{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import netCDF4 as nc\n", "import datetime as dt\n", "import subprocess\n", "import requests\n", "import matplotlib.pyplot as plt\n", "import cmocean\n", "import numpy as np\n", "import os\n", "import glob\n", "import dateutil as dutil\n", "from salishsea_tools import viz_tools\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with nc.Dataset('/ocean/eolson/MEOPAR/NEMO-forcing/grid/mesh_mask201702_noLPE.nc') as fm:\n", " tmask=np.copy(fm.variables['tmask'])\n", " umask=np.copy(fm.variables['umask'])\n", " vmask=np.copy(fm.variables['vmask'])\n", " navlon=np.copy(fm.variables['nav_lon'])\n", " navlat=np.copy(fm.variables['nav_lat'])\n", " dept=np.copy(fm.variables['gdept_1d'])\n", " e3t_0=np.copy(fm.variables['e3t_0'])\n", " e3u_0=np.copy(fm.variables['e3u_0'])\n", " e3v_0=np.copy(fm.variables['e3v_0'])\n", " e1t=np.copy(fm.variables['e1t'])\n", " e2t=np.copy(fm.variables['e2t'])\n", " e1v=np.copy(fm.variables['e1v'])\n", " e2u=np.copy(fm.variables['e2u'])\n", " A=fm.variables['e1t'][0,:,:]*fm.variables['e2t'][0,:,:]*tmask[0,0,:,:]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "t0=dt.datetime(2015,2,6) # 1st start date of run\n", "#te=dt.datetime(2016,12,1)# last start date of runfnum=18\n", "stm=np.shape(tmask)\n", "SiN=2.0\n", "#nlen=36*2\n", "nlen=24\n", "dlist=[t0+dt.timedelta(days=ii*10) for ii in range(0,nlen)]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#sdir0='/results/SalishSea/nowcast-green/'\n", "#sdir1='/results/SalishSea/hindcast/'\n", "#sdir3='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_HCMZ/'\n", "sdir1='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/'\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tmaskC=np.copy(tmask)\n", "tmaskC[:,:,370:490,:12]=0\n", "tmaskC[:,:,887:,30:70]=0" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150206-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150216-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150226-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150308-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150318-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150328-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150407-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150417-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150427-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150507-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150517-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150527-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150606-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150616-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150626-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150706-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150716-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150726-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150805-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150815-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150825-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150904-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150914-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150924-*.nc\n" ] } ], "source": [ "tlist=dlist\n", "SiGlobalTot=dict()\n", "SiTot=dict()\n", "BSiTot=dict()\n", "DiatTot=dict()\n", "changeSiGlobalTot=dict()\n", "for idir in (sdir1,):\n", " fformat1='%d%b%y/'\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " #elif idir==sdir0:\n", " # fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " # fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_grid_T.nc'\n", " elif idir==sdir1:\n", " fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc'\n", " sumSi=np.zeros((len(tlist),stm[1]))\n", " sumBSi=np.zeros((len(tlist),stm[1]))\n", " sumDiat=np.zeros((len(tlist),stm[1]))\n", " ind=-1\n", " for idt0 in tlist:\n", " ind=ind+1\n", " cdir=idt0.strftime(fformat1).lower()\n", " iffT=idt0.strftime(fformatT)\n", " iffP=idt0.strftime(fformatP)\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " sffT=idir+iffT\n", " sffP=idir+iffP\n", " elif idir.startswith('/results/'):\n", " sffT=idir+cdir+iffT\n", " sffP=idir+cdir+iffP\n", " f=nc.Dataset(glob.glob(sffT)[0])\n", " print(sffT)\n", " fP=nc.Dataset(glob.glob(sffP)[0])\n", " #if idir==sdir0:\n", " # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0\n", " if idir==sdir1:\n", " e3t=fP.variables['e3t'][:2,:,:,:]\n", " Vol=A*np.ones(np.shape(e3t))\n", " sumSi[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['silicon'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumBSi[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['biogenic_silicon'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumDiat[ind,:]=SiN*1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " f.close()\n", " fP.close()\n", " SiGlobalTot[idir]=sumSi+sumBSi+sumDiat" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150924-*.nc'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sffT" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "siplot=SiGlobalTot[idir]-SiGlobalTot[idir][0,:]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEDCAYAAADKhpQUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X28XVV95/HP997chEAIJARCSCJEJ7RNsN5YGrV1xgdE\nQ3SM9sEJY23a0kY66Ev7cqaGOmNtfdGhHR/GvnxgUqVGp0rjKDW1KIUUS7UqBEUkASQ8lYSQSHhI\nAuTh3vubP/a6eLjcc+9e95xzz7n7fN+v137dfdZee+11Hu7vrLP22msrIjAzs2roaXcFzMyseRzU\nzcwqxEHdzKxCHNTNzCrEQd3MrEIc1M3MKsRB3cwqSdKVkvZJur1E3udJukHSDyTdJmn1ZNSxFRzU\nzayqPgusKpn3vwObI2IFsBb4ZKsq1WoO6mZWSRFxI/BobZqkF0j6hqRbJP2LpJ8dzg7MTusnAQ9N\nYlWbalq7K2BmNok2AhdHxN2SXkLRIn818AHgHyW9EzgBeE37qtgYB3Uz6wqSZgG/BHxJ0nDyjPT3\nQuCzEfFhSS8DPi/pnIgYakNVG+Kgbmbdogd4PCL6R9l2Ean/PSK+I+k4YB6wbxLr1xTuUzezrhAR\nB4D7JP06gAovSpv/DTgvpf8ccBzwk7ZUtEEtC+qSVkm6S9JOSRtadRwzs9FI+iLwHeBnJO2SdBHw\nVuAiST8EtgNrUvb3AL+X0r8I/FaUnMJ2vKGT6cvjL1MsvE3Si2u2NT1OqhVT70rqBX4MnA/sAm4G\nLoyIHU0/mJlZG0n6D8Ah4HMRcc4o21cD7wRWAy8BPhYRL2lVnGxVS30lsDMi7o2Io8BV/PQb0cys\nMkYbOjnCGoqAHxHxXeBkSQtoUZxs1YnShcCDNY93UXxDPUPSemA9wAnHH/8LS5cuLVXw4NNP5tUk\n85fITwZ7S+d95ME9eXUxs4YNHDv4SESc2kgZc3qnx0DJgS2HYnA7cLgmaWNEbMw43GjxcGGd9GfF\nyYlo2+iX9KJsBFjR3x//vPX6UvsduCfvl8nQkaez8v+gt/xn5eL/9IdZZZtZ4x7etfWBRssYiCH6\njzupVN5vPf3o4Yg4t9FjTpZWBfXdwOKax4tS2qRT3/Ss/K9YsqBFNTGzjiHo/elY9VarFw/76qQ3\npFVB/WZgqaQlFJVcC/znZhQ8+wXLeOLuH5XOH4ODWeU/vn1b6bxzznpTVtmP3f93WfnNrDWE6FP5\nrtYGbQHeIekqiu6VJyJij6Sf0II42ZKgHhEDkt4BXAv0AldGxPZmla+e8m9GblAffPJA6bx//4dz\n+C/3nlY6/2MfyqqKWVeYPnPupB9TQA/NaamnoZOvBOZJ2gX8MUUrnIi4AriGYuTLTuAp4LfTtpbE\nyZb1qUfENRRPpqly+9Rb6a+PLuQXF5XPf1vrqmI2Zc2cXW6QRLM1q/slIi4cZ3sAl9TZ1vQ4OeWm\nCeiZMTMrf06rHmAwo/w1z8/rf//iSc/Pyq+e8m/Pk4/9OKtss05x4MxX5+1wy581fEyhprXUO83U\nC+p9fVn5IzOo954we/xMydmnzckqe8apL8vK/+Dzziqdd9Y/XZZVtlmO2ct/v3Tew/f+bVbZvWc3\n/wLIUsdVNWdJmXpBfVreaJbcZxjHzyqd9+mf5E25nBOkAZb97EDpvE9szxve+sTe72Xlt2qZc+Yb\n8nZYWb6xc/xA3gCC5Uvygvp9WblHJ6DXLfXOoN7WnrFWxpfG0JHD42eqMePkvFk8Ty3/f8Rjp67M\nKhsH9UqZNffnsvIfPHV5Vv5zMi71+fbped2SF5w0+S31YvSLW+odYcbJp3Ds0MHS+dWb98bl9ME/\n9dD9WWUvX5z34X3h/PJvz72/eHxW2dPvyRtxMDhQ/iKuwWN5F3xZ4w49egdPvuJ9pfMvf2H5X4EA\nFyzNOZeV9/6/+sx5Wfk/mpW7Pvepd5CcQN2TefFRTv7Z/245B3aWH4F0+kl5H6LTji9//uD3XtrH\nN+8v/89094LMk1MDedMzDB0ZayqMZ3vysbxRXANHD2Xln6pmn/YLWfnnPL98oF52et5ncfmp5a6+\nHM777QfLv//PP6V82c3i7pcOMpA790sL5QT0VssJ6K2WE9CtOXpf3zl3X8sJ6O3ioN5BslvemSdW\nB4fK93vn1uX5c/IuhFowa8b4mZJlpx3LKvuGZWdn5R88Wv4fYHrm98tpj754/Ew1eg89OH6m5OiB\nvKGeuUNDc1rTMZT3/j90zqrSed90Vl7ZK8/I665btqB8F8kJ0/NGqM2f3p7g6u4XM7OKkHyitGPk\nXkx0NHOagKcOHy2dt29m+eGPAGfPKV82wOmzyp+cGhzKOwn7qhc+kZX/yYyqP3kkq2gePZgxzAd4\n8thz7kNQ1+H7fj6r7FP2582ntOvshaXzzp6VN/rp/BeU7yNf9fy8fukXnXFKVv7YW35ixOdllQxP\n7Cj/y6tZ3P1iZlYxkzad1yRzUDezrqOAnnBL3cysMtz90iHUk3dy4/DTeR28h46U7zw+bVZeX/A5\nPXn9+zmjCGYflzcS57VH8kbLPD1Qvj/46GBe3/FDh/IuhDm+r/xn4EeL8sqe2Xd6Vv7zTy6f9+w5\neZPRLZ1b/pzNi8/Mu4pz8NG9Wfkfv/MHpfMee/wnWWUPtWGYctGnXk1TLqibmTVKiD631M3MqsPd\nL2ZmFeHuFzOziqnmpUcNBnVJ9wMHgUFgICLOlTQX+FvgLOB+4C0R8Vhj1XzWUbNyD2VelPPk0fIn\nEKfPzbuAY9GMvJOTvT3ln2tP5gnk3JOZM/vKt2uyT5Q+kXeibP6J5S9xf/H88jN6Avz8grz3NOc9\nmpf533b0QPl/m6fuzrtZ4pG9eRf8HN59T+m8R3/ycFbZg5lTWDdDM1vqklYBH0tFfjoiLh+x/b8B\nb00PpwE/B5waEY+OFkMbrU8zvqxeFRH9NZXZAGyNiKXA1vTYzKxjSNBXchm7HPUCnwAuAJYBF0pa\nVpsnIv5XipH9wKXAP0dE7axnI2NoQ1rxC2QNsCmtbwLyboNiZtZiwy31Mss4VgI7I+LeiDgKXEUR\nA+u5EPhiA1UfV6NBPYDrJd0iaX1Kmx8Re9L6w8D8Bo9hZtZ0PSq3jGMhUNuXtSulPYek44FVwJdr\nkkeLoQ1p9ETpyyNit6TTgOsk3Vm7MSJC0qid2ukJrAdYvGhRg9UwMysvs099nqRtNY83RsTGCRz2\nPwLfHtH18pwYGhE3TqDsZzQU1CNid/q7T9LVFD9F9kpaEBF7JC0A9tXZdyOwEWBFf397biduZl2r\np6d02HlkjP7u3cDimseLUtpo1jKi66VODG0oqE+4+0XSCZJOHF4HXgvcDmwB1qVs64CvNlJBM7NW\naFL3y83AUklLJE2nCNxbRmaSdBLwCmri4RgxtCGNtNTnA1dLGi7nCxHxDUk3A5slXQQ8ALyl0Uqa\nmTWTFPT1Nt5BEBEDkt4BXEvRo3NlRGyXdHHafkXK+mbgHyOidvzuqDG00TpNOKhHxL3Ai0ZJ3w+c\n10ilxpJzu7mJlV/+jX4yc1KsE2bk3eZraKB8+TGQdwOOZWecmpX/2KEDpfP2HndcVtlLTp2Tlb/n\naPn75eU+z/23/HNW/mmzy9f9kXvy7mk7dCTjvoCZN48ZOJh36chgxvs/mDlB19CxvP+jZhClWuGl\nRMQ1wDUj0q4Y8fizwGdHpI0aQxvlK0rNrPsoq099SnFQN7OuIyDzIuwpw0HdzLqSW+pmZhUhuaVu\nZlYdgml9bqmbmVWC+9TNzKpE2aNApwwHdTPrSnJLvTP09ijrAqETZ87g4NNHSuef3lv+nd7z+EHm\nzSp/w4bHBwY5MeMVV2/5poR6exk6Vv4CpKcyb5JwLOOGDQC9M2aWzhuDg1llDz59KCt/TpPsicyL\nj2bMz5uM7und92blz9E784Ss/DkXCalveum8M+Yv5MjeetOfPFdPXx+9s04snb8Z5JZ658gJ6EBW\nQM+VE9CBrICeKyegt1pOQG+5DvrPnaoBPVdOQAcmPaADIOgd7w4YU9SUC+pmZo0S7n4xM6sOgXrd\nUjczqwwHdTOzqpDoadY0jR3GQd3Muo5wS93MrDoEPX2dMzKqmRzUzaz7SCjjmpSpxEHdzLqPcFA3\nM6sKIVTRGb3GfVaSrpS0T9LtNWlzJV0n6e70d07Ntksl7ZR0l6TXtariZmYTllrqZZZxi5JWpXi3\nU9KGUba/UtITkm5Ny/vL7jsRZVrqnwU+DnyuJm0DsDUiLk8V2QC8V9IyYC2wHDgDuF7S2RGRN7nH\nGAajtXMgT59W/uTJYOTdBFu9eTee7plWfr4NZV4OP3RsX1b+nPlZcudyOfro3qz8OXKnT8i62TOt\nvdw+R+77nzutQO8Js0vnjczXfHrm/DnN0oyWuqRe4BPA+cAu4GZJWyJix4is/xIRb5jgvlnGfVYR\ncSPw6IjkNcCmtL4JeFNN+lURcSQi7gN2AisbqaCZWdNJqG9aqWUcK4GdEXFvRBwFrqKIg2U0sm9d\nE/2qmh8Re9L6w8D8tL4QqJ3+b1dKew5J6yVtk7Rt//79E6yGmdkEpNEvJbtf5g3HqrSsrympbMz7\nJUm3Sfq6pOWZ+2Zp+ERpRISk7D6RiNgIbARY0d9fzftKmVlHKib0Kt1l9UhEnNvA4b4PPC8iDkla\nDfwdsLSB8sY00Zb6XkkLANLf4Q7a3cDimnyLUpqZWefIa6mPZdyYFxEHIuJQWr8G6JM0r8y+EzHR\noL4FWJfW1wFfrUlfK2mGpCUU30Y3NVZFM7PmU09PqWUcNwNLJS2RNJ1ioMiWZx1HOl2S0vpKiri7\nv8y+EzFu94ukLwKvpOhX2gX8MXA5sFnSRcADwFsAImK7pM3ADmAAuKSZI1/MzJpCQn15o9FGExED\nkt4BXAv0AlemOHhx2n4F8GvA70saAJ4G1kZEAKPu22idxg3qEXFhnU3n1cl/GXBZI5UyM2spKXsY\naD2pS+WaEWlX1Kx/nGJYeKl9G+UrSs2s6xSzNFbzilIHdTPrPk1sqXcaB3Uz604O6mZmFeGpd83M\nqkRZcytNJVMuqA8N5U2ilXsfwr6Mb+/BobwLYXP78A4fO1Y673GZw7Ny69I3e27pvDHU2lGsmlb+\nuSpzcrFpJ8/Lyp8z0VVuCMmZXKxv7vzxMzVg2uw542dKemfMzCp7+qln5FancQLcUjczq4ZiPnX3\nqZuZVYNHv5iZVUtV73zkoG5m3UeCXrfUzcyqQR79YmZWLR79YmZWDfKJUjOzanFQNzOrDHnuFzOz\nypDo6fOJUjOzapDA49TNzKpDFR2nPu5XlaQrJe2TdHtN2gck7ZZ0a1pW12y7VNJOSXdJel2rKm5m\nNlHDo1/KLCXKWpXi3U5JG0bZ/lZJt0n6kaR/lfSimm33p/RbJW1rxnMr01L/LMX99T43Iv2jEfGh\n2gRJyyjuiL0cOAO4XtLZzbz5dO7MiL2ZP7FmNuFmtM3Sk1X3vNelp4WzOg4eOZxXdsasiwA9mbMA\n5ph+St5sh9NOLD97YW69c2ZpbPVMh70zTyidN/d59mXOjNkszRj9IqkX+ARwPrALuFnSlojYUZPt\nPuAVEfGYpAuAjcBLara/KiIeabgyybhRIyJuBB4tWd4a4KqIOBIR9wE7gZUN1M/MrPmURr+UWca2\nEtgZEfdGxFHgKoo4+IyI+NeIeCw9/C6wqOnPp0YjZwremX5SXClpuLmyEHiwJs+ulPYcktZL2iZp\n2/79+xuohplZpjT6pcwCzBuOVWlZX1NS6ZiXXAR8veZxUPRo3DKi3Amb6InSTwEfTBX6IPBh4Hdy\nCoiIjRQ/Q1jR35/Xd2Bm1pCsceqPRMS5DR9RehVFUH95TfLLI2K3pNOA6yTdmXpHJmxCLfWI2BsR\ngxExBPwVP+1i2Q0srsm6KKWZmXUOgXp7Si3jKBXzJP088GlgTUQ80zUREbvT333A1TShu3pCQV3S\ngpqHbwaGR8ZsAdZKmiFpCbAUuKmxKpqZNdfwnY+aMPrlZmCppCWSplMMFNnyrGNJzwO+ArwtIn5c\nk36CpBOH14HX8tNYOmHjdr9I+iLwSop+pV3AHwOvlNRP0f1yP/B2gIjYLmkzsAMYAC5p5sgXM7Om\nEE2ZJiAiBiS9A7gW6AWuTHHw4rT9CuD9wCnAJyUBDKTunPnA1SltGvCFiPhGo3UaN6hHxIWjJH9m\njPyXAZc1Uikzs5ZST9OmCYiIa4BrRqRdUbP+u8DvjrLfvcCLRqY3yleUmll38oReZmZV4fnUzcyq\nQ6rs3C8O6mbWdYRvkmFmVh2eetfMrEJ8k4zO0dujrPx5Mx3ml99K0zP6/IYGjmaVnfvTs5X9j7mz\n+vW2cJbGvrl5szTm1CX3ecZQ+Us8cmc6zH0/e6aVD4C9x8/KKrtvdvmZLpvK3S9mZhXhE6VmZlXi\nIY1mZpUhefSLmVmFuPvFzKw6JJRx8ncqcVA3s+6T5lOvIgd1M+tCPlFqZlYZclA3M6sQtfaCunZy\nUDez7iNlXSU7lTiom1kXUmVPlI77rCQtlnSDpB2Stkt6V0qfK+k6SXenv3Nq9rlU0k5Jd0l6XSuf\ngJlZruGLj5pw42kkrUqxbqekDaNsl6S/TNtvk/TisvtORJmvqgHgPRGxDHgpcImkZcAGYGtELAW2\npsekbWuB5cAqiputVrPzysymqOLiozLLmKUUse0TwAXAMuDCFANrXQAsTct64FMZ+2Yrc+PpPcCe\ntH5Q0h3AQmAN8MqUbRPwTeC9Kf2qiDgC3CdpJ7AS+E6jlQXoyzy50Zs5S+OgWjlLY+TlzpilLwbL\n5wVaOu1oT19fVv5ps07Kyp8zaiH3ZFh2/haOoMiapTFzpsPsWTpb+DzbMgWumjb6ZSWwM91EGklX\nUcTAHTV51gCfi4gAvivpZEkLgLNK7JstK+JJOgtYAXwPmJ8CPsDDwPCcpQuBB2t225XSRpa1XtI2\nSdv279+fWW0zs8aop6fUAswbjlVpWV9TTJl4Vy9PqViZq/SJUkmzgC8D746IA6pp0UZESMpqhkbE\nRmAjwIr+/rwmrJlZgwaHSoedRyLi3FbWpZlKBXVJfRQB/W8i4ispea+kBRGxJ/2U2JfSdwOLa3Zf\nlNLMzDpCAIPRlLZkmXhXL09fiX2zlRn9IuAzwB0R8ZGaTVuAdWl9HfDVmvS1kmZIWkJxcuCmRitq\nZtY0EQwNDZVaxnEzsFTSEknTKQaJbBmRZwvwm2kUzEuBJ1LXdZl9s5Vpqf8y8DbgR5JuTWl/BFwO\nbJZ0EfAA8BaAiNguaTNFZ/8AcElE5J3FMzNroSCr+6V+OREDkt4BXAv0AlemGHhx2n4FcA2wGtgJ\nPAX89lj7NlqnMqNfvgXUGxJyXp19LgMua6BeZmYtEwGD47fCS5YV11AE7tq0K2rWA7ik7L6N8hWl\nZtaFgqEmtNQ7kYO6mXWdCDiaeW3HVOGgbmZdJ4imdb90Ggd1M+tKzThR2okc1M2s60TAUHPGqXcc\nB3Uz60rufjEzq4ihCI4OOqibmVWG+9Q7RO5UurnT3eaXnyN36t3WtSRyp8eNjFZN7lSquVOgZk1J\nnHl3G2Xe4iynLq18nr0zZmaVnSun7rmfrXYorih1S93MrBoimjWhV8dxUDezrhPgK0rNzKrELXUz\ns4ooRr94mgAzs8rw6Bczs4oopt51UDczqwz3qZuZVUSz7nzUiRzUzazrBNUdp17mxtOLJd0gaYek\n7ZLeldI/IGm3pFvTsrpmn0sl7ZR0l6TXtfIJmJnlKm6SMVRqaYSkuZKuk3R3+jtnlDyjxti0rW6c\nradMS30AeE9EfF/SicAtkq5L2z4aER8aUcFlFHfFXg6cAVwv6WzffNrMOsUkdr9sALZGxOWSNqTH\n7x2RZ9QYGxE70vbnxNmxjNtSj4g9EfH9tH4QuANYOMYua4CrIuJIRNxHcQftlWUrZGbWclGcKC2z\nNGgNsCmtbwLe9Jyq5MfYMWXNdiTpLGAF8L2U9E5Jt0m6suZnxULgwZrddo1WQUnrJW2TtG3//v3Z\nFTczm6jhPvWSQX3ecKxKy/qMQ82PiD1p/WFg/liZR4mxMHqcrav0iVJJs4AvA++OiAOSPgV8kOKX\nzAeBDwO/U7a8iNgIbARY0d+f8XUYgMpnz8rbWZQxY2TuzIg5MwACRE/GbISZMyPmzACZK/t5Zubv\nFL0zjmtp+TmzNLa6Ls0QwED57pdHIuLcehslXQ+cPsqm9z3rmBEhqe5BR8bYlJwdZ0sFdUl96WB/\nExFfSRXcW7P9r4CvpYe7gcU1uy9KaU0ydYO0mXWG4kRpc/rUI+I19bZJ2itpQUTskbQA2Fcn33Ni\nbCq7Xpytq8zoFwGfAe6IiI/UpC+oyfZm4Pa0vgVYK2mGpCXAUuCm8Y5jZjaZJqlPfQuwLq2vA746\nMkO9GJu21YuzdZVpqf8y8DbgR5JuTWl/BFwoqZ/iZ8H9wNsBImK7pM3ADoqzupd45IuZdZJJHP1y\nObBZ0kXAA8BbACSdAXw6IlZTJ8ZGxDXAX4wWZ8cyblCPiG8xep/HNWPscxlw2Xhlm5m1Q0zSTTIi\nYj9w3ijpDwGr03q9GEtEvC33mL6i1My60kA172bnoG5m3SfwhF5mZpXRzNEvncZB3cy6TtFSb3ct\nWsNB3cy6TubFR1OKg7qZdZ9wS93MrDJ8kwwzswopTpS2uxat4aBuZl0nCLfUzcyqxH3q1gS5M0yW\n/9TlTNM7ETlTr2ZPX9uXlz0Gc8rPK3yqTr2b8/5MRM7UzlOhBRwBLZzxua0c1M2sK7mlbmZWEcXo\nl3bXojUc1M2s60TAsYo21R3UzazruKVuZlYlvqLUzKw63FI3M6uYoYoG9TI3nj5O0k2Sfihpu6Q/\nSelzJV0n6e70d07NPpdK2inpLkmva+UTMDPLFan7pczSiLHi5Ih890v6kaRbJW3L3b9WmStWjgCv\njogXAf3AKkkvBTYAWyNiKbA1PUbSMmAtsBxYBXxSUmuvjDAzyxDAsYFyS4NGjZN1vCoi+iPi3Anu\nD5QI6lE4lB72pSWANcCmlL4JeFNaXwNcFRFHIuI+YCewcrzjmJlNluErSsssDaoXJ1u2f6lryyX1\nSroV2AdcFxHfA+ZHxJ6U5WFgflpfCDxYs/uulDayzPWStknatn///jLVMDNrmozul3nDsSot6zMO\nUy9OjhTA9ZJuGVF+2f2fUepEaUQMAv2STgaulnTOiO0hKav3KSI2AhsBVvT3V3RwkZl1oiDrROkj\nI7pEnkXS9cDpo2x637OOOXacfHlE7JZ0GnCdpDsj4saM/Z+RNfolIh6XdANFX/leSQsiYo+kBRSt\neIDdwOKa3RalNDOzztDECb0i4jX1tkmqFydHlrE7/d0n6WqKLusbqR9n6yoz+uXU1EJH0kzgfOBO\nYAuwLmVbB3w1rW8B1kqaIWkJsBS4abzjmJlNlgCODZZbGlQvTj5D0gmSThxeB14L3F52/5HKtNQX\nAJvSCJYeYHNEfE3Sd4DNki4CHgDeAhAR2yVtBnYAA8AlqfvGsuVO1ZtRcoun6m2lVk4DrN7WDdTK\nmzI4TyvrDXmfl2NNGDLSapM49e7ljBInJZ0BfDoiVlP0k18tCYqY/IWI+MZY+49l3KAeEbcBK0ZJ\n3w+cV2efy4DLxivbzKxdJuPio3pxMiIeAlan9XuBF+XsPxZfUWpmXcc3yTAzqxhP6GVmVhHFkMbW\nnbNqJwd1M+s6EXC088/nToiDupl1parO0uigbmZdJ0IMuvvFzKwafJMMM7MqCXe/mJlVike/mJlV\nRAQMePSLmVl1hFvqZmYVEYD71K1aumMGyNy6RAvPnuXMLjmVDQ5NkevvHdTNzKqjx0HdzKwaFDDt\nWLtr0RoO6mbWfQJ63VI3M6sGAb1Tpe8/k4O6mXUdBfRWdEL1MjeePk7STZJ+KGm7pD9J6R+QtFvS\nrWlZXbPPpZJ2SrpL0uta+QTMzPIFvUNDpZZGSJor6TpJd6e/c0bJ8zM1cfRWSQckvTttqxtn6ynT\nUj8CvDoiDknqA74l6etp20cj4kMjKrgMWAssB84Arpd0tm8+bWadQkHDAbukDcDWiLhc0ob0+L21\nGSLiLqAfQFIvsBu4uibLc+LsWMZtqUfhUHrYl5axfresAa6KiCMRcR+wE1hZtkJmZq2mCKYNHCu1\nNGgNsCmtbwLeNE7+84B7IuKBiR6w1JUZknol3QrsA66LiO+lTe+UdJukK2t+ViwEHqzZfVdKMzPr\nEEHP0GCppUHzI2JPWn8YmD9O/rXAF0ekjRZn6yoV1CNiMCL6gUXASknnAJ8Cnk/xs2EP8OEyZQ2T\ntF7SNknb9u/fn7OrmVmDAsVAqQWYNxyr0rK+tiRJ10u6fZRlzbOOGBGM0cshaTrwRuBLNcnZcTZr\n9EtEPC7pBmBVbR+PpL8CvpYe7gYW1+y2KKWNLGsjsBFgRX9/NU9Dm1lnClD5VvgjEXFu3aIiXlNv\nm6S9khZExB5JCyh6O+q5APh+ROytKfuZ9RFxtq4yo19OlXRyWp8JnA/cmSo47M3A7Wl9C7BW0gxJ\nS4ClwE3jHcfMbLKIQEMDpZYGbQHWpfV1wFfHyHshI7pexoizdZVpqS8ANqWzsj3A5oj4mqTPS+qn\n+DlxP/B2gIjYLmkzsAMYAC7xyBcz6yyBJicsXQ5slnQR8ADwFgBJZwCfjojV6fEJFA3mt4/Y/y9G\ni7NjGTeoR8RtwIpR0t82xj6XAZeNV7aZWVtEwODhSThM7KcY0TIy/SFgdc3jJ4FTRslXN87W4ytK\nrQWm7s0HOmna4G4x2JabhQZUtAPBQd3MulBA4/3lHclB3cy6TwSEg7qZWXW4+8XMrCqGiEk4UdoO\nDupm1n0Ct9TNzKoiCMInSs3MqsJDGs3MKiQIj34xM6uIgGh8Wt2O5KBuZl1oiBg60u5KtISDupl1\nparOM+igbmZdJ8KjX8zMKiTcUjczqxQHdbNuMFWnDZ66d4Tsbcd0x+5+MTOrkmBo6Gi7K9ESDupm\n1nWKaQLc/WJmVg1R3ROlpTuzJPVK+oGkr6XHcyVdJ+nu9HdOTd5LJe2UdJek17Wi4mZmjYgYLLU0\nQtKvS9rjBbkVAAAGjUlEQVQuaUjSuWPkW5Xi5U5JG2rS68bZenLOULwLuKPm8QZga0QsBbamx0ha\nBqwFlgOrgE9K6s04jplZixXdL2WWBt0O/ApwY70MKT5+ArgAWAZcmOIo1ImzYykV1CUtAl4PfLom\neQ2wKa1vAt5Uk35VRByJiPuAncDKMscxM5sMEcHQ4NFSS4PHuSMi7hon20pgZ0TcGxFHgaso4ijU\nj7N1le1T/9/AHwIn1qTNj4g9af1hYH5aXwh8tybfrpT2LJLWA+vTw0MnzTt1vCfeLPOARybpWGV0\nUn06qS7QWfXppLpAd9fnzEYLGDh28NqHd22dVzL7cZK21TzeGBEbG61DjYXAgzWPdwEvSev14mxd\n4wZ1SW8A9kXELZJeOVqeiAhJWQNl04vSzBemFEnbIqJu39Zk66T6dFJdoLPq00l1AdenURGxqlll\nSboeOH2UTe+LiK826zhl42yZlvovA2+UtBo4Dpgt6f8CeyUtiIg9khYA+1L+3cDimv0XpTQzs8qJ\niNc0WMRYMbNenK1r3D71iLg0IhZFxFkUJ0D/KSJ+A9gCrEvZ1gHD30hbgLWSZkhaAiwFbhr/eZmZ\ndaWbgaWSlkiaThFnt6Rt9eJsXY1cn3s5cL6ku4HXpMdExHZgM7AD+AZwSXTWgNBJ7/IZRyfVp5Pq\nAp1Vn06qC7g+U4KkN0vaBbwM+AdJ16b0MyRdAxDFLZjeAVxLMcJwc4qjUCfOjnnMiKk7Z4SZmT1b\nG2bSMTOzVnFQNzOrkI4P6pIWS7pB0o50ue27Uvqol89KOiXlPyTp4yPK+ma6FPfWtJxW55i/IOlH\n6ZLdv5SklH6xpDslHZT0VNrezvoMvzYPSgpJH2pjXX5L0v702hyWtLsDXpvbJR1J9bmljXX5aPrs\nHkz1GWzza/M8Sf9a81490Ob6nClpq6TbUlmLRtvfSoqIjl6ABcCL0/qJwI8pLqX9C2BDSt8A/Hla\nPwF4OXAx8PERZX0TOLfEMW8CXkoxufbXgQtS+uzh+gBvBK5rc30WpLJvTHkeaGNdfgu4soPeq18C\n7gTmpLrc06661H6OgXcCn2vza7MReG+qz7L0uWlnfb4ErEvrrwY+PxmxpapLx7fUI2JPRHw/rR+k\nODu8kDqXz0bEkxHxLeDwRI6nYizo7Ij4bhSfss/VlH2gpj4nAANtrs8e4NeAPweeAu5vV12Spzrl\nvUp/PxQRj6W63N7GutR+ji8EPk97X5tIx/g+cBLFmOh21mcZ8E9p/QZ+eom8TUDHB/Vaks4CVgDf\nYwKXzyab0k/E/zH882+EhRSX6Q571jQHki6RdA9Fi+bP21kfSS8GFkfEP1BcGPYz7apL8qvp5/X/\nk/Qy2vtenQ2cLenbkn5AMaSsna8Nks4EllD8amjna/MB4DdUDLW7BvizNtfnhxSTXgG8GThR0ikl\nj2sjTJmgLmkW8GXg3RFxoHZb+uYvMzbzrRGxHPj3aXlbbj0i4hMR8QLg/e2sj6Qe4CPAe9Jrsxz4\ncBtfm78HzoqIF1J0B11Le9+raRQXvr0+rfcw4vM+mZ+bZC3FxSNfor2vzYXAZyNiEfCrqT5/0Mb6\n/FfgFenL9xUUvxw66dqWKWVKBHVJfRQB9G8i4ispeW/6STf8027cy2cjYnf6exD4ArBSxTzxwyd4\n/pTiA1V7ouY50xyk+qwFjm9jfU4EzqHoz/wJRUv9D1TM2Tzpr01E7I+II+m1eT3Q1+b3ahfwD8Df\nAn9N0Rpc2qa6DFtL0SJu9+f4ImBzeq/eS9F19y/tqk9EPBQRvxIRK4D3pbTHxzuuja7jg3r6KfcZ\n4I6I+EjNpqzLZyVNkzQvrfcBbwBuj4jBiOhPy/vTT88Dkl6ajv2bw2VLWlpTn8PA9ppDTGp9IuIJ\n4FSKVvH/Ab4NvDEitrXptVlQ89ocpQiibXltUjF/B1xK0Vf8OYrumHvbVBck/SzFl8p32v05Bv4N\nOI/ivXoYOELRMGhLfSTNS788oXjPrhzrmDaO6ICztWMtFGfcA7gNuDUtq4FTKCaNvxu4Hphbs8/9\nwKPAIYoW2zKKE5u3pHK2Ax8Deusc81yKE2v3AB/np1fefgy4L9XnEMXoinbWp/a1OQTc1ca6/M8R\nr80dHfLaHAaeTsdpS13StivpnM/xsrR/pNfmnjbX59fS8X5Mcc+GGe2OO1N58TQBZmYV0vHdL2Zm\nVp6DuplZhTiom5lViIO6mVmFOKibmVWIg7qZWYU4qJuZVcj/B2m2KAD6lNyCAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cm1=cmocean.cm.balance\n", "#plt.pcolormesh([t0+dt.timedelta(10*ii) for ii in range(0,30)],dept[0,:],np.transpose(siplot[:30,:]),cmap=cm1,vmin=-1e9,vmax=1e9)\n", "plt.pcolormesh([t0+dt.timedelta(10*ii) for ii in range(0,nlen)],dept[0,:],np.transpose(siplot),cmap=cm1,vmin=-1e8,vmax=1e8)\n", "plt.ylim(400,0)\n", "plt.colorbar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## repeat for N" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150206-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150216-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150226-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150308-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150318-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150328-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150407-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150417-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150427-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150507-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150517-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150527-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150606-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150616-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150626-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150706-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150716-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150726-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150805-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150815-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150825-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150904-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150914-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/SalishSea_1h_*_ptrc_T_20150924-*.nc\n" ] } ], "source": [ "tlist=dlist\n", "NGlobalTot=dict()\n", "VolTot=dict()\n", "NO3Tot=dict()\n", "NH4Tot=dict()\n", "PONTot=dict()\n", "DONTot=dict()\n", "DiatTot=dict()\n", "MyriTot=dict()\n", "NanoTot=dict()\n", "MiZoTot=dict()\n", "changeNGlobalTot=dict()\n", "for idir in (sdir1,):\n", " fformat1='%d%b%y/'\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " #elif idir==sdir0:\n", " # fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " # fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_grid_T.nc'\n", " elif idir==sdir1:\n", " fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc'\n", " sumNO3=np.zeros((len(tlist),stm[1]))\n", " sumVol=np.zeros((len(tlist),stm[1]))\n", " sumNH4=np.zeros((len(tlist),stm[1]))\n", " sumPON=np.zeros((len(tlist),stm[1]))\n", " sumDON=np.zeros((len(tlist),stm[1]))\n", " sumDiat=np.zeros((len(tlist),stm[1]))\n", " sumMyri=np.zeros((len(tlist),stm[1]))\n", " sumNano=np.zeros((len(tlist),stm[1]))\n", " sumMiZo=np.zeros((len(tlist),stm[1]))\n", " ind=-1\n", " for idt0 in tlist:\n", " ind=ind+1\n", " cdir=idt0.strftime(fformat1).lower()\n", " iffT=idt0.strftime(fformatT)\n", " iffP=idt0.strftime(fformatP)\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " sffT=idir+iffT\n", " sffP=idir+iffP\n", " elif idir.startswith('/results/'):\n", " sffT=idir+cdir+iffT\n", " sffP=idir+cdir+iffP\n", " f=nc.Dataset(glob.glob(sffT)[0])\n", " print(sffT)\n", " fP=nc.Dataset(glob.glob(sffP)[0])\n", " #if idir==sdir0:\n", " # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0\n", " if idir==sdir1:\n", " e3t=fP.variables['e3t'][:2,:,:,:]\n", " Vol=A*np.ones(np.shape(e3t))\n", " sumVol[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumNO3[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['nitrate'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumNH4[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ammonium'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumPON[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['particulate_organic_nitrogen'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumDON[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['dissolved_organic_nitrogen'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumDiat[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumMyri[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ciliates'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " sumMiZo[ind,:]=1e-3*np.sum(np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['microzooplankton'][0,:,:,:],2),1) #mmol/m3*m3*10^-3=mol\n", " f.close()\n", " fP.close()\n", " NGlobalTot[idir]=sumNO3+sumNH4+sumPON+sumDON+sumDiat+sumMyri+sumNano+sumMiZo" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Nplot=NGlobalTot[idir]-NGlobalTot[idir][0,:]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEDCAYAAADKhpQUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2UHNV95vHvM6PRC0KAQCCEJIzsFU6Es4wcjuzY3jU2\ndgAlsey8cMQ6jpKQldkDPnaOd9ci3nW868MuyfplneMXVsFahDe2Iq9N0DrYBBQS7PgFhI0B8WJk\nXoKEkMwARuJF0sz89o+6g5theqbudPd0T/XzOafOVN+6detO9cyvb9+6dUsRgZmZVUNPuytgZmbN\n46BuZlYhDupmZhXioG5mViEO6mZmFeKgbmZWIQ7qZlZJkjZJ2i/p7hJ5T5V0s6QfSrpT0uqpqGMr\nOKibWVVdDZxXMu9/ArZGxEpgLfC5VlWq1RzUzaySIuIW4MnaNEmvkvRNSbdL+pakXxjJDhyT1o8F\nHpvCqjbVjHZXwMxsCm0ELo6IByS9jqJF/lbgo8DfSXofMBd4W/uq2BgHdTPrCpKOBt4AfEXSSPKs\n9PNC4OqI+ISkXwG+KOk1ETHchqo2xEHdzLpFD/B0RPSPse0iUv97RHxX0mxgAbB/CuvXFO5TN7Ou\nEBHPAA9J+h0AFc5Mm/8ZOCel/yIwG/hpWyraoJYFdUnnSbpf0i5JG1p1HDOzsUj6MvBd4NWSdku6\nCHg3cJGkHwE7gTUp+weBf5vSvwz8fpScwnaioZPpw+MvUiy8U9Jra7Y1PU6qFVPvSuoFfgy8HdgN\n3AZcGBH3NP1gZmZtJOlfAweBayLiNWNsXw28D1gNvA74dES8rlVxslUt9VXAroh4MCIOA1v4+Sei\nmVlljDV0cpQ1FAE/IuJ7wHGSFtGiONmqC6WLgUdrXu+m+IR6kaT1wHqAuUcd9cvLly8vVfDjB57P\nqsjAs3nfROLJx7Pym9nUGjxy4ImIOLGRMub3zozBkgNbDsbQTuCFmqSNEbEx43BjxcPFddJfEicn\no22jX9JJ2Qiwsr8//nH7TaX2u+WBRyfOVOOLdw1k5b/zqu+Uzvv0Y7dklW1mjXt89/ZHGi1jMIbp\nn31sqbzffv7JFyLirEaPOVVaFdT3AEtrXi9JaQ175Qnl3ogRb1z6bFb+2976htJ551z3YFbZh57L\nGx01PHQ4K7+ZlSTo/flY9VarFw/76qQ3pFVB/TZguaRlFJVcC/ybZhS85PhjePbQkdL5X3nc3Kzy\nV//SodJ5r3n697LKXnLnD7PyP/XP38jKb2blCNGn3qk63DbgUklbKLpXfhYReyX9lBbEyZYE9YgY\nlHQpcAPQC2yKiJ3NKn92X/lqz58za+JMNfpPOqp83t+Cbz54sHT+bw2szKrLsc/tzcp/4Ik7svKb\ndYIZM4+e8mMK6KE5LfU0dPJsYIGk3cCfUrTCiYgrgespRr7sAp4D/iBta0mcbFmfekRcT/HLNNXQ\ncN6Fz5kz8j6Nj55Z/pTcuvcApx5bvvyD8/L+iE44/syJMyVP/XhzVtlmnWLmnJPactxmdb9ExIUT\nbA/gkjrbmh4np900Ab09eaMwZ/bm5T92dl/pvK8+fnZW2QsWPJeV/7HZi0vnPflneRfNf7bv+1n5\nzcrq7ZuTlX/WCa+dOFOTCTWtpd5ppl1QHxrOm18n90Ngzozyp+TEo/K6dk48Ju+i7SnHD5XO++BP\nz8kqe86BvIu8EeXrcvj58YbsWieYM29JVv7evnnl886cn1X2wMLTs/I3S6+qOUvKtAvqrdbTU/7T\n+9jZM7PKPiGz63BeRoNn36vyPuxm731jXmWGy19APmow78PLQ0MblxukZy/KawQM9ZW/1jTYm9fY\nYXHz72qfiIBet9RttNw+ubmZf+tHz8z4gJmb94/x3NxFWfk1XL6l3jNU/gMAYO78vBu+Dj1b/vkF\ng4fLX8iezmbOPTUr/9PHnZKV/3Bf+Vbt4cyosmTeYFb+ZkybWIx+cUu9I/T2KPtiaavkjMIBWDgv\n74/ouFnl8z+zIO8f46ZleV+RhwZb16pZeNRvZOWf99wTpfMODtyeVfaBgQkfZ/kSOS3knhnlW7sA\nM2YtyMr/zKlvLp2371/k/Q/N6yv/95X5BZZXZV4nvTcve13uU7eXOTw0xJyMwD5vZl5Qz8l/1ikz\n+clT5cfvn5TRXw9wJDOoD2X0Bu3vyfsK03cgo6th4RIWPVp+lFj5nuNC7+zyd6tr1glZZQ/NybsT\n/rmTy79Hrz4ur7su8/IRx2SMITjlmKlvMbv7pYN0SisdyArorZYT0FstJ6C3Wk5An872vSrvm1cr\n5QT0dnFQ7yBDmVMF97TwVuDcPvUTZueNmZ+T0Y+56Oi887J4ft6HwOGh8uVnDlDimDl53xqePa78\neT/w/Kuzyp6bOWb6+Tnlp60YOC6vX0JHlT/np5+Sdw5PW5D3t3vs7PL5T5iT1/I+6ajyw4ibyd0v\nZmYVIflCaddo5SQ/Jx2V11LLvXEqx7LMC6s5XSqH8xqNPHs471tGThfcXcN57+dTg3n93rNnlq/L\niuPyznlOP/YrT8j7PV9xbF7reOHc8vlPnpvX/zJzhvvUm8lB3cy60pRN5zXFHNTNrOsooCfcUjcz\nqwx3v3SI3D7v3ozb/ov85fv3cstefEzeREc5I33m9OV9mXz+SN4QlZy6DGaOfjmYWZfejNM+J+Om\nGYCM+dyyvfK4vMJnZvyipxydd73m5KPz+r0Xzit/49TCeXnPMGiHok+9mqZdUDcza5QQfW6pm5lV\nh7tfzMwqwt0vZmYVU81bjxoM6pIeBg4AQ8BgRJwl6Xjgr4HTgIeBCyLiqcaqOXm5j7PLufiZ+wCO\nBXNbd6H08GDmHT+Zci5Q507lcPBw3sXMORnv6aKjX8gq+6TMmasOZ9yVdeqxeRcQc2YBzb1RbX7m\nDULHH1U+/9Ch57PKHj4y9fMWNbOlLuk84NOpyKsi4opR2/8D8O70cgbwi8CJEfHkWDG00fo048Pq\nLRHRX1OZDcD2iFgObE+vzcw6hgR9JZfxy1Ev8FngfGAFcKGkFbV5IuJ/pBjZD1wG/GNE1D4ebHQM\nbUgrvoGsAUaegrwZeGcLjmFmNmkjLfUyywRWAbsi4sGIOAxsoYiB9VwIfLmBqk+o0aAewE2Sbpe0\nPqUtjIi9af1xYGGDxzAza7oelVsmsBh4tOb17pT2MpKOAs4DvlqTPFYMbUijF0rfFBF7JJ0E3Cjp\nvtqNERGSxuxgTb/AeoClS/Ker2hm1ojMPvUFknbUvN4YERsncdjfAP5pVNfLy2JoRDT00N6GgnpE\n7Ek/90u6luKryD5JiyJir6RF1HmkYDopGwFW9vd3zpMvzKwr9PSUDjtPjNPfvQdYWvN6SUoby1pG\ndb3UiaENBfVJd79Imitp3sg68KvA3cA2YF3Ktg64rpEKmpm1QpO6X24DlktaJmkmReDeNjqTpGOB\nN1MTD8eJoQ1ppKW+ELhWxVC3GcCXIuKbkm4Dtkq6CHgEuKDRSpqZNZMU9PU23kEQEYOSLgVuoOjR\n2RQROyVdnLZfmbK+C/i7iHi2ZvcxY2ijdZp0UI+IB4Ezx0gfAM5ppFLjyR0b3tebNxo1Z7xvX+bY\n4Jxxx7mGMp8hl/t81Zy6D2eOU3/+SOY49Yy6nJZZ9qJjj87K/0JG+Scdk1d2znjvnr68Cb0Gn3t2\n4kw1nn3skaz8OeLI4ZaVXY8o1QovJSKuB64flXblqNdXA1ePShszhjbKd5SaWfdRVp/6tOKgbmZd\nR0Dml/5pw0HdzLqSW+pmZhUhuaVuZlYdghl9bqmbmVWC+9TNzKpE0FPRp2Q4qJtZV5Jb6p0iIOPZ\ngsfMmc2zh8rf3DB3Vt5NHDMzb27qy3xoR46cB3zMz3xgx+y+vqz8h4da99CO3HOe47l9j06cqcb8\nuceWznvk4DMcefZnpfMPZd4g1DMr7z2NwfL/F7kPvojM918tfE/HPJ5b6p0k7zawnICea7oG9FZr\nZUCfznICeq5WBvRcnR7Qi4NC70RPwJimpmFQNzNrjHD3i5lZdQjU65a6mVllOKibmVWFRE8HXYdq\nJgd1M+s6wi11M7PqEPT0VXNMo4O6mXUfCWU+5Ga6cFA3s+4jHNTNzKpCCFV0Rq8JfytJmyTtl3R3\nTdrxkm6U9ED6Ob9m22WSdkm6X9K5raq4mdmkpZZ6mWXCoqTzUrzbJWnDGNvPlvQzSXek5SNl952M\nMi31q4HPANfUpG0AtkfEFakiG4APSVoBrAXOAE4BbpJ0ekS07b7x3Nvncx6wnP0Q7BZOE5Ar9w7p\nnLk/+jIfgpw7r0jOo6RjKO+B3IMHn8nKnyN3Lpfc85IjhvP+JXtmlH9Ph8mbgqA3c4qDZmlGS11S\nL/BZ4O3AbuA2Sdsi4p5RWb8VEb8+yX2zTPhbRcQtwJOjktcAm9P6ZuCdNelbIuJQRDwE7AJWNVJB\nM7Omk1DfjFLLBFYBuyLiwYg4DGyhiINlNLJvXZP9qFoYEXvT+uPAwrS+GKid5m53SnsZSesl7ZC0\nY2BgYJLVMDObhDT6pWT3y4KRWJWW9TUllY15b5B0p6RvSDojc98sDV8ojYiQlP1cqIjYCGwEWNnf\nX83nSplZRyom9CrdHfpERJzVwOF+AJwaEQclrQb+BljeQHnjmmxLfZ+kRQDp5/6UvgdYWpNvSUoz\nM+sceS318UwY8yLimYg4mNavB/okLSiz72RMNqhvA9al9XXAdTXpayXNkrSM4tPo1saqaGbWfOrp\nKbVM4DZguaRlkmZSDBTZ9pLjSCdLUlpfRRF3B8rsOxkTdr9I+jJwNkW/0m7gT4ErgK2SLgIeAS4A\niIidkrYC91AMUriknSNfzMzGJKHMp3mNJSIGJV0K3AD0AptSHLw4bb8S+G3g30kaBJ4H1kZEAGPu\n22idJgzqEXFhnU3n1Ml/OXB5I5UyM2spKadPfVypS+X6UWlX1qx/hmJYeKl9G+U7Ss2s6xSzNFbz\njlIHdTPrPk1sqXcaB3Uz604O6mZmFeGpd83MqkRZ89lMJ9MuqA8N503Q1JM5ac/MFp6Rmb15X/dy\nftfcycVaOVnU8JG8CZ2GDr2QlT+nLzS3LrkTXeVOGNYqyvzbys2f01XRm1l2z6zZeXVpBgFuqZuZ\nVUMxn7r71M3MqsGjX8zMqqWqTz5yUDez7iNB7nWFacJB3cy6jzz6xcysWjz6xcysGuQLpWZm1eKg\nbmZWGfLcL2ZmlSHR0+cLpWZm1SCBx6mbmVVH9vw308SEH1WSNknaL+numrSPStoj6Y60rK7Zdpmk\nXZLul3RuqypuZjZZI6NfyiwlyjovxbtdkjaMsf3dku6UdJek70g6s2bbwyn9Dkk7mvG7lWmpX03x\nfL1rRqV/KiI+XpsgaQXFE7HPAE4BbpJ0ejsfPt1bPMS7fP6WfnpHVu6cmRezZxfMzJ9VdubMhbkz\nKeb0heb+nq28IaWVMymqk26kybwA2a5RKM04rqRe4LPA24HdwG2StkXEPTXZHgLeHBFPSTof2Ai8\nrmb7WyLiiYYrk0wYNSLiFuDJkuWtAbZExKGIeAjYBaxqoH5mZs2nNPqlzDK+VcCuiHgwIg4DWyji\n4Isi4jsR8VR6+T1gSdN/nxqNXCl4X/pKsUnS/JS2GHi0Js/ulPYyktZL2iFpx8DAQAPVMDPLlEa/\nlFmABSOxKi3ra0oqHfOSi4Bv1LwOih6N20eVO2mTvVD6eeBjqUIfAz4B/GFOARGxkeJrCCv7+/P6\nJczMGpI1Tv2JiDir4SNKb6EI6m+qSX5TROyRdBJwo6T7Uu/IpE2qpR4R+yJiKCKGgb/k510se4Cl\nNVmXpDQzs84hUG9PqWUCpWKepH8JXAWsiYgXuyYiYk/6uR+4liZ0V08qqEtaVPPyXcDIyJhtwFpJ\nsyQtA5YDtzZWRTOz5hp58lETRr/cBiyXtEzSTIqBIttecizpVOBrwHsi4sc16XMlzRtZB36Vn8fS\nSZuw+0XSl4GzKfqVdgN/CpwtqZ+i++Vh4L0AEbFT0lbgHmAQuKSdI1/MzMYkmjJNQEQMSroUuAHo\nBTalOHhx2n4l8BHgBOBzKkbjDabunIXAtSltBvCliPhmo3WaMKhHxIVjJH9hnPyXA5c3Uikzs5ZS\nT9OmCYiI64HrR6VdWbP+R8AfjbHfg8CZo9Mb5TtKzaw7eUIvM7Oq8HzqZmbVIVV27hcHdTPrOsIP\nyTAzqw5PvWtmViF+SMb0lTPTYau1dGbEFpadK7cunfQ1WJn/6CXuOKyRV3bOWenp68squ5O0Lbh2\n0N9dM1U+qJuZvYwvlJqZVYmHNJqZVYbUWd1+zeSgbmZdyN0vZmbVIXXWIwCbyEHdzLqPckcuTR8O\n6mbWhXyh1MysMuSgbmZWIcIXSs3MKkOixxdKzcyqQpW9UDrhbyVpqaSbJd0jaaek96f04yXdKOmB\n9HN+zT6XSdol6X5J57byFzAzyzVy81ETHjyNpPNSrNslacMY2yXpL9L2OyW9tuy+k1Hmo2oQ+GBE\nrABeD1wiaQWwAdgeEcuB7ek1adta4AzgPIqHrVaz88rMpqni5qMyy7ilFLHts8D5wArgwhQDa50P\nLE/LeuDzGftmK/Pg6b3A3rR+QNK9wGJgDXB2yrYZ+AfgQyl9S0QcAh6StAtYBXy30crCZGZdjGYc\n1jLkjirIvWCVU36rZwDM+l0zOzuHM7oHOmka2ez3vx2jUNS00S+rgF3pIdJI2kIRA++pybMGuCYi\nAviepOMkLQJOK7FvtqwIKek0YCXwfWBhCvgAjwML0/pi4NGa3XantNFlrZe0Q9KOgYGBzGqbmTVG\nPT2lFmDBSKxKy/qaYsrEu3p5SsXKXKXbDpKOBr4KfCAinpH04raICElZTeKI2AhsBFjZ3+/mtJlN\nqaHh0mHniYg4q5V1aaZSQV1SH0VA/6uI+FpK3idpUUTsTV8l9qf0PcDSmt2XpDQzs44QwFA0pS1Z\nJt7Vy9NXYt9sZUa/CPgCcG9EfLJm0zZgXVpfB1xXk75W0ixJyyguDtzaaEXNzJomguHh4VLLBG4D\nlktaJmkmxSCRbaPybAN+L42CeT3ws9R1XWbfbGVa6m8E3gPcJemOlPYnwBXAVkkXAY8AFwBExE5J\nWyk6+weBSyKic561ZmZdL8jqfqlfTsSgpEuBGyieQLgpxcCL0/YrgeuB1cAu4DngD8bbt9E6lRn9\n8m1AdTafU2efy4HLG6iXmVnLRMDQxK3wkmXF9RSBuzbtypr1AC4pu2+jfEepmXWhYLgJLfVO5KBu\nZl0nAg4PVbNX2EHdzLpOEE3rfuk0Dupm1pWacaG0Ezmom1nXiYDh5oxT7zgO6mbWldz9YmZWEcMR\nHB5yUDczqwz3qXeMar4RU62THrrbQ+dMG9tJU9jmnJdOej87qS71FHeUuqVuZlYNEc2a0KvjOKib\nWdcJ8B2lZmZV4pa6mVlFFKNfPE2AmVllePSLmVlFFFPvOqibmVWG+9TNzCqiWU8+6kQO6mbWdYLq\njlMv8+DppZJulnSPpJ2S3p/SPyppj6Q70rK6Zp/LJO2SdL+kc1v5C5iZ5SoekjFcammEpOMl3Sjp\ngfRz/hh5xoyxaVvdOFtPmZb6IPDBiPiBpHnA7ZJuTNs+FREfH1XBFRRPxT4DOAW4SdLpfvi0mXWK\nKex+2QBsj4grJG1Irz80Ks+YMTYi7knbXxZnxzNhSz0i9kbED9L6AeBeYPE4u6wBtkTEoYh4iOIJ\n2qvKVsjMrOWiuFBaZmnQGmBzWt8MvPNlVcmPseOaMKjXknQasBL4fkp6n6Q7JW2q+VqxGHi0Zrfd\nY1VQ0npJOyTtGBgYyK64mdlkjfSplwzqC0ZiVVrWZxxqYUTsTeuPAwvHyzxGjIWx42xdpS+USjoa\n+CrwgYh4RtLngY9RfJP5GPAJ4A/LlhcRG4GNACv7+6t5xWIU9WR9hhIZs8hNh5nx6smtewyX78lT\nb+Y5H+qc8xg9Gb9nB73/PX197a7ChAIYLN/98kREnFVvo6SbgJPH2PThlxwzIiTVPejoGJuSs+Ns\nqaAuqS8d7K8i4mupgvtqtv8l8PX0cg+wtGb3JSnNzKwjFBdKm9OWjIi31dsmaZ+kRRGxV9IiYH+d\nfC+LsansenG2rjKjXwR8Abg3Ij5Zk76oJtu7gLvT+jZgraRZkpYBy4FbJzqOmdlUmqI+9W3AurS+\nDrhudIZ6MTZtqxdn6yrTUn8j8B7gLkl3pLQ/AS6U1E/xteBh4L0AEbFT0lbgHoqrupd45IuZdZIp\nHP1yBbBV0kXAI8AFAJJOAa6KiNXUibERcT3w52PF2fFMGNQj4tuAxth0/Tj7XA5cPlHZZmbtEFP0\nkIyIGADOGSP9MWB1Wq8XY4mI9+Qe03eUmllXGqzm0+wc1M2s+wSe0MvMrDKaOfql0ziom1nXKVrq\n7a5Faziom1nXybz5aFpxUDez7hNuqZuZVYYfkmFmViHFhdJ216I1HNTNrOsE4Za6mVmVuE/dplzO\nVL050/QWZXfOVK251Fu+7jGU9x27ldMA58qdNriVcs5LzvvTLhHQ4JPqOpaDupl1JbfUzcwqohj9\n0u5atIaDupl1nQg4UtGmuoO6mXUdt9TNzKrEd5SamVWHW+pmZhWTOQp42ijz4OnZkm6V9CNJOyX9\nl5R+vKQbJT2Qfs6v2ecySbsk3S/p3Fb+AmZmuSJ1v5RZGjFenByV72FJd0m6Q9KO3P1rlbm74RDw\n1og4E+gHzpP0emADsD0ilgPb02skrQDWAmcA5wGfk9T5dyOYWdcI4MhguaVBY8bJOt4SEf0RcdYk\n9wdKBPUoHEwv+9ISwBpgc0rfDLwzra8BtkTEoYh4CNgFrJroOGZmU2XkjtIyS4PqxcmW7V/qPmRJ\nvZLuAPYDN0bE94GFEbE3ZXkcWJjWFwOP1uy+O6WNLnO9pB2SdgwMDJSphplZ02R0vywYiVVpWZ9x\nmHpxcrQAbpJ0+6jyy+7/olIXSiNiCOiXdBxwraTXjNoekrJ6nyJiI7ARYGV/f0UHF5lZJwqyLpQ+\nMapL5CUk3QScPMamD7/kmOPHyTdFxB5JJwE3SrovIm7J2P9FWaNfIuJpSTdT9JXvk7QoIvZKWkTR\nigfYAyyt2W1JSjMz6wxNnNArIt5Wb5ukenFydBl70s/9kq6l6LK+hfpxtq4yo19OTC10JM0B3g7c\nB2wD1qVs64Dr0vo2YK2kWZKWAcuBWyc6jpnZVAngyFC5pUH14uSLJM2VNG9kHfhV4O6y+49WpqW+\nCNicRrD0AFsj4uuSvgtslXQR8AhwAUBE7JS0FbgHGAQuSd031kI50/RC/lS9OVo9rW/OdLfTYRrY\nqpkO0zpP4dS7VzBGnJR0CnBVRKym6Ce/VhIUMflLEfHN8fYfz4RBPSLuBFaOkT4AnFNnn8uByycq\n28ysXabi5qN6cTIiHgNWp/UHgTNz9h+P7yg1s67jh2SYmVWMJ/QyM6uIYkij2l2NlnBQN7OuEwGH\nG58CoCM5qJtZV6rqLI0O6mbWdSLEkLtfzMyqwQ/JMDOrknD3i5lZpXj0i5lZRUTAoEe/mJlVR7il\nbmZWEQG4T92qJHdWxxytnAESWjsLYM4MkOBZIMfSyr+tpnJQNzOrjh4HdTOzalDAjCPtrkVrOKib\nWfcJ6HVL3cysGgT0Dldz7l0HdTPrOgroreiE6mUePD1b0q2SfiRpp6T/ktI/KmmPpDvSsrpmn8sk\n7ZJ0v6RzW/kLmJnlC3qHh0stjZB0vKQbJT2Qfs4fI8+ra+LoHZKekfSBtK1unK2nTEv9EPDWiDgo\nqQ/4tqRvpG2fioiPj6rgCmAtcAZwCnCTpNP98Gkz6xQKGg7YJW0AtkfEFZI2pNcfqs0QEfcD/QCS\neoE9wLU1WV4WZ8czYUs9CgfTy760jPe9ZQ2wJSIORcRDwC5gVdkKmZm1miKYMXik1NKgNcDmtL4Z\neOcE+c8BfhIRj0z2gKXuEpDUK+kOYD9wY0R8P216n6Q7JW2q+VqxGHi0ZvfdKc3MrEMEPcNDpZYG\nLYyIvWn9cWDhBPnXAl8elTZWnK2rVFCPiKGI6AeWAKskvQb4PPBKiq8Ne4FPlClrhKT1knZI2jEw\nMJCzq5lZgwLFYKkFWDASq9KyvrYkSTdJunuMZc1LjhgRjNPLIWkm8A7gKzXJ2XE2a/RLRDwt6Wbg\nvNo+Hkl/CXw9vdwDLK3ZbUlKG13WRmAjwMr+/mpehjazzhSg8q3wJyLirLpFRbyt3jZJ+yQtioi9\nkhZR9HbUcz7wg4jYV1P2i+uj4mxdZUa/nCjpuLQ+B3g7cF+q4Ih3AXen9W3AWkmzJC0DlgO3TnQc\nM7OpIgIND5ZaGrQNWJfW1wHXjZP3QkZ1vYwTZ+sq01JfBGxOV2V7gK0R8XVJX5TUT/F14mHgvQAR\nsVPSVuAeYBC4xCNfzKyzBJqasHQFsFXSRcAjwAUAkk4BroqI1en1XIoG83tH7f/nY8XZ8UwY1CPi\nTmDlGOnvGWefy4HLJyrbzKwtImDohSk4TAxQjGgZnf4YsLrm9bPACWPkqxtn6/EdpdZ0nTT1au40\nwK2c1rd7TIeHTwRUtAPBQd3MulBA4/3lHclB3cy6TwSEg7qZWXW4+8XMrCqGiSm4UNoODupm1n0C\nt9TNzKoiCMIXSs3MqsJDGs3MKiQIj34xM6uIgGh8Wt2O5KBuZl1omBg+1O5KtISDupl1parOM+ig\nbmZdJ8KjX8zMKiTcUjczqxQH9U4xHab1rMdP7ZtqnTQNcK7caYMtg7tfzMyqJBgePtzuSrSEg7qZ\ndZ1imgB3v5iZVUNU90Jp6Q5HSb2Sfijp6+n18ZJulPRA+jm/Ju9lknZJul/Sua2ouJlZIyKGSi2N\nkPQ7knZKGpZ01jj5zkvxcpekDTXpdeNsPTlXkd4P3FvzegOwPSKWA9vTayStANYCZwDnAZ+T5Ac/\nmlkHKbpfyiwNuhv4TeCWehlSfPwscD6wArgwxVGoE2fHUyqoS1oC/BpwVU3yGmBzWt8MvLMmfUtE\nHIqIh4BdwKoyxzEzmwoRwfDQ4VJLg8e5NyLunyDbKmBXRDwYEYeBLRRxFOrH2brK9qn/T+A/AvNq\n0hZGxN7pNEiwAAAF4ElEQVS0/jiwMK0vBr5Xk293SnsJSeuB9enlwWMXnDjRL94sC4AnpuhYZXRS\nfTqpLtBZ9emkukB31+cVjRYweOTADY/v3r6gZPbZknbUvN4YERsbrUONxcCjNa93A69L6/XibF0T\nBnVJvw7sj4jbJZ09Vp6ICElZg7DTSWnmiSlF0o6IqNu3NdU6qT6dVBforPp0Ul3A9WlURJzXrLIk\n3QScPMamD0fEdc06Ttk4W6al/kbgHZJWA7OBYyT9H2CfpEURsVfSImB/yr8HWFqz/5KUZmZWORHx\ntgaLGC9m1ouzdU3Ypx4Rl0XEkog4jeIC6N9HxO8C24B1Kds6YOQTaRuwVtIsScuA5cCtE/9eZmZd\n6TZguaRlkmZSxNltaVu9OFtXI/dQXwG8XdIDwNvSayJiJ7AVuAf4JnBJdNaA0Cnv8plAJ9Wnk+oC\nnVWfTqoLuD7TgqR3SdoN/Arwt5JuSOmnSLoeIIpHMF0K3EAxwnBriqNQJ86Oe8wIz0diZlYV03e2\nIzMzexkHdTOzCun4oC5pqaSbJd2Tbrd9f0of8/ZZSSek/AclfWZUWf+QbsW9Iy0n1TnmL0u6K92y\n+xeSlNIvlnSfpAOSnkvb21mfkXPzqKSQ9PE21uX3JQ2kc/OCpD0dcG7ulnQo1ef2NtblU+lv90Cq\nz1Cbz82pkr5T81490ub6vELSdkl3prKWjLW/lRQRHb0Ai4DXpvV5wI8pbqX9c2BDSt8A/Flanwu8\nCbgY+Myosv4BOKvEMW8FXk8xefs3gPNT+jEj9QHeAdzY5vosSmXfkvI80sa6/D6wqYPeqzcA9wHz\nU11+0q661P4dA+8DrmnzudkIfCjVZ0X6u2lnfb4CrEvrbwW+OBWxpapLx7fUI2JvRPwgrR+guDq8\nmDq3z0bEsxHxbeCFyRxPxVjQYyLie1H8lV1TU/YzNfWZCwy2uT57gd8G/gx4Dni4XXVJnuuU9yr9\n/HhEPJXqcncb61L7d3wh8EXae24iHeMHwLEUY6LbWZ8VwN+n9Zv5+S3yNgkdH9RrSToNWAl8n0nc\nPptsTl8R//PI179RFlPcpjviJdMcSLpE0k8oWjR/1s76SHotsDQi/pbixrBXt6suyW+lr9f/V9Kv\n0N736nTgdEn/JOmHFEPK2nlukPQKYBnFt4Z2npuPAr+rYqjd9cB/a3N9fkQx6RXAu4B5kk4oeVwb\nZdoEdUlHA18FPhARz9RuS5/8ZcZmvjsizgD+VVrek1uPiPhsRLwK+Eg76yOpB/gk8MF0bs4APtHG\nc/P/gNMi4pcouoNuoL3v1QyKG99+La33MOrvfSr/bpK1FDePfIX2npsLgasjYgnwW6k+f9zG+vx7\n4M3pw/fNFN8cOunelmllWgR1SX0UAfSvIuJrKXlf+ko38tVuwttnI2JP+nkA+BKwSsU88SMXeP4r\nxR9U7YWal01zkOqzFjiqjfWZB7yGoj/zpxQt9T9WMWfzlJ+biBiIiEPp3Pwa0Nfm92o38LfAXwP/\nm6I1uLxNdRmxlqJF3O6/44uArem9+hBF19232lWfiHgsIn4zIlYCH05pT090XBtbxwf19FXuC8C9\nEfHJmk1Zt89KmiFpQVrvA34duDsihiKiPy0fSV89n5H0+nTs3xspW9Lymvq8AOysOcSU1icifgac\nSNEq/l/APwHviIgdbTo3i2rOzWGKINqWc5OK+RvgMoq+4msoumMebFNdkPQLFB8q32333zHwz8A5\nFO/V48AhioZBW+ojaUH65gnFe7ZpvGPaBKIDrtaOt1BccQ/gTuCOtKwGTqCYNP4B4Cbg+Jp9Hgae\nBA5StNhWUFzYvD2VsxP4NNBb55hnUVxY+wnwGX5+5+2ngYdSfQ5SjK5oZ31qz81B4P421uW/jzo3\n93bIuXkBeD4dpy11Sds20Tl/xyvS/pHOzU/aXJ/fTsf7McUzG2a1O+5M58XTBJiZVUjHd7+YmVl5\nDupmZhXioG5mViEO6mZmFeKgbmZWIQ7qZmYV4qBuZlYh/x8ZrtBZAN+zfgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "#plt.pcolormesh([t0+dt.timedelta(10*ii) for ii in range(0,30)],dept[0,:],np.transpose(siplot[:30,:]),cmap=cm1,vmin=-1e9,vmax=1e9)\n", "plt.pcolormesh([t0+dt.timedelta(10*ii) for ii in range(0,nlen)],dept[0,:],np.transpose(Nplot),cmap=cm1,vmin=-1e8,vmax=1e8)\n", "plt.ylim(400,0)\n", "plt.colorbar()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:python36]", "language": "python", "name": "conda-env-python36-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }