbvNkkUGDBuHrX/+6KefKzMzE/fffj2XLliEzMxNz5sxBfX09VqxYgdtuuw15eXn+Y1944QXccsst+POf/4xFixYBAB544AF4PB7MmDEDOTk5OHXqFKqrq/HMM8/gu9/9bsA22CuvvBLXXnstLr30UqSnp+PIkSN4+umncejQIfztb38z5X4IwslQAIg9SG/Y0ZvLLrsMt956Kx544AEkJCRg+vTp2Lx5M/70pz/hN7/5jWLaneeeew4AcOutt5pyDwQRC1AAiD1Ia9jRmr/+9a+49dZbMXXqVNxxxx2oq6sLOP9Xv/pVJCUlAQD+3//7f/jLX/6Cb33rW3jwwQeRlJSEVatWobe3N2oF0gmCFSgAxB6kNexoDfnRCMI8nBQAAmIkCGQnWp2if/vb3zBkyBB897vfDXj/5ptvxg9+8APU1tbiyiuvNNSGvr4+9PX1+V93dnYaOg8L3HfffRg6dCgqKyvxX//1X7jwwgtx991347777gs4ThAEeL1eCILgf+/rX/86/ud//gevv/46WltbkZycjLy8PDzxxBO48847Az5/5ZVX4uWXX8aRI0dw5swZZGVl4YorrsATTzxhuB8IIlagABCbRFtvYklrgMj0BgCeeuop5OTk4Mknn8SXX36JcePG4fe//z1++tOfBl2rp6cH69atw4wZMzBx4kRL74sgnAIFgNiEtMZcItGaf/zjHxAEAR9++CG+8Y1vBJ37s88+w7hx4wAAw4cPx9tvv43/9//+HxYvXoyBgQFcccUVeOutt3DJJZdYeo8EwTIUAGIT0hpzIT8aQUQfpwWAAIATRVGMdiPkvPDCC7qOf+aZZ/Duu+/C6/Va1CJlWlpaMHz4cDzwwANBK66uuOIKeL3eoBVc+/btQ35+Pv74xz/i9ttvBwAMDAxgYGAAd955J3JycnD//ffD5XKprnBYsWIFVq5cGfR+R0cH0tLSzLk5giDiArsCQJ4uD8o3lKPueB0KcgpQNb8K2UOyFduTnp5O9kxGNPSGtIYgnIFW+xpNWAsAkdYoQ1pDxDJOsJVEZLAWACKtUYa0hiAIpxONAJDaOEaP1jC5E6i8vFyXE1IUReZWrbe2tioW5PSljGltbfW/95vf/CZAkB5++GE8//zzKC8vVzz3Pffcg1/+8pf+152dnf5c0ARBEFqxcwdQ+YZybDm0BV7Riy2HtqB8Qzk2LtxoybXiDav0hrSGIJwB6/aVtQAQYQzSGsLpsG4richgLQBEGIO0hiAI1onWDiAzxjFMBoEGDRqEkSNH4o477tB0/F//+lf885//tLhV+gnlTJX+bcWKFbpyNyclJfnzQRMEQRjB7hRwdcfr4BXP7db0il7UH9dWGJPQhhV6Q1pDEM6AZftKAaDYgrSGcDIs20oiMigAFFuQ1hAEwSrRTAFnxjiGySDQpEmTcOzYMfz617/WdPwnn3zCXBDI7XYHrFLw0dbWBgCKRaT1UllZicrKStvT4BEE4WyiUQOoIKfAv2ohgUvA9Jzpll4vnrBab0hrCIJtWLWvFACKLUhrCKfDqq0kIoMCQLEFaQ1BEKwS7RpAZoxjeAvaFTHTpk1DS0sLmpqaot0Uw0yaNAkHDhzAwMBAwPsff/wxACA/Pz/iayxZsgT79+9HfT2tYiIIQhvRCAABQNX8KpReXAp3ihulF5eian6V5deMF6zWG9IagmAbFu0rBYBiD9IawumwaCuJyKAAUOxBWkMQBItEOwAEmDOOYTIIdNVVV2HMmDH49NNPNR1fVFSERYsWWdwqfXz7299GV1cX1q9fH/D+mjVrMHLkSBQWFkapZQRBxCvRCgABQPaQbGxcuBEtS1uwceFGKsRrIqQ3BBHfsGZfKQAUm5DWEE6HNVtJRAYFgGIT0hqCIFiDhQAQYM44hsl0cAsXLsTChQs1H3/rrbfi1ltvtbBFgWzcuBFnzpzB6dOnAQD79+/Ha6+9BgD45je/idTUVJSVlaG0tBR33nknOjs7MX78eKxbtw7V1dV48cUXkZCQYFt7CYIgohkAIoxDekMQhJOgAJAzIa0hCMJJUADImZDWEAThNFgJAJkFJ4qiGO1GOI1x48bh6NGjin/77LPPMG7cOABAV1cX7rvvPrz66qtoa2vDJZdcgnvuuQff//73TWmHNJ/pwYMH0dHRgbS0NFPOTRBE7OCkAFBnZyfS09PJnv0bFvSGtIYgCC04KQBEWhMIaQ1BEE7BSQEg0ppASGsIgnASTgkA6dEaCgLFADS4IAhCDScFgACyZyxDfUMQhBpOCgABZM9YhvqGIAg1nBQAAsiesQz1DUEQoXBKAAjQZ8+YTAfn49ChQ3j++eexY8cOfPrpp+jo6AAApKenY8KECZg5cyYWL16M8ePHR7mlBEEQ7OG0ABBBEAThPJwWACIIgiCch9MCQARBEIQzcVIASC98tBugxqpVq5CXl4dHHnkE77zzDgRBQE5ODnJyciAIAt555x08/PDDuOyyy7Bq1apoN5cgCIIpKABEEARBWA0FgAiCIAiroQAQQRAEYQexHAACGA0CrVu3Dvfeey8mTpyIl19+GW1tbThx4gQaGxvR2NiIEydOoK2tDevWrcOECRNw33334eWXX452s22nsrISeXl5mD59erSbQhAEQ1AAiDAT0hqCIJSgABBhJqQ1BEEoQQEgwkxIawiCUCPWA0AAozWBCgsL0draij179oQV+NOnT2Pq1KnIyspCbW2tTS1kC8pnShCED6cHgMiesQv1DUEQPpweACJ7xi7UNwRB+HB6AIjsGbtQ3xAEIcXJASA99ozJnUD79u3D9ddfr0nghw4diuuvvx779u2zoWUEQRDs4vQAEEEQBME+Tg8AEQRBEOzj9AAQQRAE4QycHADSC5NBoEGDBqGjo0Pz8Z2dnRg0aJCFLSII5+Pp8qBsbRncj7tRtrYMni5PtJtEmAgFgAiCiATSCEILFAAiCMIH6QZhFRQAIgjCyZA+Ood4CgABjAaBLr/8crz88svYu3dv2GP37NmDdevW4YorrrChZWxB+UwJPZRvKMeWQ1vQ1tOGLYe2oHxDebSbFASJpTEoAERYCWlNfBCJRpDtjg8oAERYCWmN87BjbkH6En9QAIiwEtIawg5Y8b2RhoYm3gJAAKM1gerr63HVVVeB53ksXLgQpaWlmDBhAtLT0wEAHR0d+PTTT7F582a89NJLEAQBu3btwte//vUotzw6UD5TQgvux91o62k7/zrFjZalLVFsUTBla8uw5dAWeEUvErgElF5cio0LN0a7WUwTawEgsmfsQn0T20SiEWS7Y59YCwCRPWMX6hvnYMfcgvQlvoi1ABDZM3ahviGshBXfG2moOrEUANJjzxJtapMupk+fjurqatx222147rnn8Oc//1nxOFEUkZubi2effTZuA0AEoZWCnIIAAZiew97ql7rjdfCKXgCAV/Si/nh9lFvENrEWACIIInpEohFku2ObWAsAEQRhDnbMLUhf4odYCwARBBG/sOJ7Iw1VJpYCQHphMh0cAMycORP/+te/sGnTJtx999244YYbMHv2bMyePRs33HAD7r77blRXV+Nf//oXZs6cGe3mEgTzVM2vQunFpXCnuFF6cSmq5ldFu0lBFOQUIIFLAABmA1WsQAEggiDMJBKNINsdu1AAiCAINeyYW5C+xAcUACIIIpZgxfdGGhpMPAeAAEZ3AvlISEhAaWkpSktLo90UgnAEni4PyjeUo+54HQpyClA1vwrZQ7IBANlDspnf+lk1vwrlG8pRf7we03Omo2p+Vch7ilcoAEQQhJlEameVbDfhfCgARBBEKORzC1/tATPH7KzrC81TIocCQARBOBk1HYi2783T5UHfQB94jgfP8SgaU8SchtpNvAeAAEZrAhH6oHymhI9YzPkZi/cUCbEeACJ7xi7UN7EL2VlCTqwHgMiesQv1jXOJRy2Jx3s2k1gPAJE9YxfqG8IsWNUBVtsVLWI5AKTHnjGbDo4IT2VlJfLy8jB9Om3pI87hxJyfvlWD7sfdKFtbBk+XJ+Dvdt1TuHawQKwHgAg2Ia0xHyV7E00b5ETtIKwj1gNABJuQ1jifeNSSeLxns4j1ABDBJqQ1hNlEUwdCzR/Jj3aeWA4A6YXpINChQ4dw//3346qrrsKFF16IlJQUpKSk4MILL8RVV12FZcuWobGxMdrNjBpLlizB/v37UV9Pg03iHE7M+Vm+oRxbDm1BW08bthzagvIN5QF/t+uewrUj2lAAiIgWpDXmo2RvommDnKgdhDVQAIiIFqQ1zicetSQe79kMKABERAvSGsJsoqkDoeaP5Ec7BwWAAmE2CLRq1Srk5eXhkUcewTvvvANBEJCTk4OcnBwIgoB33nkHDz/8MC677DKsWrUq2s0lCCZgpQCdHsKtULDrnlheyUcBIIKILZTsTTRtkBO1gzAfCgARBBEJ8agl8XjPkUIBIIIgYolo6kCo+SP50SgApASTQaB169bh3nvvxcSJE/Hyyy+jra0NJ06cQGNjIxobG3HixAm0tbVh3bp1mDBhAu677z68/PLL0W42QUQdXwG6lqUt2LhwoyMKk4ZboSC9J19xWCu2mrKykk++nbbx80bU7q3FT978CUpeLcGS95bgxJkTEW27jdZnCYI4h5K9iaYNUtMOK3/vLNsS1tL1qbXJTCgARBBEpJg1D4m2vdWDE+de0cTKAJCTvjcEQcQO0dSBUPPHUO3y2cvMxzIxfPVwZDyWYdhusupH+/CTD3HixAm0drdiaf1SfOXPX0HZ2jI0eBpM1Qo92sOCTnGiKIq2XzUMhYWFaG1txZ49e8IOCk6fPo2pU6ciKysLtbW1NrWQLaioHeFkPF0elG8oR/3xekzPmY6q+VWqwmllcbtw7fD9ve54HQpyCkK2MxKk98j38ShMLQQA1LbUQhgmIIE/d98ADD+LSJ6j1QUGyZ6xC/WNeSjZGwCabaFdzFozCzVHavyvi8cVY/vi7aacm+VipUptA4zbXKvaZNb14zEARPaMXahvYhetY2mW9YEwjtU7gFj83pA9Yxfqm/jELp+OXejxpUmR2ksfRu0mk360Th6FGYV4suxJLK1fih0ndvi1ISMlA+097aZphR7tsUqn9NizxIivZgH79u3Df/7nf2oaFAwdOhTXX389nn76aRtaRhCE2fhWKGjByq2m4drhy3XqFb3+XKdWTCz899gLCG0C9nftB1IAYZgAcOfvW4Ro+FlE8hxZ3u5LEE5Bzd5E21khZ9exXSFfRwLLtkSpbZHYXKvaZAbxGAAiCCI6aB1Ls6wPhDHsSAFH3xuCIMJhl0/HLvT40qRI7aUPo3aTOT9aByCcEbC/fz/Gjh2Lj7Z9FKANrd2tECH6X0eqFXq0hwWdYjId3KBBg9DR0aH5+M7OTgwaNMjCFrFJZWUl8vLyMH06FaAkjMHCdkQ9RHOrqdUG29cXp/tOA70A2gCe4zFl3BRcPulyJPDmpY6K1mcJZ0JaE3/47FG/0G/ZNVi2Jayk65NqNM/x4P89bDfr+hQAIliCtCb20TKW9nR5wHPnXRSs6QOhH7tqALE8riDYgbQmvomGE55Fn5vUXvqwym7a9cwLcgrAd/LAmXN+tGl505CVlRVwrzx4JPLn98KYcc96tIcFnWIyCHT55Zfj5Zdfxt69e8Meu2fPHqxbtw5XXHGFDS1jiyVLlmD//v2or6dVLoQxfFH5tp42f1SeRXzCWdtci4yUDGQkZ9hedM9qg+3ri/7ufqANSOQTUTSxCK/86BWsuW5NUFG/SAr9ST87Y+wM9A30+Qcl4XKkUgHc+IO0Jv7w2SMpHDgUjSky7Ros2xKltim9Z/WkTqrR7T3tyEzNNO15UQCIYA3SmthHy1i6fEM52rrb/K8zUjKY0gdCH3YFgAD7xhUsOnQJ7ZDWxDfRcMKz6HPz2cvM5ExkpWaZ4l9Ts412PfOHpz2MwoxCpCelY+bUmXjpppcABGpDZmomvML5HVCRjDGkPsr0pHQkcongOR59A32qusDC/JfJmkD19fW46qqrwPM8Fi5ciNLSUkyYMAHp6ekAgI6ODnz66afYvHkzXnrpJQiCgF27duHrX/96lFseHSifKWEU9+NutPWcn2i5U9xoWdoSxRYpw0KOZ0+XBwvWL/CnQyoaU4R1N6xD9pBsU/Kcuh93o629Dfh3dwwbNgxtq9rAcZzZtxKA/NmanSNVL2TP2IX6Jn6QawMHDnPHz7U8b7bT8nRbrU1WaTQFgMiesQz1TeyipXaBU+YmRnCaxkWKnQEgO9Gj/WTP2IX6Jj4xWkMnEmJZ16So2Ub5M189ezUqtlag7ngdpmRPAQDs8eyJSBebmppw4sQJAMDYsWORlZWleJyZfSG9Xw6cP8Uc6z40JmsCTZ8+HdXV1bjtttvw3HPP4c9//rPicaIoIjc3F88++2zcBoAIIhIKcgoCDDWr2+ZZyJ2ZPSQbSYlJEEQBXtGLnUd3+vOZmpHn9GsZX8P2w9shQACfwqNwUqHlASAg+NmanSOVIAjnIdcGuwayTsvTbbU2WaHRFAAiCCJaaKld4JS5iRGcpnGREKsBIICNeSlBEMYwWkMnEmJZ16So2Ub5M5cGT2qO1PgDKEZ1UWsACDC3L6T36/OfAezrApPp4ABg5syZ+Ne//oVNmzbh7rvvxg033IDZs2dj9uzZuOGGG3D33Xejuroa//rXvzBz5sxoN5cgVGF5y3g0tiMaeR4s5M4E1IUt0slAZ2cnll66FIWjCjFs2DCUfr0Ua65bE1FbtT5n+bN1p7qZeNYEQShjh6ZEa6u6Xltqx7MIdQ2rtcnsfqAAEEEQVmGWPWYhVYpVxEvwIJYDQAA781KCILQRbX8cS7pm5bPQahulWgggogXIegJAgL6+CPespPfL4fzibdZ1gcl0cIQ+aCsr27CQyowljDwPK7btGknJoNb2SPq4s7MTjY2NEEURw4YNQ25urik7gLS2SW17rp5nbWZ6C7Jn7EJ9Yy9qv6tY1hS992bHswh1jWiklJCix/ZSACgQsmfsQn3jTOzWJiemVotl/fYR6wEgQJ/2kz1jF+qb+CEebK9WzHoWShoMQJNtlLYBgH8nkN726A0A6SXcs5JqweTsyQCAvZ69hueEkYxr9NgzCgLFACRgbBMvOUC1wsrzMDMYZdQRaFUACAh+zhnJGSgcVWjJZNnMgRXZM3ahvrEXtd8VKzbUCvTaUjueRbhrRNMRqdX2UgAoGLJn7EJ940zs1qZZa2bhrSNvQYQIDhxmjpuJ7Yu3W3Y9M4j2wgGriYcAkF7InrEL9U38EMtzJ72Y9Swi8f+YETyxOgAEKD+rff+5z7J5X6QLy7XaM2bTwWnF6/Xi2LFjOHbsWLSbQhCK0JbxQFh5HkZSMvjymbYsbcHGhRv9Bl/tfR9KW0mtDAABwc85gU/AlkNb0NbT5s+3Ggo9W4XjJb0FQdiJ2u+KFRuqFy02JZwtlWPHswh3DV+NB6221Uy02F4KABFEfGJ3+hu7tWnXsV3+FDIiROw6tsvS65mBXo1zEhQAIgiCVZw6d7ICs55FJP4fqRZuX7wd2xdvD6mL8vHMh598aHkACFB+VlrmfUbHX3b51BwfBGpsbMS4ceOQm5sb7aYQhCIs5QBlAVaeh52DAblY3LTuJksCQFLB6Rvow4yxM/zP2St4w4qKp8uDWWtmYdBDgzDityNQ3VitybFJAyuCMB+13xUrNlQvkQZLlAbUdjyLcNcwOmA3w0EbzvZSAIgg4he7A9RO1KZo14mIFWI5AETfEYJwPk7UJ6sw61lEy5e2+cPN+MlrPwFgfgBIbu9Xz14d9KzU5n3Sz+Y/ne9vb3VjNfKfzmeqDrrj08EdPnwYs2bNAsdx+Oyzz6LdHFuprKxEZWUlvF4vDh48SFtZCUIHdqZkCNhK2gukd6dj26Jtpu8ACrWFVMv20rK1ZdjUuMm/slKKi3dhaNJQxW2vZj5L2prPHqQ10SHW0sZEmn6A1XzeRtsl/RwPHpmpmRBEQVdqgVDfEQoAhYa0hj1Ia8wl1tPfzFozCzVHavyvi8cV604Hx6quOIlYDgABkX9HSGvYg7SGICInKr60DgBngPSkdDQub7S9BlCoY+R1juTMGz8PVfOrQqaSi+SZUk2gOIMGFwTBNn5R6PGCb+dROKoQf1nwF9NTwIWa8GsRFfnnffiK9QGwfJJM9oxdqG+ISIjUkcKqQ9PogF3N3pphYykAFB6yZ+xCfWMOsR7gMMMBxaquOIVYDwABkX9HyJ6xC/UNQTiDsrVl2PzhZghdAniOx8ypM7Htx9tMv44We6829lCb10nPNT1numXjsriqCUQQBMEaSltJi0cUY+iZoUhLSsO+zn1Y8t4SnDhzwtRr8RyvuoVUSx7ygpwCcAgMSrl4FxL5RP9rqvlDEIQRtKYfUEu9YuYWeTPTuxit8SC9HymR2lgKABEEAcR++ptQtlerjY+3dMZmap8VASAWU6/F23eEIAiCNX516a+QNnAusMEP4/HBqQ9M0Qi55kzJnhLW3quNPaRawYOHiz8/9+LBY3rOdGbqaFMQiCAIwgTU8oBuObQFd71xFx6b9hjyL8hHJ9eJztRObD28VXN+9lCTImmO1LbuNmSkZBie8FfNr8LMcTPh4l1w8S4UjytG011NKMktoQkQQRARoTVYolbHwkyHpvwa+U/n2+Z08tnz2uZaZKRkICM5A1mpWabYWAoAEUQwLDqW7cBogFoPrD5brfWQYj1QJsesOlFW7QCyu46VFuLtO0IQBMEKni4PZv7PTJQ9U4ZTvaeAdGAgZQAdfR2maMSC9Qv8NbCrG6tx1nvWsL2XasWc8XPw4e0fYt74ef7XVfOrmFlU4Lh0cMeOHcOwYcNoy6YE2spKENFHNQ+opAZQyasl6EjpgG+zjdaUAqFSetiRysLOnK+NnzdiQs4EsmcMQlpD2IEdNs3KVGzhULLnvhzRkdhYCgDpg+wZu5jdN7GeFi2asPpsKc2bMmY8FytTwMViv5HWsAv1DUGwzcz/mYm3978NQRSAdAAyqYlUIwY9NAj9Qr//tYt34eyys4bPFw4rfWp6fGiO2wl00UUX4fe//320m0EQRBRhceWhdHunn16Ab+eRNzwPw4YNw+WTLkcCrz/6H2rrqB0rCuxYTerjzn/cadm5CYLQRzRsrdymcRxn+vWtSsWmBSV7HqmNpQAQQajDSvqNWETLs2VBR2JpB3skzzPS52J1DaBY7jeCINiART+SXTjl3n07gHbs26EaAHKiRljpU9PjQ3NcEEgURThs8xJBECZjNF2AlcIX5FTsBdAGpCWl4Ylrn0Bubi7WXLfG0BbTUJOiWEtT8MEXH0S7CQRB/JtopGaR2rSMlAy0dbeZfn3pNbJSs8D/ezhsx4TCbCcXBYAIIjROcCw7xTEjR8uzjbaOxMLYWEokzzOS52J1ACjS9hEEQWiBxbSTdhHJvds5Tvnen7+Ht/e/fe6FJACUyCUiKzULmcmZpmhE0Zgifz1sDhyKxhRFdL5ooseH5rggEEEQhNFVnVaKvm/iwoHzB4AAAMlAwaQCcBznP1aEvkB2qEmRVSsKouWQmDZimi3XIQgiPNFYQe+zafv+cx86ejsgQDD9+lK72XBnA+aMn2Ob08lMJxcFgAgiPE5wLNvllDJ7bKfl2UZTR+zYwW43kTzP7CHZqJpf5S9QXb6hXNN3wI4AkK99Tu03pwZyCSLeiOfdwZHcu13jlKamJvyz8Z8BO4A4cJg3fh6af9mMhjsbUDCqQJeGqbHuhnWYO34u3CluzB0/F+tuWBdx+53gQ6MgEEEQjkO+8nBy9mRNxtZK0fdNXEpGloBvP2da+RQehZMK/QEgo+IZjUlRtFbJPP2tp225DkEQ4YnGCnrf4Hn0E6MD8jRz4Byf7tLM61EAiCC0YfZv3IoJvl1OKbPHdlqerRN2YjmJSJ+n3u+AXQEgpxPPuwsIwknEsybpvXfpeGfb4W2Wj1Oamppw4sQJXHbBZeCH8cDgc+2cO36uf4xhpq21Yg7oBB+aI4NA0hX1BEHEH/KVhwD8xnZT4yaMfmK04sTcqOhrnfB3dnZi6aVLUTiqEMOGDUPp10ux5ro1/r/LJ/nbDm9jdqVYtFbJXDDkAluuQxBEeKKxgt43eJYGgIBzOyj7BvoUbWa8rcClABBBWEc4e2LFBN8up1SosZ1VdtQJO7HCwZLGRPo89YzvKQCknXjeXUAQTiIWNMkooe5dSeek450BYcB/bKTjFKVr+QJAAPDsTc9izmTlLA2s+9Oc4EPjRIYL7OTm5ga9d+TIEQwbNgzDhg0LeJ/jOBw6dMimlrFFZ2cn0tPT0dHRgbS0tGg3hyBsx/24G209bQHvJXAJKL24FBsXbvS/5xOz2uZaJPAJ8ApeFI4qRNX8qpCR/7K1ZdhyaAu8olfxvMC532FjYyNEUcSwYcOQm5sbFLAuW1uGTY2bAtLBzRs/L+hcLCC9Zw4cEvlElOSWhH1WkUL2jF2obwg7ULLnPtTsrxYbDZzXgLrjdSjIKbDcnlkBBYDMgewZu0S7b8LZE7mNcqe40bK0JaJr+mxT/fF6TM+ZbpltCnVvWu1opFhph606t13Pxg603gsFgPSh9lyjbc8IdahvCOI8Sjas7nhdwHjHxbuQlpSmaZwSSo/l1yoaVoTffuO3AICxY8ciKysrZDtZ9qfJ7y0jJQOCKFg+79Rjz5jeCTRmzBiMHTs24B8ApKenB70/ZsyYKLeWIJxLtFa4mXVd6QpKH0qRd9+Wz8JRhWjvaUd7b7umVZzhIvpaAkDAudUXiXxiwHvRXimm1ge+lSIu3gURIvqFfkpvQBBEEGbYcek5eI4Psuc+1FZUaV11Fe10LZE+KwoAEYT1hLMnVuzasSstZahVwGauXvXZuszHMjF89XBkPJahuLLYbDts1bljaZeHllXwFADSTzzvLiAIwhh2+eC0XEdJ5+TjnZLcEs3jlFB6HHCtU1581PgRgPABIIBNfxpw/hnvbt6NjJQMZCZnIiMlA23dbcylCWU6CPTWW2+hpqYm4B8A3HzzzUHv+/4WT1RWViIvLw/Tp8dPHkvCGqLlGDPrutKAhY9QE3O5yG1q3BRSeENN+LUGgIBzk/yS3BLNzgM7BgZqfeBzSAxNGuo/1ukTX8IYpDVEKMyw49JztHW3ISMlA+4UN+aNn4ficcVhbaZWp6ydjrxwaRX0PisKABGxDitaE86eRMvZa8aYMFSwyczgls/Wtfe2o6W7Bad6T/ltnlIqF7PGuVbZ+FiqIREu4EgBIGNEo34rYQxWtIYg7PLBabmOks6pjXeMBpWCrtUB8N088i7I0xQAAvT70+RY5V/zPeNTvafQ3tOOglEFEEQBAgQAbPnRmA4CEaFZsmQJ9u/fj/p6Nr5MhHOxckKm57pGDaNv4N10VxPmjZ8XdmIu3zkkQgwpvGoCqCcAFOpcamJkx8AgGiteCWdBWkOEQsmG6B1gS88hQIAoin5Hyrob1oV1uGp1ytppz5TstxHN83R5MLdqLi64+wLcseEOdAldFAAiYhJWtCacPYmWs1duU/Kfzjd1rG5mcEtq63worSwGgAFhwLRxrlU2Pl52eVAAiIgHWNEagpDPC+qa6ywJUGiZfyjpnNp4x2hQSXqtomFFSB9IR+GoQjx707OaAkCh2qqVBesXYFPjJn8t8QXrF2j+bCi07KRixY/GdE0gJXiex4oVK7B8+fJoN4UZKJ8pESny+i++HJtW572OVo5t34pseT5RPXndjQSA1FB7Dlbkndd6bR925an3QfaMXahvCCWUbAgAXbbd7loUdtgzJfs9PWe67vucWzUXW+u3QhgQwLt4zJ4+G5sWb7KkzfEE2TN2ob5RRq1eGos1aqQ23YevnVXzq/x2uLOvE/1Cv/+YSMe5do9ZYwkKAFkD2TN2ob4hoo1S/Zj2nnbT50Nmz7O0+KhC6XFTUxNOnDgBQFsKODMZ9NCggHGHi3fh7LKzEZ9X6RlLxztWj0lipiYQQRD2II2mS3NsWr1tMVor63yrGuaOn2soOm9mAAhQTk+X8VhGQG0MDhw6+zoNrQoJtSqf1RWvBEE4AyUbonfHixla0OBpwPDVw8Gv5DF89XA0eBqCjpHaM9/A3Kpdr3rSKqjR19eH3Xt2QxgQgERAyBTwgecDU9tJEIQzUKp/CbCVYsSHz9ZlJmciKzULGckZiiuLI0npogSNWY1BASCCIAj7kc8LBoQBS1Kamu1z07LDRU2PrQwAhapH6PubNACk9Xxa5op6dlJFG0M7gbq6utDW1oaRI0ciMfG8w/iVV17BG2+8gdTUVCxZsgRTp041s60AaCeQErSKgTCTaO3OiQZGVgyaHQACzj3z6sbqoPd58MhMzURHb4dfsML1iafLgwXrF2DXsV0AgKIxRQCAnUd3OqJPyZ6xC/UNoZVo6Mjw1cPR0n1+FZqLd2Fo0lAU5BT4bbvP5tcdrwPP8WjrboMAwZI2Rroi3VcD6I4Nd6D2y1oImQISEtm2306C7Bm7UN8oI7UpHMdZar/sgnbuRB8KAFkL2TN2ob4hWMMpfjij2m31DqBQu5ABBP0NAIrHFWP74u0B7zV4GlD8QnHAvJLl/gD02TNDQaAlS5ZgzZo18Hg8/kHC008/jZ/85CfwnW7w4MF4//338ZWvfMXALRB6IAEjzIQmZOpYEQACzj3z0U+MVlyZ4E5xQ4QYtOV233/u8zszpU5OeUCJA4dEPtHUdBtWQvaMXahvCK1EQ0f4lXxAek8f0kG70uTAB0t20RcAOnv2LLqELjyy/xF84PmANNlEyJ6xC/VNeGisTphBLAeApIs+pPMkuyF7xi7UNwRrxLK225ECTi1trpI/DTi3YLBoTBHW3bAu4DnLFxZKz8PKXFGO5eng3n77bcyePTtgkPDoo48iJycHO3fuxKuvvgqv14vVq1cbOT1BEFGE1W2L0caqABBw7plLU2IEXLevEzzHg/+3ufZtuVUqyOfp8mDb4W0Bn5fWd5J+niAIttGzBd2Mz5lJNHTEnepWfF+aTkGpWDnAll2UBoCSk5Nx5dQrsWnxJtJkgiD8WGVjw+kHC/piNrF4T1qI5QAQoK1wOUEQ9hKv9lYrseqHs6sGkFra3MnZk4P+xoFDv9CPnUd3+v1ovu+mUgCIpblipBgKAh0/fhy5ubn+1x9//DGam5vxs5/9DEVFRfjOd76Da6+9Fjt27DCtoQRhBiQ8wdAzCY9SAOjEmROmPjd5/vREPtEvTu097chMzQxbc6N8QzkGhIGA83LgUDSmKCq1lwiCMI5RB4Ydjg8WdaNmUQ2yUrPAgYOLdwUFzoHgHNZZqVlM2UV5AGjixIlwuVzRbhZBEHGAp8uD/KfzUd1YjbaeNlQ3ViP/6fwA++4Ex7pefXLCPZlNrAeAgOB6q6zVzSIIp2HG2D+W7C2LcyEWUQsAWfH8fP40F39+7sSBC/ibO8UNF+/yL5SW+tF83005HDhm5opmYCgI1NPTg0GDBvlf79q1CxzHYc6cOf73cnNzcfz48chbSBAmwqLwRFtAWHwmVmD0OavtADL7uflWfrT+uhUnK04iLSktQJxEUQxYFaJUkK/ueF1QOqSZ42Zi3Q3rAlaVAND9LKL9PSWIeMOoA8MOxweLupGfnY+TFSchPCCg6a4mzBk/BxnJGchIyUBtcy3K1pZh9ezVAQHxhjsbVFfbqdm8UEVHI4ECQARBRJPyDeVBq19bulsC7LtRfbFzDKlXn+ItWBCNAFA05hBaCpcTBKEdM8b+sWRvWZgLse6fkQaAUtwp+OGmH/rbumD9AtOfn8+fNjRpqP89ESL2evYG7LKSZuCR+tGk2SK4f/8vKzULe3+8N2iuqPfZs9RXhoJAo0aNwt69e/2v//GPfyAjIwOTJk3yv9fa2oohQ4ZE3MBt27bhvvvuQ3FxMSZMmICMjAzk5ORg6tSp+OEPf4hnn30WX375ZcTXIeIDFoUn2gLC4jOxAiPPOVQKOKufW7jJi3Q1g29lgvwz88bPw/bF24Ocm0aeRbS/pwQRbxh1YNjh+GBdN3wD/cJRhWjvaUd7bzu2HNqCiq0VmtMsqNk83/vtve1o6W7Bqd5TEdtECgARBBFt6o7XKb4vte9G9cXOMaRefYqnYIFaAMhq51Q05hBK8ySCIIxjxtg/luwtC3Mhlv0z8h1Av3rnVwFt3XVsl2XPzww/2tzxcyE8IOBkxUnkZ+cHXUPvs2eprwwFgcrKyrB582ZUVFRg2bJlqK6uxn/8x38E1Mf45JNPMGbMGEON6urqwiOPPIKLLroIc+bMwaOPPoodO3bg+PHjGDx4MHp7e9HQ0IC1a9fi9ttvx5gxY/Cd73wH77zzjqHrEfEDi8ITbQGx4pmwFOn2ofc5hwoAebo84Lnz5pMHb/p3KdzkRSlnrNJnlPrCyHcu2t9Tgog3wtkANTtrh+ODRS1VIhK7pfZZpbpCkdhECgARBMECSrn05fZ99ezVyEjJAAcOGSkZWD1bW/1fO8eQevUpXoIFoXYAWe2cisYcQjpPqppfhfIN5UzNSwnCaZgx9o8le2vHXCicT41V/4xSCjh5WweEAcXU3WZgpR/Nh95nz1JfGQoC3XPPPRgzZgx++9vf4uGHH8YFF1yAlStX+v9+7NgxvPPOO5gxY4buc//hD3/A+PHjcf/992PYsGH4zW9+g+3bt6OzsxPd3d1obm5Ga2sr+vv78cknn2DNmjX43ve+h82bN2PGjBm4/vrr8dlnnxm5LSIOYFF4ou1Ms+KZsBTp9qHnOYcKAAHn7q+9p93/OjM1U9NzUxISNXExUhhQ6TNKfWHkOxft7ylBxBvhbICanbWjqKgdWmrGYoJI7JbaZ7U4SrWiFABq62tjbhEFQRDnYXGhk1Gk99I30IcZY2cgIzkDWalZyEzODLLvFVsr0N7TDhEi2nvaUbG1QtN1rBpDKvWFXn2K1ULcUsKlgIt2dgOrYXFeShBOw4yxfyzZW73Pw8jYIZztirZtVUKtBlBBTkHAcSLEoJrXauh9dkrfs3Dn0OpH86H32bPUV5woimL4w4Lp6enBtm3bAAAzZsxAWlqa/2/79u3D1q1bMXfuXFxyySW6zutyubBw4UJUVFTgsssu09WedevW4dFHH8UPf/hDLF++XNd1nUxnZyfS09PR0dER0A+EM/B0eVC+oRx1zXXgeR4DwgAuH3U5quZXOVYY3Y+7A4qquVPcaFnaEuIT1uN7zvXH6zE9Z7rq8w0XAAKM31/Z2jJsObQFXtGLBC4BpReXAkDQe766PWYgb2tmciamXDgFu47tAgAUjSnCuhvWhf2uaX1+kUL2jF2ob9iCRTtrFL8OHq9DQU6Bf9VupLbRiN3yfWZ3824k8okQBAEFowr8n5VrtlfwonBUoW6bqLYDSEknzNQE4hxkz9iF9b6Jpd+o3nsxqjtWjSFjqS+sQksNIKufo11zCDWiOV5i3Z7FM9Q3hJ3I7WxGSgYEUfDPe5RsYjjbFW3bKkctAASca+voJ0ajX+j3vxeJD02vRhk5h9rz93R5sGD9Al3+NKv7So89SzR6kZSUFFxzzTWKf7vssst0BXCkfPLJJ7j44osNteeWW27B4sWL0dzcbOjaBBENfFFnqWHyRZqdOpEpyCkIMLIsrErwPedQaAkAAfruTyoSUtHzil7UNtei62yX5avvpG3leR47j+70v05KTFIsiC53yIZ7fmqfIQjCGuy2s5H+xkN9Xhrw8emfGSuTpXZLa/vDBZ+0aEk4QqWAYyldAEEQwexu3h3wG61tro1yi4wTyt4o2cxIdUeEobWnini6PNh2eBvZyxBoCQAB8C+8kDqnzMQM3YwEFuelBEHEF3K9bek+F/wI5fcLZ7uibVulhAoAAefaWpJbossW+8Yh1Y3V/veUxl1a5nhG5ldqz798Q7miPy1UO9T6Kho+NEPp4KzESABISkJCAsaOHWtSa+zh5MmT+Na3voXBgwdj4sSJ2LJlS7SbRESBWHL8sJh2LxxaA0CAvvsr31COmiM1AQEg4Nw20AQ+AQPCQMD7amKotoXV937GYxkYvno4Mh/LDFkfZEAYCPs9M5I2gVItsA9pTWxht52N9Dce6vNK+mf2tnmt7Q/nFI00DVS4GkDy+56cPTlmUk8R8UGsa00iH7iGMoFPUDmSfULZWbnNXLB+AfoG+sBzPFy8CzPGztCsO1aMEcs3lAeMrTlw5NyXoDUABMRWiiYlnDgvJbQR63pDxA5K6aSB0H4/p9iucAEgH3rvxzd2kCMfd2kZYyiNd6TzullrZqHoz0UY9NAgDHpoEGatmYXVs1crtldtrugUH5rhnUBHjx7Ff//3f2PPnj04fvw4+vv7g47hOA6HDh2KqIHxwJIlS3DhhRfi5MmT2Lp1K2688UY0NjbC7XZHu2mEjZi9SimaOzNYWpWgBT0BIEDf/dUdrwt6jwOH0otLUdtcG7Aq0sW7VMVQaaX8xoUbsWD9AtQcqQk4Vvp3eVvlW2GVvmdGApKxFMSMVUhrYgstdigSHZB/tra5NqLfeCgboaR/Zq9M1mqjQmmxmh3WSrgAEBC8IrtvoC9mdgkT8YHTtSac3fQK3oDjBUGwu4mKGLH3oeys3GbuOrYLXsELAefu9+MTH2tumxVjRPn4OpFPZNZBZjd6AkDxgNPmpYR2nK43hD6cknlEqZ1SveU4Dm3dbRAghPT7OcF2aQ0AAfrvRzp2kCIfd2kZYyiNd6R+NLk/7a0jb6Fia4WuHVpO8aEZ2gm0efNmXHLJJfj973+Pd955B93d3RBFMeif3kFxe3s73n77bZw6dQoA0NbWht/+9rd45JFH8K9//ctIU5mnq6sLr7/+OlasWIHU1FRce+21mDJlCjZs2BDtphE2Y3akn3ZmaKOzsxO1e2vxkzd/gpJXS7DkvSU4ceaEaeeXF8HjwGHu+LnYuHAjCkcVBqxIKMktUR3IqAmELxeplEhXlBhZgc9SsTsiGNKa+CQSHZB/NoFPiOg3HspGKNkls1cmT8meEvB6cvZkxeNC2chIBupaAkBA8IrsPZ49FGAnHEMsaE04uykfuxWMKlA4i/0Ysfeh7KzcZgPwB4AAoKW7RbOmaBkj6t1pKT9nqDF0PEEBICJeiAW9IfThFP+WUjulettwZwPmjJ/D/A6fcGgJAEWSRUFp95TSuEvLGENpvKPkR/MhQtTtT3OKD81QEKiiogI8z+OVV15BT08Pmpqa8Nlnnyn+00pdXR1yc3Nx9dVXY/z48fjnP/+JgoIC/PGPf8Tzzz+Pr371q/jwww+NNNdUTp8+jaVLl2LOnDkYPnw4OI7DihUrFI/t6urCL37xC4wcORLJycmYOnUqXn755YBjPv30UwwZMgSjR4/2vzdp0iTs27fPytsgGMRsh1e878zQIji+HUAPvPUAaltq0ZHSga2Ht5o6oKiaX4XiccVw8S64eBdmjpvpFwqfgGQmZyIjJQO7m3ertlWPQGhZURLqe2YkIOmU7cpOgbSGMINIdED+Wa/gjeg3HspGmK1/avafAxfwXyX0OEW1DtS1BoCUoAA7YSWkNcGEs5usjnfMHvfL77NoTFHQMVqvIT/X6tmrA1KwzFozC6OfGI1NjZs0O/dY7YdoQgEggmVIb4hIcYp/K1w7WU/BqcWPpnUHUCSBO5/OZyRnICs1C5nJmYp6r8enppVQKWbV+s8pPjRDQaCDBw/iBz/4Ab773e+C580pK3TvvffixhtvREdHB+6++25ce+21mDVrFg4ePIhPP/0UCxcuxIMPPmjKtSKhtbUVf/rTn9DX14frrrsu5LHXX3891qxZgwceeAAbN27E9OnTsWDBArz00kv+Y7q6upCWlhbwubS0NHR1dVnRfCKOiHfHUTjBkaaA2396P4RhAsCdE+pNjZtUhUPvaobsIdnYvng7zi47i7PLzmL74u1BBeIKRhWgvacdp3pPBbRVeq2+gT7MGDsD7hQ3Zoydgb6BPrgfd2OwK3Byl8gnRiwgRgYmrA9mnAZpDWEGkeiA/LOFowoj+o3LbQQAS2rdeLo8yH86H9WN1WjracPmxs0o31COPZ49/vSbIkTsOrZL97WNDNQjCQB5ujyaa3CYUa+IiD9Ia4IJZzf1jnfs+m2aPe6X3qfP7kgD6HquIX9mFVsr/GP0t4685a+d6bPRWpx7NO4MhAJABOuQ3hCR4hT/llPaqUY4P1q4AJB03LPt8LawgTu1cZJP59t+3YaTFSfR+utWRb0P51NTu560LAMAJHKJigu3Q7VRqR2s+9AMRXBGjBiB5ORkUxvywQcf4K677sLQoUPx85//HF988QV+9KMf+f++ZMkS1NdHP9I7duxYtLe3Y8eOHXj00UdVj3vzzTexZcsWPPXUU7jjjjtQXFyMZ555BqWlpaioqIDXe+6HMGTIEHR2dgZ8trOzE0OGDLH0PojYR4+zKhadR6FWYMhrAF0+6fKAAnMiRFXhsGIbspbicjuP7kRSYhJalrYgKTEJO4/uRFtPG071nQo411VjrtIsILHY77ECaQ1hBpGsLrJ6ZZJVKR3KN5SjpbvF/1qAgPrj9QETMg4c+oV+3dfWO1DXGgBSs8XlG8qx8+hO9Av9EEQBSYlJqtd0SooMgi1Ia4JxanpmK222zxb5HCYu3hXRalvpuFfuhAECnWY0Vg0PBYAIJ0B6Q0QKiztAlTSKxXbqIZQfTcsOIOm4p1/o9y8gUQuImTVO0rpTzHe9AWEg4H1BFFCSWxK0cFtLG500VjEUBLrpppuwceNG9Pb2mtaQgYEBJCUlAQBcLhdSUlICCrplZmaira3NtOsZheO4kAXjffztb3/DkCFD8N3vfjfg/Ztvvhmff/45amtrAQATJkxAV1cXmpub/cc0NDTgsssuUz13X18fOjs7A/4RhBw9zqpYdB6prcCQB4Byc3Ox5ro1KL24NGCFo5pwWLENWa2tatdSK5IHAHs9ezVfNxb7PVYgrSHMIJLVRVavTLIqpYO8WDgAfwFQ34QskU/0/82qdBJ6dgCp2WI9z8gpKTIItiCtCcap6ZmttNlK404tq23VkAflpbh4V4DTjMaqoaEAEOEUoq03rGkNoR8Wd4CGq//DSjv1oOab0poCTj5mSOQTQwbEzBonad2BpeZL8y0cDPcZpTY6aaxiKAi0fPly5OXlYe7cuXjnnXdM2XI5duxYNDY2+l9v3LgROTk5/tfNzc244IILIr6OXTQ0NODSSy9FYmJiwPuTJ0/2/x04t4Jh/vz5WLFiBXp6evB///d/+Oijj3DttdeqnvvRRx9Fenq6/580DypBGCEWnUdKKzCUAkAcx/mFeu74uWGFw4ztvfKVAqtnr9ZVXE5t8qy3PXb3u5NWSDgF0hrCqViVKkFeRDQrNQtV86sCJmQluSWq1zbDTulNAadmi/U8I6enniDYhrTGOLHw25TfAwBFm6XVfkrH6DPHzUTxuGK4U9yYN34emu5qCnCaxeIcxSwoAETEIlbpTaxrDREdYlGjlPxoWgNAQPCYoSS3JGRALJJxklr5hFA7sIz40sK10crvgdk+NENBoMTERPzkJz/Bxx9/jBkzZiA9PR0JCQlB/+SGOxS33347uru7/a+Lior8O4MA4I033sDVV19tpLlRobW1FZmZmUHv+95rbW31v/fUU0/h888/h9vtxl133YVXXnkl5I/qnnvuQUdHh/9fU1OT+TdAxBWxMEGVI1+BkSKkKAaApGjZumt0e6/UeOc/nR+wUqBia4Wu4nJqk2e9242N9nuDpwHDVw8Hv5LH8NXD0eBp0PQ5J62QcAqkNYRT8HR5MGvNLAx6aBAGPTQIp/tOaxqoazmvWlB93vh5aLizIWjCEcqOR2qnjNQAUrPFevTG6aknCLYhrTFOLPw25UWXRYh+xwkHDp19nShbW4YF6xf47efmxs3Ifzpf0WkhHaNvX7wd2xdvV3UQxeIcxQwoAETEKlbpTaxrDREdYlGj5H60s+1nNQeAAP3jHi3Hh0qdrVQ+IdQOLCO+tHBt1Po9MOJHM9uHpj1KI+GVV17BwoULIQgCcnNzMWLECF0BHyV+9rOfhfz7qlWrIjp/NAi13VX6t+HDh+PNN9/UfN6kpKSAABlBRErV/CqUbyhH/fF6f9qcWEJtB5Acn+CFQssxSviMt3zrqXwFZfmGctQdr0NBTgGq5lcpXktvG5TOmz0k23C/F79Q7K+50dLdguIXinGy4mTYz8XiShkWIK0hnED5hnLUHKnxv3636V3MHT8XLUtbQnxK23l9tnXLoS2oQEVI+6hmD31EYqeMBIAAdQ3WY+uNahNBaIW0xhix8Nv03UPZ2rKAsSwHDiJE9Av92HJoC3iO9/9NgOAfK/qcFkaeQ6zPUYxAASAi1rFCb2Jda4joEOsapWcHkA+94x4tx8vne74xhXzetqlxE8rWlgXN7yJpX7i5I6D9e2DEj2a2D81Q5ObBBx9Eeno6Nm7ciIKCgogaEKu43e6AVQo+fHWNlFY36KWyshKVlZX+4ngEYZRIJqhajGI00RoAshq13KPSlQJq4hYp0vNuatyE0U+MRkluiWqQKVyftnYH2jb5azUKcgr87YiVlTLRhrSGcAryWj0iRFMCwVoGxlKbxnM82nvaVe2sFjulZCOHuYYZCgABseEkJmIb0prYw8j4PVRNSq/oBc/xSOASQi540tseso+BUACIiHWs1hvSGsJMnKRRenXfSADIKkKlzpYuThEhmupHA4J9dPlP50MQBcWxiu8Z5z2VZ5ofzWwfmqF0cJ999hm+//3vWx4ASkhIwLFjxyy9hlVMmjQJBw4cwMDAQMD7H3/8MQAgPz8/4mssWbIE+/fvR309raYnogfLKb5YCQABgVtEefDISs0K2k5qZaF0qTD6Vmyq9VW4PnWnukO+ViMWUqKwBmkN4RQKcgLHjBw4UwLBWrbfS21aS3dLSDurxU7JbeSi1xYZDgARhBMgrYk9jIzf5fbWneoOeF00pshvP7NSs3SlyGF5PsEKFAAi4gGr9Ya0hohX9OgsSwEgIHzqbGltH7Mzzsh9dC3dLarP0Ao/mtk+NENBoNGjR9sSORdF0fJrWMW3v/1tdHV1Yf369QHvr1mzBiNHjkRhYWGUWkYQ5hLtFF9q+UFZCgABgcZ7zvg5aLizIShfqV2F0oHQfRWuT2sW1SArNQscOGSlZqFmUY3SaYKQ55dlaceYUyGtIZxC1fwqFI8rhot3wcW7MHPcTFMCweEGxp4uD7Yd3hZ2J6YPLXYqwEb2e1G7p5YCQERMQ1oTexgZv8vtbc2imoDX625Y57efDXc26HJaWD2fMLuwst1QAIiIF0hvCMIatOpsqABQtLRUbb7nm7fNHT/XstpMSr40QPkZWuFHM9uHZigd3I9+9CM88cQTeOSRR0zZ/u80Nm7ciDNnzuD06dMAgP379+O1114DAHzzm99EamoqysrKUFpaijvvvBOdnZ0YP3481q1bh+rqarz44otISAj+EumFtrISLBDtFF9KKdRe+Y9XLAsAGU1/p2WrsFU5ZX3n3XZ4G/qFfgDq4ujp8oDnzq8P4MEHHZefna+pBhARGaQ1RCyRPSQb2xdvt+S8oWxr+YZyDAiBq0mzUrMgiiKm50zH6tmrUba2TLNND7CRAwDfxiNvRB4FgAjHQloTnxgZvyvZWzX7qzdFjtXzCatSLtsBBYCIWIEFvSGtIeIVLTobbgeQVVoazscWbkxhZW0m6bk5jkNbdxsECIrPsCCnAJsbN0OAAOBcDTNPl8d/Lyz40TjRwHabI0eO4K677sKBAwdw//33Y+rUqUhLS1M8dsyYMYYbx/M8jhw5EtE5rGDcuHE4evSo4t8+++wzjBs3DgDQ1dWF++67D6+++ira2tpwySWX4J577sH3v/99U9vT2dmJ9PR0dHR0qPYDQViFz2BLDa6dOzzcj7vR1tPmf53BZWDrNVst2wEkLYqbwCWg9OJSx0wilfoKQIDg9g30YefRnf4VDFmpWWi4s8G2PiV7dh7SGsIsWK3dZke75Brh4l1ouqvJfx29Nr1sbdm5wf2AALQCw1zD8PpNr+PKqVdSAMhBkD07D2lNfBLt8bvd7ZFrgTvFjZalLaad3yooAORsyJ4FwpLeUN84G1bnNiwTTme1pICzSkud4mOTPsPJ2ZMBAHs8e/zfQQDIfzofLd3nnold96LHnhkKAvE8D47jIIpiSOcqx3FBuTz1XofFIBBrkIAR8YxUMPg+HoWphXiy7EnLUsDZMYm0c1AjF1ye4/27hYDQ92dFO8mesQv1jXNhdWBtR7vUruGzX5saN0HE+aFwOJs3+onR6D/bD7QC8ALpg9Nx8rGTFAByGGTP2IX6JvZgwVnHqg6GggJAzofsGbtQ3zgbJ9p0ltFaA8iq526Vj83K8Yfas9ByL2a3S489M5QObtGiRVGtrUEQBOHDtz2z9lAtLkm9BCuuXmFpDSA70t/ZmbJCnreU53gkcAma7s/JqTUIIp6Idu02Nexol1p6AJ/9kgaAtNg8aQAIiUDhlEIKABEEQYSAhfGilalirIACQARBEOqwOrdxIloDQIB1WmqVj83K8Yfad1DLvURzXGQoCFRVVWVyMwgjUD5TgjiXH9TKGkByrJ5EyouYWz2okYtU0ZgiJCUmabo/GnzFB6Q1zifatdvUsKNdajmkpfYLADhwYYuX1x6tDQgAJQ5PxAs3vGB6mwkiHiGtCQ0Lu2mMwsJ4UW+NomhCASCCsA7SmtiA1bmN09ATAAKs01IzfGxK4yQrxx9q30Et9xLNcREf/hCCVZYsWYL9+/ejvp4cr0T80tnZicbGRrScacEvd/wS01+bjm++9E14ujyaPu/p8qBsbRncj7tRtrbM/zm1933C17K0BRsXbjR9Al6+oTwgHRsHztJBTdX8KpReXAp3ihulF5di3Q3rNN9fQU4BErhzxTlp8BW7kNY4H/nvnJUV0JG2S81Oa0Fuv+aOnxvS5vX19SGPzwMv8EAiwGfxmD1htmYNiKStBBEPOEVrovVb9q0abetp868adQqxNF60uv8pAEQQ1uIUrSFCw+rcxkk0NTXhwJED+OnGn2L2G7Pxw00/tGxME047s4dko2p+FabnTEfd8TqUbyjX3RalcZKV4w+176AWf2E0x0WGagJJeffdd/HRRx/5c89NnToV3/jGN0xp3LJly1BRUUE5OsNA+UydhZNX8rGGLwAkiiJ+ueOX2HV6FwQIuvKTquXytDvPrFp9CnkRczOu4fvurZ69GhVbKxS/i1q+p1YU8SV7xi7UN9YSb9pgxv1GYqeV7BcAxTb19fXh4MGD+OLUF3jw3QdxQDiAgjGh7WLd8TpMyZ4C4FzBUJ7j0dbdplujCGsge8YurPfNrDWzUHOkxv+6eFwxti/ebvl15TnmXbwLQ5OGOkIvrBgvRgsr5wcUAIo9WLdn8Qz1DWEXLM7xfDuAfrrxp6g9XQsh1dr5iRbtjFRf5eMkDhxmjpsJANjr2Wva+KPB04DiF4rR2t0Kd6obNYtqkJ+dH3RcqH43e1ykx54ZDgLV1tZi8eLF+PTTTwEAoij60y9NmDABzz//PK644gojpyZ0QgLmLKiInTlIA0DDhg3D9Nemo7233f93rcXk1Aq3GSlOF4nAS78XPsz+fsi/exkpGWjvaVf8Lkbre0r2jF2ob6wl3rTBjPtVs9NGbbFSm17/zus4ePAgzp49i+TkZEycODFkDSC5LefABQT25W0logPZM3ZhvW8GPTQoYMe2i3fh7LKzll9XzbbEg16whFXFqykAFJuwbs/iGeobwi5Ym+NJU8DNfmM2TvGn/H+zan6iRTsjXexihz8NAIavHo6W7vNtz0rNwsmKkyHbY3W/67FnhtLBHThwALNnz8bBgwcxZ84cPPLII3j++efx6KOPYu7cuTh48CDmzp2L/fv3G7oBgohlWMiLDTg7NY08AJSbm4vCUYWGtlSqbcU0skUzklQdRupT6EX+3WvtblX9Lur9njr5+0QQLMCKNthFuPvVYlPU7LRWWyy/Rm1zbUCb6o7W6QoAye8LgGIAyOnpkAiCsB9p2hEX7/LbFqfqhVPHjVakcKEAEEEQROwS6RzPTL2U1wC6fOLltqQl06Kd0mMAYEAY0OVX842TOJyvDW7FGKm1uzXkax96+t3OMZGhINDKlStx9uxZbNq0CRs3bsSvf/1rLF68GEuXLsWbb76JzZs3o6+vDw8++KBpDRUEAceOHcN7772HnTt3Kv6LNyorK5GXl4fp08mR4CRYyYvtlNzicoPY+HljUACI4zjDeWFXz16NjJQMcOCQkZKB1bNX+99PT0oHAAiigNN9p8Ma41CGPpxh11ufQut5Q13DnepW/S7q/Z465ftE6Ie0xh5Y0Qa7CHe/WmyK3O6vnr0aZWvLsKlxk6ZBt/waCXyCv028l8el/KW6AkDy+5LDgUMil4j0pHTUNtc6yvFJEFbjFK0pGlPkdzBw4FA0psiW60pzzJfklkRFLxo8DRi+ejj4lTyGrx6OBk+D4XM5ddwYSR0KpTE7BYAIwl6cojVE7BDpHM+IXirpjTwAlJWVZUltJaVrq/ncpFTNr8KMsTPg4s/Nt4wudknkE/3jND3PW6tfzZ3qDvnah55+t3NMZCgdXHZ2NmbPno21a9eqHvODH/wA27Ztg8cT2eRWFEWsWrUKTzzxBFpblSNsPrxeb8i/xyq0ldVZsJIX26p0BmYj3UbJ9/EoTC3Ek2VPBgSAzDq/vCaQvD5PVmoWGu5sUO2vUFs+w20HNfq90LPNVH4NX00gpWvqbY9Z3yeyZ+xCfWMtrGiDXYS7Xz02xXeubYe3BaRpAkKnAZBfIyM5A4WjClF3tA6X8pdi+TeWIyczR3MAKFxbfFAap+hD9oxdWO8bFmx1tNqgNQWKFpwyDzET+Zh99kWz8fuC31MAKIZh3Z7FM9Q3hF1EqtlG9FKuN0XDivDbb/wWwPkAkFUo+acABKRqc/EulOSWBD2LSFK6yT+rdg097Va6pt6aQFr6PdIxkR57lqj5rBI6Ojowbty4kMdcdNFF6OjoMHL6AO655x48/vjjuOCCC3DzzTdjxIgRSEw01GyCYALfSr5oU5BTEGDkWF117t9d0wsIbQL2d+03LQAUcH4ErjKoO14XlManpbsFo58YrSomVfOrFAuNq13HjCKBes6r9N1T+y7q/Z465ftEEHai5zfOgjbYWbg03P1OyZ4SUHx9cvZk1WN9q6ekEwYgfFpNud0qHFWouwaQ2n3JB/NSnJ7GiSDiGRZsdbTaoDUFihak9hcAOvs6Uba2zL9AiaUC2mYRMGb3elG7txZdeRQAIgiCiGUi1WwjfpYAvTnlxUctHwHfsD4AFHTtf891RIgB87R+oR/VjdVYsH4Bti/ervhZIPRcTj5v3d28O+CzaUlpup67vN3bDm+Dp8sTNAbJz87XtABGT7/b6UszlA5u5MiR2L17d8hjamtrMXLkSEONklJVVYWvfOUraGxsxLPPPouHHnoIDzzwgOI/gohn9OaRtGLrpxUU5BSA7+OBNoDneEwZN8W0AJDv/Go1gaT5RH30C/2qWzSlqTrkqdyUrmPGtk+rzqsXp3yfCMJOnJbuxsr2Gsl1LE25FAr5hAHQllZTbrf+OO+PEQWApEhts7z9RlIUEARBRButKVC04LO/Lt4FDpx/fF38QrGjdFMPfl0QAL6dx6Xpl1IAiCAIIs6ww2/n15sOgO/mkXdBni0BoIBr4/xcRy1d9q5ju0J+NtRcTj5vTeQTI0q7J/f/9Qv9to1B7PSlGQoCzZ8/H2+99RaWLVuG3t7egL/19vbigQceQE1NDebPnx9xA7u6uvCtb30LQ4YMifhcBBHL6HXehQpYsMSTxU+iMLUQ6UnpKJpYhFd+9EpEASC56K6evVrR4FbNr8LMcTMVnY9GVm8rGXYzCsFbdV69OOX7RBB2Eo3fYijCTTqsaK/vmqOfGI1NjZs0a9Qezx7/jhkRIvZ69qoeKw+4uHiXpgG01G69/p3X0fF5hykBICDQNs8cNxPF44rhTnGjeFwxZo6bSQFzgiAcR82iGmSlZoEDh6zULNQsqgn/IRV89ndo0tCA3ZGt3a0BOlTXXBdxu+0suByKqvlVmH3RbAzrHobCCwrx0KyHKABEEAThMCLVFDv8dlXzq1A0rAjpA+koHFWIZ2961pQAkJZ7V/JP+d7T0m6twRD5vFUQhIgCKVXzq5DIB2Yds2vubqcvzVBNoLa2NhQWFuLw4cNwu90oKChAdnY2PB4P6uvrcfLkSeTm5qKurg6ZmZkRNbCoqAhjxozBSy+9FNF5YpHKykpUVlbC6/Xi4MGDlM80zonF3NqdnZ1obGyEKIqW1wBSQ1rfYUAYMLWOg962RPu8dkD5mdmDtMY4rP0Ww7XHivYq5XYGwmtUJPXO9KYP6uvrM20HEOEMSGvYg7QmPpHbep7jA+qpRVJ3SO0a0dJiQRDw6aefUg2gOIK0hj1Ia4hIiVRT7PDbNTU14cSJEwDMTQEX6b3PWjMLbx15CyJEcOAwc9zMgHRwdrbFrnPagR6tMbQTKDMzE7W1tSgvL8eZM2fw5ptv4vnnn8ebb76J06dP4+abb8bu3bsjDgABwP33348NGzbgww8/jPhcscaSJUuwf/9+1NdTPnlCPa1ZNIlklYSZASBpO7Yd3qZrpbsvKt90VxPmjp9r6uptq7Z9Umo2wkxIa4zD2m8x3E4fK9qrlKqNAxeyxo/etkSyesrsABArK84Jwmk4RWvoN24ucluf6koN+LtX8Kp8Ujss7MqlABBBsIFTtIZgl0g1xWy/nXxc8uEnH1oSAAIiv/d1N6zDzHEz4eJd/l03RsdRVsxbWZu7W4GhnUBS+vv78cknn6CzsxNpaWm45JJLTF89+dprr2HJkiW49tprMWXKFNXI1qJFi0y9rlOgFSYEEPlKaCswGkk3KwAk3cUjXVXIgVPd0WNnYXQn4Hseu5t3I5FPhFfwonBUoWXPhewZu1DfOJ9orG5S2wlUPK5Y18ovs2yz9Dxfv+DruOfSezA0cajhAJC8XX0Dfdh5dKfjVpDFG2TP2MXsvtFrO8Id79RVok4h3PM1ogXR7jMKAMUvpDXsQn1DGCVSTTHbbydtD9/JozCjEE+WPWlJDSAjmRpqm2uRwCdgQBjA5aMuj6u5kqfLgwXrF/hrHxWNKcK6G9aZ7kfTY88MBYGOHTuGYcOGhTz56dOn0d7ejjFjxug9fQB9fX247bbb8NJLL8HXVLkzWBRFcBwHrzfylUJOhASMYBUjW10jCQCFcsZJcfEupCWlKYquVNg4cEjkE1GSWxJSnGM5cKTkwLVSrMmesQv1jfOxc7GAfODf0h1o+/WmPjDLiec/T78XfBuPwhGFeObbzxjeARQulVEspGaNRciesYvZfaPXdoQ7PhbTL+vB6jFvOJ0yogVq57Rj/E4BoPiGtIZdqG8Io7C2+No/LukAcAZIT0pH4/JGXQEgrXqo5d6Vyin4UJorZSRnoHBUYcz60qobq/2vOXCYO36u6X40PfYsMeRfVbjooouwYsUKLFu2TPWYp556Cvfee2/EgZlf/vKXWLt2LSZPnozvfOc7GDFiBBITDTWbIAibKcgpCJiohdvqqiUAFEqgfEX2vKIXWw5tAc/xQQGgBC4BJbklqoZXusVVhIh+od9fsE/tM/LrLli/AEmJSZpFlGXBU0rlxEKBe4Ig9ONLmxYpWmyX1C4mcAnISs1Ce0+7Zj2QY1Y6n7rjdfD2e4FWQPAK2N+2PyAApNcuy9vFczwSuATD92kGTtAWgrALvbYj3PFTsqeg5kiN/3W41JZmEcnv2kybIB/zhhofGyGcThnRArVzWn0vFAAiCIKIPcyaT5lFQU4BNn+4GcIZATzHY1reNN07gLTqoZZ7l55LjtJcKYFPCLh2/tP5EEQh7HhFOraZkj0FALDHs4epuU/d8bqA1yLEqPvRDNUEEkUR4TYQRZhlzs9f//pXTJs2De+//z7uv/9+3HrrrVi8eLHiP4Ig2EJPTk2tO4B8otLW0+YXKB/yiSEAf75VDhxcvCtsO6ZkTwGHwOuGm2TKr7vr2C7VNmq9F1aQ5qz1wUrNKYIgooMW2yW3i4IgRJRj2az82V+/4Ovg23jAC/AuHoVTCgN2AOm1y/J2FY0pinouaSdoC0HYhV7boeV43zhRPl60kkh+12baBDvr6yjVXzKzloKV90IBIIIgCMIOHp72MAozCpGelI6ZU2fipZte0n0OM/TQp9mbGjcpBoAA5bmSV/AGXLulu0XTeEU6tnnryFuoOVLD3NynIKcg4DUHLup+NENBIC00Nzdj6NChEZ+nt7cXxcXFtPuHIBRgvTit1mLd4QJA0vvcdnibqkCFcsbNHT8XTXc1aSoaLt2y6jtXKGMtv66vbUptlCIX222HtzHXh75AXkZyBrJSs5CZnBmzRfIIgtCGlomC3C6ePnsamxo3geM4rJ69WvfqLDMKdfb19eGeS+9B4YhCpA9Ox+zps/HCDS+EvLdwdlnernU3rNOke1bCQhF0gmAFvbYj3PF7PHv840QRIvZ69lrU8kAi+V2baRPMLmgdCqXglZlFm626FwoAEQRBEHKs8N01NTVBPCPiybIn0bi8Edt+vE3T3EPelinZUyLWQ59my31pLt6FrNQsZCRnKM6VCkcVBi06BvQtxJZekyW/WtX8KhSPK4aLd8HFuzBz3Myo+9E0R1YefPDBgNdvvfWW4nFerxfNzc14+eWXUVhYGFHjAGDatGlobGyM+DyxSGVlJSorK+O2FhIBLFi/AG8deQsiRGxq3IQF6xfoKrRtFpGkmdCyA0i+pZQDBxFikEBVza+KOD/rHs+egNccuLCTTPl15cXu1ES0IKcgIEfogDBgeiqKSGFtuzNhP6Q1hBwtqT5Xz16N4s+L0drdCkEU/Pa7pbsFxS8U42TFSf+xWjQkUlvU19eHgwcPYmji0JA1gPTaZRZtpN5UrATBAlZpjd7faLjjo/X7iuS6ZrZZaaxtFUrBKzNtrhX3QgEggmAbmtcQdqNUI8eMFKRNTU04cOQAVuxYgQP9B3D5xMs1+7/k6d9mjJ2B0otLI9JDeRkBX/2bcG2SajHHcWjrboMAQdNCbGktb2kgiBW/WvaQ7Kj4Z0PBiRrztvH8+U1DHMeFTfc2cuRI/O1vf8P06ZENjN977z2UlJTg1VdfxTXXXBPRuWIVKmoXvwx6aFBAUTUX78LZZWdtb4e0SKuvHSW5JWENvtYUcPIivC7ehbSkNEsK8ZlRfFxrsUBPlwejnxhNRcQlkD1jF+obwocWGyfXBSkcOAgPCIrHGrW7ofAFgM6ePYvk5GTVAJDv3pxul1krWMsiZM/YhfW+idbvK5LrOtUmSLWBB4/M1ExNdQKiBQWACDms27N4hvqGsAu1OZF0fqF3UXVTUxNOnDiBn278KWpP10JIFXTNoeT+NTPmOnb60eTHTs6ejLePvo0BccDUe3IKeuyZ5p1ANTXnCmCKoohZs2ahvLxcsQ5PQkICMjMzcckllwQEjoyyZcsWzJw5E/Pnz0dxcTGmTp2qeFMcx2HZsmURX48grCKWCzXLo/79Qn/Y1Q1aA0BA8ArGktwSy6L6ZqwK1LpKMXtINkpyS2jFNkEQjkKLjZPrghR3qjtAE0/3nbYsfZmeABAQG3aZxd1JBBErROv3Fcl1nWoT5KuD23vawxatjhYUACIIgiCUqG2uDZoTyecX8p05oTTOFwACgAP9ByCknltYp2cOZcWuZjv9aErHyoNQTpu/2YXmnUBSVq5cieLiYsyYMcOKNgWgNZDEcVzcbumkVQzOwIqVzrPWzELNkRr/6+JxxVHZbqhldQNwPhBWe6gWl/CXYMXVK3DxyItDBoCkn9Oys8ZpgTanrs60CrJn7EJ9Q8iR29zVs1ejYmsF6o7Xged4v8OOB48EPgEDwgDcqW7ULKpBxdYKxS38Zu4E0hsAkt8X2eXYhewZu1DfaIeFca9dbbBi1bJZUACIUIPsGbtQ3xB2MXz1cLR0n9crpTRpWjVOGgAaO3Ysfrjph4Yy8oSa67AwtjBCPM/f9NgzQ0EgO9mxY4fmY6+++moLW8IuJGDOwIrJCyuGTinPqdSRJ/17f3c/0AbwHI+iiUV46663QgaA9GB1SiEWcKooa4XsGbtQ3xBy5DY3IyUjIPCTmZoJURQxOXsyznrPou54HQCgaEwRPvryI7T3tvvPZXaaT6MBICI+IHvGLtQ32mFh3GtXG1i4VyUoAESEguwZu1DfEHaR8VgGTvWeOv86OQNtv24LOEaLxskDQFlZWX7f0NbDWzEgnEuFxoHDzHEzDS8OZ1VvzSBWfWmWpINTo6mpCZ9//jn6+voU/x7pbqF4DewQsYcVWy5ZSe/ga4dSUAqQbG/t8QL/1jshSUBDf4NpASBAuYBsrBAQSPt3rQoW02EQBGE/0RrQym1ua3erf0ePAAGiKKJlaQvK1pbhrSNv+f9Wc6QGWalZSOASLEnzaSQAFKuTAoIgYhcWxr1mt0HNFpuRZsZs4ikARBpJEIRdxJq9uXzU5QF+wMJRhUHHhNM4pQAQcN4PN+ihQf5jRYjYdWyX4fayMLawigXrF/gzKVU3VmPB+gVRyaQUTQwX7fn73/+OSy65BOPGjcOVV16J4uJixX8EQZyjan4VSi8uhTvFjdKLS5mYvJiNT4RalrZg48KNfrGuO14XEABCMsBn8igYVWDq9QtyCpDAJQAIzrOqFU+XB2Vry+B+3I2ytWXwdHlMbaNRfIE0abHyWBNlgiCM4bMPbT1t/uCwHchtrjvVrWiD647X+QNAPryC1xJNNLoDKFrPkCAIwujY04xxb6SY3QY1W6w2x4gW8RQAAkgjCYKwj1izN1r8gKE0Ti0AZBVGdJ1VH5oceXAskmCZUzEUBHrrrbfw7W9/G11dXfjJT34CURQxY8YM3H777cjLy4MoivjWt76F5cuXm91egnAsrE1ezECrsf9axtfAt//b3CQDie5EzBk/x/RAmBmBNlYHHUpF1qngHUEQgDUrtrTYd7nNrVlUo2iDC3IKwCFw12fhqELdmhiuTZGkgIvlVW8EQbCN0bEnCwvMzG6DE2zxF51f4OrfXo2CygL8bNPPkDYiLaYDQIAz+oUgiNgg1uyNmh9QbV4jfX/m/8zEgSMHAIQOABWNKQr5Wg9GdJ1VHxoRjKEg0KpVqzBkyBB88MEH+P3vfw8AKC4uxtNPP429e/fi4YcfxrZt2zB//nxTG0sEUllZiby8PEyfTk5gIjpoMfadnZ1YeulSFI4qxLBhwzB3+lw0/7LZkkCYGYE2Vgcd0hUZHDi4eFfM7igj2IK0hn2sWA2uxb7LbW5+dr6iDa6aX4WZ42bCxbvg4l0oHldsepA+0hpALKyoJ4h4Jp61xujYk4UFZma3gXVbLAgCbvzjjXj30LvoPNuJ3d27sWTrkmg3y3JY7xeC0Eo8a41TiBd7ozav8b//ZRve3v82VuxYEXYH0Lob1mHe+Hlwp7gxb/w8rLthneF2GdF1Vn1ocorGFPkXJnLgIgqWORVOFEUx/GGBuN1u/Md//AeqqqoAADzPY/ny5VixYoX/mKKiImRmZuKNN94wq62EClTUjogW7sfdaOs5X9TOneJGy9IW/+vOzk40NjZCFEUMGzYMubm5ptYAsgJWC+Ep1VuKhd1kcsiesQv1DbtYYR/C2fdooNamSANAQPzYWOIcZM/YJR77htWxZzRg2Rb7UsAVVBag82wn4AYwiA19tBqW+4Vl4tGeOQXqG3aJF3ujNq9xP+5G25dtwJlz72dcmIG2lW0qZ2EDp4xjYvW7pceeJRq5QHd3N3Jycvyvk5KS0NnZGXDM5Zdfjueff97I6QmCcAgFOQUBxl66SsOJASAgfFE+JewoXuhbkUEQBCHHCvsQyr5HC6U2mREAAow/w1grXksQhP0YGXuaBWs2jNXxrrQGUP6F+djdvRuCS2BGH62G1X4hCCL2iBd7ozbXmpQ8CW93vw0BAvhhPAonFka5peGxehxj1lglXr5boTCUDu7CCy/EyZMn/a9zcnKwb9++gGNaW1vh9XrlHyUIIoZQyxfq1AAQEHr7q1reVsqBShBErCG376tnr456wU95m/4474+mBIAigew/QRCRYlVaNy213ciGhUcaAEpISMBfbv0L5lw6J6q1mAiCIAhno+RLa2pqwr1fvReFowqRcWEG5kw2v462FWgZx2itJ64EjVXMw1AQaMqUKWhoaPC/Li4uRk1NDV5++WWcOXMGmzZtwiuvvILJkyeb1lCCIMwlEiPsQ8nYWxEAMqOtZpxHTXyszoFq1v0TBBEfWGHfK7ZWmDb4Nto+aZte/87r6Pi8I2QAyA7b6ZQc2ARBxB/hnCaeLg+2Hd5miw2L1B5rKaDte99M2y8PAE2YMAG52blRr8VEEARBOBv5XOts+1kcOHIAK3aswIH+AyicWBjx7lwz9dAqX5oWIp1vkT/tPIaCQNdeey0++ugjHD16FABw7733YsiQIVi4cCHS0tLwzW9+E16vF7/5zW9MbSxBEOZhRTTdqh1A8rYuWL/AkBGP9J7VxMfq4oWxtvKBRJggIifU78gKm2FmsCPS9vlSwH1x6gv8fOvPcdUbV+HaV68NsiV22M54KV5LEITzCGe3yzeUY0AYCHjPTBsm1an8p/MjssdhC2j3tGFT4yaMfmI08p7KQ3VjNdp62lDdWI0F6xcYar9SAGjw4MGGzkUQBEGEJp59BE1NTThx4gRW7FiB2tO1OMWfMmXuYnQupNQXVvnStBDpfCtW/Glm/EYM1QS65ZZbcMstt/hfX3TRRaivr8fvfvc7HD58GGPHjsWPf/xjTJ061cjpg64VDp7nkZaWhq985Su45pprAuoVEQShjB4jrCUHp5Up4ORt3XVsFwRRgFf0+o24PLenUpsjdWKq5W21OgdqrK0094lwqP4jCCI0oX5HVtgMM2oE+ezypsZNECEaap+0BtCD7z6I97rfg8ALirbEDtsZzVoeBEEQoQhnt+uO1/ltMQC4eJepNkyqU1L02ONwuiG18yJE9Av9AYW2AWDXsV26204BIIIgCHuJNR+B1jo2vgAQABzoPwAhVQBgztzF6FxI2hebGzcj/+l8tHa3Gp6/AZHNJSOdb8WKP82M34ihIJASF198MSorK806nZ+qqiq/I1kUxaC/cxwX8P5Pf/pTLF++HPfff7/pbSGIWEKPEQ5nbKyuASRvK4CwRlypzZE6MZXEx46CuiwWaI+EWBFhgogmoX5HVtgMM4IdPrssdTrqaZ80AJScnIz9wn4IvPpEyQ7bSQVGCYJglXB2W24jS3JLTB3DSnVKih57HE43pPdgFqwFgOyYaxAEQUSbWPMRaHHYSwNAY8eOxeUTLzd17mJ0LiTtCwECWrpbAv4eqS9tcvZk9A30wf24W5OuRTrfihV/mhm/EUPp4Ozk0KFDuOaaa5CdnY1HH30UO3bswCeffIIdO3bgkUceQXZ2Nq699lrU1tbiT3/6E0aOHIkHHngAr7zySrSbThBMo1SITo1QxsbqAJBSW4vGFIXdDqrUZj33rET2kGxUza/C9JzpqDteh/IN5ViwfoHlW0sjbTdrUPokgoicUL8jK2yGGYXL5Q5BDpzm9skDQBMnTkThmMKQtiTWbCdBEIQelOy2NJVI30AfZoydYZmNlOoUDx5ZqVm6rxVON3x23sW7FD/PgUPRmCLNbWYtAATEThobgiCIUMSajyCcw14eAMrKyjJ97mL0fNK+kKNn/qaECBEfn/gYO4/utE3XYmVOaMZvhBOVttfI2Llz57kLFhQgOTnZ/1oLM2bM0N0oKatWrcLvf/977NmzBxdccEHQ37/88ktMnToVv/zlL7F06VIcP34ceXl5mDp1Knbs2BHRtZ1CZ2cn0tPT0dHRgbS0tGg3h7AJO1eFla0tC4icl15cio0LN9oSAFLCd+/SlY3ye1drc6TIz8tzPPqFfv/fXbwLQ5OG0kq9EITqP7Jn7EJ9wxZa7CALSLWK53i0dbdBgBDSLsv17Y/z/oiOzzsCAkAul8sxz4BgD7Jn7EJ9Yy1Gx8dG5h16bLTa+bW2V3qtS7IuwYGTB9De2w53qhs1i2qQn50f9h5ZDAABgPtxd0CKO3eKGy1LW0J8gmAFsmfsQn3DHk4Y1+vRwlD6pRQAYmnXp7QvOI5De097xH416fOQk5mciYJRBUzcO8uo/Ub02DNNQSCe58FxHA4cOICJEyf6X2vB641sa/aECRNQVlaG//mf/1E95qc//Smqq6vx6aefAgAWLlyIf/zjHzh16lRE13YKJGDxiVVBDiWUjE2KkBKVAJBWrBpEyCdiLt7lr0/EgfOnq7C6T2IVsmfsQn1DGEGuVRkpGRBFMaRdln6G9/K4IvUK/L709wEBIIKIBLJn7EJ9Yy1GAwpWzzvUzm9kPG+krawGgAB753yEuZA9YxfqG8IIeuyxmn4pBYD0nttOzPKryccfPnzzQzMCTfGKHnumqSbQ8uXLwXGc/8vpe20Hzc3NSEpKCnlMcnIympub/a/HjBmD3t5eq5tGEFHFzpyp8hyc0doBpAer6jTI84kWjSlCUmIS6o/Xo7Ov078ryCt6se3wNs15TpVgaTUIQRCEEeRaJYpiWIej/zMDgNAqoCGxgQJABEEQJqAlL77S+NPqeYfa+Y2M5/W2leUAEGBOTT6CIAgicvToi5J+qQWA9J7bTszyq0nHHzx4ZKZm+hcG7m7eHXDv5EezDk1BoBUrVoR8bSU5OTnYsGEDfvOb3ygGg/r6+rBhwwbk5OT43ztx4gQyMjJsa2O0qKysRGVlZcS7rQhnEq3iZk4IAFmJ0kTMJyjS1RscOPQL/QF5TvWKp5ZiggRhNaQ1RCQY0aqCnAJs/tdmCK0CeIFHfk4+BYAIIsYhrbEHLQEFpfGn1fMOM8+v51ysB4AA6xa2EUQ8QlpDREIkWhUqABTpuZ0A+dHYgI92A8Jx6623orGxEVdffTX+8Y9/oK3t3PaxtrY2/N///R9mzJiBQ4cO4ZZbbvF/5u2338aUKVOi1WTbWLJkCfbv34/6ejYixIQxpAVay9aWwdPl0fS5aBQ3i/UAUKi+8P0t76k8AMC+/9wXVBxd2ieJ/PkYu9GVHKyuBiHiC9IaQo4e3ZLaxRljZ6BvoC/s5/4474+4IvUKpCem44qLrsDLt78cFAAyqp0EQbAJaY35KNlJX0ChZWlL0DjWh9L40+p5h/z8q2ev1m3jffe7u3k3MlIykJmcGbKtTggAEQRhLqQ1RCQY1cJwASClcxvRwWijZX7mK58ghfxo9qGpJpAS+/btQ319PVpazqX0GD58OKZPn468vDxTG+j1enHzzTfjxRdf9DubeZ6HIAgAAFEUsXDhQqxZswY8z8Pj8WDVqlWYN28e5s6da2pbWIXymToL+dbEvoE+7Dy6k/n8l7EeAAJC52HVm6PVjJyuSufwraDwfX9Wz16Niq0VMbPVlewZu1DfED792nZ4mz/1pR77psUu9vX14eDBgzh79mzIFHCs5s2WQqkI2IXsGbvEWt9E0w4YtZMs2NdZa2bhrSNvQYQIDhxmjpuJ7Yu3h/yMnnZTAIiwg1izZ7EE9Q2hF6N6riUApAQLWqwXM/xpVvnR5Ofw9efu5t1I5BPhFbwoHFXoyPmaHnumOwi0detW/PKXv8S+ffsU/z558mT87ne/Q3FxsZ7ThmXbtm148cUXsXfvXnR2diItLQ1TpkzBwoULUVJSYuq1nEY8CFgsOVLkBonneL8zDdBeoNVO4iEABIQulqu3kK4ZBfSUziHd2hqLRfTiwZ45FeobQqpfUrTqVjg7Kg8ApY9Mx4/e/JGi9hstbm4nTpy8xQtkz9gl1vommnbAqJ00qwi00jm1zuUGPTQoYH7k4l04u+xsyGtovV8KABF2EWv2LJagviH0YkTPlQJAWvXQCXMdOWb406zyo8nPoTSvdep8TY8901QTyMdrr72GH/zgBxgYGMC4ceNw1VVXYeTIkRBFEV988QV27tyJPXv2YO7cuXj11Vdx3XXXRXIfAZSUlMR9sCee0ZrT0QnBIvnWRJ7jkcAlMJv7M14CQEDoPKx6c7Sakb9b6Rzy709rd6t/Sy1tdSUIwkqk9seHHt0KZUeVdgBd++q1qtrvhLzZlIqAIIho2gGjdtKKGjQL1i/w7+zZ1LgJC9YvCLuzRy9a7pcCQARBEME4wY8WbfTqudoOIK2+TSfMdeSY4U+zyo8mR2leGw/zNc01gdrb23HHHXfA5XJhzZo1OHToENasWYNHH30Uq1atwpo1a3D48GE8//zzcLlcuP3229HR0WFl24k4QqvB9RlUaREx1ijIKUAClwDgnPOsaEyR7bV9tBJPASAgdI7XaNRgUkL+/XGnuv2vefDgOM5ReWMJgnAOUvvDgYOLd+myh2p2VC0FXCjtZ8Um+1DKgS23106YvBEEYS5G7IBZNc9YspO7ju3yL1oSIWLXsV0hjy8aUxTytRLh7pcCQARBEMo4wY8WbfToeagUcFp9myxpuFac4E/zIe1PH75+jeXas5rTwf3v//4vfvazn+G5557DzTffHPLYP//5z7jttttQWVmJO++805SGCoKA5uZmHD9+HP39/YrHzJgxw5RrOY142MqqdeulE7ZMWpFiwQpCBYCisVJE6ZoA4m7Fivz7s3r2avys+mfYdWwXBoQB/wQ7HrayEvZCfcM+VttmK/QrVA2gcNrP0qpFeVszUjIwIAwgkU+EIAgoGBUfGhUKlvqL7Bm7xFrfGLGbLKSSNPv3Kk/vlsglYvbFs1XPb7befNH5BW78443Y27QX+Rfm4y+3/gW52bmGz0cQWog1exZLUN8E4gQ/WrTRqkvhagDJNX7G2BlISkyybXwcSt9ZGqtbje9ea5trkcAnQBAETLlwCgAE+NbC1RRi4VlZUhPouuuuwwcffIBjx46F3QkgCALGjh2LadOm4fXXX9fccCVEUcSqVavwxBNPoLW1NeSxXq835N9jlXgQMK0Gl4VJUywQbgeQGc9Zr9FUuiaAqPe32cZf7XyhrhNpnQ6WiAd75lSob9gn2pMKvYQKAAHhtT/S+zXTfmc+lon23vag92ksch6Wxmhkz9iF+saYM87s8ajZv9dZa2ah5kiN/3VmciY6+jpssQeCIODKx69E7We1AAfADRRPLDY9HR1ByCF7xi7UN4GwNEZzMuECQEDw/KZvoA87j+409OyNaH+ovmb1e6DnPo3403zo8aux9KwsCQLl5ubi8ssvx0svvaSpEQsXLsTu3btx6NAhTcercffdd+Pxxx/HBRdcgGuuuQYjRoxAYqJyKaMHHnggoms5FRKw8zhllw3LqAWApEbzdN/pgNV8RoINeo2mfELMgUMinxjQDg4c5o6fa2u/m2381c4X6jryZwM41/FI9oxdqG/YR24LXLwLgijYOjjVOkj3BYC+OPUFHnz3QewX9qNwTKGu1WiR3q+Z9nv46uFo6VbWQScG5K2ApVWmZM/YhfrGmG0yas/U7KzZv1f5HK22uTYgcC4dwwPm7fT3pYDL/+98DIgDgBvAoHN6cXbZWcP3QxBaIHvGLtQ3gZAfLXK0BICUMKq3ni4P8p/O988/tGq/0vX2/ec+lG8ox6bGTf7MMsC5BRutvw69GcMO9IxxjPjTfOjxqzl1XqMcTVGgtbUVo0aN0tyIUaNGoaUl8gdQVVWFr3zlK6ivr8eQIUMiPh8R21hRyFQLLG0FjIRQO4AWrF8QsILPh9E6B3oK63m6POC5wBJmIsSAAJDvPV8O26r5Vbb0idkFf9XOF+o60iJ7wLmJbUluSdTzrBIEYS/ygpsAbCtI3uBpQPELxQGBkE2Nm3DDqzdgaNLQAFs8zDXMvwPowXcfxHvd70HghaDiqOEKp0Z6v2ba7wFhQPF9qgV0HicWuCWIaOAbw0qdceHY3bw7wJ7VNtcGHaM0X1Gzs2b/XuVzNPlqWxEiqhursWD9AgDAW0fegggRmxo3YcH6BUG7drTMvaQ1gMAByAQwKKLbIAiCiEmi5UdzKnINenjawxDPnAueyANA4fTKqN6WbygPmHdpnctMyZ4S4NebnD0ZC9Yv8OuunLK1ZVH3c+qZsxnxp/nQ41dz6ryGD3/IObq6unQFYVJTU3HmzBlDjZJf91vf+hYFgAimiYVCeuFSwMkLuHLgIirqpqewXvmGcrT3BKfZUcJn0O3qEz33oaXAnNr5Ql1HWmRv3vh5aLqrCRsXbnRkIJIgCOPIC24WjSnSXZDcKPIAEHDOqfdu07sBtnjRa4sCUsDtF/ZD4AUAwQPycIP1SO9XXhDUt+vVCJePutx/Lh48slKzmCl8ygqsFYQlCFbxOeNalrZoHs8l8oFrOxP4hKBjlMbGanbW6t+r7/xydh3bhbePvu13RIkQ8fbRtzXdixRpACghIQFXTr0yIABUNKbI1PshCIIg4gepBm3+cDN+8tpPACjvAAqnV0b1tu54XdB7Wud6HLiA/+46tksxANTZ18mEn1PJF6bmWzPiT/Ohx6/m1HmN5p1AGrPGRfwZOVOnTsXnn38e8XkIwkrM3g1iN1pSwMlXOSfyiRFtd9SzylH6fJWQpwCanjPdcJ/oLZSn5z7CrWoP9VxCXYdW7hAEAQTbAqXUDlbR2q2cKkCEeN4W93tRu6cWZyedrwFUOKZQdRVVuBVW0vv1dHmwYP0C8BwPnuNRNKYo7P1Wza8KSKPQ1t2maJe1oGSjKRAfCGkVQWjDSIYBrxA4ThYEIegYpbGxmp21+vfqO/+ghwYF7eyXj/l9r+WpqdXG+fIA0IQJE/Dq+FeDbHSsZHIgCIIg7MWvpx2AcEbA/v79AQEgrXoFGNfbgpwCbG7cDAHn9D4rNUvTXG+PZ0/AQou9nr2KxyVwCeA4zu8HNOLn9M3PfAvKi8YUYd0N63RrrdI8S823ZsSf5kNPXzh1XqM5CAQAu3btwuOPP675WDO4//77ccMNN+DDDz/E1772NVPOSRBm49StgEDoHUBSwyqFAxfxCjo9RlP+fHmOD5gwihCRkZIBr+BF4ajCIFHQu61WLVCj9jet96ElMCV3atLklCAIo9g5OHWnuhVr4mSmZKKjtwPefi/4Nh55I/L8ASCXyxUwIJ+cPRl9A31wP+5GQU4BVs9ejQpUaA6yS4uqJiUmhbWX2UOyIYjnHaUCBMOLOPQ+a7LvBEGooWXRkJzCUYEB9YJRBUHHKM1XjKSeiwS57SvIKcC7Te9ChOifX7x97O2AxWe+XU5q6Wqk43ylANDgwYMxGIODnqE0JZ3W50wQBEEQBTkF2PzhZghnBPAcj2l50wJ2AEl13LfbBjA3M4PRBWhKY4G+gb6g0g88x2PooKE41XsKAgRDbS/fUB6g2zVHagxprdI8S823pjYnIz/bOThR43YdntecOe78yTkOXq/66n2tvPbaa1iyZAmuvfZaTJkyRbXQ0aJFiyK+lhOhonbRx6mF9MKlgFMqup2WlGb7Pcqf7+rZq1GxtQLbDm/DgDAAEWJQwTajfRKqwFukxd/0Fu01s2i5UyB7xi7UN0QofDWBWrtbkcgnItWViitGX4HVs1fjVxt/hdo9tchz5+HRuY/iyqlXwuVyBZ0jEptn1D5Hy87Go31nCbJn7EJ9Y8yeaRn3sjBfkdu+GWNnICkxKaBN0mAPBw4zx83E9sXbg3YNceCQmZLp/9zw1OGKASA1WCrqTMQmZM/YhfqGiIQPP/kQP3ntJ9h/Yj+m5U3DSze9FKCnrPjRlFDLFOF7j+M4tPe0+3U6IyUDoigaarv8OQDmaW0kc6lYm4fpsWeadwI9//zzETfMCH19fdiwYQNaWlrw3HPPAUCAkxo4l3aO4zhHB4GefvppPPPMM/j4449x3333YcWKFdFuEqEDJ24FDBcAAoJXCZTklph2n3qi72pRewD+VQVqO2uUcpuGItSurkh3fOldben0NIMEe5DWEFaRn52PkxUng97v6+vDf037L38KuLPpZzHyv0eitbsV7lQ3ahbVID87H4Axm+fThNN9p8GB8y8K0Gqf7V4F74PsOxHLkNZEhpHxppa5iN3zFaWxvtz2ffTlRygcVRgwXl93wzpFuywf00tTU6vtAAqFkzM5EARBWkNEh6amJohnRDxZ9qRiDSDAWj+aWfg09eSZk6jYWuHX6trm2gCd9mXbqTteh/IN5boCQQU5BdjUuClAv63cCaWVeJ6HaQ4CLV682Mp2qPLLX/4Sa9euxeTJk/Gd73wHI0aMQGKirix2jmDEiBFYuXIlXnjhhWg3hYgDtASAAHXDasb2SSOpLjxdnoD6DQBUnX7SVYSbGjdhwfoF2L54e9h2hRKTSJ2FeiffdkxO43krbDxCWsMGRn93Tvu99vX14eDBgzh79nwNoJH/PdJvw1u6W1D8QjEa7mwICuRw4NDZ14mytWUh71OettTFu1CSW6LZPkdrEQc5H4lYhrQmMqIVnDYb+VjfV7fNBw8eCXxC0DFJiUlBOufp8kC+rmto0lAAxgJAQOw8Z4KIV0hrCLtpamrCiRMnAEA1AARo05dozevk2nz18av9u3WqG6uRmZyJBC7BP0eR6vSmxk0Y/cRo/1wrXHt9u3ulNYHM0tpI5nBmzMOcNi/3oTkdXLS44IILMHbsWLz33nsxGfyRc9ttt2HUqFG6VjHQVlZCD1oDQKEwY/ukkRQMZWvLUN1YHfCe2tZaecoIF+/C2WVnFc9rpgG34lxWpu1gbSss2TN7IK2JLkZ/d6z9XkOhFAByuVzgV/IBq8E4cJg7fm5AIMcXCAIQcJ9K9jXvqTxHpvOxwr47dTISDcie2QNpTXyjlA7HK3j9RaxdvAuprlR09HX4j0nkEjEgnq8HVDyuGNsXb1ecA2QkZ6ClosVQAIgg7IDsmT2Q1hB2oDUApJVozeuUUrRJSeQSMfvi2f45Sm1zLdp72wOOCdVeFucj8jb5yktEMg9jaV6ux57pL/RjM729vSguLrYlAHT69GksXboUc+bMwfDhw8FxnKqQdHV14Re/+AVGjhyJ5ORkTJ06FS+//LLlbSQIPXi6PChbWwb3426UrS1D4+eNigEg+XGeLk/I85qxfbIgpwAJXAIA7QXyfCngpJTklqBlaQs2LtxoWFx8qyHaetr8u5KMYua5fKsbIr2/UMTzVthoQVpDGP3dWf171asFavgCQF+c+gI/3/pzXPXGVbj21Wvh6fLAneoOONad6g64LznS+1Syr0a0hAWssO9m6g/hfEhrCLNsulGk9hkA+oV+fwDI99qV4Aqw4XIt8K0eVpoDFIwsYC4AFO1nThB2Q1pDxANaA0B6NEA+r9t2eJst2iGfO3EIXBDOcVzAHKVwVGGAlvvaqzYPZXE+Im9TxdaKiOdhTvWjMR8EmjZtGhobG225VmtrK/70pz+hr68P1113Xchjr7/+eqxZswYPPPAANm7ciOnTp2PBggV46aWXbGkrQWhBauw279uMRX9epLgDSK+hNsPpVjW/CqUXl8Kd4kbpxaWatoXKJ5NZqVkBn5OKri9FhI+iMUWq5zXTgDtNDJzqQHUypDWE0d+d1b9XrVoQaoIj3QH04LsP4r3u99B+tt1/vppFNchKzQIHDlmpWahZVIMp2VP8ExAOHDKSMxTvU8m+GtGSWMVp+kNYC2lN7BPO2RRtR4zPPrt4V5CTyYdX8AbY8AQ+0NE0IAzA0+UJmgO4k91YdtkypgJAQPSfOUHYDWkNEevo2QEk1YDqxmrkP52vGtCR6hoHDv1Cvy3aIZ87XTn6yoB5WEFOQcDYYvXs1X4t9xFqHsrifMSKNjnVj8Z8EOiRRx5BdXU1/u///s/ya40dOxbt7e3YsWMHHn30UdXj3nzzTWzZsgVPPfUU7rjjDhQXF+OZZ55BaWkpKioq4PWeX8FUUlKC5ORkxX/Lli2z/J6I+MZv7HoBoVXA/hP7FVPAaTGK0olm30AfZoydEZHTzcgqaKlgzRs/Dw13NgR8Tiq6Hb0dyErN8h+77oZ1quc104A7TQzIgWo/pDWE0d+d1b9XrQNkNSeXPAXcfmE/BF4IOF9+dj5OVpyE8ICAkxUnkZ+dD+B8cVIRIi4dfqnifSrZVzt2TDoFp+kPYS2kNbFPuIBDtB0xPvs8NGloQBpQKVMvnBpgw68ac1XA30WI/kLUPl2YmzsXG0o3IFlMZioABET/mROE3ZDWELGM3hRw8uwGLd0tWLB+geKCDamuJfLnM19ZrR3yudP6G9dj7vi55/R1/FwMShikuGum6a4mzBs/L+w8lMX5iBVtcqofjfkiO1u2bMHMmTMxf/58FBcXY+rUqYo57jiOi1gQtNZF+dvf/oYhQ4bgu9/9bsD7N998M37wgx+gtrYWV155JQBg27ZtEbVJib6+PvT19flfd3Z2mn4NIjYoyCnA5n2bIbQJ4DkeU8ZNUawBpKUwmrSA3M6jO1F6cantdRfCFX+TT7xEUQzbRk+XB30DfeA5HjzHR1yszswis3bkU41WUfR4hrSGMPq7s/r3qrVIppKTS6kGUOGYQk3n2+PZE/D6k5ZPFG231L5Ozp6MvoE+uB93K9pHFvNRWw0VOSekkNacI5ZtQbiAgxmFj81A2g45bx97G2Vry/z9su6GdRj9xOiAup71x+v9+icIAnMp4KSw8swJwi5Ia4hYxUgNoIKcgqD6dbuO7YIgCvCKXv+CDd/CNd+8Tl5fxk7tkM8v3Y+7FccWWuehvvlIXXMdeJ7H7ubdATpvJ74xYG1zLTJSMuAVvCgcVWjKHMmpfjTmdwKtWLEC1dXVEEUR27dvx+9+9zusWLFC8Z9dNDQ04NJLLw2qUzR58mT/3/UyMDCA3t5eeL3egP+vxKOPPor09HT/v9GjR+u/CSIueLL4SRSmFiI9KR1FE4vwyo9eURyoaYliK0007c57He56RiL85RvKsfPoznN5ykUBSYlJEYmT2qp0I8+KUkrEN6Q1hN1oXdEkt7XTLpgWFAByuVyGzye13VLb6VsN3rK0BUmJSdh5dKeqfVSzn0q2OFZqONCuKMIIsa41sTyWCjfutWuVajgbKm2HNJ0McC7dm69ffM4aKdL7EgQB7330Hm7+682Y9ZdZqPigAl1il+Z22IFTVwYThNXEutYQsYWRABBwTgOyUs8fy//b5R7Oj+ZLuWaWdhjRQ99nTved9r9nJCDlm48UjCpAe087TvWeMnX8pefefGPA9t52tPe0o3BUYdzPkThRFJX3ZjPCjh07NB979dVXm3bdlpYWDB8+HA888EBQgGnixInIzc1FdXVghPeLL77AyJEj8cgjj+Cee+7Rdb0VK1Zg5cqVAe89//zzKC8vDzpWaRXD6NGj0dHRobhLiohPOjs70djYqFgDyAjy1QmlF5cCQNB7WqLhRldlKrVBej3feaWroKVBGKVrZjyWgVO9pwKuM2/8PE2f1UO4tivhftyNtp62869T3LbvvrKbzs5OpKenx409I60hIsHqFe5q55fa2mkXTMM9l96DoYlDAwJARq6jZLulthMAXLwLJbklqG2uRXtvu/8ccvuoZj/N1DLiHE7caUFac55Y15pYHkuFsp1mnj/cb1vLGNd3rm2Ht2FAGAhKD+dOcWN6znT/eThwSOQTUZJbgqr5VRieOhyffvopbv7rzag9XgshUwAGAYlcIoalDINX8CKBT0BbdxsEnEtDmpWaFZQ6miDshLTmPLGuNUTsYDQA5EOuzX0Dfdh5dKdlcw8lrZZm8dF6fqmWSzV49ezVqNhaoWuc7+nyBO3qdfEuNN3VFLEm6/GrmTUGZH2uo0drmE8HZ2Zgx0xCOdONONr17GZKSkpCUlKS7msQsUODpwHFLxSjtbsV7lQ3ahbV+OsqAOYHgADlNDN5T+UZynstFSXplthwhEt7EWpLpto1pflXfcjbZLS9odq+7fA21TRGPiilBEFaQ4TCDNuk5/wL1i9AUmKSfwD84a0fouPzjqAdQHoJZbvlubX7hX5sObQFGSkZSOASFO2jp8sDnju/2V36dyUdESFSDYcIsPp7SFhPLGuNnWMps5wEWs9jdSoSrb9tLXVwpOcC4C9CLUL094v0PCJEpCWlBaWA29eyzx8AAoABcQAt3coOnZbuFk32iHXnDkHECrGsNYQzCGfvjQaAQp1XacGGUT+aEkpabaQ+nZoGS4MuWsf55RvKAwJAwLk5nBlzBCW/mqfLY6k/LZbmOprSwc2aNcvQv5KSEqvbHxXcbjdaW1uD3m9rOxdhzMzMtKUdlZWVyMvLw/Tp5BiON4pfKEZLdwtEiGjpbsHkP0z2b4WUB4AGXzAY33zpmxGnRlBKM2O0wJrRoqmRFHSTX3NT4yaUrS1Dv7c/6Fh5m7S2N9TW1IKcAv92YOCcCIZLTUIpJeIb0prow0JqmVDIbVNtc62p7a1trg04/65ju/xplTb/azN+8MwPIg4AhUNq9314RS+8glfVPpZvKEdb9/lVXxkpGf6/K+nIlOwpAeefnD3Z9PuIZagQurOJda2xcyxlVuo5s1PYGdUyrb9tLSk9NzVuCgjoD0sehpnjZsLFu8BzPPoG+jAle0rQeXwBoKMnjuJnm36G7qHd/gCQFrTYo1hOGUgQrBDrWkM4g1D2XhoASnGn4Iebfgj3427MWjMLs9bMCqmhoc5rph9NCSWtNnJ+tc+o+dFCjSXqjtcpvh9Kk7WOVQpyCgJe9wv9WLB+geKxZo0BY2muoykI9NZbbxn+p5drrrkGH3zwge7PAUBPTw/+67/+C08//bShz2tl0qRJOHDgAAYGBgLe//jjjwEA+fn5Sh8znSVLlmD//v2or3fuF5AwRmt34ABKhIgth7bgpnU3Be0AuvmNmzVPbPROEo0aVaOiF+564YIwUkei75m5ElxBDkZ5m7S2N5T4V82vQmZq8OA2lIhQfYf4hrQm+rDuGJLbpgQ+wdT2JvCBtnFAGDg3AB4AhBYBDZ83WBoAAs7bfRfv8q8cT+AS/Dmdlexj3fE6fzogABBF0f93Lbq158s9zAX8WMbMiSxhP7GuNXaOpcxyEsgD8HXNys4UrRjVMvkCps6+TmQ+lhk0xg5lV33XlqZ/89nwpMQkCKKAfqEfO4/uBICA8/z5P/7s3wG08u2V2N29GwOJA+D+/T8lpDWHePCa7FEsOXcIglViXWsIZ6Bm7+U7gH71zq/8ullzpAZvHXkrpIbq1REzF6gojcP1+s0aPA3oG+gDz/Fw8S7MGDtDcQEdcN6PFmosobSIL9wcQetYpWp+VdAYYNexXYrHmjUGjKW5jqYgkCAIhv6pFWULRVNTEwoKClBSUoKqqip0dnaG/cz777+PX/ziFxg7diyWL1+uO2ejXr797W+jq6sL69evD3h/zZo1GDlyJAoLCy29PkG4U91B73l7vKhvqA9KAadHkPROEo0aVaOiF+564YIwpReXBgiGdDV5ZnImslKzkJGcEdQmre0N9ayzh2RDEIWgz9glIqzvaCCCIa2JPmppHFn5Dcltk1fwmurIGhACJ+oJfAJ4Lw+0ArzAIz8n39IAEHDe7jfd1YS54+dq0o1QA3UlHdnj2RPw+bbetogCaPFmb2nXqrMhrTEPs5wE8gA8z2uasqtiNMghX8DUL/Sjvbdd0ypnpWsD59LA+eyEvF17PXv95/nHgn+g84tOdHV1ISEhAQeEAxBc58bRIkTFdM4u3oUPb/8Q88bPgzvFjTnj52iyR7Hk3Ik3/SGcA2kNe8SjvVCy90op4OTa5VvIoKahenXEzAUqSuNwvX6z4heKsfPoTvQL/RBEAUmJSUEL6OR+tFBjCd9nQvnY5Ggdq2QPyVYcA1iJ9H4yUjKwu3m3Y38zzNUE+uijj/D888/jwQcfxC233ILbbrsNl1xyCb72ta8hOzsbGRkZ6OnpQVtbGz799FO8//776OjoAM/zuPHGG/Hwww9j3Lhxhq+/ceNGnDlzBqdPnwYA7N+/H6+99hoA4Jvf/CZSU1NRVlaG0tJS3Hnnnejs7MT48eOxbt06VFdX48UXX0RCQkKoSxBExNQsqvGnhAMA9AJ8O4+8UXlBNYD05MG0ayWcVTnMQ+UH9V1TXkjOt5rcjPaGe9bSvwPnC5zb4TCLpTymsQBpjTOQ/mY5cEFpHKP9G5LbJrl9i9SRdfmoywPO940R38BAywAaEhuQn5OPl29/2XAASG8NBj26oVTDLhQFOQWobgwsVGx2bu5of1esxOq6JIRxSGvsRa/tUUMegPcK+hdWSjGaE19tAZOeOcKU7CmoOVLjfz1z3Ey/vVBrl7QGUEJCAiZMmIDCiwqD9FhKApeAktwS5GfnY+PCjX6NyXsqL6zGmNVvLBBv+kOwAWmNM4lHeyG39w9Pe1ixBpDcb8OBC6hhF+68duqIkXG43G/W2t2qGOiSztfcqW60dbdBgBB2LGGkTXrGKkVjigLGFkVjinRdSy9KvkSn/mY4URTF8IeFpq2tDWfOnMHo0aPNaBOAc4O/f/zjH6iqqsKOHTv8uUKl8DyPyZMn47rrrsNtt92GkSNHRnzdcePG4ejRo4p/++yzz/wBpq6uLtx333149dVX0dbWhksuuQT33HMPvv/970fcBq1UVlaisrISXq8XBw8eREdHB9LS0my7PhF9PF0e3LTuJtQ31CNveB6euPYJFEwqCCisqFSITm0SJHcgll5c6gij5rvHbYe3BU0Ks1KzIIiCfwIIQPPzMNoOtXPr6QuzcT/uRlvPeTvqTnGjZalyId1o0tnZifT09Ji3Z6Q1zkD6m+3s6wywLyz+hsy2MdLzTbtgGu659B4MTRxqSgq4UHpjd5FuT5cH+U/n+xdW8OAxZ/wcw/rnFHsbz5DWkNawjNnj8Ui0QdoWH3ps9qw1s/DWkbcgQgQHDjPHzcT2xdtV2zU8dXhQAGjw4MEh9ZgDh7nj5wZcV/4MZ4ydgaTEJNt0JVqQ/rAFaQ1pDcvEu71Q2gHkQ6o5vlqhez17bffhWIVcIzNSMtDe0x6gmQD8+g3Af5woipY8Bz1jlWj51Vj9zejRGsNBoI6ODixfvhwvv/wyWlpawHGcP79nbW0tVq5ciYceegjTpk0zcvogDhw4gObmZrS2tiIlJQXDhw/HZZddhvT0dFPO72TiZXBBBNPZ2RlUA0gaANJLKGNql1POyHWUJqhynBTUsgKnBPjInrFLvPcNS78hu4MkfX19OHjwIM6ePasrABSqnaEG0dF41mZOJlj6rhDKxLs9Yxnqm+guGlJrS21zLRL4BAiCgIJRBSEDLlKbp8dhorQDqEvsCtIR6ep1NRsrv66Ld0EQhZi3y6Q/bEH2jF2ob+LbXoQKAFmN3fM4pWuunr0aFVsr/OMM+eu+gb6AAJAPVoIe0YLV34zlQaC2tjZceeWVOHjwIL72ta+ht7cXBw4c8NcA6unpwYUXXohbb70Vv/vd74zdBaEZErD4xOwAUDjsMnhGriOf6KkeF8eixZJDIRRkz9gl3vuGpd+QnQNQowGgcO00y2nIIix9Vwhl4t2esQz1jfMwI6ivFAAaPHiw4ueV0u7Ibaz8czzHM7+b1wxIf9iC7Bm7UN/Er72IZgAIiE4gQe811fxr88bPYyLoES1Y/c3osWeGagKtWLECBw8exLp16/C9730PK1euxIMPPuj/e0pKCq6++mps377dyOkJggiDmQEgrSsRQtULkp7j0qxLceDkAbT3tsOd6kbNohrkZ+drbo+RukTS/KE8eGSmZkIURXAcpzlvqRLRWKVhFVSzgYh1rP69svQbsqt+WyQBIADY3bw7oJ21zbX+v8mdeKtnr0bZ2jLUHa8Dz/HgwYe03SzbZ5a+KwRBEKFQs6UNngYUv1CM1u7WsOP5UHn8tdRJEAQB7330HirerMC+ln0omFSAF8e/iMEYrKh3Wmxs1fwqLFi/ALuO7QIADB00FKd6TxmeEzgF0h+CILQSj/bCrABQJPMQtXmclnPqua702NN9p3XNHQtyCrCpcVPATqCs1CxDtY5YnrPpJRZ+M7yRD73xxhu45ppr8L3vfU/1mLFjx6K5udlww4jwVFZWIi8vD9Onx+YgllDG7B1AvpQK0mLnShTkFCCBO1ewUT55kp7jnaZ30NbbBhEiWrpbUPxCsa72hLqOGlXzq1B6cSncKW7MGT8HDXc2oGVpCxrubMCc8XPgTnH7Vw7qQeuzIYhYxilaE0+/VyN2Ui+RBoAAIJEPXGuUwJ8v+usbRLcsbcHGhRtRsbXC33/tPe3ITM0Mabvjqb8JIh5witbEGmq2tPiFYrR0t2gaz0vH4XKbLbf1csePbwdQxZsVqD1ei87Bnag5XuNvh1G9yx6SjaTEJAiigH6hHx19HWF1hSCI2Ie0Jn4xcwdQJPMQNV3Tck4915Ue2y/0gwMXdE01quZXYea4mXDxLrh4F4rHFaPhzgZDwRuas7GFoZ1AX3zxRdjibcnJyThz5ozuc99yyy1GmgSO4/Dcc88Z+qxTWbJkCZYsWeLf+kXEPlakgNO6ojzUSj7pOeS0drcC0L4CQMuKQTlqEflII/W1zbUBz6auuc7wuYhAYmlFSKzjFK2xa3cMCxixk3owIwAEAF4hUBcEQVA9Vt5/oiiGTNUTSX+T/SEI9nCK1sQaarbUN373IX8txeh4W5oCbl/LPgiZAjAosB169E5u2+Xj+HC64mRI1whCG6Q18YnZKeAimYeo6ZqWHUJ6dvTIfXSJfCLSktI0zR2zh2Rj+2JzMnsp3RdpljHMeG6GgkButxtNTU0hj/nkk08wYsQI3eeuqqoy0qS4DAIR8YVVNYBCpXCQkj0k2y9YdcfrUL6h3G90CnIKsLlxMwQEO/jcqW4A51cAeEWvfwVAqAmjvAhdNJCuWgcAnje0eZJQQO/3gSDCodWWxQJWbkU3KwAEAIWjCgP6pGBUgf9v8kHslOwp2Hl0p+b+k+sOx3HwdHmQPSQ77ACZ7A9BEMQ51LTTnepGS/f5gIlvPK+GXseEvAZQwaQC1Byv8ad25jgO7sfdupwcctuekZKBBC7B9HEBi84r0jWCIAhlrKgBFMm8U20ep3ZOqX0HAA4cRIhhr3tp1qV4p+mdgPOvv3E9yjeUI++pPNv0S+m+SLOMYcZzM+TRnDFjBt544w0cP35c8e/79+9HdXU1Zs+erfvcn332maF/hw8fNnIrBOEIrAoAAaFTOMhR28pZNb8KmamZQcdnpWahZlENAO2rJaK9XdTT5UHZ2jK4H3fjVM+pgL/JV7XHE9LnUra2DJ4uT0Tni6ddG4Q96LFlhDJmBoCA0H0it/UAdPWfXHfae9r9ehFOR+T2Z1PjJsN2zWzbSBAEYSdSOz1j7Az0DfTB/bgbX3F/BZnJmeDABYzn1dAzfpcHgCZMmIAXv/eivx2ZqZlo72nXPReQ23av4LVkXBDtuYoSNK4mCIIIxooAEGDNvFPtnEo7erRc98DJA0Gvo6FfvvvKTM5ERkoGdjfvxrbD2+JKs8yaL5qh9YZ2At13333YsGEDvvGNb+CRRx5BS8u5VUIHDhzAu+++i/vuuw9JSUmoqKjQfe6xY8caaVJcUllZicrKSni98euYjgesDAAB+laUqxmd7CHZEMTAXUDuFDdOVpz0v9a6WiLak5hQKy0KRxXa2pZQhFqFaMUKRbNXa8TTrg2n4xStiYVCjdHE7AAQELpP5LZ+r2evrjQ9ct2R6kU4HZHaH+DczlO9ds1nZ7cd3oZ+oR8AaCUbQUSAU7TGKWgdC0rtdNnaMr9t3N28G6UXl0Y8R5CjFAAaPHgwBmOw/1rux92G5gLysWXhqEJL7HG05ypKRGNczeKOKIIIB2lN/GBVAAiwZt6pdYdQSW6Jpmu397YHvY6GfvnuSzrGALTvaLIaJS0DYKq+meVLM0PrDe0EmjRpEl555RWcOnUKP/zhD/HUU09BFEXk5+fjRz/6EXp6evDqq69iwoQJRk5PaGTJkiXYv38/6uujP/AkIkcpOmx1ACjc9eWEKs4arnCr1tUSdhQ8D4XRlRZaMHPFeKhVHFas8DB7wEC7NpwDaU0wdu/+sPp6VgSAwmGGrVc7hxY9ykjJCHhPb903n531BYB852DBGUgQToS0xlz0jgU9XZ6IVuZqselqASA5U7Kn+AtYc+AwOXuypjbYNbaM9lxFiWiMq1ncEUUQ4SCtiQ9CBYCsmldZdV6j9l2extWd6o6qfpnpZ7Par2a2vpnlSzND6zlRFA0X3mhra8OaNWtQW1uLtrY2pKWlobCwEDfffLOpUdazZ8/i9ddfR319PU6dOqUYtY/nmkC+onYdHR1IS0uLdnMIg0gj4wlcAopHFOOxaY/ZEgBSur589Z+ny4MF6xdg17FdAICiMUVYd8O6oN0n0gJ3RqLlZp3HKOGeAyvndj/uRltP2/nXKW7/KvpQf2Oh7aEge8Yu1Dfnsev3YMf1zAoAhdMIpeMjtfVq59BybrmdBM6lMJXuYA2F0uft+C4Q5kD2jF2ob8xB71iwbG0ZqhurA95z8S6U5JZoss/h7K7WABAAzFozCzVHzqefKx5XbFqBar2EWiFsxlzFybtprJhvxBpkz9iF+iZ2CbcDSM+8So+NNnO+ZoY2NHgaUPxCMVq7W+FOdaNmUQ2GDx4eNV+bmc/Har+aCNFUfbPad6DHnkUUBLKDo0ePorS0FIcOHUKopnIcF7dbOknAYoMA49MLpHenY9uibbYEgIKuj2BDZ7fTM1pYGYQyc7IUqj+s6Cu7gnNkz9iF+uY8djs+rLqemTuA5E47AJg3fh6zOqHk8MxIzkDbr9tUPhH8eZ+d5cAhkU/U7Cwlog/ZM3ahvjEHvWNBpcA2EFlw2zd2rG2qxWUJl2HZ5ctwwdALQgaAlNoSzeCC1fMfJ8+vnNx2uyB7xi7UN7GJlhRwWjRGmvZ5QBjwpy0LZefs8vU4FTP9SVY/awCmPn+rfWl67JmhdHB2ctddd6GxsRE33XQTampq8Omnn+Kzzz4L+nf48OFoN5UgIsK/NbMX4Nt55A3Psy0AFHB9KG8NZTH/tRX4cpa2LG3BxoUbA4xzpNtOzdx+G2orqBUpIUI9F4KIN+zeSq/3elpslZYAkB6b59sBJIVlnaiaX4Ws1PMTQ71136R2du74uWi6q4lsI0HEOXanCg2F3rGgVGekaB3zK917+YZybP50M9qPt+PdQ+9i5dsrwwaA5G2Jdro1q+c/Tp5fUWpngiBYIlwAyKdTp/tO+99T0xhp2mcR5zYjhLPRZmqXk7UhHL7nGQlW+9XM1jeWfGmadgK98MILhi+waNEiw58FgGHDhmH69OnYsmVLROeJZWgVQ2zg6fLgpnU3ob6hHnnD8/DEtU+gYFKBLQEg3/VDRadjcTWCVpRWghhZ+R3tVHdOgOwZu1DfnMfu37Le64Wz11p3AGm1+54uD0b8dkTQoD7aO4HCpVIgmxy/kD1jFyf3DWtj5VA2UP631bNXo2JrBeqP14PjOLT3tGu+D0+XB/lP56Ol+/wqXBfvgiiIGGgZAM4C4IDMUZlovb9Vc7tZsM20E4iIBCfbs1iH+ia20LIDSM8u/ozHMnCq91TAe1pTx5mhXbGoDdJ7As7V/Js5bmbI9OFqsDROYAHT08HxPB/giBZFMaxj2ndMpCna0tLS8OMf/xiPP/54ROeJRSorK1FZWQmv14uDBw+aImBOzkvsdDo7O9HY2GhbDSC9sGxorf7eygVLik+Uq+ZX0W/HBGhAzh5WaA1hLaG2yOtJAad1q71SarVhScPw1RFfxR7PnqjZRPkEasbYGUhKTAobFCI7HvuQ1rBHLGgNS2nMAOOpg+V1BP76nb/isXcfU7WNShoAAUAb/AEgPovHnEvnOM6J5deF5jrwPI8BYQCXj7rcNH1geX5FRA5pDXvEgtYQgWgJAAH6NHr46uEBCxt8AQsAtsxttGpDJHMXu+c9amln1RYN0rxMO6YHgdasWRP03muvvYZ//OMfKCkpwVVXXYXs7Gx4PB7s3LkT27dvxzXXXIMbbrgBixcvNn4nAObOnYtBgwbh73//e0TniWXMHFzEYsTZCbAeAIoG0SrCp4SaYPn/nuLG9Jzp9NsxAZossQv1jXNQs4laA0DS3Y/9Qr///azULDTc2RBki+U20sW7UDSmCDuP7oyqTVRqlyAKqm2iMVD8QPaMXZzcN6zZkFAOr1B/k99HRkpGyJ1BQeNkSQAoMSERaSPTUHCR8lheabwPgDnHD2t9SzgDJ9uzWIf6JjbQGgACghf2qs1rACDzsUy097aff52ciYJRBczpgBZtUvOr2a1rigtGEHqRIWvPm1VMrwm0ePHigH/p6enYsmULNm/ejC1btmD58uW44447sHz5cmzduhXV1dXYvHkzMjIyIr6ZVatWoaamBq+99lrE5yLCE8u5J1mFAkDK+PKwtvW0YcuhLSjfUK56rNXf2ynZU8DhfJ9I/78vByn9dgiCYAWlPMZ6dgBJ82BLaetuU7TF0rzMPvu469iuqNtEeb5oX1vU2kR2nCCISGCtRkqonPmh/ia3ha3drSFtY0FOAXifW0ESAOJ5HjOnzUTr/a3+HfPyeklK4309cwC7IH0gCIJgCz0BIOCcRmeknPdRq81rAKBwVGGARhaMKmBSB7S0SU1T7bwfT5cHfQN9AX40H2r1fFh83rFAopEPPfLII7jxxhsxe/Zsxb/PmTMH3/3ud/Gb3/wG1157ra5zP/jgg0HvFRcX43vf+x6uvvpqfPWrX0V6enrQMRzHYdmyZbquRQRTkBMY3Y5mIc54gAJA6ugx+tLvLQcOnX2dKFtbZurKQWmtiytHX4mhSUMDtuf6xJV+OwRBRBtf8UkfegJAQKD9lSJAULTFPhvo2znkCx5x4CBCNM0m6k0L4GuXz1b3DfQF7E6St4nGQARBRILc9kYbuQ2UBqVC/U1uC+U7gSZnT0bZ2rKAekIAUNdUhwmYAG+WF5+2f4rpk6bjxe+9CAAB42SfE2rjwo2K430RInOOH9IHgiAIdtAbAALOabQgCv7XavMaQFkjWfT3aNEmNb+aHl2LNDVb+YZy7Dy60+9T89VkKhpTpLpghnTXGjSlg5MzePBg/OIXv8DDDz+sesy9996L3//+9zhz5oyuc/O8ps1JQZhRf8ipmLmVlfIS24ddASCn5tLUs/1TKXWRlvoPWgmXP9bT5cGC9Quw69guAEDRmCJDBe4I2prPMtQ3zkRvAAhQLtzpC+ZkpGRAEAVFm6qUfi0tKU11PKFXn6Tt4sEjMzVTtS1KhBvj0BgoPE4dU8ghe8Yu1DfRR24LV89ejYqtFaoB9RljZ2AQPwi79+5GXnoeHpr1EC6fcjkGDx7sP6eSPjTd1RTgVPPZ9Y7eDgwIA37diTQFjBl2i/SBMALZM3ahvnEuRgJAPiJJMaZFB+R649NPq8bNWtqkds96dC3S1Gxa6jGpPTs7ddep8xzTawLJufDCCzFhwgS8/fbbqscUFRWhsbERX375pa5z79ixQ29z/Fx99dWGP+tkSMCch507gJyQSzNUPnA9Rj/jsQyc6j3lf53IJ0IUxYjvPdwzdMIzdgpkz9iF+sZ5GAkAAYETisnZkwEAez17wXEc2rrbIEBQnERsO7xNs+PO0+VB/tP5/qKrWmynWn02o5M4pw3wWSBW9I7sGbtQ39iHUVsot8WJSITQKkDoE8DzPGZ9fRa23Lol4DPyWgDSItu+RVRDBw1FR1+HfwGCi3ehJLckYhsdK3aLcB5kz9iF+saZRBIAAqwP6OutqWcWoYJPU7KnADg3l9Nzz9Jznu47HZAmXK2OjxpadJgFrWahDUbQY88MpYO77rrr8Mwzz+DOO+/EypUrccEFF/j/duLECSxfvhzvvfcebr/9dt3njtdAjhEqKytRWVkZtzugnIrdKeDCpVWz0hmm9dxqKSL0GtxEPtCkeQWvf8tpJOkkQqXMAIzlKyUnJOEUSGucidEAEKCe0sj9uBsCzqVRkNo6qQ0HAh13apRvKPcHgHzn23Z4GzxdHlVbKE0LIEWvfVfTHDlkp4Oh/NyEVZDW2Is8EL+pcRPyn87XtLtSaot5kQfaAaFPADhAyBTwz9Z/Bn2man4VRj8x2u9EEiFi17FdEETB72w5ffZ0gH1PS0rzLzSQpp/Ta4vldquuuS6i8xEE4VxIa5xLpAEgwPq0rUo19czwR4VDOrepbqzGtsPb/Pq68+hOlF5cqhq0UZvvSM+pVBNbD+H8aYD2OYaV87N4mOcYyr326KOP4rLLLsMf//hHjB07FpMmTUJJSQkmTZqEsWPH4k9/+hMuu+wyPProo2a3l5CwZMkS7N+/H/X1sffFjFWiUQMoVOFXQL1QnBloPbdZxtYrBA7mEvnEkPeuFd9goWVpCzYu3BgkMuGesRIsFr0lCCVIa5xHJAGgUKjZOnkNIZ/jLtSAvO54XdB7/UJ/SFsoLbqelZpl2L5r1Ryy08EY0TuC0AJpjb3IA/EiRLR0t2iydz5bnJmUiSsHX4mpmVPPpXR3AwlJynYhe0g2SnJLAuwHgABbLH1fal8itcVyu8XzPNl2gohTSGuciRkBIDuQ64071W3LuFk+F+sX+jX719Q0VnpOESJcvAvuFDdKLy4NudBPiXD+NED7HMPK+Vk8zHMMBYEyMjJQW1uL5cuXY+TIkdi3bx9qamqwb98+jBw5EsuXL8fu3bsxbNgwww17+OGHce+996K/v1/1mLNnz+Lee+/FqlWrDF+HIJTwrThzP+5G2doyeLo8EZ8zGgEgINBppmSwrYx2K51b6dmaZWwLRxUGnKdoTFHIezeLcM9YiXhYZUAQhP0caz2GkidKUPRMEX6+9edIH5muGgD6/9u78/gmyvwP4J+kLT0oLT2gQIFyFERuD4qrQIFyilq8QESkgK6Lrhe74rIewCKi4Lm+0N+6CAWFIooLKkuRo9xSWFG0oCvlpmqhLVAKpbTN8/uDTcgxSSbJTGaSfN778vX7dTJJnswM3+888515Hk9znbNY500Mz0jNgFHiNNRVLLTuQBRNLvI6vsttL+O0I2/yHRH5j9y4LlWIN3MX71JiU7BmzBrsvHMn3hr4Fl4Z/AoG3jgQSfGu44J9/OjTuo8lFhthRKPIRjAajIgwRqBfWj/L5/gai+2/t85Ux9hORBQgPC0AqXEtTy77fFPwYIFq583Wv9NocH5p313fzFmOte8vZbXLclnE8ZXcPoaa/bNQ6Od4NSeQvaqqKsvYc40aNfK5URs2bMDQoUMxd+5c/OlPf3K57htvvIFnnnkG69evx8CBA33+7kDE8UyVp/RYkFoVgORQc9xLqUm8pSZ7lXo81JvEEkiTtgbqeKNqYzzTL+4b/aupqUHWm1n4+ujXMIWZYEw2YkjHIU5ji1JxyJvYa37PhkMbUCfqLMsHtBmATeM3edwGNdrLOB28GM/0i/vGN3LjlvV6wJVhPK2HZnMV70wmEw4ePIiqqiqEhYWhQ4cOaNiwocdtLSotwoAlA1B+sRzhxnDUm+od5pzz5DfJxdhO/sJ4pl/cN4HBmyeAQiXG2/9Oo8FoM2+PAQaEG8PRp3Uf5N2d57Rv5mx76fXaWqjsX094Es+8ehLIXmxsLFJTUxUpAAHAkiVLkJCQgD/+8Y9u133ssceQmJiIRYsWKfLdpD0tK/dmSlaX9VwAAtStdlt/dmJMIs5Un0GtqdZhXFQ5j4fakzpOvPkcrYTCXQZE5D/mIeB++OUHmMJMQBJgMppc5i+lcp2c2Gsfs09fOH3lBat0aD3etJrk5grGaSIKNLtO7rKJ64UnCyXXmzdoHhKiE2CAAckxyfjqga9kxTulCkAA8MyGZ3Cm+gwEBGpNtZJzzgHKx2LGdiIi/fN2CDitnuT393VM+9/ZqEEjDEsfhghjBAwwQEDAJEyIDI90eV0sNzsX/dL6IcIYAaPBiJq6Gl1fW2MO9024+1Wcu3DhAlavXo3vvvvOUnHq2bMnRo4c6fXJIADs3LkTgwYNQmRkpNt1IyMjMWjQIOzcudPr7yN9kTths5qsJzz1ZXgyvReAAHUnx7P+7KS5SQ6TefuybdU+TtSeENyX7c7JyonImvUcQN1Su+Hri1/DZDS5jbG+5DpP45B9zB7wywCcqT5jkxcEBL4v/V52G9RopzW1J48lIlJauNG2ex9mDJNcz7oAU3axDEM+GoKsdlnY/+h+pzFSyQIQ4DiHgaXNdvlI6Vjs6vPc5QyegxMRqc+XOYC87d/4Gt/9fR3T/ndmtMzA2rFrkTQ3CRXVFQDkFcFSYlMQGR5peRp467GtqrRdqfzp7TkB8/cVXj8JtGrVKqSlpWHcuHF47bXX8M9//hOvv/46HnzwQbRu3RqfffaZ14365Zdf0K5dO9nrt23bFr/++qvX30f6oocx+JWoLgdCAcifrMcUBa4MO+FL5d7b40TuHRp6nhBcz20jIv+yLgBFRUVh+e+XY0jHIbLyly+5zj4OjVk5xmVstY/Z5RfLJW8MMBgMit5Bx3hJRKGk3mQbV00mk+R6UpNIO4uRpVWlGPbhMCQ+m4gJn0zA2ZqzXhWA7M/Be6T0sJlvIDkmWfM7e93lDOYUIiJ1+VIAArzv39jH967vdfWoT+Lv65hKztXqTds9ffJJ6/yp9ffrhVdFoK+//hqjRo3ChQsX8Pvf/x55eXkoKCjA8uXL8cgjj6C6uhr33Xcfvv76a+8aZTSitrbW/Yr/U1tbC6NRkZHtSAe8CVpK8/XRRxaAHFknqWHpw3Di6RM+PVbq7jhxlpTkBn89FCOd0XPbiMh/7AtAHTt2RMuElrLzly+5zj4ObT++3WVstY7Z5mHfrP9vhDECCdEJqLhYoejJOeMlEYWS3i1725wfZ7TMkFzP/uYswHmMHP+v8Vi/Zz3OVZ5DYUkhXvnxFUsByJOLQPbn4ABsLmAVTS7SfNgZdzmDOYWISD2+FoAA7/s39vG97GKZR30Sf1/HdPY7vSmCeXNtzdOiitb5U+vv1wuvKiezZ89GZGQk9uzZg/feew+jR49GZmYmRo0ahXfffRe7d+9GZGQkXn75Za8a1aJFCxQVFclev6ioCKmpqV59F+lPoI/xGCoFIE8r/0qPKeruOHGWlOQGfz0UI53Rc9uIyD+kCkARERF++377OATAZWw1x+wIYwSE1f8ijBEYmj4UJ54+AZMwOZ0TwhPW+cloMDJeElHIkNuPso7J5oK8VIw0mUzY9f0umGpMgAEwJZrwbfm3ltc9uQhkfw7+fen3LvsGWswT6+4cm+fgRETqUKIA5AupmyMA+X0SvVzHtL/uBsBtLvXm2pqnRRWt86fW368XXj8JNHr0aHTt2lXy9a5du2LUqFFez9PTt29fbNq0CUePHnW77tGjR7Fp0yb069fPq+8KZPPnz0fnzp3Rq1dwHbx6nYBMjlApAAHaP07p7jhxlpTkBn+9JHEpem4bBZ9gzTWBTOsCEOAYh/q07uMytppjdqPIRjbL4yLjLDFcqZNz6/xUcbECCdEJfouXWly0JAoGzDXKkNuPMq934ukTGJo+VDJGmucA6hzf+cqoG0lAWKRtbPbkIpCnMd46ln9V/JXHQ/N4w905Ns/BiQIbc40+aV0AAmzje3JMMoz/u1wut0+i1+uYcq7bOWu7uV+zrnidQ673NKdrnT+1/n69MAghhKdvio6OxtNPP+3ySZ9p06bhrbfeQnV1tceN2rt3L2688UZcf/31yM/PdxoAysvLMWzYMOzduxd79uzB9ddf7/F3BYPKykrEx8fj3LlziIuL07o5IcvfBSCtJzaznnAOAJKik1A2tcxv3+/O8KXDbSbKG9x+MNaOXWvZbntK9qBXaq+QnRBOrxjP9Iv7Rh/sC0DxLeLx8L8f1nySS2ex1T5X1dTVYMvRLZYnfpJjklE0uchmXV/js5b5yVnuIX1hPNOvQN43Wp+bK8lcAKqqqsLZmrN45cdX8G35tw6x2TrmAVfm/MxqlyX52z2N8fax3EwqtgbTtqfgEcjxLNhx3+iHdQEoOikaf9rxJ81juaf5yl0O0jJH+dIvss/xwNUcnJudy+tqOuFJPPOqCHTttdciNjYWe/a4uNMnIwPnz5/Hjz/+6OnHAwCmTJmCt956C8nJyfjDH/6AAQMGoGXLlgCAkpISbNy4Ee+//z5Onz6NKVOm4LXXXvPqe4IBE5j2tHgCyNWFJk+SUI+UHgCAfaX7PEpIvny/P7DYE5gYz/RL7/tGD3FHbVJPAN2x4g5Vig5KdWbsc0W/tH744dQPKLt4pfMRZghDQnQCTMKk2H4bvnQ4vir+SrLQpDa93yBBV+g9noUypfeNP3NDsBSBrQtAYWFh6NChg2UOIHvm7bvx8EbUmeogIBT77VIXn8zsY6uS/ZJQOJ8g/2Cu0S/uG32wfwJo3LpxmuVRc+zfdXIXwo3hqDfVo3fL3rJygLv87835gafX7JzlLl/OTez7NQYYMDR9KPOizngSz7waDm706NH45ptvMH78ePzyyy82r/3666/IycnBN998g9GjR3vz8QCA119/HX/5y19w5swZzJ49G4MGDUKnTp3QqVMnZGVlYfbs2aioqMC0adMwb948r7+HyFP2Q70U/1KsyRBwroZfcPfIp/Xrm49uRsHRAo+GdSutKkVNXQ2MBiMijBHol9bP5nFKrYeKA/T7OC4RqUMPcUdNzoaAU2uSS0/yyPpD6zFm5RjJYdCk5oAwCZPlc7yZeNWd3OxcJMYkWv4+U33Gafvs+TqcG8ebJtIXf+aGYJh02JMCEGA71KfAlXtLlfrt9kPzuIqtvvSL7MlZn0N/EhH5RmoIOC3zqDn2n710FmUXy3Dm0hmsK16HVm+2chvn3bXbm99lnYsKjhZg89HNLvOSs9w1b9A8JEQnAACMBiO+PvG17Lxl368Zmj6U19YCnFdFoGeffRa9e/fGhx9+iHbt2qFr167IyspC165d0bZtWyxZsgS9evXCs88+63XDDAYDXn75Zfz000+YNm0aMjMzcc011+Caa65BZmYmnnvuOfz000+YPXt20M65QvpkMz71/q/w4MIHNZkDyNWFJk+SkLnD5mxdKTmrc7D12FbUmmphEiZEhkfaJIJg6AQTUWAJ5rjjag4gtYoOnnZmth/fLtnxkGqfrxOvupMSm+JQaHLWPnu+XjDmeNNE+uLP3BDoRWBPC0DW1Pjt1jd0FU0uchlbfekX2ZOzvtxcwWIREZEjZ3MAaZlHrWO/mYBAranWbZ/AXbu9+V327XF3o4Wz3PXMhmdwpvoMAKDWVItzNedk93HYrwk+XhWBoqOjsWXLFsycOROpqak4cOAACgoKcODAAbRs2RIzZ87Eli1bEB0d7XMD27dvj5deegmbNm3CgQMHcODAAWzatAmzZs1C+/btff58Ik9ZguslwFRuwoFTB1AXUYfHvn4MyfOS/XaC7yoge5KEDLhatPImIUklIb13gvXcIXPXNj23nUhLeo873nJVAALUOzmXk0eMVqeRtaZaybwg1T5fJ171pv3mdtm3z56vF4zlPIXKOE7kP/7MDYF8seTXyl+R+XomMuZn4Il1TyCueZzsAhCg/G+3j5MAXMZW853OBhiQEJ2AeYPmWT7jfM15y3pyjgE5x4zcXBHsTykTEXnKWQEI0DaP2vdtrFnHeanzeHft9uZ32d80Z75u5ywvOctdUsUtuX0c+34NAN32YbztX4Vav8yrOYHsnT9/HpWVlYiLi0OjRo2UaBd5gOOZ+tfwpcPx1f6vYCo3wWgwok/HPohuGo0NhzfoZgxwV/PhlFaVYszKMdh+fDuAK8miQVgDfF/6vexJ77q+19Uyn4MRRgxJHyI5Oate5+PR85jtaownG0gYz/RL7/tG73HHG+4KQN6SM9+Bu+1pnwvsDUsf5jI2mT+/8GQhwoxhHo277clv3FOyB91TuuPbX7/F2ZqzltcHtBmATeM3ObzPHzE22ON4INB7PAtlas0JFEy5QS65c9uYTCZkvp6JnYd2wgQTjMlGZHbIRGR4pKx5cdSYQ0dqPjlX7ZGKqwAsywwwINwYjqx2WbLnBHJ1zMiN45wnLrQx1+gX9402XBWAtOaqb2Md56Xif252rs9zbku1x7ovA8ByzW7eoHl4ZsMzNjkRgGTucja/nrO+kCt67sN42zY9/ya5PIlnihSBSFtMYP5V/EsxHlz4IA6cOoAebXrg44c/Rpf3ugTECb6cAo479knEnxNuK8W+Q5YYlYiMlhm6mADWXWcx2DuTjGf6xX3jX2oWgKzzgC8nu/bxyCzCGIETT59wGUf9ecI9fOlw5Bfn2yxz1vHxxwXjYI/jgYDxTL+4b5QjJ86ah4DLmJ+BysuVQBKABlfiuEmYZMVoNfoG9nHSXXuk4qqAUC3Wys0VwXBxibzHeKZf3Df+p+cCkJlU7omLjLOJ81L5pldqL5ubDsxDt9nHfaVumvAkt5i/c8PhDagz1QG48lRR/zb9PS4CBfJ1NKXfpyeexDOvhoMjClWVlZWo/K0S7wx/B988+Q02P70ZzRo1k3z0UuqxQq0fNcxZnWNzZ4MJJo+HunEYm1SIgCoAAY6PyhqNRt0M1aDGeLJEFFjUKgABjnnAlzkyMlIzHJYZYECf1n2QszoHSXOTMHDxQAxcPNAh7/lzno7dJbsdln1f+r3kunKGc/MV4zgR+YO7OGs9B1DXZl1hTDYCDVwPoSnVl7HvG5RdLPP5XFrukJ6uhnxTM9bKzRWBPEQgEZFSAqEABDjmnqx2WQ5x3n6d7indsfHwRqdzbheeLLT8rdQQoZ70o8z5Ki7yanFAQDjtC7kSyNfRlH5foJJdBOrcubPH/3Xp0kXNthP5VWVlJYqLiyGEQOPGjdGuXTsYDFfG5ZQ6wZcK8EoFfW+LSVIXwjwNcsEQJO33V52pTjcTyqsxniwRBQ41C0CAMnnALDc7FxFG27aFG8MBwJLrCo4WYPPRzQ55z5+5xL5YZYBB09zFOE5E/uAqzloXgMLCwvDhpA8x5NohlrjUp3UfyfdK9WWkbgjw9VzaPk5at8cIIwwGA5LmJqHre13xVfFXqDXVwgADIowRkvPPaRVr/XFjARGRnumpAOTuOpqcvGG/DnBlblRnwoxX5/VR6iY4b/pRSvS9Avk6mtLvC1Syh4MzGq+cbHk6epzJZPKqYSQfH2VVn6sCkDNKDktg/9hoTV0Nth7b6tN4l4B3wzXoeWx1bx+v5VAN+sF4pl/cN+pTuwAE/G9eu+KvYMKV8zNf8sDukt0wGow4U33GJn7uLtktOUwccDXv+TOX2M+F16d1H+Tdnaeb3OUNNebgCCWMZ/rFfaMcZ3HWvgDUoUMHNGzYUNZ7pfo3+x/d7/Nw0+5+w66TuxBuDIfJZILReDXv2AvEYVwoeDGe6Rf3jX/oqQAEqHPdJ+HVBJy9dNbp64lRiSh/tlzR7/emH6VG38uf19HY93FOteHgwsPDkZ2djVWrVqGurg4mk8ntf0Se0nrINHveFIAA6Uq79TIAMBgMsn6f/V13249v96ribl3lHpY+zKvxutW4o02pfe7tk1ZaVv/1drwTkTb8UQACrsS7IelDfMoD1rG24mIFEqITkBSdhH5p/VBTV2MzLI816+FSzSfx7johSsTIlNgUbBq/CZdfuIzLL1zGpvGbAr7ToNSTxUQUvKTO2eUUgJy9F5Du36TEpqBochGGpQ9DUnQShqQPcTiX9jaWm2Pd2Utncab6DDJaZljmBrLnyZ3NSp9/83yeiMiW3gpAgHdP4riL7+ZREKSEGcKQ0fLq07JKXXcy5+j9j+4HAHR+t7Pb3KPGdTx/XkeT6vsw93pO9pNARUVFWLBgAZYtW4by8nI0bdoUDz74ICZOnIhrrrlG7XaShPnz52P+/Pmor6/Hzz//HDR3MejpqQxvC0CAdKUdgEd3ypk/Y13xOpuxRT2ZrDUQeLvP7e8GKDxZiDOXzlheD4S7AfV0vOsB78rSn2DNNXrirACk1zuenE2gaR3PDLiSK61zV+PIxriu+XXYfnw76kx1EBAeTTjOGHlVMExiqiXmGv1hrlGf3AKQK97efWzd/5Eby0urStHqzVY2w+zYT8AdZghDQnQChBAe3dmsdG5hriIpzDX6w1zjH3osAAGOsbpfWj9Ehke67GvZ92/CjeHIapdlWTfx1USba1DWvBlxwZff40vu0Wu/00yq72N/PhCqudeTXCO7CGRWW1uL1atXY+HChVi/fj1MJhN69+6NiRMn4r777kNsbKxPjbd26NAhLFq0CFu2bMHBgwdx7tw5AEB8fDw6dOiA/v37Y/z48UhPT1fsOwNRsJ1c6OXChi8FIFc8+X32w7cBsElWehySzRve7nP7pJcQneAwLJHek4Bejne9CLZ4Fky4b9Th6gkgvV5UctYu+3hmzwADjAajwx3cruIeY6Q0vR4bgYLxTL+4b9ShRAHIW8OXDkd+cb7NMjmxfPjS4Q43wg1LH2aZe9WXfpDSuYW5iqQwnukX94169FoAAhxvZJAzzYJU/8Z6XakcZ3mvyrlAydyj976FVPvshyAP1dyr2nBwABAREYF77rkH//73v3Hs2DH87W9/Q1lZGX7/+9+jWbNmyMnJwcmTJ71uvNkrr7yCzp074+WXX8aOHTtgMpmQmpqK1NRUmEwm7NixA7Nnz0aXLl3wyiuv+Px95B01Hr+TM2GZ2o/9qVUAAjybkM36cVXgygW0we0HI+/uPNmPcgbCI5LeTlJn/zhvvak+4CZ18+fk6ESkL+6GgFNq8lClOXv03z6emZ8GMhMQDgUgd3FPrzFS69waapOYEoU6X2KOtwUgpeLc7pLdDsvkxPLdJbsdRkIwF3xc9YPktFvp3KKH/isRBY5gjQd6LgABjkOi7Svd57avZT+lg3ndjYc3ImluEs7XnEeE0XEIb3/0W5TMZfb9TvPv08vxKdX30Ws/Uc88LgJZa9GiBZ577jn8/PPPyM/PR0JCAj788EPs3bvXp0bl5eXhr3/9Kzp27Ijly5ejoqICp06dQnFxMYqLi3Hq1ClUVFQgLy8PHTp0wHPPPYfly5f79J3kHTXGpJdzYUPNsfDdFYB8TdieXLixD2pD04fKGr/Tuo1d3+uKr4q/Un3eAF+2y7xB85AQnQADDEiITsC8QfNkvc9++/Ru2VvxcU7Vxgt5RKFJzhxAWp/YOovrzi7A2cezm1vd7PLzzTc2SMW90qpSDFw8EBsObYBJmBBhjEC/tH66iZFaz8mjxrjeRKRf1jHnq+Kv0PW9rrLOuX15AkipOJeRmmFzU0CEMcJyru+q/5CRmgGj1eWK+Kh4yc+3/4wxK8e4bbfS599a91+JKLAEYzzQewFIin1fq3tKd4ecZI7v9oWeOlMdKqorsOPEDpthSw3/+5/9dS1vr5e5ep+nucxdzrUudpl/n16OT6m+D6+lec7j4eDsffvtt1i4cCHy8vJQUVGBZs2a4YsvvsANN9zg9Wf27t0b5eXl2Ldvn9uT1PPnz6Nnz55ITk5GYWGh198ZyLR8lFWrR9/V+l45TwD58zFJb8bdtm+jPbX2kS/bxdc5gbwdDkLv456GIj6ar1/cN8qRUwACfI9xvnIWm+XGTuv2V1RX2NzRDQCJUYkof7bc6XdLDQOk5rAEnuQEDv0T2BjP9Iv7Rpqz4TZdnTfbF4DimsfhsQ2PYXfJbvRI6QEA2Fe6z2m8UyrOuZoTyFUfQO5cQvafYTQYHeYR0kN8Zt4IPYxn+qX1vgm2eBCIBSDg6rl/4clChBnDcPbSWdSZ6gA45hzrfk1lTaVNnpFi/35vr3kpef3RXc519vt8OT55zU19qg4HBwAVFRV45513cN111+HGG2/E+++/j759+2L16tU4ceKETwUgANi/fz/uuusuWXcpNWrUCHfddRf279/v03eSd7S6S1mN75U7BJw/h+fx9k5f+2HkzNTcR75sF/v3riteJ+vuCF/vhA7GO3CISN/kFoAA7Z/2cBbX5cZO6/aHG8MdXu/RrIfL77YvGqk9HJ4nOUHrp7SIKLRIDUcDOD/nlnoC6LENj1li3Oajm1FwtMBlvFMqzqXEpsAkTJJtdtV/cPU+a/afYW6vr+1WGvMGEZkFUzwI1AIQcLWv0rtlb5ypPmMpAAHSOcncr8lql2WTk+2HwJZ6v7fXy5S4/mh+Amhd8TqXOVfq9/l6fPKam77ILgIJIZCfn49Ro0YhNTUVTz75JOrq6jBv3jycPHkS//rXv3D77bcjLMzx5NRTDRo0wLlz52SvX1lZiQYNGvj8veQ5rR6/U/p7PZkDKBAStn0bk2OSkRSdhH5p/VBTV6PK2J6+bBf7jq2A8EuC0Ot8G0QUnDwpAOmBs7juTezs07qPx99t36EyGAyqjkntye/i8ANE5E/WMSc5JtnlObezIeCsY5x1kd1ZvPN1mJmi0iLL30aDUbLN7voPcvoX9uv0ad1Hl/GZeYOIzIIlHgRyAcia1E3Urq5pWe+/AW0GoH+b/m7zs7fXy3qk9LD0iQwwoHtKd49/n7kQY5375f4+X49PXnPTF9nDwbVq1Qq//PIL4uPjMXr0aEycOBG9eqlz8fvWW2/Fjh07sG3bNnTv7voA37dvH/r27Yu+fftizZo1qrRH77R+lDXQeVIAArQfnkcOZ21Ucyg7Z98p5/FP8zr2Q/+o/Vi0P4f2I3kYz/SL+8Y3gVYAApTNJaVVpWj1ZivZQwuUVpVizMox2Hx0syUvqBGnrXOU0WDEmeozzAkhgPFMv7hv3HPVF3E1B5B17DbAoHhstc8NCdEJlphqhBGJMYkQQkj2E5z1q+T0u9Tom3H4GlIC45l+cd/4LlgKQIBjfgw3hiOrXZbX0w1I5SNvc9XAxQNRcLTA8veANgOwafwmj36f/fCDBhgwNH2oZPuUznu85qY+T+KZ7CKQ0WhEREQEbr75ZkRHR8tqiMFg8Kows2fPHvTt2xdGoxFjx47F4MGD0aFDB8THX5kM8ty5czh48CC++uorLFu2DCaTCdu3b8eNN97o8XcFAyYw73laAAp0ao096ypheBL0/Z0gAqGgp5RA6cwynukX9433ArEA5IoS89XJjfH2eSvCGIFGkY0Ui2PWbZK6SAkgIGIneYbxTL+4b7znqgAE2MZu853E35d+r9g5sNRFJjk3d3lzjir1HkC5eM2LVqQExjP94r7xTTAVgAB9Xxfy5Bqes3wqJ6eplff0vG09oefraaoVgTxlMBhQX+84L4kcmzdvxkMPPYTDhw87vSgvhEC7du2wYMEC9O/f36vvCQZMYN4JtQIQoF5gd/W53iStQE8QehQonVnGM/3ivvFOsBWAfOFNjFf7znV3OSpQYid5hvFMv7hvvOOuAOQPrp4EchU/vYmzUu8BoFi8DrZJ20kbjGf6xX3jvWArAOmdEjdVy+mDMe+5puc+oSfxzHGWXieOHDnic8M80b9/f/z3v//Fpk2bsHnzZhw8eNAyT1B8fDw6dOiAzMxMZGVlKTIPEYWWYCkAeVqNzs3OdQj+SnA1zmdGaoZNsHQ19ql5MjpSHsdiJfI/FoBseRPjrfNWZU2lZTg5peKYuxwlJ3bq+c4wIgp+eigAAY79jHmD5uGZDc+47Xd4c44q9R4Bodi5rif9FyKiUMECkP95cg3PWT6V0weTynvs41wVLNfTZBeB0tLS1GyHpLCwMAwePBiDBw/2+3dT8AqWAhBwdYK3elGP9YfWI2d1jsvgrlaRxVVHSa3CE3mGnVki/2IBSBnWecv+Diwl4pi7HCUndnqai4mIlKKXAhAg3c+QEwu9OUd19h6lcgT7L0REtlgA0oYn1/B8ueYjlffYx7kqWK6nyR4OjvSLj7LKF0wFIEA/j2xyGDf9C5R9xHimX9w38rEApA4t4hiHTwhOjGf6xX0jn54KQL7wJrZLvQdAQJzrUuhgPNMv7hvPsAAUGJTuK7GPc5Wer6epMicQ6RcTmDzBVgAC9D0uJXGIIG8wnukX9408LABpz9+xl7k48DCe6Rf3jTxaFYB4bkskH+OZfnHfyMcCUOjSSx+H5x6ueRLPjH5qk6pWr16Nv/3tb1o3w2s1NTWYMGECWrVqhbi4ONx0003YuXOn1s0KKsFYAAKuPLI5uP1gJEUnYXD7wQExVEFpVSmGLx2OpLlJGL50OEqrSrVukmrMj89WVFdYHp8l0gpzjfpYANIHZ7FXrfwTiLmYSC3MNerztgCkRAzkuS0R6QFzjX+wABQanJ0f6KWPw3MP5QRFEWjVqlWYOXOm1s3wWl1dHdq2bYsdO3bg7NmzmDx5Mu644w5cvHhR66YFhWAtAAFXxwctm1qGtWPXBkQ1XOsA7qoDrPQFQl8mjwulYhn5B3ONukKlAKSn2OSsLc5ir1r5R04u1tN2I1ITc426fHkCyD4Gjlk5xmVckopbPLclIj1grlEfC0Chw1kfSaqPIzeXK5nzfTn3UKtNgSooikCBrmHDhnjxxRfRunVrGI1GjB8/3nKCT74J5gJQoFIqgHvL1UVATy4QykkgGakZCDOEAYDHk8dpXSyj4MNco55QKQAB+opNztriLPZqlX9Kq0rR9b2uyC/O18V2I1ITc416fB0Czj4Gbj++3WU8l4qxcs9tpc6T9ZQ/iCiwMdeoiwWg0OJJH0luLlcy51ufewCAwWDg08xe0mURaMmSJR79V1xcrMj3nj9/HlOnTsWQIUPQpEkTGAwGzJgxQ3LdqqoqPPXUU2jRogWioqLQs2dPLF++XJF2/PTTT6iurkb79u0V+bxQxQKQPvlSGFGCqwSndPLz5fFZrYtlpB7mmuASSgUgQNtCitw70p3FXq3yT87qHJRdvDqJKmM6+QNzTXBRYg4g+xgIwGU8l4qxcs9tpc6T5eQP3qVLFFiYa4IPC0Dq01uu86SPJLcvqGSfMTc7FwnRCZa/Ky5WeFXA4TU2IFzrBkjJycnx6GK9EEKRi/vl5eV4//330aNHD4wcORILFixwuu5dd92FPXv24JVXXkHHjh2xbNkyjBkzBiaTCffff7/Xbbh48SLGjRuH559/HrGxsV5/TqirrKxE4feFmL55Og6cP4Cbut2ExSmLA2K4tGCXm52LnNU52FOyB71Se/l9XNGM1Aybye2sE5yr1+zJSSDmx2eVbicFNuaa4BEMBSBPJ9rUKjaZLyjWi3qbO9Kl2uIs9mqVf3aX7HZYxphOamOuCR7OCkCexm/7GFhTV4Otx7Y6jedSMVbuua3UebKc/CEV67WYhJqI5GGuCS7BWgDyNF+qTW+5zpM+kty+oJJ9xpTYFJiEyfK3CSavCji8xgYYhBBC60bYi4qKQosWLfDII4/IWv+TTz7Bt99+i/r6ep++17wpDAYDysrK0KRJE0yfPt3hToZ///vfGDFihCVpmQ0ZMgT79+/H8ePHERZ2pYqalZWFHTt2SH7fM888g1mzZln+rq2txZ133omkpCTk5ubKLmxVVlYiPj4e586dQ1xcnCc/WXNqBGPzE0B//PcfUVhWCFNjE8KMYRjcfjA7EW6olRz1lHTNbbFOcOa2uHrN3vClw20SiNLHlydtCSaBHM/kYq7xPzVikNYFIKV+k6exTE5sUmN7J81NQkV1xdW/o5Ow/9H9uoyT9r+/pq4GW45ugQlXOi/JMckomlyki7aGqkCOZ3Ix1wQHV08A+Xou6i6e+3Iuat02I4xIjElEvakeYcYw1Jvq0btlb8lz8HXF6yBw9fJEUnQSyqaW2ayjh/4EkRyhEM+Ya4JHsBaAAN/ypdzc40mOkurXmHOdL21Qi/X390jpAQD4vvR7l+cGSl/PUuL6W7BeY/MknumyCNSrVy8cP34cpaXyHombMGEClixZ4nMRyJqrBPbwww9j+fLlOHPmDMLDrz5MlZeXh/vvvx87duzAzTff7NH3mUwmjB07FhcvXsTKlSttPtdeTU0NampqLH9XVlaiVatWAZnAlL6Qbj0EXNaKLJyLPgf87zzAXWAl9Qobcj9X6+TmiWBNIFoLtRNy5hr/UDq2aV0AApT7TZ52QvzZNrmfqbfcYd/Wfmn9EBkeyXyhI8w1VzHX6Je7IeDUiN9KsT5PNhgMOFN9xmVOsI6bZvbrqn0DViDRW94jacw1VzHX6FswF4AA3/Kl3NzjSY7yNJ+pmf/k5BM95F9ef3POk1yjyzmBbrjhBpSVleHEiRNaN0VSUVERrr32Wock0717d8vrnnrkkUfw66+/4uOPP3aZvABgzpw5iI+Pt/zXqlUrj79PL5Qck9F+DqCbut2EMKN2c88EIrXGyJT7uXqdqE1qzFbzcBhlU8uwduxaJiBSHHONcqRikLdjMeuhAAQoF6/VmCdHjVziah4KpXKHUuNz2//+70u/Z74g3WKu0Sc5cwBpPc+mK9bnyfWmepuYuPvkbod4u+vkLpsCkAEGh1jPsfyv0muficgZ5hr1eXseG+wFIMC3fKnGHDiezh2tZv6Tk0/U+n5Pjllef1OGLotAffv2RevWrXHw4EFZ6/fp0wcPPvigyq26qry8HImJiQ7LzcvKy8s9+rxjx45hwYIFKCwsRHJyMmJjYxEbG4tt27ZJrj9t2jScO3fO8p9ei2VyKNV5sS8AtWvXDotHLvYosBLQI6UHDP97dMoAA7qndFfkc+Xu58KThQ6dRD1gR4u0wFyjHKkY5M2/a70UgADl8qennRB/ts2a9Ym/edxqc4fBPnd42zFRKtbr+cIskT3mGv2RUwAC1InfajDflGdmNBod4m24Mdwmbg5NH+pwkUep2Cr3opPeJu62xoIYBRrmGvV5cx4bCgUgwLd8KSf3lFaVwmi4enndXY7ytKChRt/CnOPWFa9zm0/U6tvwOpv/uS6Xa2Ts2LEYO3as7PUnTZqESZMmqdgiR67GGpU7DqlZWloaPBmVLzIyEpGRkR59h14pMUmzVAHIYDDInrg02Pg6PIB5HG7r8bh9JXc/S3US9YAdLdIKc40ypGJQ53c7e/TvWk8FIECZ/AlAlVypVNucsZ5MNb8433LzAuBbx0SpWK/27ydSGnONfsgtAAHqxG811JnqbP6uN9U7xFuTyYTB7Qe7jJtKxVa5E3LnrM7BV8VfwQQT8ovz0fW9rrqZz42TW1MgYq5Rl6fnsaFSAAJ8y5dyck/O6hxUXLw63FxCdIKi5//mNuw+uRtGoxG7Tu7C8KXDfRoSzZwLra/7OcsnavVteJ3N/3RZBNK7pKQkyTsVKiqu/KOXusNBDfPnz8f8+fMVnQvJ33ztvDgrAIUyuR0bKftK99n8/X3p94q0ydV+ti5aVdZU2rxWb9LHsc2OFmmBuUY5UjHIk3/XeisAAfq++Kdk26RubLDuMABXblowwIBwYziy2mV53TFRKtbred8Q2WOu0Q9PCkCB5KaWN9nE1p7NeuKHUz9YXg8zhCGjZYbbuKlUbPVkaB8TTJa/yy6WedSvUhNvNqBAw1yjPk/OY0OpAOQrObnHPl8IIRS9YcDcBuu5eTy91mffp5IzDKv99yuN19n8Tx+32QeYbt264ccff0Rdne1dTT/8cOVktmvXrn5px2OPPYYDBw5gz57QrJaGagHI3dAEvlTTtRjCxvoRUOuiT5ghDL1b9lb8+7wZ2kGJ4Tb0PKQE6RNzjbrk/rvWYwFID9SOaebPb/VmK+QX59sME2Cdq8wEBOIi43waI9rZMcH4TcEs2HNNoPz7DdYCEOAYWwHY3DFtEibU1NW43TdK7Uu5/Z2M1AyHZXq5S5lzI1CgCfZcowdy+zYsACnPvm9SWVOpyjmHL9f6vBmGVQmucrcn19kC5XxO73RfBJo4caLb/x566CFMmTIF//jHP1BSUqJ6m+68805UVVVh5cqVNssXL16MFi1aoHdv5S9ck61QLQAB7sfN9KWQo8XY4taJTEAgwhih6vd7M+6oEh0tjndKnmKuUZecf9csADmndkwzf36tqdayzNzZMeeqCGOEZSg4JW5ccHZMMH5TMAv2XBMI/36DuQAEOMbWfaX7bO+YhsDWY1vd7hul9qXc/k5udi6SY65eHOVdykTeC/Zcowdy+jYsAKnDvm9Sa6pV5ZzDl2t9zoZhVfvan6vc7cl1tkA4nwsEuh8OLjc313JxX2rMT4PBYLP88ccfx4svvojnn3/eq+9bu3YtLly4gPPnzwMADhw4gE8//RQAcOuttyImJgbDhw/H4MGDMXnyZFRWViI9PR15eXnIz8/HRx99hLCwMFdfoZhgfpTVlVAuAAHuq/9yhgdwNm+QFkPY2D8CmtUuS9U2aDXuKMc7JWvMNfrHApBrasc0+yHfgKudHXOuMucypYbDcZYbGb8pUDHX6P/8K9gLQFKsz/3N5Owb+3258fBGlFaVenxzltz+TkpsCoomF3HYNSI3mGsCAwtA6jHnlaS5SaiovvKkqxrnHL4MBWqdew0w4PzlK/9e9z+6X9WnSZU6D9P7+VygMAhPZlPTwJEjR/DUU09hz549ePLJJ3HzzTcjJSUFpaWl2LFjB/7+978jIyMDzz33HPbt24eXXnoJJ06cwLJlyzB69GiPv69NmzY4duyY07a0adMGAFBVVYXnnnsOK1asQEVFBTp16oRp06bhvvvu8+XneqWyshLx8fE4d+4c4uLi/Prdzi6YqCXUC0AAbMYBDTOEYXD7wR4XTZT4DF+VVpVizMox2HZ8G+pN9QgzhiEuMg4mYcJNLW+SfSx5egxq9dv1sM0DgZbxzJ+Ya/SNBSD3rGOaEUYkxiTCJEzISM3AvEHz8MyGZ3w6N7D+fOv5fsyfXXiyEGHGMNSZ6jzKGXK/0zpOWy8HgOSYZN1MDk7eCZV4xlyj7/MvPRWAnJ1Pe9vXM5/nbz++HQDQp3Uf5N2dZ/OZGw9vRJ2pDgLCsm8sk19LfN/wpcOxrnidzSTWw9KH6WZ/EtljrgmdXKN3LAD5Rm4u1PM5hzkvbz662SaPRhgjbPpYzn6jt+cDSm0TPW9brXkSz3RfBHrllVfw9ttvY9++fWjatKnD67/99ht69uyJKVOmYOrUqSgpKUHnzp3Rs2dPbNmyRYMW+5+WCcyf/xBZALpC6s5nTy9EWd+hAABJ0Ukom1qmdFMdWCcOo8GIsovS32l/LLlKOJ4eg0psP29o9b2BJtROyANJqOwbFoDksY5pBoMBZ6rPWOJwQnSCzd/enBs4i5n2BRkADkUob+OrfW40wICh6UMxb9A8DFgywJKzjDBiSPoQdjwCWKjEs0Ck9L7R6/mXXgpA7goyXd/r6lXsk1Owkdo35uFepPJHaVUpWr3ZymaYUH/1YYi8wVyjX6G0b1gA8p3ca056PecwG7h4IAqOFjgsl9N/c3aDnrvfqNQ20fu21VJQFYE6dOiA4cOH4+9//7vTdR5//HHk5+fj4MGDAICxY8dizZo1OHv2rJ9aqS0tE5i/igmhUADy51NVengaxh3rY8lVe309Bv39NBu5Fkon5IEmFPYNC0DexUSp4on1hT8lzw3sv8ueUneY2X/e7pLdmtw8QeoIhXgWqAJ538iNn3opAAHOz82TopPQK7UX8ovzHZbLiX1SsVrOe+3fF2GMQKPIRpbt6apIRKQ3gRzPgl2o7BsWgJSR+Goizlw6c/XvqESUP1uuYYu802BWA5sbKay5678564OZnyTidTTteBLPjH5qk9dOnjyJyMhIl+tERUXh5MmTlr9bt26NS5cuqd00zc2fPx+dO3dGr17aTVDpy8RkcgVSAai0qhTDlw5H0twkDF86HKVVpbLX8edEZ3InRFWa1BwPUuyPJVfjf/p6DHKCOSLX9JBr/IEFoCucxURX+c0+DifFJKl2bmD9XVKkxoiWk5uBq7nRgKvnGObP88f5DlEoC4ZcI+ecUk8FIMD1/Gu7S3Y7rC839mWkZtjEUrnvtY/xdaY6m+05b9A8JEQnwAADEqITMG/QPFntISICgiPXyMUCkHLCjLZ9j/OXzzvtT/iL3P6NHHL6b876YLWmWl5HCyC6LwKlpqZi9erVqKmpkXy9pqYGq1evRmpqqmXZqVOnkJCQ4K8mauaxxx7DgQMHsGePdhNiqV1MCKQCECCv8+dsHX9OdGaeuK5sahnWjl3rt4q9/UW0xKhERBgjEGGMwC2tbsGANgMkjyVXF998PQY5wRyRa3rINWpjAegqZzHRVX6zj8MFDxaodm5g/q7EqEQkxyQjISoByTHJLjstcov95tw4NH2ow+dpdfMEUagIhlzj7pxSbwUgwPGiToQxwhLj7F9LjkmWHftys3PRv01/y3n+gDYDZL3XOtZGGCMsdyWbt+czG57BmeozEBA4U30Gz2x4xqPfS0ShLRhyjRwsACmrzlRn83etqVbzooc3NzP3ad3H5gaNxKhE2f03c36OMDr2kXkdLXCEa90AdyZNmoTnnnsOmZmZeOGFF/C73/0OiYmJqKiowM6dOzFr1iwcOnQIs2bNsrxn27Zt6NGjh4atDh3mCyZqCLQCECDd+bMfGmLXyV2SHcSM1Ayb4Q2C8S5j8zAOno7jKfU+M1+PwVDY7kTkHAtAtpzFRFcXN6Xi8Nqxay35r/O7nRUbblPqu6TGiLbmabHfWa7ikENE5Iqrc0o9FICkhqtzdW7u7Xk7cCVWbxq/yeM2Wsda++GgzU8n8eYtIiLnWABS3k0tb3IYHlVq5AF/TjPgTT7MuzvPZV531dcx52dncwnyOlpg0P2TQFOnTsUDDzyA3bt344477kCTJk0QERGBJk2aIDs7G3v27MH999+Pv/zlLwCA0tJSjBgxAk8//bTGLSdfBGIBCJB+YsW+Qh9uDJe8YzkU7jJOiU1BbnaupROXszpH1mOraj65FArbnYiksQDkyFlM9GY4NLWH2zQPg9D53c4AgP2P7pfMEZ62XaunZYkosDmLn3ooAAHAmJVjsK54HSqqK7CueB3GrBzjMt5pHQultieH5iQico4FIHXkZuciOebqtvRl5AGl+JIPref+8ZT53ODE0ycwNH0or6MFGIMQwvu970cbN27ERx99hO+//x6VlZWIi4tDjx49MHbsWGRlZWndPE0F26R2gVoAAqTvRu78bmebCdQSoxKR0TLDq7vqgoH9XX2BOKGrv+/yCCXBFs+CSbDtGxaAPCOV39zFPfsJROVOKC6X3Hziru2M6aEn2OJZMAm2fePvApCreGY/IXSEMQKXX7isWlvU4E0uItJKsMWzYBKM+4YFIHW5yz9q93s8bY8UvV6LY1/MN57Es4ApApGj+fPnY/78+aivr8fPP/8cFAkskAtAzug10GrF38lRDdyn6gnGE/JAF4y5hgUg15Q6EVc7ViqVTxjTQw9zjf4EY67R4gkgV/FMbhGIF2OIlMFcoz/BmGsAFoBc8VdOC4T+hF6vxQXCttMzT3KN7oeDI+eCbVK7YCwAARxuzF4wDOPA8cgplARbrmEByD2lhjNQO/8plU8Y04m0F2y5Rqsh4FzFsz6t+9isa/+3mb+HtCEi8pdgyzUAC0Du+CunBcJ1P71ei2NfzH/CtW6AXDt37kRubi6+++47S3WrZ8+eGD9+PPr0kT6BpcARrAUgQHoS61AmNclsoHE18S8R6RcLQPIodSKudv5TKp8wphORkrScA8hVPJOaEFoKL8YQEQUGFoDc81dOC4Trfnq9Fse+mP8ERBHoz3/+M958802YR64zGo0wmUz45ptvsHDhQjz55JN44403NG4leSuYC0DkKBCSozt6TZ5E5BwLQPIFyom4UvmEMZ2IlKJlAQhwHc/kxsxAyQFERKGMBSB5mNOu0uu1OPbF/Ef3w8EtWbIEb7zxBq655hrk5eXh119/RV1dHX777TcsX74cnTp1wttvv40lS5Zo3VTygr8LQKVVpRi+dDiS5iZh+NLhKK0qVe27SD1a70dz8iybWoa1Y9dynHQinWMByDNSwxloHXelKNUmxnQiUoK/CkCuYp8S8UzJIW30mDuIiAIdC0Dyyc1pzFdX+XtbsC/mPwZhfrxGp373u9/hl19+QVFRERo1auTwemVlJbp164bmzZtj165dGrRQO4E+qZ0/C0DmyeA2Ht5omRA1mCccC/YJXTlxXPDiBKr6E+i5hgUgZagVd13lK3e5jLmAvMVcoz+Bnmv8+QSQFvHY2/cyTlMoY67Rn0DPNQALQGpROl/5ek1Oy2t6zN2BxZNco/siUKNGjfDwww+7HO7t6aefxoIFC3D+/Hk/tkw/AvHkwt9PAFkHMWtJ0Ukom1qm2vdqJdiDdtLcJFRUV1z9O0j3YygKxHgWKgJx37AApBy14q6rfOUulzEXkLcCMZ6FikDcN/4eAk6LeOztexmnKZQFYjwLFYG6b1gAUo/S+crXa3JaXtNj7g4snsQz3Q8HBwDu6lScPyawaDEHkPVkcGbBPB5osE/ompGagTBDGIDg3o9E5D0WgLzj7PF/teKuq3zlLpcxFxCR1rSYA8iX2OdqiBdf+g/O3ss4TUSkDBaAvCN3aDOl85Wv1+S0vKbH3B28dF8E6tq1K1auXImqqirJ18+fP4+VK1eiS5cufm4ZeUOLAhBgG8QMMCDcGI6E6AQUniwMyvE+gz1oKzlWOREFHxaAvJezOgfrD61HRXUF1h9aj5zVOQCuxt2EqARF86erfOUulzEXEJHSPBkHX4sCEOBb7HMW4wHf+g/O3ss4TUTkOxaAvOcq71lTuq/j6zU5La/pMXcHL90PB7d48WJMmDABXbp0wYwZM5CZmYnk5GSUlZVh8+bNmDlzJg4cOICFCxdi/PjxWjdXE4HyKKtWBSDg6niae0r2oFdqL9TU1WDrsa1BO1ya/e8NtjmBKHgFSjwLRYGyb1gA8o27x//VGi9bKl8xl5FaAiWehSKt943cGKdVAchXrmK8LzGX8ZrIkdbxjJwLpH3DApBvPB3aTKm+jq95kXmV5PIknoX7qU1eGz9+PL777ju8/fbbGDVqFADAaDTCZDIBuDJU3OOPPx6yBaBAoWUBCABSYlMc5hEI5uHS7H8vEVEoYAHIdxmpGTYdH/u7zpQemsBVvnL1mpaTpRJR8JIT4wK1AAS4jvHOYq6ceMu+BxGR8lgA8p27vo09pfo6nuRFZ3mWeZWUpvvh4ADgzTffxNatW5GTk4OePXuiTZs26NmzJyZMmIAtW7bg7bff1rqJ5ELxL8UY9vdhGJA7AFO2TEHDpg01n8cp2IdLI3k8GfKDiPSNBSBluHv831X+9GdMlTu0AxGRJ9z1EfxRAFIzlnozxAvjrX6w70IUOlgAUoanec/+PKB7SnfV426g5VnmosCl++HgyLn58+dj/vz5qK+vx88//6zLR1krKysx7O/DUHiyEKZIE4yJRgxJH6J5RZuPVhKg/LBG5LtAejQ/VARCrmEByH9c5U9/xlRPh3YgssZcoz96yTWuYpy/ngDS2/kp461+6O3YINeYa/RHL7nGHRaAtKPFVBKBlmeZi/TFk1zDIlAQ0OvJhXkIuAG5A1BpqAQSABj0H9AodIbZCbRkGwr0Gs9Iv/uGBSD98GdMddf5CJU8Rt7Razwj/e4bfw4Bp7fzU17s0Q+9HRvkml7jGel737AApC/+iLtqzbmqVj+IuUhfAnpOoIkTJ3r1PoPBgA8++EDh1pC3rOcA6tmmJ7af3w4TTBx6LUCYH0etF/WWx1GDsbPn6fiwRKQvLADpiz9jam52rsPd+tZCJY8Rkfr8PQeQ3s5P3cVb8h+9HRtEpCwWgPTHH3FX6Tyrdj+IuShw6e5JIKPRu2mKDAYD6uvrFW5NYNDbXQzWBaDGjRujYdOGmPD5BA69FkDUruzr5Q5tDguoP3qLZ3SV3vYNC0D646+YKieH8A41ckVv8Yyu0tu+8XcBCAjM81O9nNsHu0A8NkKZ3uIZXaXHfcMCkD4FYtyV6gftf3S/Ynk6ELdJMAvo4eCOHTvm9XvT0tIUbEng0FMCsy8AtWvXDgaDQdM2BSJvO1JKdcDUHvaBw0qQM3qKZ2RLT/uGBaDgYM5Zu07uQrgxHPWmevRu2dty95uzfCYnhzDPkCt6imdkS0/7RosCkJ5I9SsA6dgsJ+ayUEShRk/xjGzpbd+wABQ8PM11RaVFGLBkAMovliMpJgkFDxaga0pXn9oglZMBsG8UpAK6CESe00sCYwFIOd5evFLqopfalX3eoU3O6CWekSO97BsWgIKHdc4yk9NRkZNDeIcauaKXeEaO9LJvQr0ABHh2EUlOXGZxnkKNXuIZOdLTvmEBKLh4muuazGuCsotX82VyTDJOP3PapzZI9YM6v9uZ1+CClCfxzLux14jssACkrN0luy0XxepFPfaU7FH1ffZSYlOwduxa7H90PwCg87udMXzpcJRWlXr1efYyUjMQZggDAI4hSkSysQAU2EqrSjF86XAkzU3C8KXDUXiy0KYABFzNXa7ymZwcYs5jZVPLsHbsWhaAiALM3R/frdh5p6dYALpCKg47i81y4rJS/RQiomDBAlDw8TTXlV8sl/zbvt/kyTmRVD+I1+AIYBGIFMACkPK8DdBKBHbrZNP1va74qvgrVFRXWCaUU0Judi4Gtx+MpOgkDG4/mBPMEpFbLAAFPvMkpeacEmYMs+QsMwMM6J7S3WU+Yw4hCn6bjmxS7LzTEywAXSUVh62XAVfm5S2tKpUVl3kBiojoKhaAgpOnuS4pJknyb+t+U35xPlq92cqnG7PZfyKARaCANn/+fHTu3Bm9eml3As0CkDLsq/zzBs3zKkBLBXZP7yCwTjZlF8tgggmA7V0MvtyVAOjnDm1ffwdRKNBDrmEBSD45cU2r2Gd/Z1y9qR790vrZrCNwZZRi63zWL60faupqkPhqIprMa4JO8zsBAPY/up9P+RAFCftcYxImvz8pwgLQFeYcsevkLiREJyAxKtHSr8jNzkVCdIJl3YqLFchZnSPr3D43Oxf90vohwhgBkzBhw6ENGLh4oCUHFZUWocm8JjDONKLJvCYoKi3y228motCgh34NwAKQnijVLyqtKsXAxQOx4dAGmIQJEcYI9Evr53Atz/77PrnnEyTHJMMAA5JjklHwYAEA234TANSaap3emC3nNyh1DY7X0AIb5wQKAlqNZ8oCkHLUHCPb08+2H9PbzPq9wTKmd7D8jmCip/GZyZZW+4YFIM/IiWtaxT5n80vkF+fbrGc/RrWruYMYs8kbzDX6Zd43xmlGDOkyxG//xlkAuspdjvBlbs/hS4djXfE6S8EfAIalD8PasWtVmReBSEvMNfql5b5hAUhflOoXDV863KZPY4ABQ9OHet0Pk+r/ANrPucdraPrDOYFIdSwAKUvNMbI9/Wz7x1eTY5IdnkgKljG9g+V3EAUrFoA8JyeuaRX7pJ5W3V2y22E9+2ET7O+EAxiziYLdwLYD/TZUCQtAttzlCF+GddtdstumAATA8vnO5kUgIgoWLADpj1L9Ivs+jYDwqR9m7jdFGCNgwJVrrXqYc4/X0AIbi0DkMRaAlKfmGNmefrb9RbqiyUUOj4wGy5jewfI7iIIRC0DekRPXtIp97iYpBa7c+W1/4dd+HYAxmyjYrRy90i9DPbIA5MhdjvBlXoGM1AzLxSwz8+c7mxeBiCgYsACkT0r1izJSM2z+NsDgUz/M3G868fQJDE0fqps593gNLbCxCEQeYQFIHWpO0ubJZ5dWlSJndQ52l+xGr9ReyM3OdTqmdzBMKhcsv4Mo2LAA5D05cU1Psc+6LcPSh6FocpFD3pk3aJ5lDgrD//6XEJ2AeYPmadFkIgoSLAA5Kq0qRU1dDYwGo9P5DHyZVyA3Oxf92/RHhDECEcYI3NLqFtTU1SBpbhKuSboGidGJDvMiEBEFOhaA9EupflFudi4GtBlgyW/92/R32Q9LiEpAQnQCCk8Wupxbxz7nAnCYk8effTs99SPJc5wTKAj4azxTFoD0x7pok5Ga4bRoIxfH9yStcexs/fLXvmEBiOxJjYltgAHhxnBktcvyOfdR6GGu0S9/7RsWgKT52hfwtG/CvgcFM+Ya/fLnvmEBiKTIzX/2ebWmrgZbj21l3iQLzglEimMBSJ9yVudg/aH1qKiuwPpD65GzOsenz+P4nkSkJRaASIrUnEACArWmWkVyHxGFFhaAnPO1L+Bp34R9DyIKZiwAkTNy8599Xt1+fDvzJnmNRSByiwUg/XKVOEqrSh0eE3WH43sSkVZYANIPb/KHmqTmBDJj54eIPMECkGu+9gU8Leqw70FEwYoFoNDjSR9Kbv6zz6vm9d29j0gKi0DkEgtA+uYqcXjzlJD9+J7zBs3T1YVAQH8XJ4nIdywA6YvST5nKiduu1rEeOzs5JhkRxqvHBjs/RCQXC0Du+TLWf2lVKYyGq5cXpOKzOdYnvJqAJvOa4OsTXyMhOgGJUYmcW4CIggYLQMHLVZ/Fkz6U3Hxrfc3PAAMEBBKiE5AQleBR3uR1NAI4J1BQUHI8U+vxJq9PuB5Tr52KxOhEFoA05mx8bfPyPSV70Cu1l82420lzk1BRXWH5jKToJJRNLfPoe/U4Trce20TK4djZ+qXWvmEBSH+UyB/W5MRt63WMMKJxVGOcv3weANCndR/k3Z1nyW+uch+RHMw1+qXWvmEBSJpS84uWVpWi63tdUXbxaq5IjklG0eQim8+TmuON5/MUrJhr9EvNfcMCUHBz1a+R6kPtf3S/2zzrKhebX9t4eCNqTbUAvMubvI4WvDgnEHnNUrk+U4FN32zC9M3TWQDSAWd3FKTEpmDt2LUom1qGtWPX2iQTJYZX0OM43XpsExF5hwUgfVJ6eB45cdt6HRNMqLhUgVpTLWpNtSg4WmBzJ52r3EdEZI8FIOeUevIzZ3WOTQEIAIQQDvFZao43ns8TUbBgASj4uerXSPWh5ORZV+uY+z2NIhtZlnmTN3kdjQAWgcjO7pLdqK+uByoAkzDhx/M/sgCkA94EbF+GczDT4zjdemwTEXmOBSD9UiJ/WJMTt13N+wOAHRUi8goLQK4pdVFod8luh2VyYz3P54koGLAAFBpc9Wuk+lCe3gznbB1fr4PxOhoBLAIFtPnz56Nz587o1Uu5f7zXJ1wP45krh4Ux2oje3XqzAKQD3gRsV3dKyx0PVOkLgUrQY5uIgpkauYYFIH1T+kkbOXE7NzsX/dL6IcIYAQMczzvYUSEKbmrkmmAvACkxvr9SF4XsizvJMclOY731HG+cC4iI/EmNXAOwABRKXPVrpPpQnt4MZ17HPsfPGzTPp+tgvI5GAOcECgpKjWdaWVmJwu8LMX3zdPx4/kf07tYbi0cu5jArOqD0/AdyxgNVaoxwIk9w7Gz9UmrfsABEztjPFWGAAeHGcGSkZqBBWAPsK93HfESKYK7RL6X2TbAXgABlxveX08eQ0yfgXG1Ejphr9EvJfcMCELniSZ61Xsc8RJxUjue1OrLmSTxjESgIKJHAKisrUVxcDCEE5wAKAXIm/ebEcaQFdpb0S4l9wwIQueIsNzEfkdKYa/RLiX0TCgUgQN75vBIYg4m8w1yjX0rtGxaASC2ucjzzMlnzJJ5xODhiASgEyXkklRPHEZGSWAAid5zlJuYjIpIrVApAgP/G92cMJiJyxAIQqclVjmdeJm+xCBTiWAAKTXLGA+XEcUSkFBaASA5nuYn5iIjkCKUCEOC/8f0Zg4mIbLEARGpzleOZl8lbHA4uCHj7KCsLQOQKx/YmLXDYBP3ydt+wAES+Yj4ipTHX6Je3+ybUCkD+xBhM5B3mGv3yZd+wAERaY14ma57Es3A/tYl0hgUgciclNoXjihKRT1gAIiUwHxGRKywAqYsxmIjoChaASA+Yl8lbHA4uBLEAREREamMBiIiI1MYCEBER+QMLQEQU6FgECjGBUAAqrSrF8KXDkTQ3CcOXDkdpVanWTSIiIg+wAERyMN8TkS9YAHKNMZaISBksAJEczLukdywChRA9FoCkguSYlWOwrngdKqorsK54HcasHKNpG4mISD4WgEiunNU5WH9oPSqqK7D+0HrkrM6xeV1OR4qdLaLQxAKQe+5irBzOYixjLxGFChaASC72bUjvWAQKEXosAAHSQXL78e0QEAAAAYHtx7dr3MrgxQRDREpiAYjkKq0qxcbDG1Ev6gEA9aIee0r22Kwj5wKmEhc5iSiwsAAkz+6S3S5jrJx+gLMYy9hLRKGABSDyhLu8Kyd3jlk5BvnF+aiorkB+cT5viidFsQgUAvRaAALcB0lSFztwRKQUFoDIEzmrc1BrqrX8bYABvVJ72awj5xyB5xFEoYUFIPkyUjMQZggDAIQZwhxirJx+gLMYy9hLRMGOBSDylLu8Kyd32t8Ez5viSUksAgU5PReAAOkg2ad1H5t17P8m5bADR0RKYAGIPLW7ZLfN3+HGcORm59osc9eRkrsOEQUHFoA8k5udi8HtByMpOgmD2w92iLFy+gHOYqzasZejFRCRllgAIm+4y7vst5DWWAQKYnovAAHSQTLv7jwMSx+GpOgkDEsfhry787RuZtBiEiIiX7EARN6wzz9Z7bKQEptis467jpTcdYgo8LEA5LmU2BSsHbsWZVPLsHbsWocYK6cf4CzGqh17OVoBEWmFBSDylru8Kyd39mndBwZcuW5rgIE3xZOiwrVuAAH33XcfCgoKUF1djTZt2uDll1/Gbbfd5tNnBkIBCLgaJO1JLSN5SqtKkbM6B7tLdiMjNQO52bkOyccsNzsXOatzsKdkD3ql9uLFM6Igp3S+YQGIXHGVj+TkH2fnCJ6uQ0T+pXSuYQFIHb7EYbVjL0crICJ31LiOxgIQ+YN5DnQpeXfn8RodqcYghHB+9JFf7N+/Hx06dECDBg2we/duDB48GIcPH0ZSUpKs91dWViI+Ph7nzp1DXFxcwBSASB3Dlw7H+kPrUS/qEWYIw+D2g3mBjAKGfTwjZfmSb+z3DQtA5A7zEekVc426lMw1LACFJuYPCgbMNepSMtcALACR+pjbSA2e5BoOB6cDXbp0QYMGDQAA4eHhuHz5MkpKSrz6LBaAiHfOEZEzSuUbFoBIDuYjotCkVK5hASh0cahPInJHyetoLACRP7BvRFpjEeh/zp8/j6lTp2LIkCFo0qQJDAYDZsyYIbluVVUVnnrqKbRo0QJRUVHo2bMnli9f7tP3jx07FlFRUbjhhhswcOBAdOvWzePPYAGIAM7zQ6R3gZ5vWAAiuZiPiLQT6LmGBaDQ5m5eBSLSh0DPNQALQOQ/7BuR1lgE+p/y8nK8//77qKmpwciRI12ue9ddd2Hx4sWYPn061q5di169emHMmDFYtmyZ19+/dOlSVFVVYd26dRgyZIhXxZvDhw+zAES8c45I5wI93xQXF7MARLIwHxFpJ9BzzaFDh1gAIiLSuUDPNSdPnmQBiPyGfSPSnCAhhBAmk0mYTCYhhBCnT58WAMT06dMd1luzZo0AIJYtW2azfPDgwaJFixairq7OsmzgwIEiMjJS8r/nn3/eaVtGjBgh1qxZI7vt586dEwDE5s2bRXFxseV3EBEFGnM8O3funNZNUU2g5hvrXFNUVCQuX74s631ERHrDXHOVnnPNt99+K6qqqmS9j4hIb5hrrtJzrvnPf/4jTp8+Let9RER640muCfd/2Umf5N4x8K9//QuxsbG49957bZZPmDAB999/PwoLC3HzzTcDADZu3OhVW+rr61FcXOz09ZqaGtTU1Fj+PnfuHAAgLCwMycnJOH/+vFffS0SktcrKSgCAEELjlqgnUPKNs1xTX1+PZs2aobq6GtXV1V59LxGRlphrrtJrrrl06RI6duyI+vp6y/4iIgokzDVX6TXXXLhwAa1bt0aDBg2Ya4goIHmSa1gE8lBRURGuvfZahIfbbrru3btbXjcnLzl+++037NixA8OGDUNkZCQ+++wzFBQU4JVXXnH6njlz5mDmzJkOy/v27Sv7e4mI9Oz8+fOIj4/Xuhma0jrfOMs1WVlZHvwKIiL9Yq7Rb64ZNmyYB7+CiEi/mGv0m2tGjBjhwa8gItIvObmGRSAPlZeXo127dg7LExMTLa976q233sLEiRNhMBjQoUMHrFixAj169HC6/rRp0zBlyhTL32fPnkVaWhqOHz+u2MlFr169sGfPHkXXd7WO1Gtylln/bf7/Kysr0apVK5w4cQJxcXGyf4M7Sm8Tf20PAKpsE38eI3KXy/2bx4h+j5Hdu3fj/PnzaNGihSJtCGRa5xt/5BogcP/dBEoccbVOIMRWT7eHnPfwGJG/TjAeI8w1tphrvFtf7Thi/bde/t0Ecxxx1U5v1w/F83geI7ZuvPFGbNq0ibkGzDW+rB/I/254Hu9Z+71dP5SOEV57duRJrmERyAuuHnn1dCK6Zs2aYdu2bR69JzIyEpGRkQ7L4+PjFTvwwsLCPPosOeu7hjqfFwAAN/xJREFUWkfqNTnLrP+2fy0uLk7Rf4hKbxN/bw9A2W3iz2NE7nJP/+Yxor9jJD4+PuTvlLOmZb7xR64BAv/fjd7jiKt1AiG2ero95LyHx4j8dYLxGGGuccRc4/n6ascRqb+1/ncTzHHEVTu9XT8Uz+N5jNgKDw9Hy5YtFfv+QMdc4936gfzvhufx8tro6/qhdIzw2rMjT3KN0dtGhaqkpCTJuxQqKioAXL2TIdA99thjiq/vah2p1+Qss/7b0zZ7Sultwu0hfx25yz39W2k8Rty3R8n1gx3zjXfr89+N/HUCIbZ689k8RjxfP5SOEeYaW8w13q2vdhyR0wZfMI64b4+v6zPXyF8nVI+RUMJc4/36gfzvhufxjniMuG6LEuvzGHHOIIJ5ljovlZWVoUmTJpg+fTpmzJhh89rvf/975OXl4cyZMzbjmS5fvhxjxozBjh07PBrLVAmVlZWIj4/HuXPnFK0+BipuD0fcJra4PRxxm2gjkPINjxFb3B6OuE1scXs44jbRBnNNYOM2scXt4YjbxBa3hzaYawIbt4ktbg9H3Ca2AnF78EkgD915552oqqrCypUrbZYvXrwYLVq0QO/evf3epsjISEyfPl3y8dZQxO3hiNvEFreHI24T/dFbvuExYovbwxG3iS1uD0fcJvrDXKN/3Ca2uD0ccZvY4vbQH+Ya/eM2scXt4YjbxFYgbg8+CWRl7dq1uHDhAs6fP4+JEyfi3nvvxahRowAAt956K2JiYgAAQ4YMwX/+8x+8+uqrSE9PR15eHv75z3/io48+wtixY7X8CUREFACYb4iISG3MNUREpDbmGiKiwMAikJU2bdrg2LFjkq8dOXIEbdq0AQBUVVXhueeew4oVK1BRUYFOnTph2rRpuO+++/zYWiIiClTMN0REpDbmGiIiUhtzDRFRYGARiIiIiIiIiIiIiIiIKAhxTiAiIiIiIiIiIiIiIqIgxCIQERERERERERERERFREGIRKITdd999SElJQVxcHLp3744vv/xS6yZppqamBhMmTECrVq0QFxeHm266CTt37tS6WZp77733cP311yMiIgIzZszQujl+dfr0aYwYMQINGzZEx44dsX79eq2bpLlQPh7Ie8w1tphvHIVybGGucRTKxwN5j7nGFnONo1CPLcw3tkL9eCDvMd9cxVwjLZTjC3ONLb0dCywChbAXXngBJ06cQGVlJRYsWICxY8eivLxc62Zpoq6uDm3btsWOHTtw9uxZTJ48GXfccQcuXryoddM01bx5c8ycORMjR47Uuil+99hjj6FZs2Y4ffo0XnvtNYwaNSpk/32YhfLxQN5jrrHFfOMolGMLc42jUD4eyHvMNbaYaxyFemxhvrEV6scDeY/55irmGmmhHF+Ya2zp7VhgESiEdenSBQ0aNAAAhIeH4/LlyygpKdG4Vdpo2LAhXnzxRbRu3RpGoxHjx4+HyWTCwYMHtW6apkaOHInbb78d8fHxWjfFr6qqqrBq1SrMmDEDMTExuOOOO9CjRw+sXr1a66ZpKlSPB/INc40t5htHoRpbmGukherxQL5hrrHFXOMolGML842jUD4eyDfMN1cx10gL1fjCXONIb8cCi0AaO3/+PKZOnYohQ4agSZMmMBgMTh8Rq6qqwlNPPYUWLVogKioKPXv2xPLly336/rFjxyIqKgo33HADBg4ciG7duvn0eb7SenuY/fTTT6iurkb79u0V+Txf6GWb6JnS2+jgwYOIjY1Fq1atLMu6deuG/fv3q/kzFMXjhqxpfTzoLdcA2m8TM73kG71sDz1jrnHE44asaX08MNc4x1wTWJhvbPG4IXtaHxN6yzdabw8zveQaQD/bRM+Ya2yFwjHDIpDGysvL8f7776Ompsbt42F33XUXFi9ejOnTp2Pt2rXo1asXxowZg2XLlnn9/UuXLkVVVRXWrVuHIUOGwGAweP1ZStB6ewDAxYsXMW7cODz//POIjY316bOUoIdtondKb6OqqirExcXZvC8uLg5VVVVqNF8VPG7ImtbHg95yDaD9NgH0lW/0sD30jrnGEY8bsqb18cBcI425JvAw39jicUP2tD4m9JZvtN4egL5yDaCPbaJ3zDW2QuKYEaQpk8kkTCaTEEKI06dPCwBi+vTpDuutWbNGABDLli2zWT548GDRokULUVdXZ1k2cOBAERkZKfnf888/77QtI0aMEGvWrFHmh3lJ6+1x+fJlMWLECPHggw9a2qE1rbeJEEJMmjRJ8jv1QulttHfvXpGQkGCzzh//+EcxZcoUdX6ACtQ4bsz0fjyQIz3EETM95BohtN8mess3Wm8PIfQfW5hrHDHXkDU9xBEz5pormGsCL9cIwXxjj7mG7OkhlpjpId9ovT30lmuE0H6bCKH/+MJcYysUcg2fBNKYwWCQddfAv/71L8TGxuLee++1WT5hwgT88ssvKCwstCzbuHEjLl26JPnfrFmznH5HfX09iouLvf8xCtBye5hMJjz44IMICwvDBx98oPndHGZ6Okb0Sult1KFDB1RVVeHkyZOWdYqKitClSxdlG64iNY4bClx6iiN6yDUA8409PR0jesVc44i5hqzpKY4w1zDXBGquAZhv7DHXkD09xRI95BvmGkd6Okb0irnGVijkGhaBAkRRURGuvfZahIeH2yzv3r275XVP/Pbbb1i5ciUuXLiAuro6rFixAgUFBcjMzFSszWpSensAwCOPPIJff/0VH3/8scPnBgI1tkldXR0uXbqE+vp6m/8/UMndRrGxscjOzsaMGTNQXV2NL7/8Et999x3uuOMOv7dZbZ4cN8F2PJAj5hpHzDe2mGvcY65xxFxD1phrHDHX2GKukYf5xhZzDdljvrHFXOOI+cY95hpbgZxrWAQKEOXl5UhMTHRYbl5WXl7u8We+9dZbaNGiBZKTkzFv3jysWLECPXr08Lmt/qD09jh27BgWLFiAwsJCJCcnIzY2FrGxsdi2bZsi7fUHNY6Rl156CdHR0cjNzcXs2bMRHR2NDz/80Oe2asWTbfTuu+/il19+QVJSEp5++ml8/PHHSE5O9ltb/cWTbRJsxwM5Yq5xxHxji7nGPeYaR8w1ZI25xhFzjS3mGnmYb2wx15A95htbzDWOmG/cY66xFci5JvDKtCHM1WNpnj5y2axZs4AKzFKU3B5paWkQQvjaJM0puU0AYMaMGZgxY4YPLdIfuduoSZMm+Pe//+2PJmlO7jYJxuOBHDHXOGK+scVc4x5zjSPmGrLGXOOIucYWc408zDe2mGvIHvONLeYaR8w37jHX2ArUXMMngQJEUlKSZAW6oqICACSrkMGM28MRt4l73EaOuE3IGo8HR9wmtrg93OM2csRtQtZ4PDjiNrHF7SEPt5Mtbg+yx2PCFreHI24T97iNbAXy9mARKEB069YNP/74I+rq6myW//DDDwCArl27atEszXB7OOI2cY/byBG3CVnj8eCI28QWt4d73EaOuE3IGo8HR9wmtrg95OF2ssXtQfZ4TNji9nDEbeIet5GtQN4eLAIFiDvvvBNVVVVYuXKlzfLFixejRYsW6N27t0Yt0wa3hyNuE/e4jRxxm5A1Hg+OuE1scXu4x23kiNuErPF4cMRtYovbQx5uJ1vcHmSPx4Qtbg9H3CbucRvZCuTtwTmBdGDt2rW4cOECzp8/DwA4cOAAPv30UwDArbfeipiYGAwfPhyDBw/G5MmTUVlZifT0dOTl5SE/Px8fffQRwsLCtPwJiuL2cMRt4h63kSNuE7LG48ERt4ktbg/3uI0ccZuQNR4PjrhNbHF7yMPtZIvbg+zxmLDF7eGI28Q9biNbQb89BGkuLS1NAJD878iRI5b1zp8/L5544gnRrFkz0aBBA9G9e3eRl5enXcNVwu3hiNvEPW4jR9wmZI3HgyNuE1vcHu5xGzniNiFrPB4ccZvY4vaQh9vJFrcH2eMxYYvbwxG3iXvcRraCfXsYhBACREREREREREREREREFFQ4JxAREREREREREREREVEQYhGIiIiIiIiIiIiIiIgoCLEIREREREREREREREREFIRYBCIiIiIiIiIiIiIiIgpCLAIREREREREREREREREFIRaBiIiIiIiIiIiIiIiIghCLQEREREREREREREREREGIRSAiIiIiIiIiIiIiIqIgxCIQkQ5t3rwZBoMBM2bM0LopREQUxJhviIhIbW3atEGbNm1krz9jxgwYDAZs3rxZ9nsMBgP69+/vcdt8kZubC4PBgNzcXL9+LxGRFJ7Xkzf5k0IHi0BEKjl69CgMBoPNfzExMWjRogWysrLw4osv4tChQ6q2QYvOkD999NFHeOSRR3DjjTciMjKSnTAiCknMN+oqKSnBW2+9hSFDhqB169Zo0KABmjVrhrvvvhuFhYVaN4+IyEIqH0RERCA1NRWjRo3Cf/7zH62bSB7IycmBwWDA0aNHtW4KEfkJz+vVp/frSOYbDMz/GY1GxMXFoW3btsjOzsY777yDiooK1b4/2IuJ3333HV544QXcdNNNaNq0KSIjI9GuXTs8+uijKCkp0bp5qgrXugFEwa59+/Z44IEHAAA1NTU4deoUdu/ejVmzZuHll1/G1KlTMXv2bBgMBst7MjIy8OOPPyI5OVmrZgeE559/HseOHUNycjKaN2+OY8eOad0kIiLNMN+o45133sGrr76K9u3bY/DgwWjatCkOHjyIVatWYdWqVcjLy8OoUaO0biYRkYV1Prhw4QK++eYbfPLJJ1i1ahU2bNiAfv36adxC1/74xz/ivvvuQ+vWrbVuChGRJnher55AuY6UlZWFPn36AACqqqpw8uRJbNu2DZ9//jmmT5+Of/zjH7j33ntt3sP86d4f/vAH7N69G7169cJ9992HyMhIFBYW4r333sMnn3yCbdu2oVOnTlo3UxUsAhGpLD09XbKCvm3bNjz44IOYM2cOwsLCMGvWLMtrMTExQRt0lLRgwQJ06NABaWlpeOWVVzBt2jStm0REpBnmG3VkZGRg69at6Nu3r83ybdu2ISsrC5MnT0Z2djYiIyM1aiERkS2pfGA+V37hhRewZcsWbRomU3JyMi9iElFI43m9etS8jrR582YMGDAAixYtQk5Ojk+fNWjQIPzlL3+xWVZfX4/c3Fw8/vjjGDNmDOLj4zFkyBDL68yf7j3wwANYunQp2rdvb7P81VdfxV/+8hf86U9/wpo1azRqnbo4HByRRvr27Yt169YhMjISc+fOxYkTJyyvOXv8sqCgABMnTsQ111yD2NhYxMbG4sYbb8T7779vs575/QCwZcsWm0dJrR9zraurw5tvvokePXogOjoa8fHxGDBggGTAsx7z+osvvkDv3r0RExOD1NRUvPDCCzCZTACApUuX4rrrrkN0dDRat26N1157zeGzLl26hNdffx09evRAfHw8YmNj0b59e4wZMwY//PCD7G04aNAgpKWlyV6fiCgUMd/4lm/uuusuhwKQebsOGDAAFRUVHuUuIiItTJo0CQDwzTffOLy2cOFCZGdno02bNoiKikJiYiKGDh2KgoICh3Wt88bWrVuRmZmJ2NhYJCYm4v7778fJkyedtuHChQuYMmUKUlNTERkZie7du+PTTz91WM/VnAYLFixA165dERUVhVatWmHq1Km4dOmS0+88fvw4Jk2ahNTUVDRo0AAtW7bEpEmTbHKhWf/+/WEwGHDp0iVMnToVrVq1QlRUFLp164aFCxc6/Q4A2LhxI/r06YOGDRsiKSkJ48ePR3l5ueX1w4cPw2g0YsSIEZLvP3PmDKKiotCjRw8AV+ZRWrx4MQCgbdu2ltxqP0TTkSNH8NBDD6F169aIjIxE8+bNkZOTI3ln+969e3HPPfdY1k1JScHvfvc7vPLKKy5/GxHpB8/rQ/s6UlhYGCZNmoT/+7//Q319PaZMmQIhhOV1Z/lTbp6fMWMGBgwYAACYOXOmzTFgPTRpeXk5nn76abRt2xaRkZFo2rQpRo8ejQMHDji02Ty06eHDh/Haa6+hY8eOiI6ORufOnbF8+XIAQG1tLV588UW0bdsWUVFR6N69O9atW+fwWb/++iuefPJJdOjQAdHR0UhMTES3bt3w6KOPorKyUtY2/OMf/+hQAAKAP//5z4iJidH9jTK+4JNARBrq2LEjRo8ejSVLlmDVqlV4/PHHXa7/6quvori4GDfddBPuvPNOnD17Fvn5+XjkkUfw3//+F6+//jqAK52G6dOnY+bMmUhLS7O5A6Fnz54AACEERo8ejc8++wwdO3bEY489hgsXLmDFihW47bbb8Pbbb+OJJ55waMO//vUvfPXVVxg5ciRuueUWrFmzBi+99BKEEEhISMDf/vY3ZGdno1+/fli5ciWeeeYZNG/eHGPHjrV8xvjx47FixQp0794dEyZMQGRkJI4fP46CggIMHToU3bp1833jEhGRBfONOvkmIiICABAezlNqIgoMUvHqscceQ48ePTBo0CA0adIEJSUlWLVqFQYNGoTPPvsM2dnZDu/ZtWsX5syZgxEjRuCJJ57A3r17kZeXh+3bt2PPnj1ISUmxWb+2thZDhgxBRUUF7rrrLly8eBHLly/HqFGjkJ+fb3MnszOzZs3Ciy++iJSUFDz88MOIiIjAxx9/jB9//FFy/YMHD6JPnz44deoUbr/9dnTp0gX79+/HwoUL8eWXX2LHjh1IT093eN+9996L77//Hvfeey9qa2uxYsUKTJo0CaWlpZJ3jH/xxRf48ssvcfvtt2Py5MnYunUrlixZgkOHDmH79u0AgHbt2mHQoEHIz8/HyZMn0bJlS5vP+PDDD1FTU4OHH34YAPDUU08hNzcX+/btw5NPPonGjRsDuJJ3zQoLCzF06FBcuHABt99+O9LT03H06FEsXboUa9euxddff4127doBuDIHws0334ywsDBkZ2cjLS0NZ8+exf79+/HPf/7T4W5zItIvntfzOtIDDzyA6dOnY//+/SgqKnL72+Xm+f79++Po0aNYvHgxMjMzbW48MOeh8vJy3HTTTSguLkb//v1x33334ejRo/j000+xZs0arF+/Hr/73e8c2jBlyhQUFhbi9ttvR1hYGJYvX477778fCQkJmD9/PoqKinDrrbfi0qVLWLZsGe644w789NNPaNu2LQDg4sWLuOWWW3D06FEMGTIEd955Jy5fvozDhw8jNzcXU6dORVxcnNfb1GAwICwsDEZjED8vI4hIFUeOHBEAxNChQ12u98EHHwgAYty4cZZlBQUFAoCYPn26zbqHDx92eH9tba0YPHiwCAsLE8eOHbN5DYDIzMyU/N4lS5ZYXq+pqbEsP3HihGjatKmIiIiw+b5FixYJACIiIkLs3r3bsryyslI0bdpUxMTEiGbNmolDhw5ZXjt+/Lho0KCB6N69u2XZ2bNnhcFgEDfeeKOoq6uzaVNdXZ04c+aMZHvdmTNnjgAgFi1a5NX7iYgCFfONf/ON2bFjx0RkZKRo1qyZw+cTEWnBVT6YNWuWACBGjBjh8JpUzP/ll19EixYtRIcOHWyWm/MGALFgwQKb12bOnCkAiIkTJ9osT0tLEwBEdna2TR7YsGGDZHunT58uAIiCggLLsoMHD4rw8HCRmpoqSktLLcvPnTsnrrnmGsk8NHDgQAFA/OMf/7BZ/o9//EMAEFlZWTbLMzMzBQDRuXNnUVlZaVn+66+/iubNm4vw8HCb3GPOV+Hh4WL79u2W5XV1daJ///4CgPj6668tyz/55BMBQMycOVPY6969u4iKirLJTePHjxcAxJEjRxzWv3z5smjTpo1o1KiR+O6772xe27ZtmwgLCxO33XabZdmUKVMEALF69WqHzyorK3NYRkTa4Hl9YF9HMu8DXz7PvM3mzJnjcr1x48YJAOKDDz6wLJPKn0J4l+ftjyOziRMnCgBi2rRpNsvz8/MFANGhQwdRX19vWW7OZR06dBCnTp2yLN+1a5cAIBo3biz69OkjqqqqLK99/PHHAoB44oknLMs+//xzAUA8/fTTDm2qrKy0OR69Yf7Oe++916fP0bMgLm8RBYYWLVoAAMrKytyua66AWwsPD8cf/vAH1NfXSw7Z4Iz5cd65c+eiQYMGluUtW7bE008/jdraWixdutThfWPHjkWvXr0sfzdq1Ai33XYbLl68iMmTJ1vuNgOAVq1aoU+fPti/fz/q6uoAXKmuCyEQGRmJsLAwm88OCwuz3F1ARETKYr65ytd8U1tbi3HjxqGmpgZz5851+HwiIi0VFxdjxowZmDFjBp555hn0798fL7zwApo2bYp58+Y5rC8V85s3b467774bBw8elBxa7JprrsHEiRNtlj3zzDNo0qQJ8vLycPnyZYf3vPnmmzZ5ICsrC2lpadizZ4/b37Rs2TLU1dVhypQpaNq0qWV5XFwcnn/+eYf1T5w4gU2bNqFz586Wp2vMHn74YVx77bXYuHGj5LBwzz33HBo1amT5u1mzZpgyZQrq6uqwbNkyh/Xvv/9+3HLLLZa/w8LCMH78eACw+W3Z2dlISUnBokWLbIbv2bNnD77//nvcc889snPTl19+iaNHj2Lq1KmWIeTM+vTpg+zsbPz73/92GB4nOjra4bOSkpJkfScR6QfP668K1etIvh4D7vK8lMuXLyMvLw9JSUkOuXfo0KEYOnQoDh48iJ07dzq897nnnkOTJk0sf/fu3Rvt2rXD2bNnMXv2bDRs2NDy2t13342IiAjs27fP4XOk8lijRo1sjkdPnThxAk888QSio6Nt5tkKNhy7gkhj1h0Ad86fP4/XXnsNq1atwqFDh3DhwgWb13/55RfZn/Xtt98iOjoaGRkZDq+ZH/n87rvvHF677rrrHJY1b94cwNVHhO1fq6+vR2lpKVJTUxEXF4dhw4YhPz8f119/Pe655x707dsXvXv3tgnaZ8+exVtvveXweVKTIxIRkXvMN8rkG5PJhIkTJ2Lr1q14+OGHMW7cOMn1iIi0cujQIcycOdNmWdOmTbFt2zZ07NjRYf3Dhw9jzpw52LRpE0pKSlBTU2Pz+i+//OIwf8Itt9ximTvCLDo6GjfccAPy8/Px888/o2vXrpbXGjduLHkRqmXLlvj666/d/ibzhSBnc7TZ+/bbbwEAmZmZDu00GAzo168ffvzxR+zbtw+tWrVy+3nmZVL56vrrr3dYZh7u7ezZs5ZlERERmDhxIubMmYP169dbhsD74IMPAAAPPfSQw+c4s2vXLgDATz/9JJmvfvvtN5hMJvz888+48cYbcc899+Ctt97CyJEjMWrUKAwePBh9+vRB69atZX8nEekHz+u1v440Y8YMh1xrNmHCBEyYMMFm2fjx423mVvKVJ8eAN3leyk8//YTq6mr0798fMTExDq/3798f69atw3fffYc+ffrYvObsGDh8+LDDMRAWFoamTZuipKTEsqxfv35o1qwZ5syZg++++w4jRoxAnz590K1bN5s8/91332HVqlU2n9emTRub4Q2tVVRU4NZbb8WpU6ewZMkSXHPNNW62QuBiEYhIY7/++isA2FTEpVy+fBn9+/fH3r17cd1112HcuHFISkpCeHi4ZcxO+0DuSmVlpUOHx6xZs2YAgHPnzjm8JjXGpnlscVev1dbWWpZ9+umnePnll5GXl4fnnnsOwJXK/cSJE/Hyyy8jJiYGZ8+elUyoLAIREXmH+cb3fCOEwMMPP4yPPvoIDzzwAP7v//5P8ncREWlp6NChyM/PBwCcPn0aixcvxrPPPouRI0di9+7diI2NtaxbXFyMjIwMVFZWYsCAAbj99tsRFxcHo9GIzZs3Y8uWLZIx3/ppHGvmuYDs43p8fLzk+uHh4ZaJwV0xf57U99rPPwTA8gSM1GuA6/zj6juk1pf6beacVF9fb7P84YcfxiuvvIIFCxZgyJAhuHjxIvLy8tCxY0dkZmZKtlVKRUUFAEjecW/NfLH3d7/7HTZt2oQ5c+YgLy/PciHyhhtuwLx58ywTgRNRYOB5vfbXkaznyzEzb9Ps7GyHwoZUscsXco8Bb/O8FF9yqzfHgPX+j4+Px9dff43p06fjiy++wL///W8AV266mDZtGh599FEAV4pA9sdAZmamZBHozJkzGDRoEPbv34/33nsPDzzwgOTvChYsAhFpbPPmzQBg82islNWrV2Pv3r146KGH8M9//tPmteXLl2Px4sUefW9cXBxKS0slXzMv92VSNVcaNmyI2bNnY/bs2Thy5AgKCgrwf//3f3j77bdRXV2Nf/zjH2jTpo1HdzYQEZFrzDe+5RuTyYSHHnoIixYtwpgxY5CbmxvcE4cSUVBo0qQJ/vznP+PcuXN46aWX8Pzzz9vcJf3mm2/izJkz+Oijj2wm4AaAP/zhD9iyZYvk5546dUpyuTmuOyv6eMv8eadOnXK4W1kqx5jzijf559SpUw4XOZX6XW3btsXgwYOxevVqlJWV4csvv0RlZaXkkHaumNv9xRdf4LbbbpP1nszMTGRmZqK6uhqFhYX44osv8O6772LEiBH44Ycf0L59e49/DxFpg+f12l9H6t+/v0MhaPPmzVi8eDFGjhzp9MkTJZhMJmzduhWA+2PA2zwvxZfcqoQ2bdpg8eLFqK+vxw8//ICvvvoKf//73/HYY48hISEBY8aMQU5OjqxtX1FRgUGDBuHbb7/F/Pnz8cgjj6jSZj1hz5VIQz///DNWrFiByMhI3HnnnS7XPXToEADgjjvucHht27Ztku8xGo0Od5+ZXXfddaiursbu3bsdXjMnAaXvVJDStm1bTJw4EVu2bEFsbCw+//xz1b+TiCjUMN/4lm+sC0CjR4/Ghx9+yHmAiCig/PWvf0WLFi3w7rvv4ujRo5blzmK+yWTCjh07nH7ejh07HC60VVdX45tvvkF0dLTksHO+MM97I5WHpJaZ88rWrVsd2imEsLxHKv+4+g4l8tXvf/97XL58GUuWLMEHH3yAiIgIyxxC1sx5Riq/9u7dGwBkDaVnLzo6Gv3798frr7+Ov/71r6iursaGDRs8/hwi0gbP63kd6cMPP8SxY8fQrVs3dOnSxeW6nuZ5V7mnU6dOiIqKwp49e3Dx4kWH1/11DISFhaFnz56YOnUq8vLyAMCjY8C6APTOO+9YniIKdiwCEWlk+/btGDp0KGpqajBt2jSkpqa6XN98x9v27dttlm/ZssXhjg6zxMREnDx5UvI1c0dj2rRpNo9YlpSU4I033kB4eLjDXQJKOH36tOQJw5kzZ1BTUyM5yRsREXmP+caWp/nGZDJh0qRJWLRoEe6991589NFHLAARUcCJjo7Gs88+i9raWptJj53F/FdffRVFRUVOP++///0vFi5caLNs3rx5OH36NMaMGePTBM1S7r//foSFheGNN96weQqpsrISL730ksP6rVu3xoABA7B//36Hdi5cuBD79+/HwIEDJYc1mj17Ns6fP2/5u7S01JKv7r//fp9/S3Z2Npo1a4bXX38d27dvxx133CE5BF1iYiIASObX7OxstG7dGm+88YblbnBrtbW1Nvt027ZtlmF8rJnv2mYfjCgw8LzeVqhdR6qvr8fChQsxefJkS060n/fOnqd53lXuadCgAcaMGYOysjLMmTPH5rUNGzZg7dq1SE9Pxy233OLR75KjqKgIx44dc1juaR6rqKhAVlYWvv32W7z99tv44x//qGg79YzDwRGprLi42DL+6OXLl3Hq1CkUFhaiqKgIYWFheP755/Hiiy+6/Zzbb78dbdq0wdy5c1FUVISuXbviv//9L7788kuMHDkSK1eudHjPwIEDsWLFCtxzzz247rrrEBYWhhEjRqBbt24YN24cPvvsM6xevRrdu3fHbbfdhgsXLmDFihUoLy/H66+/jnbt2im9OVBSUoLevXujS5cuuP7665Gamory8nKsXr0atbW1mDp1quzPWrBggSWR/fDDD5Zl5kejR44ciZEjRyr9E4iIdIn5xpZS+eZvf/sbcnNzERsbi44dO0pebBw5cqRf7nokIvLF73//e7z66qtYsmQJ/vrXv6J9+/b4wx/+gEWLFuGuu+7C6NGjkZSUhF27dmHv3r0YMWIE1qxZI/lZQ4YMwaOPPoo1a9agU6dO2Lt3L9atW4dWrVrh5ZdfVrzt6enpePHFFzF9+nR0794do0aNQnh4OFauXIlu3brhv//9r8N73nvvPfTp0wcPP/wwvvjiC3Tu3BkHDhzA559/jiZNmuC9996T/K527dqha9euuPvuu1FbW4sVK1bg1KlTmD17tiL5Kjw83DKHBQA89NBDkusNHDgQr732Gh555BHce++9aNiwIVq3bo37778fkZGR+PTTTzF8+HBkZmYiKysLXbt2BQAcP34c27ZtQ1JSEn766ScAwOuvv47169djwIABaNeuHaKiorB3715s3LgR6enpbp8mICL/4nm9rVC8jrRhwwZcunQJAHDx4kWcPHkSW7duRUlJCRITE/Hhhx9i0KBBbj/H0zzfqVMntGjRAsuXL0dMTAxatmwJg8GAyZMnIz4+Hq+++iq2bNmCl156CTt37kTv3r1x9OhRfPrpp4iJicGiRYtUGTJ7w4YN+NOf/oRbbrkFnTp1QlJSEg4fPozPP/8c0dHRsos5d911F7777jt06tQJFRUVkvNFPfXUU2jcuLGyP0APBBGp4siRIwKAzX/R0dGiefPmYsCAAeKFF14QxcXFku8tKCgQAMT06dNtlh8+fFjcfffdokmTJiImJkb06tVLLF++3On6v/76qxg1apRITk4WRqNRABCLFi2yvF5bWytee+010a1bNxEZGSkaNWokMjMzxerVqx3atGjRIof3m02fPl0AEAUFBQ6vjR8/XgAQR44cEUIIcebMGTFjxgzRr18/0bx5c9GgQQPRokULMWzYMLFu3TpXm9TpZzv7z357EBEFI+abK9TKN+5yjbO2EhH5mzkfDB061Ok677zzjgAgxo0bZ1lWUFAgbrnlFtGoUSPRuHFjceutt4pvvvlGMuZa54EtW7aIvn37ipiYGNG4cWNx3333iePHjzt8Z1pamkhLS5NsT2ZmprC/LOEq1v/zn/8UnTt3Fg0aNBAtW7YUf/7zn8XFixcFAJGZmemw/tGjR8WECRNE8+bNRXh4uGjevLmYMGGCOHr0qNO2XLx4Ufz5z38WqampokGDBqJLly5iwYIFDuu7ylfO8qXZf//7XwFAtG7dWtTX10uuI4QQc+fOFR06dBARERGSv/HkyZPiySefFB06dBCRkZEiLi5OXHvtteKhhx4SGzdutKyXn58vHnzwQXHNNdeIRo0aidjYWNG5c2fx/PPPi7KyMqffT0T+xfP6KwL1OpJ5m/rSNzBvM/N/BoNBxMbGijZt2ojbb79dvPPOO6KiokLyvc62qSd5Xgghdu3aJTIzM0WjRo0s7TDvCyGEOH36tHjiiSdEWlqaiIiIEMnJyeKee+4RP/zwg0Ob7PelNalzADP7c4cDBw6IJ598Ulx33XUiKSlJREZGinbt2omcnBxx4MAByc9w9rnu+nZSbQ0GBiE48zoRERERERERubZ582YMGDAA06dPl7x7NpD1798fW7Zs8cuk4itWrMDo0aMxc+ZMWXfzExEREfmCcwIREREREREREfmBEMIyd8akSZO0bg4RERGFAM4JRERERERERESkoh9++AFffvkldu7cicLCQvzhD39wO6k7ERERkRJYBCIiIiIiIiIiUtE333yDv/71r2jcuDEefPBBzJs3T+smERERUYjgnEBERERERERERERERERBiHMCERERERERERERERERBSEWgYiIiIiIiIiIiIiIiIIQi0BERERERERERERERERBiEUgIiIiIiIiIiIiIiKiIMQiEBERERERERERERERURBiEYiIQs7bb7+NLl26IDY2Fo0bN0ZWVhYKCwu1bhYREQUR5hoiIlIbcw0REamNuSY4sAhERCGndevWeOONN7Bv3z7s3LkT7du3x9ChQ1FeXq5104iIKEgw1xARkdqYa4iISG3MNcGBRSBSzdGjR2EwGJCTk6N1U3Rt8+bNMBgMmDFjhqz13W1Xk8mEHj164NZbb1WukUHmzjvvxNChQ9G+fXt07twZr732Gs6dO4eioiLLOsXFxQgPD8e7776rYUuJyB3mGnmYa/yPuYYoeDDXyMNc43/MNUTBg7lGHuYa/2OuCQ4sAlHQ+eijj/DII4/gxhtvRGRkJAwGA3Jzc92+b8+ePbj11luRkJCAhg0bIiMjA8uWLfOqDd988w0mTZqEDh06oGHDhoiOjkb79u0xbtw4rF+/3qvPlCs3Nxfff/+97IQY6i5fvoz3338fCQkJ6Natm2V5eno6xo4dixkzZqCystLv7fLmePTkPd7+OyGiK5hrmGs8wVzDXEPkDeYa5hpPMNcw1xB5g7mGucYTzDUBnGsEkUqOHDkiAIjx48f79XvT0tIEAJGcnGz5/xctWuTyPQUFBaJBgwYiNjZWPPTQQ+JPf/qTaNu2rQAgZs+eLfu76+vrxdNPPy0AiPDwcDFkyBAxZcoU8eyzz4p7771XJCQkCADib3/7m813AxDTp0+X9R2utmtdXZ1o3bq1yMzMlN3mULV161bRsGFDYTQaRYsWLcR//vMfh3V++OEHAUDMmjXLr23z5nj09D3e/Dsh0iPmGuYaPWOuYa6h4MBcw1yjZ8w1zDUUHJhrmGv0jLkm8HMNi0CkGq0S2Pr168XRo0eFEELMmTPH7T/M2tpa0b59exEZGSn27t1rWV5ZWSm6dOkiwsPDxc8//yzru6dNmyYAiJ49e4ri4mKH1y9evCjmzp0rnn32WcsyJRPY559/LgCIBQsWyPqsYPLcc88JAC7/s3bx4kVx8OBBsWvXLjFp0iTRrl07cfr0aYfP7dGjh2jdurWor6+X1Y7MzEyRlpbm9e/w5nj05j2e/jsh0ivmGuYaf2KuYa6h0MRcw1zjT8w1zDUUmphrmGv8ibkm9HINh4MjTSxevBg33XQTYmNjERsbi5tuugmLFy+WXLeurg5z5sxB+/btERUVhfT0dMyZMweHDx+WHNdz0KBBSEtLk92WTZs24dChQ7j//vtx3XXXWZY3atQIL7zwAurq6rBo0SK3n1NcXIy5c+ciKSkJ+fn5aN++vcM60dHReOaZZzBz5kzJz9i7dy+GDh2KRo0aIT4+HnfeeSeOHj0q+7fk5ubCYDDg7rvvtlluPWbqzp07MWDAADRq1AhNmjTBo48+iurqagBAfn4+brnlFjRs2BApKSl49tlnUV9f7/A9nu4TZ5Rs15///GccOXLE5X/WoqOjkZ6ejt69e2PBggUwGo2S+3nUqFE4fvw4Nm7cKOs3+cqb49Gb93j674QoEDHXMNco3S7mGuYaInvMNcw1SreLuYa5hsgecw1zjdLtYq4JvVzDIhD53dNPP42cnBycPHkSkyZNwkMPPYSSkhLk5ORgypQpDutPnDgRf/3rX2EwGPDYY49h2LBheOutt/DUU08p0p7NmzcDAIYMGeLwmnnZli1b3H5Obm4u6uvr8cgjjyAlJcXlupGRkQ7L/vOf/6Bv374IDw+3jDO5atUqDBo0CJcuXXL7/UIIbN68GZ06dULjxo0l1yksLERWVhbi4+PxyCOPoHXr1njvvffw8MMP45NPPsFdd92FVq1a4ZFHHkHjxo0xd+5cvPLKKw6fo/Q+UaJdjRs3Rps2bVz+52771dTUOCz/3e9+B+BKkvAHb45HpY5homDCXMNco0a7mGuYa4isMdcw16jRLuYa5hoia8w1zDVqtIu5JgRzjXYPIVGwk3rkcuvWrQKAuPbaa8XZs2cty8+ePSs6deokAIht27ZZlm/YsEEAEDfeeKO4ePGiZfmvv/4qmjVr5vZRWTmP6N1zzz0CgOR4lkIIkZycLJo0aeL29/bv318AEBs2bHC7rjXzo6wAxPLly21eGzdunAAg8vLyLMucPcq6f/9+AUCMHTvW5XesWrXKsvzy5cuie/fuwmAwiOTkZLF7927La5WVlaJp06YiKSlJ1NbWWpb7uk/Uapcnpk6dKrZv3y6OHj0q9u7dKx566CERGRkpDhw44LBuZWWlACD69esn67N9fZTVm+PR12M4UB9lJRKCuUYu5hrmGmvMNUSeYa6Rh7mGucYacw2RZ5hr5GGuYa6xxlwjH58EIr/Kzc0FAMyYMQPx8fGW5fHx8Zg+fbrNOgDw0UcfAQBeeOEFREdHW5Y3a9YMTz75pCJtOnfunKUNUuLi4izruPLbb78BAFq2bOlVO/r164fRo0fbLJs4cSIAYM+ePW7ff/LkSQBweQdF//79kZ2dbfk7IiIC99xzD4QQuP3229GrVy/La40aNcJtt92G8vJyy2cD6uwTJdrliV9++QX33XcfOnbsiFtvvRWlpaXYtm0brr32Wod1GzVqhKioKK+/y1PeHI9KHcNEwYK5xjnmGuYagLmGSAnMNc4x1zDXAMw1REpgrnGOuYa5BmCu8US41g2g0PLtt98CuBKw7JmXfffdd5Zl+/btAwDcfPPNDutLLQtk119/vcMyczI8e/as2/eXl5cDABISEpyuYz3WpVnz5s0BAD179nT6WklJieVRUDX2iRLt8sSHH37o0fqJiYkoKytzWG4wGJy+R+q1I0eOeNVeIvIMc41zzDW+tcsTzDVEwY25xjnmGt/a5QnmGqLgxlzjHHONb+3yBHNNcGARiPyqsrISRqMRTZo0cXgtJSUFRqPRptpqXj8pKUlyfSWYK7/OqryVlZVOq8PWmjVrhp9++gklJSW45pprvG6HtfDwK/9EpSaWs2e+o8A8EZyUuLg4p9/h6rXa2lrLMjX2iRLtUlN1dTViYmIclpvvvLGWm5uLs2fPSo7t6mycWWveHI9KHcNEwYK5xn07rDHXMNfYY64hco+5xn07rDHXMNfYY64hco+5xn07rDHXMNfYY665ikUg8qu4uDiYTCacPn0aTZs2tXnt1KlTMJlMNgHLvH55eTmSk5Nt1i8tLVWkTR06dAAAHDx4EDfccIPNa2fOnEFZWZms6vwtt9yCzZs3Y+PGjRg4cKAibfOE+aSgoqJC1e/xxz7RE5PJhHPnzqFLly4Or82YMcNh2ebNm3H06FHJ1+Tw5nhU6hgmChbMNephrlEHcw1R4GGuUQ9zjTqYa4gCD3ONephr1MFco1+cE4j8yvzI4ubNmx1e27JlCwDbRxd79OgBANi5c6fD+lLLvJGZmQkA+OqrrxxeMy8zr+NKTk4OwsLC8P777+P06dMu162pqfGipa516dIFRqMRBw8eVPyzrfljn+jJwYMHYTKZ0K1bN798nzfHo1LHMFGwYK65grkmcDDXEAUe5pormGsCB3MNUeBhrrmCuSZwMNfoF4tA5Ffjx48HAMycOROVlZWW5ZWVlZg5c6bNOgAwduxYAMCsWbNw6dIly/LffvsNb7/9tiJtysrKQrt27bBs2TKbsVTPnz+PWbNmITw8HDk5OW4/Jz09HVOnTkVZWRmGDx+OI0eOOKxz6dIlvPHGG15XuF1p3Lgxunfvjv/85z8QQij++Wb+2Cd6UlhYCECdBHDo0CH89NNPNo/kenM8KnUMEwUL5hrmmkDDXEMUeJhrmGsCDXMNUeBhrmGuCTTMNfrF4eDIr/r164fHH38c77zzDrp27Yq7774bQgh89tlnOHHiBJ544gn069fPsv6gQYMwduxYLF26FN26dUN2djZqamqwYsUK9O7dG1988QWMRtta5oIFC7B9+3YAwA8//GBZZr5zYuTIkRg5cqRl/fDwcCxYsABDhw5F3759MWbMGMTFxeGzzz7DkSNH8NJLL6Fjx46yft9LL72ES5cu4c0338Q111yDgQMHomvXroiIiMCRI0ewYcMGlJeX46WXXvJhKzo3cuRIzJgxA3v27EFGRoYq3+HNPglk69evR1hYGG677TbFPzsrKwvHjh2zmezOm+PRm/d4+u+EKJAw1zDXBBrmGqLAw1zDXBNomGuIAg9zDXNNoGGu0TFBpJIjR44IAGL8+PEOry1cuFD06tVLxMTEiJiYGNGrVy+xcOFCyc+pra0Vs2bNEm3bthUNGjQQ7dq1Ey+//LIoLCwUAMSTTz5ps/748eMFAKf/TZ8+XfJ7CgsLxbBhw0R8fLyIjo4WN954o/joo4+8+u179uwREydOFOnp6SI6OlpERkaKNm3aiDFjxoivvvrKZt2CggKn7ZLahq6268mTJ0VYWJh4/PHHZX/HokWLBACxaNEih9emT58uAIiCggKb5Z7uE2eUbpfSLly4IGJjY8XIkSNlvyczM1OkpaXJWjctLU0AEEeOHHF4zZvj0ZP3ePvvhEhvmGuYa9xhrmGuIfIVcw1zjTvMNcw1RL5irmGucYe5hrnGFywCUcD65z//KQCId999V+um6MqYMWNEUlKSqKqq8vt3B9s++eCDDwQAsWXLFq2bQkQaCba4phTmGuUw1xBRsMU1pTDXKIe5hoiCLa4phblGOcw1+mYQQsWBD4kU8NtvvyElJQUGg8GyrKSkBLfccgtOnjyJI0eOoFWrVhq2UF+OHDmCa6+9Fn/7298wdepUVb4jFPZJXV0dOnXqhC5dumD16tVaN4eIVBYKcU1JzDXKYK4hCi2hENeUxFyjDOYaotASCnFNScw1ymCu0T/OCUS698orr2DNmjXo27cvmjZtiuPHj+PLL7/E+fPnMWPGjIAPlEpr27YtFi9ejLKyMtW+IxT2ycmTJ/HAAw9g3LhxWjeFiPwgFOKakphrlMFcQxRaQiGuKYm5RhnMNUShJRTimpKYa5TBXKN/fBKIdC8/Px9vvPEG9u3bhzNnziAqKgrdu3fHo48+ivvvv1/r5oUk7hMiCjaMa/rDfUJEwYZxTX+4T4go2DCu6Q/3CekBi0BERERERERERERERERByKh1A4iIiIiIiIiIiIiIiEh5LAIREREREREREREREREFIRaBiIiIiIiIiIiIiIiIghCLQEREREREREREREREREGIRSAiIiIiIiIiIiIiIqIgxCIQERERERERERERERFREGIRiIiIiIiIiIiIiIiIKAixCERERERERERERERERBSEWAQiIiIiIiIiIiIiIiIKQiwCERERERERERERERERBSEWgYiIiIiIiIiIiIiIiIIQi0BERERERERERERERERB6P8BUdRCc7/eh4kAAAAASUVORK5CYII=\n",
"text/plain": [
"