{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import netCDF4 as nc\n", "import datetime as dt\n", "import subprocess\n", "import requests\n", "import matplotlib.pyplot as plt\n", "import cmocean\n", "import numpy as np\n", "import os\n", "import glob\n", "import dateutil as dutil\n", "from salishsea_tools import viz_tools\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with nc.Dataset('/ocean/eolson/MEOPAR/NEMO-forcing/grid/mesh_mask201702_noLPE.nc') as fm:\n", " tmask=np.copy(fm.variables['tmask'])\n", " umask=np.copy(fm.variables['umask'])\n", " vmask=np.copy(fm.variables['vmask'])\n", " navlon=np.copy(fm.variables['nav_lon'])\n", " navlat=np.copy(fm.variables['nav_lat'])\n", " dept=np.copy(fm.variables['gdept_1d'])\n", " e3t_0=np.copy(fm.variables['e3t_0'])\n", " e3u_0=np.copy(fm.variables['e3u_0'])\n", " e3v_0=np.copy(fm.variables['e3v_0'])\n", " e1t=np.copy(fm.variables['e1t'])\n", " e2t=np.copy(fm.variables['e2t'])\n", " e1v=np.copy(fm.variables['e1v'])\n", " e2u=np.copy(fm.variables['e2u'])\n", " A=fm.variables['e1t'][0,:,:]*fm.variables['e2t'][0,:,:]*tmask[0,0,:,:]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "t0=dt.datetime(2015,2,6) # 1st start date of run\n", "#te=dt.datetime(2016,12,1)# last start date of runfnum=18\n", "stm=np.shape(tmask)\n", "SiN=2.0\n", "#nlen=36*2\n", "nlen=24\n", "dlist=[t0+dt.timedelta(days=ii*10) for ii in range(0,nlen)]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#sdir0='/results/SalishSea/nowcast-green/'\n", "#sdir1='/results/SalishSea/hindcast/'\n", "#sdir3='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_HCMZ/'\n", "sdir1='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/'\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tmaskC=np.copy(tmask)\n", "tmaskC[:,:,370:490,:12]=0\n", "tmaskC[:,:,887:,30:70]=0" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150206-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150216-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150226-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150308-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150318-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150328-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150407-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150417-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150427-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150507-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150517-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150527-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150606-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150616-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150626-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150706-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150716-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150726-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150805-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150815-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150825-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150904-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150914-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150924-*.nc\n" ] } ], "source": [ "tlist=dlist\n", "SiGlobalTot=dict()\n", "SiTot=dict()\n", "BSiTot=dict()\n", "DiatTot=dict()\n", "changeSiGlobalTot=dict()\n", "for idir in (sdir1,):\n", " fformat1='%d%b%y/'\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " #elif idir==sdir0:\n", " # fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " # fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_grid_T.nc'\n", " elif idir==sdir1:\n", " fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc'\n", " sumSi=np.zeros((len(tlist),stm[1]))\n", " sumBSi=np.zeros((len(tlist),stm[1]))\n", " sumDiat=np.zeros((len(tlist),stm[1]))\n", " ind=-1\n", " for idt0 in tlist:\n", " ind=ind+1\n", " cdir=idt0.strftime(fformat1).lower()\n", " iffT=idt0.strftime(fformatT)\n", " iffP=idt0.strftime(fformatP)\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " sffT=idir+iffT\n", " sffP=idir+iffP\n", " elif idir.startswith('/results/'):\n", " sffT=idir+cdir+iffT\n", " sffP=idir+cdir+iffP\n", " f=nc.Dataset(glob.glob(sffT)[0])\n", " print(sffT)\n", " fP=nc.Dataset(glob.glob(sffP)[0])\n", " #if idir==sdir0:\n", " # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0\n", " if idir==sdir1:\n", " e3t=fP.variables['e3t'][:2,:,:,:]\n", " Vol=A*np.ones(np.shape(e3t))\n", " sumSi[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['silicon'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumBSi[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['biogenic_silicon'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumDiat[ind,:]=SiN*1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " f.close()\n", " fP.close()\n", " SiGlobalTot[idir]=sumSi+sumBSi+sumDiat" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150924-*.nc'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sffT" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "siplot=SiGlobalTot[idir]-SiGlobalTot[idir][0,:]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEDCAYAAADKhpQUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYHFd95vHvOxddrIstWbbQDSxYGSITPAKvgIRdDIZg\nK1kECWHlJURJnBXOY/NAHnaDHHYJCY93nSyXJQ8XrwJeCzbgiAUHLTEYW3HikAC2DMJYvmDhC5Ys\nS3jAliVbl5n57R91xrTH0zN1prune2rez/PUM9WnTp0609Pz61OnTp1SRGBmZtXQ1e4KmJlZ8zio\nm5lViIO6mVmFOKibmVWIg7qZWYU4qJuZVYiDuplVkqSrJB2UdEeJvM+VdJOk70m6XdK6yahjKzio\nm1lVXQ2cXzLvfwG2RcQaYAPwyVZVqtUc1M2skiLiZuCntWmSXiDp65Juk/RPkl40nB2Yn9ZPBh6e\nxKo2VU+7K2BmNom2ABdHxL2SXk7RIn8t8AHgG5LeCcwBXte+KjbGQd3MpgVJc4FfAr4oaTh5Zvp5\nIXB1RHxY0iuBz0l6cUQMtaGqDXFQN7Ppogt4LCL6Rtl2Ean/PSK+JWkWsAg4OIn1awr3qZvZtBAR\nh4D7Jf0mgApnp80/Bs5L6b8AzAJ+0paKNqhlQV3S+ZLukbRH0uZWHcfMbDSSvgB8C3ihpL2SLgLe\nBlwk6fvAbmB9yv4e4D+m9C8AvxMlp7Adb+hk+vL4yxQLb5f00pptTY+TasXUu5K6gR8Crwf2ArcC\nF0bEnU0/mJlZG0n6t8Bh4LMR8eJRtq8D3gmsA14OfCwiXt6qONmqlvpaYE9E3BcRx4Fr+Pk3oplZ\nZYw2dHKE9RQBPyLi28ApkpbQojjZqguly4CHal7vpfiGepqkTcAmgDknnfSyVatWlSp48KkjTari\n6PoHy3/PHfzx/hbWxKy8oVOWZOXv6co7Qz9p5vh5hs2fmddWXHjSrKz8u77//Ucj4rSsnUZY0D0j\nBkoObDkcg7uBozVJWyJiS8bhRouHy+qkPyNOTkTbRr+kN2ULwJq+vvjHHTeW2u/Qj/LOTIZOHM/K\n/z0tLJ334n//R1llm7XKkVe/Lyv/jFPzRur9639VPv8Fq2Znlf2bL3lBVv6ly5Y+mLXDKAZiiL5Z\nJ5fK+82nfno0Is5p9JiTpVVBfR+woub18pQ26bp6Z2Tlf80Lntuimpi1TnfmaOqhzPwzusvnndmd\n11I/euJEXmWaQdD987HqrVYvHvbWSW9Iq4L6rcAqSSspKrkB+A/NKHj+C1bz+L0/KJ0/Bgezyn/s\n7l3l63LWH2SVfWj3p7Lym5V1PK9xzIJZed0vi+aUD4AzuvKCercmf2S1EL3K+KZqzHbgUknXUHSv\nPB4R+yX9hBbEyZYE9YgYkHQpcD3QDVwVEbubVb66yv8xcoP6wKGflc77tXfBH95/Sun8tzTtHTB7\npvnfuJyht1xWOv+p8/KC+gsWlD/j3X/kGM8/5aTS+WfNmPxeYAFdNKelnoZOngsskrQX+BOKVjgR\ncSVwHcXIlz3Ak8Dvpm0tiZMtezcj4jqKX6apcvvU1Z33bZyT/+ojC+nLuD61a3b5/nqA40+NdUHd\n7Odm/9ZmijmpypmXd22Sk2eWDxWnzs7r8uzKbNk3S7O6XyLiwnG2B3BJnW1Nj5NTbpqArpl555mR\neaFUPb2l865/4dKssrctPHv8TDVmnThUOu+hg7dllW2db9ac55TOe9r8vJb3c8qfYALw/AVzSud9\n6kTe2fGMzD74ZhBqWku900y9oN5bPugCREZXDUD3SXNL533BaXn/GU8tzruA/pNF5Vs887/hoN4O\n3b3lGxmDJ57KKnv2gl8snfe0+ePnqbVsft7/xeK55btTDhx+MqvsgRYPU66nHX35k2HKBfWc/nSA\nrp68U8EcT/0kb8rlQ8/Ne7tfsnygdN7Hdr8mq+zH9t2UlX+q6p1ZbtjasBPHHs/Kf9L88sPxjj2Z\n93k5uuglpfMunZ8XoFbMy2scnT6/fEv98PG80SwDT05+UBfQ7ZZ6Z8gN6rl96jlnAoPHjo6fqcbC\n+XnjyE6fVz7vgdNeOn6mWtMkqPfMzDubyg3q3bPK3wPTO5TXFdif0fE9d0Ze98u8nDGKwKwZ5f8v\nZmT+zw0N5P0fNUMx+sUt9Y4w69TTOX7osdL5c7trumeW/0c6kTFSBmBV+S5SAFafXv7P86OX5ZXd\n/eNfyMo/cKz873r0yCN5lWmhWfPPzMr/1KG8+1pyutRmH1mZVfaC55Xvm/7bXfDuV5f/7C6bl3dt\nqnug/BfS4vnlu2oABg60Z3Zb96l3kJxAnXvzUc6ZwLyVL+KJ++8unX/p/LwP0ZK55X/PTa/oZcd9\n5ftsf3jaK7Pq0nus/Eic2afB0NHy/6iDx/O+HLt6ygeNweM/pfuUZ82xVNfchXlfdg9nXPeYPTvv\nVv5Vp5TvfgM4dVb5uszNaHlD3lnpPIA55Tv5nzyWd62hGdz90kHadVFlNDkBvdVyAnqr5QT0VssJ\n6FPZpS/Pu3bQUhkBvV0c1DtIbss790Lp8YyblXLr8ryT8/o9l8wpfzq9+vS8i1P/+MK8vqATR8u3\nMmcfOSur7NnH8lqkOY735vXvntJ7blb+Jc8pX/cTA3lBZOWi8vlPm5Mx4xawIGeGLmDgqcOl887I\n7PJs9SR99bj7xcysIiRfKO0YuaNfclreAE8eLX9BaEbGRVWAM07OaxmcltFSf/GivJE1r3xR3iiP\noxknAk8eyyqaI5n5czx2JO99OUJeN8bLlpU/++rtyTtTO/v08q3ppSeXv78C4NSMcecAA3vLTzM9\nmDlEceBw3mexGdz9YmZWMZM2ndckc1A3s2lHAV3hlrqZWWW4+6VDKHNGtxPH8kaFHD6WcZPFnLz+\n1zMX5XUez88YdzxnZt6Ig/Oen1eXwaHy/cFPHM/rxz74ZO4EUOXzPnwory6L5uR9vs5cWL7f+9RZ\neX+jlQvK95M/99S8O2dzRrMAHM4YS37isUezyh48Un7iumYp+tSracoFdTOzRgnR65a6mVl1uPvF\nzKwi3P1iZlYx1bz1qMGgLukB4AlgEBiIiHMkLQT+BjgDeAB4a0Tkzdg09lGzcp8YyLsIdyRjLuje\nhYuyyl7enTfF6Iye8m2JBRkXMgHOybyAnHMh9khm2T9+PO9mlbkZz7TcfzjvPX/Rorx5S3IuZi9f\nkFf2nJnly86d23/gcN7FyZxb+XOe8wsw1LYJvZpUlnQ+8LFU5Kcj4ooR2/8z8Lb0sgf4BeC0iPjp\naDG00fo048vqNRHRV1OZzcCOiFgF7Eivzcw6hgS9JZexy1E38AngAmA1cKGk1bV5IuJ/pBjZB1wG\n/GNE1E57OjKGNqQVZyDrga1pfSvwphYcw8xswoZb6mWWcawF9kTEfRFxHLiGIgbWcyHwhQaqPq5G\ng3oAN0q6TdKmlLY4IoYningEWNzgMczMmq5L5ZZxLAMeqnm9N6U9i6STgPOBL9UkjxZDG9LohdJX\nRcQ+SacDN0h6xgTjERGSRu3sTb/AJoAVy5c3WA0zs/Iy+9QXSdpZ83pLRGyZwGH/HfDPI7penhVD\nI+LmCZT9tIaCekTsSz8PSrqW4lTkgKQlEbFf0hJg1CcmpDdlC8Cavr68q3xmZg3q6ioddh4do797\nH7Ci5vXylDaaDYzoeqkTQxsK6hPufpE0R9K84XXgV4A7gO3AxpRtI/CVRipoZtYKTep+uRVYJWml\npBkUgXv7yEySTgZeTU08HCOGNqSRlvpi4FpJw+V8PiK+LulWYJuki4AHgbc2Wkkzs2aSgt7uxjsI\nImJA0qXA9RQ9OldFxG5JF6ftV6asbwa+ERG1Y0NHjaGN1mnCQT0i7gPOHiW9HzivkUqNZXAob4Km\n/PLL/6EPPZU3Bnr+7LyHasRQxhj7zEG3q5fmjbGf2V3+pO7YYN7f6PR5eQ9smJsxfvtnT+aNgV4x\nt3UPKn/y4fuyyn4iI+9g5gRdQxkPki7yl38fh06UnxSvXUSpVngpEXEdcN2ItCtHvL4auHpE2qgx\ntFG+o9TMph9l9alPKQ7qZjbtCMicxXvKcFA3s2nJLXUzs4qQ3FI3M6sOQU+vW+pmZpXgPnUzsyoR\nZIxGnVIc1M1sWpJb6p2hu0tZNwjNmz2TJ546llV+WfsfP8yiubNL5+8/fISFJ+XdgJQj52YlZT7B\n/UjmQxV655Z/IMTiGXk3/AydKP/Ahtm90DN7Tun8P/v+t7Lq0jN/QVb+4xkPs1Bv3vuSK+eGoq6M\nusw4dTHH+w+Uzq+eGah7cpvNcku9c+QEdCAroOfKCehAxwT0VssJ6K2WE9BbLSegt1ornzaUE9CB\nSQ/oxUGhe7wnYExRUy6om5k1Srj7xcysOgTqdkvdzKwyHNTNzKpCoqtZ0zR2GAd1M5t2hFvqZmbV\nIejqreaYRgd1M5t+JJTx4JepxEHdzKYf4aBuZlYVQqiiM3qN+1tJukrSQUl31KQtlHSDpHvTzwU1\n2y6TtEfSPZLe0KqKm5lNWGqpl1nGLUo6P8W7PZI2j7L9XEmPS9qVlveX3XciyrTUrwY+Dny2Jm0z\nsCMirkgV2Qy8V9JqYANwFrAUuFHSmRHRtHvYB6O1cyDP7i1/8pI7ZUGuIcpfne/u6c0qezD3NvGM\naQhyHzx84tDP8uqSU3bmnDWDRx7Pyp9zi3vuVA7KyZ85kUnOXC4A3bPnls7bMzfvs9U95+Ss/M3S\njJa6pG7gE8Drgb3ArZK2R8SdI7L+U0T82gT3zTLubxURNwM/HZG8Htia1rcCb6pJvyYijkXE/cAe\nYG0jFTQzazoJ9faUWsaxFtgTEfdFxHHgGoo4WEYj+9Y10a+qxRGxP60/AixO68uAh2ry7U1pzyJp\nk6Sdknb29/dPsBpmZhOQRr+U7H5ZNByr0rKppqSyMe+XJN0u6WuSzsrcN0vDF0ojIiRl90NExBZg\nC8Cavr5qPlfKzDpSMaFX6S6rRyPinAYO913guRFxWNI64G+BVQ2UN6aJttQPSFoCkH4eTOn7gBU1\n+ZanNDOzzpHXUh/LuDEvIg5FxOG0fh3QK2lRmX0nYqJBfTuwMa1vBL5Sk75B0kxJKym+jW5prIpm\nZs2nrq5SyzhuBVZJWilpBsVAke3POI70HElK62sp4m5/mX0nYtzuF0lfAM6l6FfaC/wJcAWwTdJF\nwIPAWwEiYrekbcCdwABwSTNHvpiZNYWEevNGjI0mIgYkXQpcD3QDV6U4eHHafiXwFuAPJA0ATwEb\nIiKAUfdttE7jBvWIuLDOpvPq5L8cuLyRSpmZtZSU06c+ptSlct2ItCtr1j9OMSy81L6N8h2lZjbt\nFLM0VvOOUgd1M5t+mthS7zQO6mY2PTmom5lVhKfeNTOrEtHVkzf/zVQx5YL6iYG8EZK5zyHsbeG3\nd+4EQkePnSidt7cnc0KnzA90Tv6cSa4ABjIn3VLOZFSZk2h1zZydmX9W6by5/2wxWL7uPXPn55Wd\n+b7kTOiVO1Swpx0TeglwS93MrBqK+dTdp25mVg0e/WJmVi1VffKRg7qZTT8SZF77mSoc1M1s+pFH\nv5iZVYtHv5iZVYN8odTMrFoc1M3MKkOe+8XMrDIkunLuTJ5CHNTNbPqRwOPUzcyqI3eOoqli3K8q\nSVdJOijpjpq0D0jaJ2lXWtbVbLtM0h5J90h6Q6sqbmY2UcOjX8osJco6P8W7PZI2j7L9bZJul/QD\nSf8i6eyabQ+k9F2SdjbjdyvTUr+a4vl6nx2R/tGI+FBtgqTVFE/EPgtYCtwo6cx2Pny6O/MUa3YT\nHkbbLN0ZM0zOyGx1HMvMn3OjxtDA8ayyc3Vl/I2Gyk90CUD3nLzZDnNmdcwdbZEzk2LP3NbOdJgz\nG2VuX3VP5nveLM0Y/SKpG/gE8HpgL3CrpO0RcWdNtvuBV0fEzyRdAGwBXl6z/TUR8WjDlUnGjXgR\ncTPw05LlrQeuiYhjEXE/sAdY20D9zMyaT2n0S5llbGuBPRFxX0QcB66hiINPi4h/iYifpZffBpY3\n/fep0ciVgnemU4qrJC1IacuAh2ry7E1pzyJpk6Sdknb29/c3UA0zs0xp9EuZBVg0HKvSsqmmpNIx\nL7kI+FrN66Do0bhtRLkTNtELpZ8CPpgq9EHgw8Dv5RQQEVsoTkNY09cXE6yHmdkEZI1TfzQizmn4\niNJrKIL6q2qSXxUR+ySdDtwg6e7UOzJhE2qpR8SBiBiMiCHgr/h5F8s+YEVN1uUpzcyscwjU3VVq\nGUepmCfpJcCngfUR8XTXRETsSz8PAtfShO7qCQV1SUtqXr4ZGB4Zsx3YIGmmpJXAKuCWxqpoZtZc\nw08+asLol1uBVZJWSppBMVBk+zOOJT0X+DLw9oj4YU36HEnzhteBX+HnsXTCxu1+kfQF4FyKfqW9\nwJ8A50rqo+h+eQB4B0BE7Ja0DbgTGAAuaefIFzOzUYmmTBMQEQOSLgWuB7qBq1IcvDhtvxJ4P3Aq\n8ElJAAOpO2cxcG1K6wE+HxFfb7RO4wb1iLhwlOTPjJH/cuDyRiplZtZS6mraNAERcR1w3Yi0K2vW\nfx/4/VH2uw84e2R6o3xHqZlNT57Qy8ysKjyfuplZdUiVnfvFQd3Mph3hh2SYmVWHp941M6sQPySj\nc+TMXAjQlfltnFP+4FBrZzeYlTEbYc6Mfq0Wg3l1ye3bzDltVtdQVtm5sx3mzNLIzLz3Jed9bPVM\nhzkBMHLeE6Bn9pzc6jSHu1/MzCrCF0rNzKrEQxrNzCpD8ugXM7MKcfeLmVl1SCjjEY1TiYO6mU0/\naT71KnJQN7NpyBdKzcwqQw7qZmYVovyb3qYKB3Uzm34kunyh1MysKlTZC6Xj/laSVki6SdKdknZL\neldKXyjpBkn3pp8Lava5TNIeSfdIekMrfwEzs1zDNx814cHTSDo/xbo9kjaPsl2S/jJtv13SS8vu\nOxFlvqoGgPdExGrgFcAlklYDm4EdEbEK2JFek7ZtAM4Czqd42Go1O6/MbIoqbj4qs4xZShHbPgFc\nAKwGLkwxsNYFwKq0bAI+lbFvtjIPnt4P7E/rT0i6C1gGrAfOTdm2Av8AvDelXxMRx4D7Je0B1gLf\narSyAL2ZFze6M2dpHFT5WRp7M7+qYihvxkBl1D13lsZW9ifmXoDqzpylL2fUQlf5iS6TuVm5uzJm\n0swdbZHzN+05qXXvIbT2omJb+rbVtNEva4E96SHSSLqGIgbeWZNnPfDZiAjg25JOkbQEOKPEvtmy\nIp6kM4A1wHeAxSngAzwCLE7ry4CHanbbm9JGlrVJ0k5JO/v7+zOrbWbWGHV1lVqARcOxKi2baoop\nE+/q5SkVK3OVvlAqaS7wJeDdEXFINS3aiAhJWZOLR8QWYAvAmr6+1k5MbmY2QsbzEB6NiHNaWZdm\nKhXUJfVSBPS/jogvp+QDkpZExP50KnEwpe8DVtTsvjylmZl1hAAGoyltyTLxrl6e3hL7Zisz+kXA\nZ4C7IuIjNZu2AxvT+kbgKzXpGyTNlLSS4uLALY1W1MysaSIYGhoqtYzjVmCVpJWSZlAMEtk+Is92\n4LfTKJhXAI+nrusy+2Yr01L/ZeDtwA8k7UppfwxcAWyTdBHwIPBWgIjYLWkbRWf/AHBJRHTOs9bM\nbNoLmvM4yogYkHQpcD3QDVyVYuDFafuVwHXAOmAP8CTwu2Pt22idyox++SZQb0jIeXX2uRy4vIF6\nmZm1TAQMZo5Gq19WXEcRuGvTrqxZD+CSsvs2yneUmtk0FAy1+MHx7eKgbmbTTgQcH6xmr7CDuplN\nO0E0rful0ziom9m01IwLpZ3IQd3Mpp0IGGrOOPWO46BuZtOSu1/MzCpiKILjgw7qZmaV4T71DpE7\nlW5x71gry8+RV5fcqXpztPKpL110zmPCcqeMbeWUtK2cerert7XveU7dc3/PdnSDRJuOOxmmXFA3\nM2tYRLMm9Oo4DupmNu0E+I5SM7MqcUvdzKwiitEvnibAzKwyPPrFzKwiiql3HdTNzCrDfepmZhXR\nrCcfdSIHdTObdoLqjlMv8+DpFZJuknSnpN2S3pXSPyBpn6RdaVlXs89lkvZIukfSG1r5C5iZ5Soe\nkjFUammEpIWSbpB0b/q5YJQ8o8bYtK1unK2nTEt9AHhPRHxX0jzgNkk3pG0fjYgPjajgaoqnYp8F\nLAVulHSmHz5tZp1iErtfNgM7IuIKSZvT6/eOyDNqjI2IO9P2Z8XZsYzbUo+I/RHx3bT+BHAXsGyM\nXdYD10TEsYi4n+IJ2mvLVsjMrOWiuFBaZmnQemBrWt8KvOlZVcmPsWPKmtVJ0hnAGuA7Kemdkm6X\ndFXNacUy4KGa3faOVkFJmyTtlLSzv78/u+JmZhM13KdeMqgvGo5VadmUcajFEbE/rT8CLB4r8ygx\nFkaPs3WVvlAqaS7wJeDdEXFI0qeAD1KcyXwQ+DDwe2XLi4gtwBaANX19GV+HAah89qy8nUUtnDGy\nlbP6RVdeT1srZ4xstcjoc83/PXvLl507u2T2Z6v8/9HREycyy558AQyU7355NCLOqbdR0o3Ac0bZ\n9L5nHDMiJNU96MgYm5Kz42ypoC6pNx3sryPiy6mCB2q2/xXw1fRyH7CiZvflKa1Jpm6QNrPOUFwo\nbU6fekS8rt42SQckLYmI/ZKWAAfr5HtWjE1l14uzdZUZ/SLgM8BdEfGRmvQlNdneDNyR1rcDGyTN\nlLQSWAXcMt5xzMwm0yT1qW8HNqb1jcBXRmaoF2PTtnpxtq4yLfVfBt4O/EDSrpT2x8CFkvooTgse\nAN4BEBG7JW0D7qS4qnuJR76YWSeZxNEvVwDbJF0EPAi8FUDSUuDTEbGOOjE2Iq4D/mK0ODuWcYN6\nRHyT0fs8rhtjn8uBy8cr28ysHWKSHpIREf3AeaOkPwysS+v1YiwR8fbcY/qOUjOblgaq+TQ7B3Uz\nm34CT+hlZlYZzRz90mkc1M1s2ila6u2uRWs4qJvZtJN589GU4qBuZtNPuKVuZlYZfkiGmVmFFBdK\n212L1nBQN7NpJwi31M3MqsR96tYEuTNMlv/U5U6lmps/hjKmmM2cBjaGpvB5cPnZcVuqlVPpAgxm\n/P2nQgs4Ahp8Ul3HclA3s2nJLXUzs4ooRr+0uxat4aBuZtNOBJyoaFPdQd3Mph231M3MqsR3lJqZ\nVYdb6mZmFZMxSnNKKfPg6VmSbpH0fUm7Jf1pSl8o6QZJ96afC2r2uUzSHkn3SHpDK38BM7Nckbpf\nyiyNGCtOjsj3gKQfSNolaWfu/rXK3LFwDHhtRJwN9AHnS3oFsBnYERGrgB3pNZJWAxuAs4DzgU9K\nyrsbxcyshQI4MVBuadCocbKO10REX0ScM8H9gRJBPQqH08vetASwHtia0rcCb0rr64FrIuJYRNwP\n7AHWjnccM7PJMnxHaZmlQfXiZMv2L3VvsaRuSbuAg8ANEfEdYHFE7E9ZHgEWp/VlwEM1u+9NaSPL\n3CRpp6Sd/f39ZaphZtY0Gd0vi4ZjVVo2ZRymXpwcKYAbJd02ovyy+z+t1IXSiBgE+iSdAlwr6cUj\ntoekrN6niNgCbAFY09dX0cFFZtaJgqwLpY+O6BJ5Bkk3As8ZZdP7nnHMsePkqyJin6TTgRsk3R0R\nN2fs/7Ss0S8R8Zikmyj6yg9IWhIR+yUtoWjFA+wDVtTstjylmZl1hiZO6BURr6u3TVK9ODmyjH3p\n50FJ11J0Wd9M/ThbV5nRL6elFjqSZgOvB+4GtgMbU7aNwFfS+nZgg6SZklYCq4BbxjuOmdlkCeDE\nYLmlQfXi5NMkzZE0b3gd+BXgjrL7j1Smpb4E2JpGsHQB2yLiq5K+BWyTdBHwIPBWgIjYLWkbcCcw\nAFySum8sW+5UvTnyerzyp3a16Spnml6A7jZ8tiZx6t0rGCVOSloKfDoi1lH0k18rCYqY/PmI+PpY\n+49l3KAeEbcDa0ZJ7wfOq7PP5cDl45VtZtYuk3HzUb04GREPA+vS+n3A2Tn7j8V3lJrZtOOHZJiZ\nVYwn9DIzq4hiSGMrr1m1j4O6mU07EXC88SkAOpKDuplNS1WdpdFB3cymnQgx6O4XM7Nq8EMyzMyq\nJNz9YmZWKR79YmZWEREw4NEvZmbVEW6pm5lVRADuU7dq6ZxWimeA7HytnEkxd1bHpnFQNzOrji4H\ndTOzalBAz4l216I1HNTNbPoJ6HZL3cysGgR0D1Vz7l0HdTObdhTQXdEJ1cs8eHqWpFskfV/Sbkl/\nmtI/IGmfpF1pWVezz2WS9ki6R9IbWvkLmJnlC7qHhkotjZC0UNINku5NPxeMkueFNXF0l6RDkt6d\nttWNs/WUaakfA14bEYcl9QLflPS1tO2jEfGhERVcDWwAzgKWAjdKOtMPnzazTqGg4YBd0mZgR0Rc\nIWlzev3e2gwRcQ/QByCpG9gHXFuT5VlxdizjttSjcDi97E3LWOct64FrIuJYRNwP7AHWlq2QmVmr\nKYKegROllgatB7am9a3Am8bJfx7wo4h4cKIHLHVHgaRuSbuAg8ANEfGdtOmdkm6XdFXNacUy4KGa\n3femNDOzDhF0DQ2WWhq0OCL2p/VHgMXj5N8AfGFE2mhxtq5SQT0iBiOiD1gOrJX0YuBTwPMpThv2\nAx8uU9YwSZsk7ZS0s7+/P2dXM7MGBYqBUguwaDhWpWVTbUmSbpR0xyjL+mccMSIYo5dD0gzgjcAX\na5Kz42zW6JeIeEzSTcD5tX08kv4K+Gp6uQ9YUbPb8pQ2sqwtwBaANX191bwMbWadKUDlW+GPRsQ5\ndYuKeF29bZIOSFoSEfslLaHo7ajnAuC7EXGgpuyn10fE2brKjH45TdIpaX028Hrg7lTBYW8G7kjr\n24ENkmZKWgmsAm4Z7zhmZpNFBBoaKLU0aDuwMa1vBL4yRt4LGdH1MkacratMS30JsDVdle0CtkXE\nVyV9TlIfxenEA8A7ACJit6RtwJ3AAHCJR76YWWcJNDlh6Qpgm6SLgAeBtwJIWgp8OiLWpddzKBrM\n7xix/1+MFmfHMm5Qj4jbgTWjpL99jH0uBy4fr2wzs7aIgMGjk3CY6KcY0TIy/WFgXc3rI8Cpo+Sr\nG2fr8R3vmjuJAAAHcUlEQVSl1gE6Zxpga1zuNL3tmXo3oKIdCA7qZjYNBTTeX96RHNTNbPqJgHBQ\nNzOrDne/mJlVxRAxCRdK28FB3cymn8AtdTOzqgiC8IVSM7Oq8JBGM7MKCcKjX8zMKiIgGp9WtyM5\nqJvZNDREDB1rdyVawkHdzKalqs4z6KBuZtNOhEe/mJlVSLilbmZWKQ7qZmbNlztVb1O4+8XMrEqC\noaHj7a5ESziom9m0U0wT4O4XM7NqiOpeKC3dmSWpW9L3JH01vV4o6QZJ96afC2ryXiZpj6R7JL2h\nFRU3M2tExGCppRGSflPSbklDks4ZI9/5KV7ukbS5Jr1unK0n5wrFu4C7al5vBnZExCpgR3qNpNXA\nBuAs4Hzgk5K6M45jZtZiRfdLmaVBdwC/DtxcL0OKj58ALgBWAxemOAp14uxYSgV1ScuBXwU+XZO8\nHtia1rcCb6pJvyYijkXE/cAeYG2Z45iZTYaIYGjweKmlwePcFRH3jJNtLbAnIu6LiOPANRRxFOrH\n2brK9qn/T+CPgHk1aYsjYn9afwRYnNaXAd+uybc3pT2DpE3ApvTy8MmLThvvF2+WRcCjk3SsMjqp\nPp1UF+is+nRSXWB61+d5jRYwcOKJ6x/Zu2NRyeyzJO2seb0lIrY0Wocay4CHal7vBV6e1uvF2brG\nDeqSfg04GBG3STp3tDwREZJivLJG7LMFaOYbU4qknRFRt29rsnVSfTqpLtBZ9emkuoDr06iIOL9Z\nZUm6EXjOKJveFxFfadZxysbZMi31XwbeKGkdMAuYL+n/AAckLYmI/ZKWAAdT/n3Aipr9l6c0M7PK\niYjXNVjEWDGzXpyta9w+9Yi4LCKWR8QZFBdA/z4ifgvYDmxM2TYCw99I24ENkmZKWgmsAm4Z//cy\nM5uWbgVWSVopaQZFnN2ettWLs3U1cn/uFcDrJd0LvC69JiJ2A9uAO4GvA5dEZw0InfQun3F0Un06\nqS7QWfXppLqA6zMlSHqzpL3AK4G/k3R9Sl8q6TqAKB7BdClwPcUIw20pjkKdODvmMSOyusLNzKyD\ntWEmHTMzaxUHdTOzCun4oC5phaSbJN2Zbrd9V0of9fZZSaem/IclfXxEWf+QbsXdlZbT6xzzZZJ+\nkG7Z/UtJSukXS7pb0hOSnkzb21mf4ffmIUkh6UNtrMvvSOpP781RSfs64L25Q9KxVJ/b2liXj6bP\n7hOpPoNtfm+eK+lfav5WD7a5Ps+TtEPS7ams5aPtbyVFREcvwBLgpWl9HvBDiltp/wLYnNI3A3+e\n1ucArwIuBj4+oqx/AM4pccxbgFcAAr4GXJDS5w/XB3gjcEOb67MklX1zyvNgG+vyO8BVHfS3+iXg\nbmBBqsuP2lWX2s8x8E7gs21+b7YA7031WZ0+N+2szxeBjWn9tcDnJiO2VHXp+JZ6ROyPiO+m9Sco\nrg4vo87tsxFxJCK+CRydyPFUjAWdHxHfjuJT9tmasg/V1GcOMNDm+uwH3gL8OfAk8EC76pI82Sl/\nq/TzQxHxs1SXO9pYl9rP8YXA52jvexPpGN8FTqYYE93O+qwG/j6t38TPb5G3Cej4oF5L0hnAGuA7\nTOD22WRrOkX8r8OnfyMso7hNd9gzpjmQdImkH1G0aP68nfWR9FJgRUT8HcWNYS9sV12S30in1/9X\n0itp79/qTOBMSf8s6XsUQ8ra+d4g6XnASoqzhna+Nx8AfkvFULvrgP/W5vp8n2LSK4A3A/MknVry\nuDbClAnqkuYCXwLeHRGHarelb/4yYzPfFhFnAf8mLW/PrUdEfCIiXgC8v531kdQFfAR4T3pvzgI+\n3Mb35v8BZ0TEL1J0B11Pe/9WPRQ3vv1qWu9ixOd9Mj83yQaKm0e+SHvfmwuBqyNiOfAbqT5/2Mb6\n/Cfg1enL99UUZw6ddG/LlDIlgrqkXooA+tcR8eWUfCCd0g2f2o17+2xE7Es/nwA+D6xVMU/88AWe\nP6P4QNVeqHnWNAepPhuAk9pYn3nAiyn6M39C0VL/QxVzNk/6exMR/RFxLL03vwr0tvlvtRf4O+Bv\ngP9N0Rpc1aa6DNtA0SJu9+f4ImBb+lu9l6Lr7p/aVZ+IeDgifj0i1gDvS2mPjXdcG13HB/V0KvcZ\n4K6I+EjNpqzbZyX1SFqU1nuBXwPuiIjBiOhLy/vTqechSa9Ix/7t4bIlraqpz1Fgd80hJrU+EfE4\ncBpFq/h/Af8MvDEidrbpvVlS894cpwiibXlvUjF/C1xG0Vf8WYrumPvaVBckvYjiS+Vb7f4cAz8G\nzqP4Wz0CHKNoGLSlPpIWpTNPKP5mV411TBtHdMDV2rEWiivuAdwO7ErLOuBUiknj7wVuBBbW7PMA\n8FPgMEWLbTXFhc3bUjm7gY8B3XWOeQ7FhbUfAR/n53fefgy4P9XnMMXoinbWp/a9OQzc08a6/PcR\n781dHfLeHAWeSsdpS13StqvonM/x6rR/pPfmR22uz1vS8X5I8cyGme2OO1N58TQBZmYV0vHdL2Zm\nVp6DuplZhTiom5lViIO6mVmFOKibmVWIg7qZWYU4qJuZVcj/BzUxQVH+o1U4AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cm1=cmocean.cm.balance\n", "#plt.pcolormesh([t0+dt.timedelta(10*ii) for ii in range(0,30)],dept[0,:],np.transpose(siplot[:30,:]),cmap=cm1,vmin=-1e9,vmax=1e9)\n", "plt.pcolormesh([t0+dt.timedelta(10*ii) for ii in range(0,nlen)],dept[0,:],np.transpose(siplot),cmap=cm1,vmin=-1e8,vmax=1e8)\n", "plt.ylim(400,0)\n", "plt.colorbar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## repeat for N" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150206-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150216-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150226-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150308-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150318-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150328-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150407-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150417-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150427-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150507-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150517-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150527-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150606-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150616-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150626-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150706-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150716-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150726-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150805-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150815-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150825-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150904-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150914-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/SalishSea_1h_*_ptrc_T_20150924-*.nc\n" ] } ], "source": [ "tlist=dlist\n", "NGlobalTot=dict()\n", "VolTot=dict()\n", "NO3Tot=dict()\n", "NH4Tot=dict()\n", "PONTot=dict()\n", "DONTot=dict()\n", "DiatTot=dict()\n", "MyriTot=dict()\n", "NanoTot=dict()\n", "MiZoTot=dict()\n", "changeNGlobalTot=dict()\n", "for idir in (sdir1,):\n", " fformat1='%d%b%y/'\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " #elif idir==sdir0:\n", " # fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " # fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_grid_T.nc'\n", " elif idir==sdir1:\n", " fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc'\n", " sumNO3=np.zeros((len(tlist),stm[1]))\n", " sumVol=np.zeros((len(tlist),stm[1]))\n", " sumNH4=np.zeros((len(tlist),stm[1]))\n", " sumPON=np.zeros((len(tlist),stm[1]))\n", " sumDON=np.zeros((len(tlist),stm[1]))\n", " sumDiat=np.zeros((len(tlist),stm[1]))\n", " sumMyri=np.zeros((len(tlist),stm[1]))\n", " sumNano=np.zeros((len(tlist),stm[1]))\n", " sumMiZo=np.zeros((len(tlist),stm[1]))\n", " ind=-1\n", " for idt0 in tlist:\n", " ind=ind+1\n", " cdir=idt0.strftime(fformat1).lower()\n", " iffT=idt0.strftime(fformatT)\n", " iffP=idt0.strftime(fformatP)\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " sffT=idir+iffT\n", " sffP=idir+iffP\n", " elif idir.startswith('/results/'):\n", " sffT=idir+cdir+iffT\n", " sffP=idir+cdir+iffP\n", " f=nc.Dataset(glob.glob(sffT)[0])\n", " print(sffT)\n", " fP=nc.Dataset(glob.glob(sffP)[0])\n", " #if idir==sdir0:\n", " # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0\n", " if idir==sdir1:\n", " e3t=fP.variables['e3t'][:2,:,:,:]\n", " Vol=A*np.ones(np.shape(e3t))\n", " sumVol[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumNO3[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['nitrate'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumNH4[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ammonium'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumPON[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['particulate_organic_nitrogen'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumDON[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['dissolved_organic_nitrogen'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumDiat[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumMyri[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ciliates'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumMiZo[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['microzooplankton'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " f.close()\n", " fP.close()\n", " NGlobalTot[idir]=sumNO3+sumNH4+sumPON+sumDON+sumDiat+sumMyri+sumNano+sumMiZo" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Nplot=NGlobalTot[idir]-NGlobalTot[idir][0,:]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEDCAYAAADKhpQUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X28XVV95/HP997cPJDwEAiGkESJTGgbnHpjecWH2hFF\nS0g7RvvAK4y1aUsbmRf40r7sjKHOWDu+6KDjw9iXD0yqGYKjpnGUkrFRGlIstSoQLCIJIOFJEgOR\ny1MC5OHm/uaPvS4eLvfcu9c959xzss/3/Xrt191n7bXXXufh/s46a6+9tiICMzOrhp52V8DMzJrH\nQd3MrEIc1M3MKsRB3cysQhzUzcwqxEHdzKxCHNTNrJIkrZe0T9KdJfK+VNKNkv5V0h2SVkxGHVvB\nQd3MqupqYHnJvP8F2BQRS4FVwGdbValWc1A3s0qKiJuAx2vTJJ0p6VuSbpP0z5J+cTg7cEJaPxH4\n6SRWtammtLsCZmaTaB1wSUTcK+nVFC3yNwEfAv5B0ruBmcCb21fFxjiom1lXkDQLeB3wVUnDydPS\n34uAqyPi45JeC3xR0isiYqgNVW2Ig7qZdYse4MmI6B9l28Wk/veI+J6k6cAcYN8k1q8p3KduZl0h\nIp4GHpD0uwAqvDJt/glwXkr/JWA68LO2VLRBLQvqkpZLukfSLklrW3UcM7PRSPoK8D3gFyTtlnQx\n8A7gYkk/BHYAK1P29wF/ktK/AvxBlJzCdryhk+nL469TLLxD0qtqtjU9TqoVU+9K6gV+DLwF2A3c\nClwUETubfjAzszaS9O+AA8A1EfGKUbavAN4NrABeDXwqIl7dqjjZqpb6MmBXRNwfEYeBjfz8G9HM\nrDJGGzo5wkqKgB8R8X3gJEnzaFGcbNWJ0vnAwzWPd1N8Qz1P0hpgDcDM4477lcWLF5cqeM/Tz2VV\n5Ikns7LDgb2ZO5jZZBo8sv+xiDi1kTJm906NwZIDWw7E0R3AwZqkdRGxLuNwo8XD+XXSXxAnJ6Jt\no1/Si7IOYGl/f/zTthtK7fd3d9yXdZyP/tPTWfkHvvCRrPxmNrke2b3toUbLGIwh+qefWCrvd557\n/GBEnNPoMSdLq4L6HmBhzeMFKa1hZ80p90YMe92ZB7Lyf+ffvKN03id2fSmrbDPrEILen49Vb7V6\n8bCvTnpDWhXUbwUWS1pEUclVwH9oRsFLTp/D3if3l85/1slTs8r/x9ctKJ136p6Ts8o+/NxY3W5m\nNlmE6FPvZB1uM3CZpI0U3StPRcReST+jBXGyJUE9IgYlXQZcD/QC6yNiR7PKn9HXVzrvvJnTxs9U\no/9lB8fPNOzP/oSbv5lR+HZ37Zh1AgE9NKelnoZOngvMkbQb+AuKVjgRcRWwhWLkyy7gWeAP07aW\nxMmW9alHxBaKJ9NUTz93iJ6e8m/GjL68b+OTZ5QfELTxu4LTypd9Qt+MrLocPZJ3UtjMymtW90tE\nXDTO9gAurbOt6XHymJsmoLcnbxRmblCfN6t8/l9edCSr7H0nnJmVf//AuNNAm9kECDWtpd5pjrmg\nnmtqb15QP35q+fwvPWUwq+zHT/zF8TPV1iUjr78AzPL0qpqzpBxzQb03o+sF8n9izZhS/o0+dWbe\nh+LZkxbl1aXvhPEzDXNQNytNQK9b6t1hSsaXxnFT8j4UB2bkjcSBU0rnnDJ1VlbJg4fzhnqaVUkx\n+sUt9Y4wvW8KB4+U7/bIOakKMDWjz/6kaZlDoubm9cE/frj8KJ8F+16bVfYTu7dm5TerGvepH6Ny\nu19yunfmzZrGk4fKB+qTZuXNt3/wcPm6PP36X2HWDz0O3qwMd790kJxWeqvlBPRWc0A3K89B/RiW\nOwRyam/5/NMy8gKcmnHeE+DZQ+WnRb5/Xt78RrPvz5tu4cihp7Lym3U6d7+YmVWE5BOlx6xWDoGc\nMSXvROn82VnZ2Z9xQemTpx3NKnvmab+Wlf/I/vKzYz63/8Gssn3lbHebdlxDs+hOiLtfzMwqZtKm\n85pkDupm1nUU0BNuqZuZVYa7X45ROaNZJpI/x8tn573cA9PK95MfzbyB+M1nvjIr/ylP/lLpvCc8\n9ZOssg89dmtW/qHBZ0vnPfjMI1lld4vpMzOmFwWmTCt/Qqhv1hl5lZmad18CfrwxL/8oij71aqp8\nUDczG0mIPrfUzcyqw90vZmYV4e4XM7OKqealRw0GdUkPAvuBo8BgRJwj6WTgb4EzgAeBCyPiicaq\n+XM9mZf992XeJCP3Tkk5zjwp736pJ00rP7fM1Cl5c+IMLM7Lf+hw+df9kSdenlX2CT95aVb+nqHy\nE6PNfuKerLI5eigrewyVz68Z81pXlykzs4o+OCvvROmjJ04vnfdo3secacflTXTHt/Oyj6aZLXVJ\ny4FPpSI/HxFXjtj+n4B3pIdTgF8CTo2Ix0eLoY3WpxlfVm+MiP6ayqwFtkXEYmBbemxm1jEk6Cu5\njF2OeoHPABcAS4CLJC2pzRMR/yPFyH7gcuCfIqJ2Br6RMbQhrfgFshLYkNY3AG9rwTHMzCZsuKVe\nZhnHMmBXRNwfEYeBjRQxsJ6LgK80UPVxNRrUA7hB0m2S1qS0uRGxN60/Asxt8BhmZk3Xo3LLOOYD\nD9c83p3SXkTSccBy4Gs1yaPF0IY0eqL09RGxR9JLgK2S7q7dGBEhadSrYtITWAOwcMGCBqthZlZe\nZp/6HEnbax6vi4h1Ezjsvwf+ZUTXy4tiaETcNIGyn9dQUI+IPenvPknXUvwUeVTSvIjYK2kesK/O\nvuuAdQBL+/vzLoc0M2tQT0/psPPYGP3de4CFNY8XpLTRrGJE10udGNpQUJ9w94ukmZKOH14Hfh24\nE9gMrE7ZVgPXNVJBM7NWaFL3y63AYkmLJE2lCNybR2aSdCLwBmri4RgxtCGNtNTnAteqmH98CvDl\niPiWpFuBTZIuBh4CLmy0kmZmzSQFfb2NdxBExKCky4DrKXp01kfEDkmXpO1XpaxvB/4hIp6p2X3U\nGNponSYc1CPifuBFs0JFxABwXiOVGkvujaRnTM17ijOn9pWvS+aY+byRwXDitPJ1mTU1b3w15OU/\nmjGU+NH9eeOO7zsl9wdj+fxPPvOKrJKnT837R3/yQPm6nHJ83uuSM7fcM4fy/i+On5H3PJfOKn9d\nQ85nBWBm5rj2f8jLPipRqhVeSkRsAbaMSLtqxOOrgatHpI0aQxvlK0rNrPsoq0/9mOKgbmZdR0Dm\nD+1jhoO6mXUlt9TNzCpCckvdzKw6BFP63FI3M6sE96mbmVWJoKeid8lwUDezriS31DtDb484OlS+\nL+yk42bwzKHDpfOfOKP8lRAnAocHj5bOP3vGNA5nXJlx8Ej5Cz5OmzWDA4fL31TjpIwLm4Cs1xxg\n37PlX/MzT8m7Ycfho3l1OXC4fP6XzMz7l9i7v/z7D2LWtPJXvEztzbs65qmDOVf9KKv8WVPz6pL5\nFpHzVJty8ZFb6p0jN7jkBPRcOQEdyArouXICeqvlBPRWywnorZYT0HPlBfT8L4wcrQzoTSPoHe8O\nGMeoYy6om5k1Srj7xcysOgRqy0+E1nNQN7Ou5KBuZlYVEj3Nmqaxwziom1nXEW6pm5lVh6Cnr5pj\nGh3Uzaz7SCjnLiTHEAd1M+s+wkHdzKwqhFBFZ/Qa91lJWi9pn6Q7a9JOlrRV0r3p7+yabZdL2iXp\nHknnt6riZmYTllrqZZZxi5KWp3i3S9LaUbafK+kpSben5YNl952IMi31q4FPA9fUpK0FtkXElaki\na4H3S1oCrALOBk4HbpB0VkTkXU/fRLk3h56ZMSdKX+bPt+mZUxzMyDiRM70v70fX7Iw5bgCOZExx\ncOL0vJtav/ykvNfluYzpGXKnZjh5xtSs/D97tvxzzb1p+tSMz9eTh1o7TcS0jLocynzNWzh7xpia\n0VKX1At8BngLsBu4VdLmiNg5Ius/R8RvTnDfLOM+q4i4CXh8RPJKYENa3wC8rSZ9Y0QciogHgF3A\nskYqaGbWdBLqm1JqGccyYFdE3B8Rh4GNFHGwjEb2rWuiX1VzI2JvWn8EmJvW5wMP1+TbndJeRNIa\nSdslbR8YGJhgNczMJiCNfinZ/TJnOFalZU1NSWVj3usk3SHpm5LOztw3S8MnSiMiJGVPhRcR64B1\nAEv7+ztnKj0zq7xiQq/S3ZuPRcQ5DRzuB8BLI+KApBXA3wGLGyhvTBNtqT8qaR5A+rsvpe8BFtbk\nW5DSzMw6R15LfSzjxryIeDoiDqT1LUCfpDll9p2IiQb1zcDqtL4auK4mfZWkaZIWUXwb3dJYFc3M\nmk89PaWWcdwKLJa0SNJUioEim19wHOk0qThLLmkZRdwdKLPvRIzb/SLpK8C5FP1Ku4G/AK4ENkm6\nGHgIuBAgInZI2gTsBAaBS9s58sXMbFQS6su7+9doImJQ0mXA9UAvsD7FwUvS9quA3wH+o6RB4Dlg\nVUQEMOq+jdZp3KAeERfV2XRenfxXAFc0Uikzs5aScvrUx5S6VLaMSLuqZv3TFMPCS+3bKF9RamZd\np5ilsZpXlDqom1n3aWJLvdM4qJtZd3JQNzOrCE+9a2ZWJaJnSt48P8eKygf13sz7EE7PGObUq7xv\n+tx7Ij5z6HDpvH29eT8lp07Jy59Tl9zJxXLfo2daOHnVCdPz/tFPzMyfI2fCuCcyJhabiJz3KHcS\nteeOtGHUswC31M3MqqGYT9196mZm1eDRL2Zm1VLVOx85qJtZ95Eg8zzUscJB3cy6jzz6xcysWjz6\nxcysGuQTpWZm1eKgbmZWGfLcL2ZmlSHR0+cTpWZm1SCBx6mbmVWHKjpOfdyvKknrJe2TdGdN2ock\n7ZF0e1pW1Gy7XNIuSfdIOr9VFTczm6jh0S9llhJlLU/xbpektaNsf4ekOyT9SNJ3Jb2yZtuDKf12\nSdub8dzKtNSvpri/3jUj0j8ZER+rTZC0hOKO2GcDpwM3SDqrnTef7sn8iZWTPXd2wdy6tFLuLI05\nz3XmtMgqO3dWx6efa92MhLOm5fWz5r6OOXJmaZzaQa3Ow0fz/t2PZM7q2CzNGP0iqRf4DPAWYDdw\nq6TNEbGzJtsDwBsi4glJFwDrgFfXbH9jRDzWcGWScT81EXET8HjJ8lYCGyPiUEQ8AOwCljVQPzOz\n5lMa/VJmGdsyYFdE3B8Rh4GNFHHweRHx3Yh4Ij38PrCg6c+nRiNNx3ennxTrJc1OafOBh2vy7E5p\nLyJpjaTtkrYPDAw0UA0zs0xp9EuZBZgzHKvSsqampNIxL7kY+GbN46Do0bhtRLkTNtETpZ8DPpwq\n9GHg48Af5RQQEesofoawtL8/7/e6mVlDssapPxYR5zR8ROmNFEH99TXJr4+IPZJeAmyVdHfqHZmw\nCbXUI+LRiDgaEUPA3/DzLpY9wMKarAtSmplZ5xCot6fUMo5SMU/SLwOfB1ZGxPNdExGxJ/3dB1xL\nE7qrJxTUJc2refh2YHhkzGZglaRpkhYBi4FbGquimVlzDd/5qAmjX24FFktaJGkqxUCRzS84lvRS\n4OvAOyPixzXpMyUdP7wO/Do/j6UTNm73i6SvAOdS9CvtBv4COFdSP0X3y4PAuwAiYoekTcBOYBC4\ntJ0jX8zMRiWaMk1ARAxKugy4HugF1qc4eEnafhXwQeAU4LOSAAZTd85c4NqUNgX4ckR8q9E6jRvU\nI+KiUZK/MEb+K4ArGqmUmVlLqadp0wRExBZgy4i0q2rW/xj441H2ux945cj0RvmKUjPrTp7Qy8ys\nKjyfuplZdUiVnfvFQd3Muo7wTTLMzKrDU++amVWIb5Jx7Mqdve7oUPkZ43ozy+7NbRm08DPXyln9\ncmej7FXebJdZZWfWpa+Fsy7m6smYGfPoUOfMtHEkc5bGw22apdGjX8zMqsInSs3MqsRDGs3MKkPy\n6Bczswpx94uZWXVIaIpHv5iZVUOaT72KHNTNrAv5RKmZWWXIQd3MrEKET5SamVWGRI9PlJqZVYUq\ne6J03GclaaGkGyXtlLRD0ntS+smStkq6N/2dXbPP5ZJ2SbpH0vmtfAJmZrmGLz5qwo2nkbQ8xbpd\nktaOsl2S/jptv0PSq8ruOxFlvqoGgfdFxBLgNcClkpYAa4FtEbEY2JYek7atAs4GllPcbLWanVdm\ndowqLj4qs4xZShHbPgNcACwBLkoxsNYFwOK0rAE+l7FvtjI3nt4L7E3r+yXdBcwHVgLnpmwbgG8D\n70/pGyPiEPCApF3AMuB7jVYWJjDTIXmz1+WXnyOvLq2cSTGG8mbSm97X16KaQO7rcsKM6S2qB+TW\nhemd0S871EGzNB7OnKVxesbMqE2jpo1+WQbsSjeRRtJGihi4sybPSuCaiAjg+5JOkjQPOKPEvtmy\nIpikM4ClwM3A3BTwAR4B5qb1+cDDNbvtTmkjy1ojabuk7QMDA5nVNjNrjHp6Si3AnOFYlZY1NcWU\niXf18pSKlblKnyiVNAv4GvDeiHhaNXNgR0RIymoqRMQ6YB3A0v7+zmlmmFlXyJiD/rGIOKeVdWmm\nUkFdUh9FQP9SRHw9JT8qaV5E7E0/Jfal9D3AwprdF6Q0M7OOEMDRaEpbsky8q5enr8S+2cqMfhHw\nBeCuiPhEzabNwOq0vhq4riZ9laRpkhZRnBy4pdGKmpk1TQRDQ0OllnHcCiyWtEjSVIpBIptH5NkM\n/H4aBfMa4KnUdV1m32xlWuq/CrwT+JGk21PanwNXApskXQw8BFwIEBE7JG2i6OwfBC6NiLwzJ2Zm\nLRQ05xaAETEo6TLgeqAXWJ9i4CVp+1XAFmAFsAt4FvjDsfZttE5lRr98B6h3s8Tz6uxzBXBFA/Uy\nM2uZiLz7EY9dVmyhCNy1aVfVrAdwadl9G+UrSs2sC0VHDQNtJgd1M+s6Efnj6Y8VDupm1nWCaFr3\nS6dxUDezrtSME6WdyEHdzLpOBAw1Z5x6x3FQN7Ou5O4XM7OKGIrg8FEHdTOzynCfesdo9RvRSW90\n+bpEi39K5k7V2y366l2WNwq1clrnFk8BXOJy+ef1DGa8KG1SXFHqlrqZWTVENGtCr47joG5mXSfo\nrBuLNJODupl1JbfUzcwqohj9Us3zRA7qZtaVPPrFzKwiiql3HdTNzCrDfepmZhXRrDsfdSIHdTPr\nOkF1x6mXufH0Qkk3StopaYek96T0D0naI+n2tKyo2edySbsk3SPp/FY+ATOzXMVNMoZKLY2QdLKk\nrZLuTX9nj5Jn1BibttWNs/WUaakPAu+LiB9IOh64TdLWtO2TEfGxERVcQnFX7LOB04EbJJ3lm0+b\nWaeYxO6XtcC2iLhS0tr0+P0j8owaYyNiZ9r+ojg7lnFb6hGxNyJ+kNb3A3cB88fYZSWwMSIORcQD\nFHfQXla2QmZmLRfFidIyS4NWAhvS+gbgbS+qSn6MHVPWDEOSzgCWAjenpHdLukPS+pqfFfOBh2t2\n2z1aBSWtkbRd0vaBgYHsipuZTdRwn3rJoD5nOFalZU3GoeZGxN60/ggwd6zMo8RYGD3O1lX6RKmk\nWcDXgPdGxNOSPgd8mOKXzIeBjwN/VLa8iFgHrANY2t9fzTMWkyh3BsBWz+poL9bK13xqb29W/twZ\nCnszy+90AQyW7355LCLOqbdR0g3AaaNs+sALjhkRkuoedGSMTcnZcbZUUJfUlw72pYj4eqrgozXb\n/wb4Rnq4B1hYs/uClGZm1hGKE6XNaUtGxJvrbZP0qKR5EbFX0jxgX518L4qxqex6cbauMqNfBHwB\nuCsiPlGTPq8m29uBO9P6ZmCVpGmSFgGLgVvGO46Z2WSapD71zcDqtL4auG5khnoxNm2rF2frKtNS\n/1XgncCPJN2e0v4cuEhSP8XPggeBdwFExA5Jm4CdFGd1L/XIFzPrJJM4+uVKYJOki4GHgAsBJJ0O\nfD4iVlAnxkbEFuCjo8XZsYwb1CPiO8BotzLZMsY+VwBXjFe2mVk7xCTdJCMiBoDzRkn/KbAirdeL\nsUTEO3OP6StKzawrDVZ0rICDupl1ncATepmZVUYzR790Ggd1M+s6RUu93bVoDQd1M+s6mRcfHVMc\n1M2s+4Rb6mZmleGbZJiZVUhxorTdtWgNB3Uz6zpBuKVuZlYl7lO3SvFUvVWTF6F6M9//HMfCRT0R\n0OCd6jqWg7qZdSW31M3MKqIY/dLuWrSGg7qZdZ0IOFLRprqDupl1HbfUzcyqxFeUmplVh1vqZmYV\nU9VRumVuPD1d0i2Sfihph6S/TOknS9oq6d70d3bNPpdL2iXpHknnt/IJmJnlitT9UmZpxFhxckS+\nByX9SNLtkrbn7l+rzBUIh4A3RcQrgX5guaTXAGuBbRGxGNiWHiNpCbAKOBtYDnxWUm+J45iZTYoA\njgyWWxo0apys440R0R8R50xwf6BEUI/CgfSwLy0BrAQ2pPQNwNvS+kpgY0QciogHgF3AsvGOY2Y2\nWYavKC2zNKhenGzZ/qWuFZbUK+l2YB+wNSJuBuZGxN6U5RFgblqfDzxcs/vulDayzDWStkvaPjAw\nUKYaZmZNk9H9Mmc4VqVlTcZh6sXJkQK4QdJtI8ovu//zSp0ojYijQL+kk4BrJb1ixPaQlNX7FBHr\ngHUAS/v7Kzq4yMw6UZB1ovSxEV0iLyDpBuC0UTZ94AXHHDtOvj4i9kh6CbBV0t0RcVPG/s/LGv0S\nEU9KupGir/xRSfMiYq+keRSteIA9wMKa3RakNDOzztDECb0i4s31tkmqFydHlrEn/d0n6VqKLuub\nqB9n6yoz+uXU1EJH0gzgLcDdwGZgdcq2GrgurW8GVkmaJmkRsBi4ZbzjmJlNlgCOHC23NKhenHye\npJmSjh9eB34duLPs/iOVaanPAzakESw9wKaI+Iak7wGbJF0MPARcCBAROyRtAnYCg8ClqfvGjmG5\nU/Xm8LS+7ZDb46mW1KJdJnHq3SsZJU5KOh34fESsoOgnv1YSFDH5yxHxrbH2H8u4QT0i7gCWjpI+\nAJxXZ58rgCvGK9vMrF0moy1RL05GxE+BFWn9fuCVOfuPxVeUmlnX8U0yzMwqxhN6mZlVRDGksVrn\nCYY5qJtZ14mAw41PAdCRHNTNrCtVddCVg7qZdZ0IcdTdL2Zm1eCbZJiZVUm4+8XMrFI8+sXMrCIi\nYNCjX8zMqiPcUjczq4gA3Kdu1hqtnAGy1bpnhskKXlNf0bfOQd3MulKPg7qZWTUoYMqRdteiNRzU\nzaz7BPS6pW5mVg0CeocqeJ4AB3Uz60IK6K3ohOplbjw9XdItkn4oaYekv0zpH5K0R9LtaVlRs8/l\nknZJukfS+a18AmZm+YLeoaFSSyMknSxpq6R709/Zo+T5hZo4erukpyW9N22rG2frKdNSPwS8KSIO\nSOoDviPpm2nbJyPiYyMquARYBZwNnA7cIOks33zazDqFgoYDdklrgW0RcaWktenx+2szRMQ9QD+A\npF5gD3BtTZYXxdmxjNtSj8KB9LAvLWP9blkJbIyIQxHxALALWFa2QmZmraYIpgweKbU0aCWwIa1v\nAN42Tv7zgPsi4qGJHrDUVR+SeiXdDuwDtkbEzWnTuyXdIWl9zc+K+cDDNbvvTmlmZh0i6Bk6Wmpp\n0NyI2JvWHwHmjpN/FfCVEWmjxdm6SgX1iDgaEf3AAmCZpFcAnwNeTvGzYS/w8TJlDZO0RtJ2SdsH\nBgZydjUza1CgGCy1AHOGY1Va1tSWJOkGSXeOsqx8wREjgjF6OSRNBd4KfLUmOTvOZo1+iYgnJd0I\nLK/t45H0N8A30sM9wMKa3RaktJFlrQPWASzt76/maWgz60wBKt8KfywizqlbVMSb622T9KikeRGx\nV9I8it6Oei4AfhARj9aU/fz6iDhbV5nRL6dKOimtzwDeAtydKjjs7cCdaX0zsErSNEmLgMXALeMd\nx8xssohAQ4OllgZtBlan9dXAdWPkvYgRXS9jxNm6yrTU5wEb0lnZHmBTRHxD0hcl9VP8nHgQeBdA\nROyQtAnYCQwCl3rki5l1lkCTE5auBDZJuhh4CLgQQNLpwOcjYkV6PJOiwfyuEft/dLQ4O5Zxg3pE\n3AEsHSX9nWPscwVwxXhlm5m1RQQcPTgJh4kBihEtI9N/CqyoefwMcMoo+erG2Xp8RalZA47laYNb\npVd5N584Gu04pRZQ0Q4EB3Uz60IBjfeXdyQHdTPrPhEQDupmZtXh7hczs6oYIibhRGk7OKibWfcJ\n3FI3M6uKIAifKDUzqwoPaTQzq5AgPPrFzKwiAqLxaXU7koO6mXWhIWLoULsr0RIO6mbWlao6z6CD\nupl1nQiPfjEzq5BwS93MrFIc1DtF3rSexzbf5c+sJdz9YmZWJcHQ0OF2V6IlHNTNrOsU0wS4+8XM\nrBqiuidKS9+LS1KvpH+V9I30+GRJWyXdm/7Orsl7uaRdku6RdH4rKm5m1oiIo6WWRkj6XUk7JA1J\nOmeMfMtTvNwlaW1Net04W0/ODRbfA9xV83gtsC0iFgPb0mMkLQFWAWcDy4HPSurNOI6ZWYsV3S9l\nlgbdCfwWcFO9DCk+fga4AFgCXJTiKNSJs2MpFdQlLQB+A/h8TfJKYENa3wC8rSZ9Y0QciogHgF3A\nsjLHMTObDBHB0NHDpZYGj3NXRNwzTrZlwK6IuD8iDgMbKeIo1I+zdZXtU/+fwH8Gjq9JmxsRe9P6\nI8DctD4f+H5Nvt0p7QUkrQHWpIcHTpxz6nhPvFnmAI9N0rHK6KT6dFJdoLPq00l1ge6uz8saLWDw\nyP7rH9m9bU7J7NMlba95vC4i1jVahxrzgYdrHu8GXp3W68XZusYN6pJ+E9gXEbdJOne0PBERkrIG\nVacXpZkvTCmStkdE3b6tydZJ9emkukBn1aeT6gKuT6MiYnmzypJ0A3DaKJs+EBHXNes4ZeNsmZb6\nrwJvlbQCmA6cIOn/AI9KmhcReyXNA/al/HuAhTX7L0hpZmaVExFvbrCIsWJmvThb17h96hFxeUQs\niIgzKE6A/mNE/B6wGVidsq0Ghr+RNgOrJE2TtAhYDNwy/vMyM+tKtwKLJS2SNJUizm5O2+rF2bpy\nRr+MdCXwFkn3Am9Oj4mIHcAmYCfwLeDS6KwBoZPe5TOOTqpPJ9UFOqs+nVQXcH2OCZLeLmk38Frg\n7yVdn9K/IRz5AAAEg0lEQVRPl7QFIIpbMF0GXE8xwnBTiqNQJ86OecwIzy9iZlYVjbTUzcyswzio\nm5lVSMcHdUkLJd0oaWe63PY9KX3Uy2clnZLyH5D06RFlfTtdint7Wl5S55i/IulH6ZLdv5aklH6J\npLsl7Zf0bNrezvoMvzYPSwpJH2tjXf5A0kB6bQ5K2tMBr82dkg6l+tzWxrp8Mn1296f6HG3za/NS\nSd+tea8eanN9XiZpm6Q7UlkLRtvfSoqIjl6AecCr0vrxwI8pLqX9KLA2pa8FPpLWZwKvBy4BPj2i\nrG8D55Q45i3Aaygmb/8mcEFKP2G4PsBbga1trs+8VPZNKc9DbazLHwDrO+i9eh1wNzA71eW+dtWl\n9nMMvBu4ps2vzTrg/ak+S9Lnpp31+SqwOq2/CfjiZMSWqi4d31KPiL0R8YO0vp/i7PB86lw+GxHP\nRMR3gIMTOZ6KsaAnRMT3o/iUXVNT9tM19ZkJDLa5PnuB3wE+AjwLPNiuuiTPdsp7lf5+LCKeSHW5\ns411qf0cXwR8kfa+NpGO8QPgRIox0e2szxLgH9P6jfz8EnmbgI4P6rUknQEsBW5mApfPJhvST8T/\nOvzzb4T5FJfpDnvBNAeSLpV0H0WL5iPtrI+kVwELI+LvKS4M+4V21SX57fTz+v9Kei3tfa/OAs6S\n9C+S/pViSFk7XxskvQxYRPGroZ2vzYeA31Mx1G4L8Fdtrs8PKSa9Ang7cLykU0oe10Y4ZoK6pFnA\n14D3RsTTtdvSN3+ZsZnviIizgV9Lyztz6xERn4mIM4EPtrM+knqATwDvS6/N2cDH2/ja/D/gjIj4\ntxTdQdfT3vdqCsWFb7+R1nsY8XmfzM9Nsori4pGv0t7X5iLg6ohYAPx2qs+ftrE+fwa8IX35voHi\nl0MnXdtyTDkmgrqkPooA+qWI+HpKfjT9pBv+aTfu5bMRsSf93Q98GVimYp744RM8/43iA1V7ouZF\n0xyk+qwCjmtjfY4HXkHRn/kzipb6n6qYs3nSX5uIGIiIQ+m1+Q2gr83v1W7g74G/Bf43RWtwcZvq\nMmwVRYu43Z/ji4FN6b16P0XX3T+3qz4R8dOI+K2IWAp8IKU9Od5xbXQdH9TTT7kvAHdFxCdqNmVd\nPitpiqQ5ab0P+E3gzog4GhH9aflg+un5tKTXpGP//nDZkhbX1OcgsKPmEJNan4h4CjiVolX8v4B/\nAd4aEdvb9NrMq3ltDlME0ba8NqmYvwMup+grvoaiO+b+NtUFSb9I8aXyvXZ/joGfAOdRvFePAIco\nGgZtqY+kOemXJxTv2fqxjmnjiA44WzvWQnHGPYA7gNvTsgI4hWLS+HuBG4CTa/Z5EHgcOEDRYltC\ncWLztlTODuBTQG+dY55DcWLtPuDT/PzK208BD6T6HKAYXdHO+tS+NgeAe9pYl/8+4rW5q0Nem4PA\nc+k4balL2raezvkcL0n7R3pt7mtzfX4nHe/HFPdsmNbuuHMsL54mwMysQjq++8XMzMpzUDczqxAH\ndTOzCnFQNzOrEAd1M7MKcVA3M6sQB3Uzswr5/0TejEUjjU7vAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "#plt.pcolormesh([t0+dt.timedelta(10*ii) for ii in range(0,30)],dept[0,:],np.transpose(siplot[:30,:]),cmap=cm1,vmin=-1e9,vmax=1e9)\n", "plt.pcolormesh([t0+dt.timedelta(10*ii) for ii in range(0,nlen)],dept[0,:],np.transpose(Nplot),cmap=cm1,vmin=-1e8,vmax=1e8)\n", "plt.ylim(400,0)\n", "plt.colorbar()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:python36]", "language": "python", "name": "conda-env-python36-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }