{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import netCDF4 as nc\n", "import datetime as dt\n", "import subprocess\n", "import requests\n", "import matplotlib.pyplot as plt\n", "import cmocean\n", "import numpy as np\n", "import os\n", "import glob\n", "import dateutil as dutil\n", "from salishsea_tools import viz_tools\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with nc.Dataset('/ocean/eolson/MEOPAR/NEMO-forcing/grid/mesh_mask201702_noLPE.nc') as fm:\n", " tmask=np.copy(fm.variables['tmask'])\n", " umask=np.copy(fm.variables['umask'])\n", " vmask=np.copy(fm.variables['vmask'])\n", " navlon=np.copy(fm.variables['nav_lon'])\n", " navlat=np.copy(fm.variables['nav_lat'])\n", " e3t_0=np.copy(fm.variables['e3t_0'])\n", " e3u_0=np.copy(fm.variables['e3u_0'])\n", " e3v_0=np.copy(fm.variables['e3v_0'])\n", " e1t=np.copy(fm.variables['e1t'])\n", " e2t=np.copy(fm.variables['e2t'])\n", " e1v=np.copy(fm.variables['e1v'])\n", " e2u=np.copy(fm.variables['e2u'])\n", " A=fm.variables['e1t'][0,:,:]*fm.variables['e2t'][0,:,:]*tmask[0,0,:,:]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "t0=dt.datetime(2015,1,11) # 1st start date of run\n", "#te=dt.datetime(2016,12,1)# last start date of runfnum=18\n", "stm=np.shape(tmask)\n", "SiN=2.0\n", "#nlen=36\n", "nlen=6\n", "dlist=[t0+dt.timedelta(days=ii*10) for ii in range(0,nlen)]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_20150111_20150311_ptrc_T_20150302-20150311.nc'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ftest=nc.Dataset(glob.glob('/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150302-*.nc')[0])\n", "fZ5=nc.Dataset(glob.glob('/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Z5/SalishSea_1h_*_ptrc_T_20150302-*.nc')[0])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150111-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150121-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150131-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150210-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150220-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150302-*.nc\n" ] } ], "source": [ "tlist=dlist\n", "SiGlobalTot=dict()\n", "SiTot=dict()\n", "BSiTot=dict()\n", "DiatTot=dict()\n", "changeSiGlobalTot=dict()\n", "for idir in (sdir1,):\n", " fformat1='%d%b%y/'\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/'):\n", " fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " #elif idir==sdir0:\n", " # fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " # fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_grid_T.nc'\n", " elif idir==sdir1:\n", " fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc'\n", " sumSi=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumBSi=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumDiat=np.zeros((len(tlist),stm[2],stm[3]))\n", " ind=-1\n", " for idt0 in tlist:\n", " ind=ind+1\n", " cdir=idt0.strftime(fformat1).lower()\n", " iffT=idt0.strftime(fformatT)\n", " iffP=idt0.strftime(fformatP)\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/'):\n", " sffT=idir+iffT\n", " sffP=idir+iffP\n", " elif idir.startswith('/results/'):\n", " sffT=idir+cdir+iffT\n", " sffP=idir+cdir+iffP\n", " f=nc.Dataset(glob.glob(sffT)[0])\n", " print(sffT)\n", " fP=nc.Dataset(glob.glob(sffP)[0])\n", " #if idir==sdir0:\n", " # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0\n", " if idir==sdir1:\n", " e3t=fP.variables['e3t'][:2,:,:,:]\n", " Vol=A*e3t\n", " sumSi[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['silicon'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumBSi[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['biogenic_silicon'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumDiat[ind,:,:]=SiN*1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " f.close()\n", " fP.close()\n", " SiGlobalTot[idir]=np.sum(np.sum(sumSi+sumBSi+sumDiat,2),1)\n", " SiTot[idir]=np.sum(np.sum(sumSi,2),1)\n", " BSiTot[idir]=np.sum(np.sum(sumBSi,2),1)\n", " DiatTot[idir]=np.sum(np.sum(sumDiat,2),1)\n", " changeSiGlobalTot[idir]=[SiGlobalTot[idir][ii+1]-SiGlobalTot[idir][ii] for ii in range(0,len(tlist)-1)]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150302-*.nc'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sffT" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAFICAYAAABHtRnVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XfO5x/HPlySIWQYiVCIiklLUoYYqgg46xFBuqyFR\nbaLU0NZVaVV79bpRQy8atCkVMzVdippiVlInREapoCqJITXPkeS5f/zWliM5wz45Z++1h+/79Vqv\nPa2z1rMj8py1nt/v+SkiMDMzK9ZKeQdgZmbVxYnDzMzaxYnDzMzaxYnDzMzaxYnDzMzaxYnDzMza\npWYTh6Q/SXpF0vQi9t1E0kRJUyXdJ2mjcsRoZlaNajZxABOALxe575nApRHxGeAUYGypgjIzq3Y1\nmzgi4gHgtabvSRog6XZJkyU9KGmL7KMhwD3Z83uBYWUM1cysqtRs4mjBeODoiNgOOB44P3v/SWD/\n7Pl+wJqSeuQQn5lZxeuSdwDlImkNYGfgWkmFt1fJHo8HxkkaCTwAzAMWlztGM7NqUDeJg3R19UZE\nbLPsBxExn+yKI0swB0TEG2WOz8ysKtTNraqIeAt4TtKBAEq2zp73lFT4sxgD/CmnMM3MKl7NJg5J\nVwGPAIMkzZV0OPAd4HBJTwIzWFoE3x2YLekfwPrAqTmEbGZWFeS26mZm1h41e8VhZmal4cRhZmbt\nUpOjqnr27Bn9+vXLOwwzs6oxefLkf0dEr2L2rcnE0a9fPxobG/MOw8ysakh6vth9favKzMzaxYnD\nzMzaxYnDzMzaxYnDzMzaxYnDzMzaxYnDzMzaxYnDzMzaJdfEIenLkmZLmiPpxGY+l6Rzs8+nSvps\nHnGamdlSuSUOSSsD5wFfIS3d+m1JQ5bZ7SvAwGwbBVxQ1iDNzGw5eV5x7ADMiYhnI2IhcDXLr/U9\nDLg0kkeBdST1KVVAF10Et94Kzz0HS5aU6ixmZtUtz5YjfYEXmryeC3yuiH36Ai8uezBJo0hXJXzq\nU59qdzCLFsEPfgAffZRer7YabLEFDB4MQ4YsfRwwALp2bffhzcxqRs30qoqI8cB4gIaGhnYvMtKl\nC7z0EsyalbaZM9PjQw/BlVd+cr+BAz+ZTAYPhkGDUrIxM6t1eSaOecDGTV5vlL3X3n06zXrrwS67\npK2pd96B2bOXJpOZM2HaNLjxxqW3tCTo33/5hDJ4MKy1VqkiNjMrvzwTx2PAQEn9ScngW8DBy+xz\nM/BDSVeTbmO9GRHL3aYqtTXWgO22S1tTH34ITz+9NKEUksqdd8LChUv369t3+VtegwdDr6IaGJuZ\nVZbcEkdELJL0Q+AOYGXgTxExQ9IR2ee/B24D9gHmAO8Bh+UVb3NWWQW23DJtTS1alArsTW95zZyZ\niu/vvrt0v549l786GTIkJRqpvN/FzKxYNbnmeENDQ1TiehwRMHfuJ5NJ4fG115but+aan0wkhcd+\n/WDllXML38xqmKTJEdFQ1L5OHPmLgAULlk8ms2bB/PlL91tllVSEX/aW18CB0K1bfvGbWfVrT+Ko\nmVFV1UyC3r3Ttttun/zsjTfgqac+WUeZNAmuuSYlHEhXIZtttnxC2WIL6N69/N/HzGqbE0eFW2cd\n2HHHtDX13ntppFfTq5NZs+Avf0k1loJ+/ZovzK+zTlm/hpnVECeOKtW9O2y7bdqaWrgQnnlm+Vte\n994LH3ywdL8+fVIC2WorOOmkVKg3MyuGE0eN6dZtaWG9qcWL4fnnlx86PG5cGlZ8gbuAmVmRXByv\ncyNGpImM8+en+SpmVp/aUxz3ehx1bvRoePvtVGw3MyuGE0ed22kn+PSn4Q9/yDsSM6sWThx1ToJR\no+Cxx+CJJ/KOxsyqgROHccghsOqq8Mc/5h2JmVUDJw5j3XXhoIPg8stTJ2Azs9Y4cRiQble5SG5m\nxXDiMAB23jkVycePzzsSM6t0ThwGLC2S//3vMGVK3tGYWSVz4rCPFYrkvuows9Y4cdjHmhbJmy44\nZWbWlBOHfYKL5GbWFicO+4Sdd06t1z2T3Mxa4sRhnyCl/lUukptZS5w4bDnDh3smuZm1zInDlrPe\nenDggS6Sm1nznDisWaNHw1tvuUhuZsvLJXFIWk/SXZKezh7XbWafjSXdK2mmpBmSjs0j1npVKJJ7\nToeZLSuvK44TgYkRMRCYmL1e1iLgJxExBNgROErSkDLGWNcKM8knTYInn8w7GjOrJHkljmHAJdnz\nS4B9l90hIl6MiMez528Ds4C+ZYvQPJPczJqVV+JYPyJezJ6/BKzf2s6S+gHbApNKG5Y15SK5mTWn\nZIlD0t2SpjezDWu6X0QEEK0cZw3geuC4iHirlf1GSWqU1LhgwYJO+x71btQoF8nN7JOU/t0u80ml\n2cDuEfGipD7AfRExqJn9ugK3AHdExG+LPX5DQ0M0NjZ2XsB1LCK1W19rLXj00byjMbNSkTQ5IhqK\n2TevW1U3AyOy5yOAm5bdQZKAi4BZ7Uka1rkKM8ldJDezgrwSx2nA3pKeBvbKXiNpQ0m3ZfvsAhwC\nDJU0Jdv2ySfc+nbIIbDKKi6Sm1mSy62qUvOtqs53yCFw880wfz6svnre0ZhZZ6uGW1VWZQozyf/8\n57wjMbO8OXFYUXbZBQYPdrt1M3PisCJ5JrmZFThxWNEOPTQVyd1u3ay+OXFY0QozyS+7zDPJzeqZ\nE4e1S2EmuYvkZvXLicPa5fOfT0Vyz+kwq19OHNYuhSL5o4/C1Kl5R2NmeXDisHYrFMl91WFWn5w4\nrN2aFsnfey/vaMys3Jw4bIW4SG5Wv5w4bIUUiuSeSW5Wf5w4bIW4SG5Wv5w4bIUV2q17JrlZfXHi\nsBXWowd885sukpvVGycO65BRo+DNN10kN6snThzWIbvuClts4TkdZvXEicM6pFAkf+QRmDYt72jM\nrBycOKzDPJPcrL44cViHuUhuVl+cOKxTuEhuVj+cOKxTuEhuVj+cOKxTuEhuVj9ySRyS1pN0l6Sn\ns8d1W9l3ZUlPSLqlnDFa+x16KHTr5qsOs1qX1xXHicDEiBgITMxet+RYYFZZorIOcZHcrD7klTiG\nAZdkzy8B9m1uJ0kbAV8FLixTXNZBo0enIvm11+YdiZmVSl6JY/2IeDF7/hKwfgv7nQ2cACwpS1TW\nYbvuCoMGud26WS0rWeKQdLek6c1sw5ruFxEBRDM//zXglYiYXOT5RklqlNS4YMGCzvkS1m4ukpvV\nvpIljojYKyK2bGa7CXhZUh+A7PGVZg6xC/ANSf8ErgaGSrq8lfONj4iGiGjo1atXCb6RFWvEiFQk\nd7t1s9qU162qm4ER2fMRwE3L7hARYyJio4joB3wLuCcihpcvRFtRhSL5pZe6SG5Wi/JKHKcBe0t6\nGtgre42kDSXdllNM1okKM8ldJDerPUolhtrS0NAQjY2NeYdR1yLSmuQ9esDDD+cdjZm1RdLkiGgo\nZl/PHLeSKBTJ//Y3mD4972jMrDM5cVjJeCa5WW1y4rCS6dnTM8nNapETh5XUqFHwxhtw3XV5R2Jm\nncWJw0rqC1+AzTf3THKzWtJi4pB0f/b4uqTXmmyvS3qtfCFaNXOR3Kz2tHbFsUf22BPo1WQrvDYr\nimeSm9WW1hJHN0krR8TiiFgM9AeOBPbJXpsVpWdPOOCANJP8/ffzjsbMOqq1xHEHMABA0gDg78AQ\n4CeS/qcMsVkNKRTJPZPcrPq1ljjWi4h/ZM9HAFdHxA+ALwFfL3lkVlN22y0VyT2nw6z6tZY4mvYi\nGQrcBRARH+L1MaydCkXyhx+GGTPyjsbMOqK1xDFD0mmSjgY2B+4EkLQ2oHIEZ7WlUCT3VYdZdWst\ncXwPeAfYAvhyRLybvb8l8NtSB2a1x0Vys9rQYuKIiHcj4r8j4qiIeLzJ+w9HxISyRGc1x0Vys+rn\nmeNWVi6Sm1U/Jw4rKxfJzaqfE4eVnYvkZtWtS0sfSLqRTw7J/YSI2L8kEVnN69kT9t8/FclPOw1W\nWy3viMysPVpMHMC4skVhdWf0aLj66tRu/ZBD8o7GzNqjxcQRERPLGYjVl912g4EDU7t1Jw6z6tJm\njUPSAElXS5oq6R+FrRzBWe1ykdysehVTHJ8AXEyaLf4V4M/ANSWMyerEyJFut25WjYpJHN0j4g6A\niHgmIk4iJZAVJmk9SXdJejp7XLeF/daRdJ2kpyTNkrRTR85rlaVQJL/kEs8kN6smxSSODyWtBDwj\n6QhJXwfW7OB5TwQmRsRAYGL2ujnnALdHxBbA1sCsDp7XKozXJDerPsUkjh8BqwPHALuQelgd1sHz\nDgMuyZ5fAuy77A5ZM8UvABcBRMTCiHijg+e1CrP77qlI7jkdZtWjmMTRNyLejoh/RcQhETEM2KCD\n510/Il7Mnr8ErN/MPv2BBcDFkp6QdKGk1Tt4XqswhSL5Qw/BzJl5R2NmxSgmcZzUzHs/b+uHJN0t\naXoz27Cm+0VE0PxEwy7AZ4ELImJb4F1avqWFpFGSGiU1LliwoK3wrIKMGAFdu/qqw6xatDZz/EvA\nl4G+kpq2UV+LIhZyioi9Wjn2y5L6RMSLkvoArzSz21xgbkRMyl5fRyuJIyLGA+MBGhoaWpzxbpWn\nV6+lM8nHjvVMcrNK19oVxyvAdOADYEaT7U46OKoKuJm0HC3Z403L7hARLwEvSBqUvbUn4JsZNWr0\naHj9dbj++rwjMbO2KN0pamUHaVVgEbBZ9taciFjUoZNKPUjzQT4FPA8cFBGvSdoQuDAi9sn22wa4\nEOgGPAscFhGvt3X8hoaGaGxs7EiIVmYRqd36BhvAgw/mHY1Z/ZE0OSIaitm3tV5VBQ3A5cA80iTA\nDSQdEhEPr2iAEfEq6Qpi2ffnA/s0eT0lO7/VuEKR/IQTUpF8yJC8IzKzlhRTHD8b2CcidomInYGv\nkuZXmHWqkSNTkdwzyc0qWzGJo1tEfFxbiIhZpFtHZp2qUCT3THKzylZM4nhc0u8lfT7bLgCeKHVg\nVp9GjXKR3KzSFZM4jiAVpk/ItmeB0aUMyurXHnvAZpt5TodZJWsxcUiaABARH0TE6RHxjWw7IyI+\nKFuEVlcKRfIHH/RMcrNK1doVx2fKFoVZE4WZ5C6Sm1Wm1objdpe0LWkI7nIi4vHShGT1rnfvpUXy\nsWNh1VXzjsjMmmotcfQFzqL5xBHA0JJEZEa6XXXNNand+vDheUdjZk21ljjmRISTg+Vi992XFsmd\nOMwqSzGjqszKbqWVlhbJZ3n5LrOK0lri+GnZojBrhtutm1WmFhNHRNxZzkDMltW7N+y3XyqSf+AB\n4GYVw7eqrKK53bpZ5XHisIpWKJL/4Q95R2JmBW0mDkmbS/qjpDsl3VPYyhGc2Uorwfe/7yK5WSUp\n5orjWuBx0trj/9lkMysLt1s3qyzFJI5FEXFBRPw9IiYXtpJHZpZxkdysshSTOP4i6UhJfSStV9hK\nHplZE6NGwWuvuUhuVgmKWXP8uWbejojYtDQhdZzXHK89S5akNcn79oX77887GrPa0541x9u84oiI\n/s1sFZs0rDYVZpI/8AA89VTe0ZjVt9bW4xiaPe7f3Fa+EM2SQpHcM8nN8tXaFcdu2ePXm9m+VuK4\nzJbTuzfsu6+L5GZ5a7E7bkT8Mns8rHzhmLVu9Gi49lq44QY4+OC8ozGrT7nMHM9GZt0l6enscd0W\n9vuRpBmSpku6SpKX9Klze+wBAwZ4JrlZnvJqOXIiMDEiBgITs9efIKkvcAzQEBFbAisD3yprlFZx\nCjPJXSQ3y09eiWMYcEn2/BJg3xb26wKsJqkL0B2YX4bYrMIddphnkpvlqZheVd0l/ULSH7PXAyV1\ntDi+fkS8mD1/CVh/2R0iYh5wJvAv4EXgTbd6N1haJJ8wwUVyszwUc8VxMfAhsFP2eh7w3239kKS7\ns9rEstuwpvtFmoG43CzErO4xDOgPbAisLqnFRUQljZLUKKlxwYIFRXwtq2aFmeQ33JB3JGb1p5jE\nMSAiTgc+AoiI9wC19UMRsVdEbNnMdhPwsqQ+ANnjK80cYi/guYhYEBEfATcAO7dyvvER0RARDb16\n9Sria1k1Gzo0Fck9p8Os/IpJHAslrUZ2VSBpAOkKpCNuBkZkz0cANzWzz7+AHbNbZQL2BNxY24Cl\nRfL773eR3KzcikkcvwRuBzaWdAVpFNQJHTzvacDekp4mXVmcBiBpQ0m3AUTEJOA6Ukv3aVms/v3S\nPjZyJHTp4iK5Wbm12eQQQFIPYEfSLapHI+LfpQ6sI9zksH4cdBDccw/MnQurepaP2Qrr1CaHkvYj\nrclxa0TcAiyS1NLwWbOyGjUKXn3VRXKzcirqVlVEvFl4ERFvkG5fmeVu6FDYdFMXyc3KqZjE0dw+\nLfa4MiunpkXy2bPzjsasPhSTOBol/VbSgGz7LeClY61iHHZYKpL7qsOsPIpJHEcDC4Frsu1D4KhS\nBmXWHuuv73brZuVUzAqA70bEiYXJdRExJiLeLUdwZsUqFMlvvDHvSMxqXzGjqjaXNF7SnZLuKWzl\nCM6sWHvumYrkbrduVnrFFLmvBX4PXAgsLm04ZiumUCQfMyYVyQcNyjsis9pVTI1jUURcEBF/j4jJ\nha3kkZm1k2eSm5VHMYnjL5KOlNQnW7lvPUnrlTwys3baYAO3Wzcrh2ISxwjgP4G/kYbhTgbcz8Mq\nkovkZqXXZo0jIvqXIxCzzlAoko8fD9/+dt7RmNWmYlcAPEnS+Ox1Z6wAaFYShSL5fffBP/6RdzSW\nl/ffh0mTYMmSvCOpTcWuALiQpYsoFbUCoFleCkVyzySvXz/4Aey4I2yxBZxzDrzxRt4R1ZaSrQBo\nlpcNNoBhw1KR/MOOLjlmVedvf0tdBPbfH3r2hOOOg402giOOgGnT8o6uNuS1AqBZSY0e7SJ5PVq8\nGI46KiWKSy9NSaSxMa3bMmECfOYzsPvucN118NFHeUdbvfJaAdCspPbcE/r390zyevP738OUKXDW\nWbD66um97baDP/0J5s2D3/wG/vlPOPDA9Pfjv/8bXn4515CrUqsrAGZrfW8EvIdXALQqM3Ys/Oxn\naSb55pvnHY2V2oIF6b/zZz8Ld98NauGG+uLFcOutMG4c3HUXdO2arkh++EP43Oda/rla12krAEbK\nKrdFxKuFFQArPWmYFRTarXsmeX0YMwbeeSclhNb+8V95ZfjGN+DOO+Gpp1Ih/eabYaedYPvt0y2t\n998vW9hVqZhbVY9L2r7kkZh1MhfJ68ekSXDRRakQPnhw8T83aFAadTVvHpx/fkoYhx0GG28MJ54I\nzz9fupirWTGJ43PAI5KekTRV0jRJU0sdmFlnGDUK/v1vF8lrWaEg3qcPnHzyih1jzTXTlcf06XDP\nPbDbbnDGGWky6b77pltfrdzVrzvFJI4vAQOAocDXga9lj2YVb6+9UhHUczpq14UXwuTJcOaZKQF0\nhAR77AHXXw/PPZeuOh5+GPbeG4YMSbfB3nqrc+KuZsUs5PQ8sDEwNHv+XjE/Z1YJCjPJ773XM8lr\n0auvpgEQu+3W+S1mPvUpOPVUeOGFNLR3rbXg6KOhb99USJ81q3PPV02KaTnyS+CnwJjsra7A5R05\nqaQDJc2QtERSi1V8SV+WNFvSHEknduScVr9cJK9dP/85vPlm2wXxjlh1VTjkkFRHmTQpTSz84x/T\nFchee8H//R8sWlSac1eqYq4c9gO+AbwLEBHzgQ5eEDId2B94oKUdJK0MnAd8BRgCfFvSkA6e1+rQ\nBhukUTQukteWxsZ0C/Loo2HLLctzzh12SLPS586F//mfdBW7334wYACcdloaElwPipo5ng3LLcwc\nX72jJ42IWRExu43ddgDmRMSzEbEQuBoY1tFzW30aPdpF8lqyZEm6XdS7N/zqV+U/f69eafjvs8/C\nDTfAZpul1xtvnHql1fo0smISx58l/QFYR9L3gbuBclz09wVeaPJ6bvZesySNktQoqXFBvaR9K9pe\ne0G/fi6S14oJE9Jto9NPh7XXzi+OLl3SFcfEiTBjBhx+eGpnsv32qcni5ZfX5lVui4lD0ioAEXEm\ncB1wPTAIODkiftfWgSXdLWl6M1tJrhoiYnxENEREQ69evUpxCqtiLpLXjtdfh5/+FHbZJdUeKsWQ\nIXDeeWlOyLnnpjgPOSRdhfz856nIXitau+J4BEDSZRFxV0T8Z0QcHxF3FXPgiNgrIrZsZrupyNjm\nkUZzFWyUvWe2Qr77XRfJa8EvfgGvvZb+ka7E9iBrr53qLrNmpdnpO+2U2t/07w8HHJB+ean2OSGt\nJY5ukg4Gdpa0/7JbGWJ7DBgoqb+kbsC3gJvLcF6rUS6SV78pU+CCC+DII2HrrfOOpnUrrZTmf9x0\nU6qF/OQnaYGxoUNTMf+CC1KLlGrUWuI4AtgVWIc04a/p1qEVACXtJ2kusBNwq6Q7svc3lHQbQEQs\nAn4I3AHMAv4cETM6cl6zQpH83HPzjsTaKyLNEO/RA045Je9o2qdfv9SZd+7c1Kl31VVT8uvbF449\nNjXirCYtdseVdGBEXCtpVERUVUnR3XGtJRHpdsEtt8Cjj6ZOqlYdLr0URoxIPam++928o+mYiFTc\nHzcO/vzntDbIF7+YRorts09qxFhu7emO21rieDwiPlt47NQIS8yJw1rz6qvpNsfqq8Pjjy9dt8Eq\n15tvpoaE/fqlxZlWqqHeFS+/nOpuF1wA8+en73jkkSk59uhRvjg6q636q5LuBPpLunnZrXNCNSu/\nHj3gssvg6afhRz/KOxorxi9/Ca+8kgritZQ0ANZfH046KS0wde21sMkmcMIJaRXDww+HJ57IO8Ll\ntXbF0Q34LHAZ8L1lP4+I+0sb2orzFYcVY8yYNNv3+utTGwmrTNOmwbbbwve+l1b4qwfTpqUkedll\n8N57sPPO6TbWAQdAt26lOWen3KpqcrBeEVFVM+qcOKwYCxemuQDPPANTp6bf8KyyRKQ1wqdPT/Nv\nynnrphK88UYaBXjeeTBnTro6GT06bRtu2Lnn6pRbVZLOzp7+ybeqrBZ16wZXXpkSyKGHpnUdrLJc\ndRU88ECaB1FvSQNgnXXS4lSzZ8Nf/woNDfDrX6fbWf/xH/Dgg/nMCWntVtV2ETFZ0m7Nfe5bVVYr\nLr44FSLHjk3rL1hleOst2GKLNGT10UfzGWlUiZ55JhXSL7ooXZF85jPpNtbBB3dsoEenXHFExOTs\n8X5gJjAzIu4vbCsenlllGTkSDjoozUh+7LG8o7GCU06BF19Mt2mcNJYaMCAtWjVvXhqNJaWVLjfa\nCH784/JMbm11fIKkX0n6NzAb+IekBZJWcHFGs8okpaJrnz7pt7Zqnc1bS2bOTGuBH354amVuy+ve\nPQ0YeOKJdMvqS1+Chx4qXfG8qdZqHD8GdgG2j4j1ImJd0vrju0jyIEarKeuuC1dckVpDHHNM3tHU\nt4jU62mNNdLtQ2udBJ//PFx9dZrjUo7+Xa1dcRwCfDsiniu8ERHPAsOBQ0sdmFm57bprWob04ovT\nbF7Lx7XXwj33pGVb3ei6fbp0Kc95WiuOT4+IZtfVau2zSuDiuK2ojz5KCeSpp+DJJ9PoFSufd95J\nBfHevVO9ybWN8umsmeMLV/Azs6rVtWsaortkSVpLwUN0y+vUU1PRd9w4J41K1lri2FrSW81sbwNb\nlStAs3LbdNM0kufBB32PvZxmz4azzkqNDHfeOe9orDUt3hGLCOd7q1vDh8Ptt6f1rPfcMy3GY6UT\nkQYldO+e2o9bZauxdmFmnUOC889Py35+5ztpMpqVzo03ptXyTjkltdWwyubEYdaCtddOQ3Sffz4t\nIGSl8d57qUvxVlulduJW+Zw4zFqx885w8slw+eUpiVjnGzsW/vWvVBAv13BS6xgnDrM2/PznqYvu\nD34Azz3X9v5WvDlz4PTT0+3AL3wh72isWE4cZm3o0iVdcUjpH7hFi/KOqDZEpPW2V1kFzjgj72is\nPZw4zIrQrx/84Q/wyCOprbV13F/+Arfdlkau9emTdzTWHm0u5FSNPHPcSmXEiHT1cf/9qT+QrZj3\n34dPfxpWWw2mTEkTLy1fnTVz3MyWMW5cuvr4znfSWgi2Yk4/PdWLxo1z0qhGuSQOSQdKmiFpiaRm\nM5ykjSXdK2lmtu+x5Y7TbFlrrplaksybB0cckc/qa9XuuefSWu//8R+wxx55R2MrIq8rjunA/sAD\nreyzCPhJRAwBdgSOkjSkHMGZteZzn0sT1a65Bi69NO9oqs9xx6U+VGeemXcktqJySRwRMSsiZrex\nz4sR8Xj2/G1gFtC3HPGZteWnP4XddktLds6Zk3c01eO22+Dmm9PcmI02yjsaW1FVUeOQ1A/YFpiU\nbyRmycorw2WXpaG6Bx+c2rFb6z74IPWjGjQoXXVY9SpZ4pB0t6TpzWzD2nmcNYDrgeMiosWOQZJG\nSWqU1LhgwYKOhm/Wpo03Tms+P/ZYGlJqrTvrLHjmGfjd78qzvKmVTq7DcSXdBxwfEc2OnZXUFbgF\nuCMiflvscT0c18rpe9+DP/0prVq3++55R1OZnn8eBg+GffaB667LOxprTk0Mx5Uk4CJgVnuShlm5\nnX02bLZZWvjptdfyjqYy/fjHaeb9b/1/ck3IazjufpLmAjsBt0q6I3t/Q0m3ZbvtQlr3fKikKdm2\nTx7xmrVmjTXSEN2XXoJRozxEd1l33gk33JB6fn3qU3lHY53BM8fNOsnpp6fRVhdeCIcfnnc0lWHh\nQvjMZ9ISvNOnp75UVplq4laVWbU5/ngYOjSNHJrd6mDz+vG//5v+LM4910mjljhxmHWSlVZKEwJX\nXTW1JFm4MO+I8jV3bmoIOWwYfOUreUdjncmJw6wT9e0LF10EkyfDL36RdzT5Ov74dIvq7LPzjsQ6\nmxOHWSfbd18YPTrVPCZOzDuafNx7b2rJMmZMagpptcXFcbMSeO892G47eOstePJJ6Nkz74jK56OP\nYJttUuv0GTNS63SrfC6Om+Wse/c0RPff/04TBGvw97MWnXsuzJwJ55zjpFGrnDjMSmTbbWHsWLjp\nJhg/Pu9oymP+/NR+5atfha9/Pe9orFScOMxK6Ljj4ItfhB/9CGbNyjua0jvhhDSa7Jxz8o7ESsmJ\nw6yEVlpEIHb4AAAQSklEQVQJJkyA1VeHb38bPvww74hK54EH4IorUvIYMCDvaKyUnDjMSqxPH7j4\n4lQkHzMm72hKY9GitDbJJpvU7ne0pZw4zMrga1+Do45KM6nvuCPvaDrfeefBtGnp+3Xvnnc0Vmoe\njmtWJu+/D9tvn0ZaTZ0KvXvnHVHnePll2Hxz2Gkn+OtfUxdcqz4ejmtWgVZbDa66Ct54A7773doZ\novvTn6akeO65Thr1wonDrIy22grOOANuvTXd3ql2f/sbXHIJ/OQn6arD6oNvVZmVWUSqeUycCI2N\nsOWWeUe0YhYvhoaGdOvtqafSyDGrXr5VZVbBpDTKap110hDd99/PO6IV8/vfw5QpaVU/J4364sRh\nloPevdP8junTU42g2ixYACedBHvuCd/8Zt7RWLk5cZjl5MtfhmOPhd/9LtU8qsmYMfDOOyl2F8Tr\njxOHWY5OOy0trXrYYWnN8mowaVJac+S442Dw4LyjsTw4cZjlaNVV0xDdt9+GkSNhyZK8I2rd4sVp\nIuOGG8LJJ+cdjeXFicMsZ0OGpALzHXekuRCVrLC64Zlnwppr5h2N5cXDcc0qQERaOfD229OtoG22\nyTui5b36apqrsdVWaYU/1zZqi4fjmlUZKf0236MHHHxwWkGw0vz85/DmmzBunJNGvcslcUg6UNIM\nSUsktZrhJK0s6QlJt5QrPrM89OyZZmHPmpVmYleSxsa0GNXRR1fvhEXrPHldcUwH9gceKGLfY4E6\nWALHDPbeG44/Pk2uu+mmvKNJlixJLdN7906r+5nlkjgiYlZEzG5rP0kbAV8FLix9VGaV4dRT07Kz\nhx+elmLN24QJqe5yxhmw9tp5R2OVoNJrHGcDJwAVPkjRrPN065aG6L7/Phx6aL5DdF9/Pc1s//zn\nYfjw/OKwylKyxCHpbknTm9mGFfnzXwNeiYjJRe4/SlKjpMYFCxZ0KHazvA0aBGefnRohnnVWfnH8\n4hfw2msuiNsn5TocV9J9wPERsdzYWUljgUOARcCqwFrADRHR5u89Ho5rtSAi9YH6y1/gkUdgu+3K\ne/4pU9I5jzwytRax2lYTw3EjYkxEbBQR/YBvAfcUkzTMaoUEf/xjKkoffDC8+275zh2RZoj36AG/\n/nX5zmvVIa/huPtJmgvsBNwq6Y7s/Q0l3ZZHTGaVaL314LLL4OmnU2+ocrnssrRI029+k9q/mzXl\nmeNmVWDMmNQQ8brr4IADSnuuN99MNZb+/eHhh2Glir0vYZ2pJm5VmdlSp5wC228P3/8+vPBCac/1\ny1/CK6+kgriThjXHfy3MqkDXrnDllbBwYRqiu3hxac4zbVpKGKNHl78Yb9XDicOsSmy2WRrddN99\ncPrpnX/8iDRDfJ110iREs5Y4cZhVkZEj4aCD0loYf/975x77qqvggQdg7NhUlDdriYvjZlXm9ddh\n663TDPMnnuicdTHeegu22AL69oVHH4WVV+74Ma26uDhuVsPWXReuuAKeew6OOaZzjnnKKWnp2vPO\nc9KwtjlxmFWhXXeFn/0sNSC85pqOHWvmTDjnnNRUcYcdOiU8q3FOHGZV6uSTYccd0wio559fsWNE\npDU21lwz1TbMiuHEYValunZNt6yWLEmdaxctav8xrr0W7rknjaLq2bPzY7Ta5MRhVsU23RTOPx8e\neqj9VwzvvAM//nFa+2PUqNLEZ7XJicOsyg0fnpog/td/pS66xTr1VJg3zwVxaz8nDrMacP75sPHG\nKYG8+Wbb+8+endb5GDkSdtqp5OFZjXHiMKsBa6+d6h0vvJDaobcmIg3j7d49NU40ay8nDrMasfPO\naaTVFVfA5Ze3vN+NN8Kdd6a5G+uvX774rHZ45rhZDVm0CHbfHaZOTSv4bbrpJz9/7z0YPDj1o5o8\nGbp0ySVMq0CeOW5Wp7p0SVccK60E3/nO8kN0x46Ff/0rdcB10rAV5cRhVmM22QR+//vUc+qUU5a+\nP2dO6qo7fHiaeW62opw4zGrQt74FI0akIbcPPpgK4sceC6usUpqW7FZfnDjMatTvfpeWfx0+PK0h\nfttt8KtfQZ8+eUdm1c6Jw6xGrblmWjVw/vx09fHpT6e+VGYd5cRhVsN22AF+/es0M3zcuNTfyqyj\nnDjMatyJJ8LLL6dhumadIZfEIelASTMkLZHU4rhhSetIuk7SU5JmSXJzBLMV0KNH3hFYLcnrimM6\nsD/wQBv7nQPcHhFbAFsDs0odmJmZtS6XKUARMQtAUov7SFob+AIwMvuZhcDCMoRnZmatqOQaR39g\nAXCxpCckXShp9byDMjOrdyVLHJLuljS9mW1YkYfoAnwWuCAitgXeBU5s5XyjJDVKalywYEEnfAMz\nM2tOyW5VRcReHTzEXGBuREzKXl9HK4kjIsYD4yE1Oezguc3MrAUVe6sqIl4CXpA0KHtrT2BmjiGZ\nmRn5DcfdT9JcYCfgVkl3ZO9vKOm2JrseDVwhaSqwDfA/5Y/WzMyaymtU1Y3Ajc28Px/Yp8nrKUBR\n/eHNzKw8KvZWlZmZVSYnDjMza5eaXDpW0gLg+RX88Z7AvzsxnGrg71z76u37gr9ze20SEb2K2bEm\nE0dHSGosdt3dWuHvXPvq7fuCv3Mp+VaVmZm1ixOHmZm1ixPH8sbnHUAO/J1rX719X/B3LhnXOMzM\nrF18xWFmZu3ixJGR9GVJsyXNkdRiM8VaIulPkl6RND3vWMpB0saS7pU0M1uB8ti8Yyo1SatK+ruk\nJ7Pv/F95x1QuklbOlmS4Je9YykHSPyVNkzRFUmNJz+VbVekvGPAPYG9SV97HgG9HRE03VZT0BeAd\n4NKI2DLveEpNUh+gT0Q8LmlNYDKwby3/d1ZaLW31iHhHUlfgIeDYiHg059BKTtKPSS2L1oqIr+Ud\nT6lJ+ifQEBEln7viK45kB2BORDybrTR4NVDsuiFVKyIeAF7LO45yiYgXI+Lx7PnbpKWI++YbVWlF\n8k72smu21fxvi5I2Ar4KXJh3LLXIiSPpC7zQ5PVcavwflHonqR+wLTCp9T2rX3bLZgrwCnBXkzVu\natnZwAnAkrwDKaMA7pY0WdKoUp7IicPqjqQ1gOuB4yLirbzjKbWIWBwR2wAbATtIqunbkpK+BrwS\nEZPzjqXMPp/9d/4KcFR2K7oknDiSecDGTV5vlL1nNSa7z389cEVE3JB3POUUEW8A9wJfzjuWEtsF\n+EZ2z/9qYKiky/MNqfQiYl72+App2YodSnUuJ47kMWCgpP6SugHfAm7OOSbrZFmh+CJgVkT8Nu94\nykFSL0nrZM9XIw0AeSrfqEorIsZExEYR0Y/0//I9ETE857BKStLq2YAPJK0OfBEo2WhJJw4gIhYB\nPwTuIBVM/xwRM/KNqvQkXQU8AgySNFfS4XnHVGK7AIeQfgOdkm37tPVDVa4PcG+2iuZjpBpHXQxP\nrTPrAw9JehL4O3BrRNxeqpN5OK6ZmbWLrzjMzKxdnDjMzKxdnDjMzKxdnDjMzKxdnDjMzKxdnDis\nTS110ZW0nqS7JD2dPa5bxLH6dUY3XkkbSrquiP1+1tFzFRnPfZJWeK1nSQ2Szu3MmJY5/u6d1SVW\n0g+zLtIhqWcL++ydtb6Ylj0ObfLZdtn7cySdm82vQdIXJD0uaZGkby5zvMVNhlB7jlXOnDisGBNo\nfrbxicDEiBgITMxel0VEzI+Ib7a9J+1OHFm35LKKiMaIOKbc511BDwN7Ac+3ss+/ga9HxFbACOCy\nJp9dAHwfGJhthb9b/wJGAlc2c7z3I2KbbPtGx8K3jnLisDa10kV3GHBJ9vwSYN/mfj77DfPJbHLS\nUU3e7yfpwey3zMcl7Zy9f6mkfZvsd4WkYcsc8+MrF0kjJd0g6fbs6uf07P3TgNWy31KvyN4bnq1P\nMUXSHwpJQtI7ks7KYhwj6dom5/r4t3VJF0hqbGlti6yh4ARJ07Pfqn/UzD4HZp8/KemBZs7xq+wq\n7z5Jz0o6psnPHippavazl2Xv9ZJ0vaTHsm2X5v47NDnGDpIeUVqr4m+SBrX257isiHgiIv7Z2jmy\nfeZnL2eQ/jusotTafq2IeDTSJLJLyf7eRMQ/I2Iq9dWYsDpFhDdvbW5AP2D6Mu+90eS5mr5eZr+p\nwBey52cUjgN0B1bNng8EGrPnuwH/lz1fG3gO6NJSPKTfUp/N9l2V9Jvwxtln7zT5mcHAX4Cu2evz\ngUOz5wEclD3vQvrtd/Xs9QXA8Oz5etnjysB9wGey1/eR1n7YjjQ7u3DOdZr585gG9G36ObA7cEv2\n/FfA34BVgJ7Aq6R26J8mrRvTc5lYriQ1uAP4FKmlyrLnbHr8tQp/nqQrh+vb+nNs4b/rPwuxtPF3\n55vA3dnzhsLz7PWuhbiavDcB+OYy7y0CHgceJa2hkvv/E/W8dcGsE0RESFquDYFSn6R1Il21QLpl\n8ZXseVdgnKRtgMXA5tmx7pd0vqRewAGkf9gWtRHCxIh4MzvnTGATPtkqH2BP0j/sj2W31VcjtRon\nO//12fkXSbod+HpWR/kqqUU3wEFKLau7kNp5DCElxoJngU0l/Q64FbizmVgfBiZI+jPQUqPFWyPi\nQ+BDSa+QWkoMBa6NbKGeiChcBe4FDMm+E8BaktaIpetwLGtt4BJJA0kJs2uTz4r5cyyapE8DvyH1\nTuqITSJinqRNgXskTYuIZzp4TFtBThzWES9L6hMRL2a3IF4BkHQxaa2L+cDBrfz8j4CXga1Jt00/\naPLZpcBwUpO6w4qI5cMmzxfT/N9tAZdExJhmPvsgIhY3eX01qX/Za6Qrobcl9QeOB7aPiNclTSD9\nZv6x7P2tgS8BRwAHAd9dZp8jJH2OlJAmS9puBb9PwUrAjhHxQSv7NPVr4N6I2E9pXZL7VvC8rVJa\nTOlG0lVd4R/5eaTu0wVFdaKOpZ1fn5V0H+nvlxNHTlzjsI64mVT4JHu8CSAiDotUxNwnUivvNyR9\nPtvvO01+fm3gxYhYQmo+2LQoPQE4LjteR5Z2/UiplTqkAv43JfWGj0eFbdLCz90PfJZUxL06e28t\n4F3gTUnrs/TK6WNKo4xWiojrgZOyYyy7z4CImBQRJwML+GRL/9bcAxwoqUch/uz9O4Gjmxx/mzaO\nszZL/7EeWeS52yW70rwVODEiHi68HxEvAm9J2lHpEulQsr83rRxrXUmrZM97kppV1uxyv9XAicPa\npJa76J4G7C3padLtktNaOMRhwHlKq9CpyfvnAyOygvQWpH+UAYiIl0mdii/uYPjjgamSrsgS0EnA\nnUrdYu8i3W5aTnb1cQspOdySvfck8ASpLfmVpFtOy+oL3Jd918uB5q5uzsgK59NJtYwni/kikTo2\nnwrcn/2ZFVrDHwM0ZEXzmaQrnWV1YenVxOnAWElPsAJXFJKOkTSXdLUwVVJzy7P+ENgMOFlLh9H2\nzj47krSk6xzSVcNfs+Nunx33QOAPkgodqgcDjdl3vhc4rYO/TFgHuTuuVSRJ3UlF5M8W7rnbipN0\nLKkgf0KbO5u1wTUOqziS9iItuPS/ThodJ+kiYEtSvcWsw3zFYWZm7eIah5mZtYsTh5mZtYsTh5mZ\ntYsTh5mZtYsTh5mZtYsTh5mZtcv/A4UD95ynAhXRAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "fig,ax=plt.subplots(1,1,figsize=(6,5))\n", "ax.plot(SiGlobalTot[sdir1]-SiGlobalTot[sdir1][0],'b-')\n", "ax.set_xlabel('10-day intervals since Jan 1 2015')\n", "ax.set_ylabel('Difference in Total Si')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# copy restart and add 7 to Si old and new" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## repeat for N" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150111-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150121-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150131-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150210-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150220-*.nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/SalishSea_1h_*_ptrc_T_20150302-*.nc\n" ] } ], "source": [ "tlist=dlist\n", "NGlobalTot=dict()\n", "VolTot=dict()\n", "NO3Tot=dict()\n", "NH4Tot=dict()\n", "PONTot=dict()\n", "DONTot=dict()\n", "DiatTot=dict()\n", "MyriTot=dict()\n", "NanoTot=dict()\n", "MiZoTot=dict()\n", "changeNGlobalTot=dict()\n", "for idir in (sdir1,):\n", " fformat1='%d%b%y/'\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*.nc'\n", " #elif idir==sdir0:\n", " # fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " # fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_grid_T.nc'\n", " elif idir==sdir1:\n", " fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc'\n", " sumNO3=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumVol=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumNH4=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumPON=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumDON=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumDiat=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumMyri=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumNano=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumMiZo=np.zeros((len(tlist),stm[2],stm[3]))\n", " ind=-1\n", " for idt0 in tlist:\n", " ind=ind+1\n", " cdir=idt0.strftime(fformat1).lower()\n", " iffT=idt0.strftime(fformatT)\n", " iffP=idt0.strftime(fformatP)\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " sffT=idir+iffT\n", " sffP=idir+iffP\n", " elif idir.startswith('/results/'):\n", " sffT=idir+cdir+iffT\n", " sffP=idir+cdir+iffP\n", " f=nc.Dataset(glob.glob(sffT)[0])\n", " print(sffT)\n", " fP=nc.Dataset(glob.glob(sffP)[0])\n", " #if idir==sdir0:\n", " # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0\n", " if idir==sdir1:\n", " e3t=fP.variables['e3t'][:2,:,:,:]\n", " Vol=A*e3t\n", " sumVol[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumNO3[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['nitrate'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumNH4[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ammonium'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumPON[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['particulate_organic_nitrogen'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumDON[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['dissolved_organic_nitrogen'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumDiat[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumMyri[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ciliates'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumMiZo[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['microzooplankton'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " f.close()\n", " fP.close()\n", " NGlobalTot[idir]=np.sum(np.sum(sumNO3+sumNH4+sumPON+sumDON+sumDiat+sumMyri+sumNano+sumMiZo,2),1)\n", " VolTot[idir]=np.sum(np.sum(sumVol,2),1)\n", " NO3Tot[idir]=np.sum(np.sum(sumNO3,2),1)\n", " NH4Tot[idir]=np.sum(np.sum(sumNH4,2),1)\n", " PONTot[idir]=np.sum(np.sum(sumPON,2),1)\n", " DONTot[idir]=np.sum(np.sum(sumDON,2),1)\n", " DiatTot[idir]=np.sum(np.sum(sumDiat,2),1)\n", " MyriTot[idir]=np.sum(np.sum(sumMyri,2),1)\n", " NanoTot[idir]=np.sum(np.sum(sumNano,2),1)\n", " MiZoTot[idir]=np.sum(np.sum(sumMiZo,2),1)\n", " changeNGlobalTot[idir]=[NGlobalTot[idir][ii+1]-NGlobalTot[idir][ii] for ii in range(0,len(tlist)-1)]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAFICAYAAABHtRnVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XPP9x/HXOxtCYolYY6umirQ0rqQIEkJjTanlp2In\ntW/1s7SWUG1RS9QSUmItasvPHhJC7NwgEWtTVU20BFUNlQif3x/fc7ni3puZ3DtzZua+n4/HPGbm\nzLlz3nPF/cz5fr/n+1VEYGZmVqgOeQcwM7Pq4sJhZmZFceEwM7OiuHCYmVlRXDjMzKwoLhxmZlaU\nmi0cksZIelfStAL2XU3Sg5KmSnpYUq9yZDQzq0Y1WziAq4EhBe57LnBtRHwfOAP4balCmZlVu5ot\nHBExCfig8TZJa0oaJ2mypEclfTd7aR3goezxRGBoGaOamVWVmi0czRgNHBERGwDHAZdm26cAO2eP\ndwK6SeqRQz4zs4rXKe8A5SJpCWBj4BZJDZsXye6PAy6WtC8wCZgJfF7ujGZm1aDdFA7S2dWHEbH+\n/C9ExNtkZxxZgflJRHxY5nxmZlWh3TRVRcRHwF8l7QqgZL3s8bKSGn4XJwFjcoppZlbxarZwSLoR\neBJYS9IMSQcAewIHSJoCvMRXneADgdckvQ4sD/w6h8hmZlVBnlbdzMyKUbNnHGZmVhouHGZmVpSa\nHFW17LLLxuqrr553DDOzqjF58uT3IqJnIfvWZOFYffXVqa+vzzuGmVnVkPS3Qvd1U5WZmRXFhcPM\nzIriwmFmZkVx4TAzs6K4cJiZWVFcOMzMrCguHGZmVpRcC4ekIZJekzRd0olNvC5Jv89enyqpbx45\nzczsK7kVDkkdgUuAbUhLt+4haZ35dtsG6J3dhgOjyhrSzMy+Ic8zjn7A9Ih4IyLmAjfxzbW+hwLX\nRvIUsJSkFUuWaMwYePPNkr29mVktyLNwrAz8vdHzGdm2YvcBQNJwSfWS6mfNmlV8mg8+gOOOgw02\ngPvvL/7nzczaiZrpHI+I0RFRFxF1PXsWNE/X1y2zDDz9NKy0EmyzDZx5JnzxRdsHNTOrcnkWjpnA\nKo2e98q2FbtP2+ndG556CvbYA045BX78Y/jQS4+bmTWWZ+F4FugtaQ1JXYD/Ae6cb587gb2z0VU/\nBP4dEf8oaarFF4frr4ff/x7uuw823BBefLGkhzQzqya5FY6ImAccDtwPvALcHBEvSTpY0sHZbvcC\nbwDTgT8Ah5YlnARHHAEPPwwffwz9+8MNN5Tl0GZmla4m1xyvq6uLNluP45//hN12g0cfTcXk3HOh\nS5e2eW8zswohaXJE1BWyb810jpfMCivAgw/CMcfARRfBoEHw9tt5pzIzy40LRyE6d4bzz4ebboIp\nU6BvX5g0Ke9UZma5cOEoxu67pyG7Sy4JW2wBF1wANdjUZ2bWEheOYq27LjzzDOywAxx7bBq6O3t2\n3qnMzMrGhWNhLLkk3H47nHUW3HJLGnX12mt5pzIzKwsXjoUlwQknwAMPwLvvpus9xo7NO5WZWcm5\ncLTWllvC5Mnw3e/CzjvDSSfBvHl5pzIzKxkXjraw6qrpOo+f/Sw1Xw0ZAgsz0aKZWRVw4WgriywC\nl12WpmZ/7LE0y+4zz+SdysyszblwtLX99oMnnoAOHWDTTWH0aA/ZNbOa4sJRCn37pn6PQYNS89UB\nB8B//5t3KjOzNuHCUSo9esA996Tp2a+6CgYM8OqCZlYTXDhKqWNHOOMMuOsu+MtfUr/HuHF5pzIz\naxUXjnLYfnuor4devWDbbeFXv/LqgmZWtVw4yuXb34Ynn4Q994RTT4WhQ726oJlVJReOcuraFa69\nFi6+ODVZ1dXB1Kl5pzIzK4oLR7lJcNhh8MgjaaTVD3+Ylqo1M6sSLhx52XjjNGR3ww1hr73g8MNh\n7ty8U5mZLZALR55WWAEmTEjTs19yCQwcCDNn5p3KzKxFLhx569wZzjsP/vSn1N/Rt29qxjIzq1Au\nHJVit93S3FZLL51m3D3/fE9VYmYVyYWjkqyzTioeQ4fCz3+elqr9z3/yTmVm9jUuHJWme3e49VY4\n+2y47ba0uuCrr+adyszsSy4clUiC44+H8ePhvfegX7+0VK2ZWQVw4ahkW2yRhuyuvTb85CdpqVqv\nLmhmOXPhqHSrrAKTJsHBB8M558DWW6c1zs3McuLCUQ0WWQRGjUrTsz/5ZJpl9+mn805lZu2UC0c1\n2XfftLpgp05pdcHLLvOQXTMrOxeOavODH6R+jy23hEMOSUvVenVBMysjF45qtMwyaXXB006Da65J\n81799a95pzKzdsKFo1p16AAjRsDdd6claTfYAO67L+9UZtYOuHBUu+22S6sLrrpqenz66V5d0MxK\nyoWjFqy5Zuo0HzYsnYXssAP86195pzKzGuXCUSu6dk39HZdckq44r6uDF17IO5WZ1SAXjloiwaGH\npmnZP/0UNtooLVVrZtaGcikckpaRNF7Sn7P7pZvZ701JL0p6QVJ9uXNWrY02gueeS8vS7rNPWqrW\nqwuaWRvJ64zjRODBiOgNPJg9b86giFg/IurKE61GLL98arI67ji49FLYfHOYMSPvVGZWA/IqHEOB\na7LH1wA/zilHbevUCX73O7jlFpg2LQ3ZffjhvFOZWZXLq3AsHxH/yB7/E1i+mf0CmCBpsqTh5YlW\ng3bZJS0QtcwyMHgwnHuupyoxs4XWqVRvLGkCsEITL/2y8ZOICEnN/RUbEBEzJS0HjJf0akRMauZ4\nw4HhAKuuumorkteotddOxWO//eB//xeeeipNmtitW97JzKzKlOyMIyIGR0SfJm53AO9IWhEgu29y\nnvCImJndvwuMBfq1cLzREVEXEXU9e/Zs+w9UC7p1S81Wv/sdjB2bFoh65ZW8U5lZlcmrqepOYJ/s\n8T7AHfPvIGlxSd0aHgNbA9PKlrBWSanDfMIEeP/9VDweeyzvVGZWRfIqHGcBW0n6MzA4e46klSTd\nm+2zPPCYpCnAM8A9ETEul7S1aNCgNGR3+eXTkN2PP847kZlVCUUNdpLW1dVFfb0v+yjII4/AwIFw\nzDFw/vl5pzGznEiaXOhlD75yvL3bfPO0rsfIkanD3MxsAVw4DM46C3r1gv33hzlz8k5jZhXOhcOg\ne3cYPTqNsDrzzLzTmFmFc+GwZMgQ2HvvdPYxZUreacysgrlw2FcuuAB69EgXCX72Wd5pzKxCuXDY\nV5ZZJq3n8fzzaVoSM7MmuHDY1/3kJ+l2+unw6qt5pzGzCuTCYd908cVpRcEDDoDPP887jZlVGBcO\n+6YVVkjXdTzxRGq6MjNrxIXDmrbXXmmk1UknwV//mncaM6sgLhzWNAkuvxw6dIDhw71+h5l9yYXD\nmrfqqmkK9gkTYMyYvNOYWYVw4bCWDR+e5rP6+c/h7bfzTmNmFcCFw1rWoQNccQXMnZsmQ3STlVm7\n58JhC/btb8OvfgV33gl/+lPeacwsZy4cVpijj06rBR5xBMyalXcaM8uRC4cVpmPH1EH+73/DkUfm\nncbMcuTCYYVbd104+WS46abUbGVm7ZILhxXnxBPhe9+Dgw+GDz/MO42Z5cCFw4rTpUtqsnrnHTju\nuLzTmFkOXDiseHV1qWhceWW6ONDM2hUXDls4I0ZA795w0EEwe3beacysjFw4bOEstlg643jzTfjl\nL/NOY2Zl5MJhC2/TTeHww+Gii+Dxx/NOY2ZlomhmCglJG7f0gxHxREkStYG6urqor6/PO0b7MHs2\n9OkDiy4KL7yQ7s2s6kiaHBF1hezbqYXXTmliWwDrAr2AjguRzWrNEkvA6NHwox/BGWfAb36TdyIz\nK7Fmm6oiYpvGN2AE8DnwLrBLmfJZNdh6a9hvPzjnHHjuubzTmFmJLbCPQ9LmkiYA5wGXRsSGETG2\n9NGsqpx3HvTsCfvvD599lncaMyuhZguHpB9JmgScDJwZEQMi4r7yRbOqsvTSMGoUTJkCZ5+ddxoz\nK6GWOse/AP4OPEfq2/iaiNi5tNEWnjvHc7T77vB//wfPPw/rrJN3GjMrUFt1jm/VRnmsPbnoInjw\nwdRk9fjjaVZdM6spzRaOiHiwnEGsRiy3HFx4IQwbBr//PRxzTN6JzKyN+QJAa3s//Slst126ovwv\nf8k7jZm1MRcOa3sSXHYZdO6c5rLyOuVmNcWFw0qjVy8491yYOBH+8Ie805hZG2ppVNVYmhhN1cCj\nqmyBImDwYHj2WXj55VRMzKwitdWoqovbKM83SNqVdCX62kC/iGjyr7ykIcCFpOlNroiIs0qVyUpA\nSmcbDSsG3nVX2mZmVS2vUVXTgJ2By5vbQVJH4BLSsOAZwLOS7oyIl0uYy9rat74Fv/51Gl11ww2w\n5555JzKzVipkypE1Jd0kaaqk1xturTloRLwSEa8tYLd+wPSIeCMi5gI3AUNbc1zLyRFHwEYbwZFH\npiVnzayqFdI5fjVwFSBgG+Bm4E8lzNRgZdKV6w1mZNus2nTsmBZ9mj07FREzq2qFFI6uEXE/QET8\nJSJOJhWQFkmaIGlaE7eSnDVIGi6pXlL9rFmzSnEIa42114ZTT4VbboGxniPTrJq11DneYI6kDsBf\nJB0MzAS6LeiHImJwK7PNBFZp9LxXtq25440GRkMaVdXKY1spHH883HorHHooDByYJkY0s6pTyBnH\nMcDiwJHAJsCBwH6lDJV5FugtaQ1JXYD/Ae4sw3GtVDp3hjFjYNYsOPbYvNOY2UIqpHCsHBH/iYi3\nImKviBgKrNCag0raSdIMYCPgHkn3Z9tXknQvQETMAw4H7gdeAW6OiJdac1yrAD/4QTrzuPpquP/+\nvNOY2UJo9gLAL3eQnouIvvNtmxwRG5Q0WSv4AsAK9+mnqYB88glMmwbdFtjyaWYl1iYXAEr6ETAE\nWFnS+Y1e6g580bqI1q4tumgaZTVgAJx0ElxcsmtNzawEWmqqepd0od6nwEuNbg9QwKgqsxZtvHG6\nruOSS+DRR/NOY2ZFKKSpalFgHvDtbNP0rP+hYrmpqkp8/HGajqRTp7Tk7GKL5Z3IrN0qpqmqkM7x\nOmA6cCUwBnhd0iatyGeWLL54msvqz3+GESPyTmNmBSqkcIwEto2ITSJiY2A70sSDZq235ZZw4IFp\nCvZnn807jZkVoJDC0aXxxIIR8QrQpXSRrN0591xYYQU44ACYOzfvNGa2AIUUjuckXSZpQHYbBTxf\n6mDWjiy5ZFox8MUX4be/zTuNmS1AIYXjYOAN4Pjs9gbws1KGsnZohx1gjz3SFOzTpuWdxsxa0NIK\ngFdHxL7ljdM2PKqqSs2aBeusA2usAU88kUZbmVlZtNWoqu+3UR6zwvTsCRddlDrJR47MO42ZNaOl\nr3RdJf2AtA7HN0TEc6WJZO3a7rvDjTfCKafA0KHQu3feicxsPi0VjpWB82i6cASwRUkSWfsmwahR\nqcnqwANh4kToUEhXnJmVS0uFY3pEuDhY+a20Epx/fhqee/nlcMgheScys0b8Vc4q0377wVZbpSnY\n33or7zRm1khLheOEsqUwm58Eo0dDBPzsZ+nezCpCs4UjIh4oZxCzb1h99XRB4LhxcO21eacxs4yb\nqqyyHXYYbLIJHHMM/POfeacxM1w4rNJ16JAWffrkk1REzCx3Cywckr4j6Q+SHpD0UMOtHOHMAFhr\nrTTt+u23w6235p3GrN0rZCGnKcBlwGTg84btETG5tNEWnqccqUHz5kH//jBjBrz8MvTokXcis5rS\n1gs5zYuIURHxTERMbri1MqNZcTp1gjFj4IMPUn+HmeWmkMJxl6RDJa0oaZmGW8mTmc1vvfXgxBPh\nuuvg3nvzTmPWbhXSVPXXJjZHRHyrNJFaz01VNWzOHOjbFz76CF56Cbp3zzuRWU1o06aqiFijiVvF\nFg2rcYsskpqs3n4bTvA1qmZ5aHauKklbRMRDknZu6vWIuL10scxa0L8/HH10ms9q991h4MC8E5m1\nKy1Ncrg58BCwQxOvBeDCYfn51a/gjjvSDLpTp0LXrnknMms3mi0cEXFadr9f+eKYFahrV7jiChg0\nKK3dcd55eScyazd85bhVr4ED0wSII0fC00/nncas3XDhsOp2zjlp/Y79908jrsys5Fw4rLp1754W\ne3r5Zfj1r/NOY9YuFDJXVVdJp0j6Q/a8t6TtSx/NrEDbbgvDhqUp2KdMyTuNWc0r5IzjKmAOsFH2\nfCZwZskSmS2MkSNhmWXScrPz5uWdxqymFVI41oyIc4DPACLiE0AlTWVWrB494OKLYfJkj7AyK7FC\nCsdcSYuRrt1A0pqkMxCzyrLLLrDTTnDaafDaa3mnMatZhRSO04BxwCqS/gg8CBxf0lRmC0OCSy5J\n13gceCB88UXeicxqUiFzVY0Hdgb2BW4E6iLi4dLGMltIK64IF1wAjz0Gl16adxqzmlTIqKqdSGty\n3BMRdwPzJP24NQeVtKuklyR9IanZ2RglvSnpRUkvSPJ0t1aYvfeGIUPSFOxvvpl3GrOaU1BTVUT8\nu+FJRHxIar5qjWmks5hJBew7KCLWL3S6XzOkdG2HBAcdBAtYOsDMilNI4Whqn5YmR1ygiHglItx7\naaWz6qpw9tkwYQJcdVXeacxqSiGFo17S+ZLWzG7nk9YfL4cAJkiaLGl4mY5pteLgg2GzzeDYY9P6\nHWbWJgopHEcAc4E/Zbc5wGEL+iFJEyRNa+I2tIh8AyJifWAb4DBJm7VwvOGS6iXVz5o1q4hDWM3q\n0CHNoDtnDhx6qJuszNrIApucIuJj4MRi3zgiBi9Uoq+/x8zs/l1JY4F+NNMvEhGjgdGQlo5t7bGt\nRvTuDWecAccfDzffnBZ+MrNWKWRU1XckjZb0gKSHGm6lDiZpcUndGh4DW5M61c2Kc8wxUFcHRxwB\n772XdxqzqldIU9UtwPPAycD/NrotNEk7SZpBmv/qHkn3Z9tXknRvttvywGOSpgDPAPdExLjWHNfa\nqU6d0jrlH34IRx2VdxqzqqdYQLuvpMkRsUGZ8rSJurq6qK/3ZR82nxEj4PTT4a67YHtP8GzWWPa3\nvqDLHgo547hL0qGSVpS0TMOtlRnNyu8Xv4A+fdKqgR98kHcas6pVSOHYh9Q09QRpGO5kwF/nrfp0\n6ZKu6XjvPRg82P0dZgupkLmq1mji9q1yhDNrc3V1cMcdacXALbaAd97JO5FZ1Sl0BcCTJY3OnnsF\nQKtuQ4bAPffA9OkwcKAvDjQrUqErAM4FNs6eewVAq35bbgnjxsGMGbD55vD3v+edyKxqeAVAa782\n2wweeADefTcVD8+ka1YQrwBo7dtGG6WJEP/1r1RIpk/PO5FZxfMKgGYbbggTJ8Inn6Qzj1dfzTuR\nWUVrsXBIEvAqXgHQat3668PDD8O8eal4TPPsNmbNabFwRLqs/N6IeL9hBcCI8OB3q019+sAjj0DH\njmm01Qsv5J3IrCIV0lT1nKQNS57ErBJ897swaRJ07Zqu8/DUNWbfUEjh6A88KekvkqZma4BPLXUw\ns9x8+9upeCy5ZBq2++STeScyqyiFLAH7o5KnMKs0q6+eiscWW8BWW8G996ZRV2ZW0JQjfwNWAbbI\nHn9SyM+ZVb1VVkl9Hquskq42f/DBvBOZVYRCphw5DTgBOCnb1Bm4vpShzCrGSiul0VZrrpmmYh/n\nJWHMCjlz2AnYEfgYICLeBrqVMpRZRVl++XSdx3e/C0OHpvU8zNqxgq4cz4blNlw5vnhpI5lVoGWX\nhYcegvXWg513httuyzuRWW4KKRw3S7ocWErSQcAE4A+ljWVWgZZeGsaPh379YPfd4YYb8k5klotm\nR1VJWiQi5kTEuZK2Aj4C1gJOjYjxZUtoVkmWXDL1c2y/PQwbBp99Bvvsk3cqs7JqaTjuk0BfSddF\nxF6Ai4UZQLducN99qb9jv/1g7lw46KC8U5mVTUuFo4uknwIbS9p5/hcj4vbSxTKrcF27pk7ynXeG\n4cNT8TjssLxTmZVFS4XjYGBPYClgh/leC8CFw9q3RReFsWNTf8fhh8OcOXDssXmnMiu5lgrHihFx\niKTnI2J02RKZVZNFFoFbboGf/hR+/nP49FP4xS/yTmVWUi2Nqmq44O/gcgQxq1qdO8ONN6bi8ctf\nwogREJF3KrOSaemM431JDwBrSLpz/hcjYsfSxTKrMp06wbXXQpcucPrpqdnqN78BeZVlqz0tFY7t\ngL7AdcB55YljVsU6doQrr0zNV2edlYrHeee5eFjNabZwRMRc4ClJG0fErDJmMqteHTrAqFHpzOOC\nC1LxuOiitN2sRrR0AeDIiDgaGCPpGw22bqoya4YEF16YzjzOPTcN1b38chcPqxktNVVdl92fW44g\nZjVFgnPOScXj179OxWPMmNScZVblWmqqmpzdPyKpZ/bYTVZmhZLgzDNT8Tj11FQ8rr02jcIyq2It\nrgAoaQRwOGnYriTNAy6KiDPKkM2sNpxySioeJ5yQiseNN6Y+ELMq1Wyjq6RjgU2ADSNimYhYmrT+\n+CaSjilXQLOacPzxqbP89tvhJz9JFwqaVamWeuv2AvaIiL82bIiIN4BhwN6lDmZWc44+Gi69FO6+\nO02Q+N//5p3IbKG0VDg6R8R782/M+jncSGu2MA45BK64Iq3rsd128PHHeScyK1pLhWPuQr5mZi05\n4AC45hp45BHYZhv4z3/yTmRWlJYKx3qSPmri9h/ge605qKTfSXpV0lRJYyUt1cx+QyS9Jmm6pBNb\nc0yzirLXXmkFwSeegK23hg8/zDuRWcGaLRwR0TEiujdx6xYRrW2qGg/0iYjvA6/z1YSKX5LUEbgE\n2AZYB9hD0jqtPK5Z5dh99zSz7uTJMHgwfPBB3onMCpLLpawR8UBEzMuePgX0amK3fsD0iHgjm/7k\nJmBouTKalcVOO6WRVi++CIMGwSxfKmWVrxLmQNgfuK+J7SsDf2/0fEa2zay2bL99Wk3w9ddh4ED4\n5z/zTmTWopIVDkkTJE1r4ja00T6/BOYBf2yD4w2XVC+pfpa/tVm12XpruOceePNN2HxzmDkz70Rm\nzWrxyvHWiIjBLb0uaV9ge2DLiCZXvZkJrNLoea9sW3PHGw2MBqirq/MqOlZ9ttgC7r8ftt0WNtsM\nHnoIVlst71Rm35BLU5WkIcDxwI4R8Ukzuz0L9Ja0hqQuwP8A31hQyqymDBiQrvF4//1UPN54I+9E\nZt+QVx/HxUA3YLykFyRdBiBpJUn3AmSd54cD9wOvADdHxEs55TUrn/794cEHYfbsVDxefz3vRGZf\no6ZbiapbXV1d1NfX5x3DrHWmTEnDdDt1SoVkHY9Gt9KRNDki6grZtxJGVZlZU9ZbDx5+GCLSaKup\nU/NOZAa4cJhVtnXXhUmT0jTsgwbBc8/lncjMhcOs4n3nO2leqyWWSCOvnn4670TWzrlwmFWDNddM\nZx49esBWW8Fjj+WdyNoxFw6zarHaaunMY8UVYciQ1P9hlgMXDrNq0qtXKhirrZamZH/ggbwTWTvk\nwmFWbVZcESZOTH0fO+yQpioxKyMXDrNqtNxyaUqSPn3SDLtjx+adyNoRFw6zatWjR7owsG9f2HVX\nuPnmvBNZO+HCYVbNlloq9XNstBHssQdcf33eiawdcOEwq3bdu8N996Xp2PfeG8aMyTuR1TgXDrNa\nsMQScPfd6RqPAw6AUaPyTmQ1zIXDrFZ07Qp33AHbbQeHHgoXXph3IqtRLhxmtWTRRdMa5jvtBEcf\nDeeck3ciq0ElWwHQzHLSpQv86U+w115wwgkwZw6cckq+mb74AubOhc8+S/eNHze1bUGvF/Izyy0H\nJ58M3brl+9lrkAuHWS3q3DmNsOrSBU49FT74ADbZpPR/vJt7ny++KN1n7dAhfc7OndN9w+MZM1K/\nz9ix6WJJazMuHGa1qlMnuOqq9Id05Mh0W5CGP77z3zf1eNFF04iuQvYt1eudO0PHjk1/locegt13\nhw03TEV0hx3a9vfbjnkFQLNaFwGvvgrz5rX8x7hTJ5DyTtu23noLdt4ZJk+G005LZ18d3LXblGJW\nAPQZh1mtk2DttfNOkY9VV4VHH02jzE4/PRWQ665LF07aQnPpNbPatthi6aLISy6BceOgXz946aW8\nU1U1Fw4zq31SOuuYOBE++gj694dbb807VdVy4TCz9mPAgNRc9b3vpYkhTzwRPv8871RVx4XDzNqX\nlVdOi2H97Gdw9tmw7bbw/vt5p6oqLhxm1v4ssghcdhn84Q+piNTVwQsv5J2qarhwmFn7deCBMGlS\nulhx443hj3/MO1FVcOEws/atf//U77HhhjBsWJrj67PP8k5V0Vw4zMyWXx4mTICjjkqzCm+1Fbz7\nbt6pKpYLh5kZpKvoR45MFwg+/TRssAE880zeqSqSC4eZWWPDhsETT6Q5sDbdFK68Mu9EFceFw8xs\nfj/4Qer32Gyz1IF+yCFpll8DXDjMzJrWo0eaouSEE9LQ3YED4e23805VEVw4zMya07EjnHUW3Hwz\nTJ2a+j0efzzvVLlz4TAzW5Bdd4WnnoIllkhnHpdemqarb6dcOMzMCtGnDzz7LGy9NRx2GOy/P3z6\nad6pcuHCYWZWqKWWgrvuSgtCXX11GnX11lt5pyo7Fw4zs2J06JAWhbrjDnjttdTvMXFi3qnKKpfC\nIel3kl6VNFXSWElNLscl6U1JL0p6QZLXgjWzyrHjjqnpqmfPdKX5+ee3m36PvM44xgN9IuL7wOvA\nSS3sOygi1i90LVwzs7JZa610lfnQofDzn8Oee8LHH+edquRyKRwR8UBEzMuePgX0yiOHmVmrdeuW\nVhP8zW/gppvSLLtvvJF3qpKqhD6O/YH7mnktgAmSJksaXsZMZmaFk+Ckk+Dee+Hvf0/re9x/f96p\nSqZkhUPSBEnTmrgNbbTPL4F5QHOT4A+IiPWBbYDDJG3WwvGGS6qXVD9r1qw2/SxmZgUZMgTq62GV\nVWCbbeC3v63Jfg9FTh9K0r7Az4AtI+KTAvYfAcyOiHMXtG9dXV3U17sv3cxy8vHHcNBBcOONsPPO\naehut255p2qRpMmF9iXnNapqCHA8sGNzRUPS4pK6NTwGtgamlS+lmdlCWnzxtJrg+eenYbv9+6eh\nuzUirz6+RrMaAAALdUlEQVSOi4FuwPhsqO1lAJJWknRvts/ywGOSpgDPAPdExLh84pqZFUmCY46B\n8eNh1izo1w/uvDPvVG0it6aqUnJTlZlVlLfeSk1Wkyenq85POy1dSFhBKr6pysysXVl1VXj0Udh3\nXzjjjHTx4Icf5p1qoblwmJmVw2KLwZgxcMklaajuhhvCSy/lnWqhuHCYmZWLBIcemua2mj07dZrf\nckveqYrmwmFmVm4DBqT+ju9/H3bbLa0y+PnneacqmAuHmVkeVlopnXkcfDCcc066ePD99/NOVRAX\nDjOzvCyyCIwaBVdcAZMmpalKnn8+71QL5MJhZpa3Aw5Io67mzUuTJF5/fd6JWuTCYWZWCfr1S/0e\n/fvDXnvB0UfDZ5/lnapJLhxmZpViueXSleZHHQUXXgiDB8M77+Sd6htcOMzMKknnzjByJFx3XVph\ncIMN4Jln8k71NS4cZmaVaNgweOKJVEg23RSuvDLvRF9y4TAzq1Trr5/W99h8czjwwDR0d86cvFO5\ncJiZVbQePeC++9JFgpdfDgMHwttv5xrJhcPMrNJ17AhnnQU33wwvvgh9+8Jjj+UWx4XDzKxa7Lor\nPPVUWk1w0KA0YWIOS2O4cJiZVZM+fdJoqx/9CA4/HPbbD/7737JGcOEwM6s2Sy2VVhM87TS45po0\n6upvfyvb4V04zMyqUYcOMGJEWtP8z39O81w99FB5Dl2Wo5iZWWnsuGO6QLBnT9h997TOR4l1KvkR\nzMystNZaC55+Gl59FZZYouSH8xmHmVkt6NYtLUdbBi4cZmZWFBcOMzMriguHmZkVxYXDzMyK4sJh\nZmZFceEwM7OiuHCYmVlRXDjMzKwoLhxmZlYUFw4zMyuKIodFQEpN0ixgYecYXhZ4rw3jVAN/5trX\n3j4v+DMXa7WI6FnIjjVZOFpDUn1E1OWdo5z8mWtfe/u84M9cSm6qMjOzorhwmJlZUVw4vml03gFy\n4M9c+9rb5wV/5pJxH4eZmRXFZxxmZlYUF46MpCGSXpM0XdKJeecpB0ljJL0raVreWcpB0iqSJkp6\nWdJLko7KO1OpSVpU0jOSpmSf+fS8M5WLpI6Snpd0d95ZykHSm5JelPSCpPqSHstNVekfGPA6sBUw\nA3gW2CMiXs41WIlJ2gyYDVwbEX3yzlNqklYEVoyI5yR1AyYDP67l/86SBCweEbMldQYeA46KiKdy\njlZyko4F6oDuEbF93nlKTdKbQF1ElPzaFZ9xJP2A6RHxRkTMBW4ChuacqeQiYhLwQd45yiUi/hER\nz2WP/wO8Aqycb6rSimR29rRzdqv5b4uSegHbAVfknaUWuXAkKwN/b/R8BjX+B6W9k7Q68APg6XyT\nlF7WZPMC8C4wPiJq/jMDI4HjgS/yDlJGAUyQNFnS8FIeyIXD2h1JSwC3AUdHxEd55ym1iPg8ItYH\negH9JNV0s6Sk7YF3I2Jy3lnKbED233kb4LCsKbokXDiSmcAqjZ73yrZZjcna+W8D/hgRt+edp5wi\n4kNgIjAk7ywltgmwY9bmfxOwhaTr841UehExM7t/FxhLaoIvCReO5Fmgt6Q1JHUB/ge4M+dM1say\njuIrgVci4vy885SDpJ6SlsoeL0YaAPJqvqlKKyJOioheEbE66f/lhyJiWM6xSkrS4tmADyQtDmwN\nlGy0pAsHEBHzgMOB+0kdpjdHxEv5pio9STcCTwJrSZoh6YC8M5XYJsBepG+gL2S3bfMOVWIrAhMl\nTSV9QRofEe1ieGo7szzwmKQpwDPAPRExrlQH83BcMzMris84zMysKC4cZmZWFBcOMzMriguHmZkV\nxYXDzMyK4sJhC9TcLLqSlpE0XtKfs/ulC3iv1dtiNl5JK0m6tYD9ftHaYxWY52FJC73Ws6Q6Sb9v\ny0zzvf/AtpolVtLh2SzSIWnZZvbZKpv64sXsfotGr22QbZ8u6ffZ9TVI2kzSc5LmSdplvvf7vNEQ\nal9jlTMXDivE1TR9tfGJwIMR0Rt4MHteFhHxdkTssuA9KbpwZLMll1VE1EfEkeU+7kJ6HBgM/K2F\nfd4DdoiI7wH7ANc1em0UcBDQO7s1/Nt6C9gXuKGJ9/tvRKyf3XZsXXxrLRcOW6AWZtEdClyTPb4G\n+HFTP599w5ySXZx0WKPtq0t6NPuW+ZykjbPt10r6caP9/ihp6Hzv+eWZi6R9Jd0uaVx29nNOtv0s\nYLHsW+ofs23DsvUpXpB0eUORkDRb0nlZxpMk3dLoWF9+W5c0SlJ9c2tbZBMKXi1pWvat+pgm9tk1\ne32KpElNHGNEdpb3sKQ3JB3Z6Gf3ljQ1+9nrsm09Jd0m6dnstklT/x0avUc/SU8qrVXxhKS1Wvo9\nzi8ino+IN1s6RrbP29nTl0j/HRZRmtq+e0Q8FekismvJ/t1ExJsRMZX2NTFhdYoI33xb4A1YHZg2\n37YPGz1W4+fz7TcV2Cx7/LuG9wG6Aotmj3sD9dnjzYH/yx4vCfwV6NRcHtK31DeyfRclfRNeJXtt\ndqOfWRu4C+icPb8U2Dt7HMBu2eNOpG+/i2fPRwHDssfLZPcdgYeB72fPHyat/bAB6ershmMu1cTv\n40Vg5cavAwOBu7PHI4AngEWAZYH3SdOhr0taN2bZ+bLcQJrgDmBV0pQq8x+z8ft3b/h9ks4cblvQ\n77GZ/65vNmRZwL+dXYAJ2eO6hsfZ800bcjXadjWwy3zb5gHPAU+R1lDJ/f+J9nzrhFkbiIiQ9I1p\nCJTmSVoq0lkLpCaLbbLHnYGLJa0PfA58J3uvRyRdKqkn8BPSH7Z5C4jwYET8Ozvmy8BqfH2qfIAt\nSX/Yn82a1RcjTTVOdvzbsuPPkzQO2CHrR9mONEU3wG5KU1Z3Ik3nsQ6pMDZ4A/iWpIuAe4AHmsj6\nOHC1pJuB5iZavCci5gBzJL1LmlJiC+CWyBbqiYiGs8DBwDrZZwLoLmmJ+GodjvktCVwjqTepYHZu\n9Fohv8eCSVoXOJs0d1JrrBYRMyV9C3hI0osR8ZdWvqctJBcOa413JK0YEf/ImiDeBZB0FWmti7eB\nn7bw88cA7wDrkZpNP2302rXAMNIkdfsVkGVOo8ef0/S/bQHXRMRJTbz2aUR83uj5TaT5yz4gnQn9\nR9IawHHAhhHxL0lXk76Zfynbvh7wI+BgYDdg//n2OVhSf1JBmixpg4X8PA06AD+MiE9b2KexXwET\nI2InpXVJHl7I47ZIaTGlsaSzuoY/8jNJs083KGgm6vhq5tc3JD1M+vflwpET93FYa9xJ6vgku78D\nICL2i9SJuW2kqbw/lDQg22/PRj+/JPCPiPiCNPlg407pq4Gjs/drzdKunylNpQ6pA38XScvBl6PC\nVmvm5x4B+pI6cW/KtnUHPgb+LWl5vjpz+pLSKKMOEXEbcHL2HvPvs2ZEPB0RpwKz+PqU/i15CNhV\nUo+G/Nn2B4AjGr3/+gt4nyX56o/1vgUeuyjZmeY9wIkR8XjD9oj4B/CRpB8qnSLtTfbvpoX3WlrS\nItnjZUmTVdbscr/VwIXDFkjNz6J7FrCVpD+TmkvOauYt9gMuUVqFTo22Xwrsk3VIf5f0RxmAiHiH\nNFPxVa2MPxqYKumPWQE6GXhAabbY8aTmpm/Izj7uJhWHu7NtU4DnSdOS30BqcprfysDD2We9Hmjq\n7OZ3Wcf5NFJfxpRCPkikGZt/DTyS/c4apoY/EqjLOs1fJp3pzK8TX51NnAP8VtLzLMQZhaQjJc0g\nnS1MldTU8qyHA98GTtVXw2iXy147lLSk63TSWcN92ftumL3vrsDlkhpmqF4bqM8+80TgrFZ+mbBW\n8uy4VpEkdSV1IvdtaHO3hSfpKFKH/PEL3NlsAdzHYRVH0mDSgksXuGi0nqQrgT6k/hazVvMZh5mZ\nFcV9HGZmVhQXDjMzK4oLh5mZFcWFw8zMiuLCYWZmRXHhMDOzovw/Ecn/UzrppRQAAAAASUVORK5C\nYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#plt.plot(SiGlobalTot[sdir0]-SiGlobalTot[sdir0][0],'r-')\n", "#plt.plot(SiGlobalTot[sdir3]-SiGlobalTot[sdir3][0],'g-')\n", "#plt.plot(40,test-SiGlobalTot[sdir1][0],'r*')\n", "#plt.plot(40,test2-SiGlobalTot[sdir1][0],'k*')\n", "fig,ax=plt.subplots(1,1,figsize=(6,5))\n", "ax.plot(NGlobalTot[sdir1]-NGlobalTot[sdir1][0],'r-')\n", "ax.set_xlabel('10-day intervals since Jan 1 2015')\n", "ax.set_ylabel('Difference in Total N')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEDCAYAAAA849PJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xmc1vP6x/HXVU2J0qI4JZ1wHM2cQTFKtEiiBQlF9jX7\nEsmSg2M51izJQdmXFBJRosh2SM1kSipHHFKW+mUrS1Sf3x/XzGnKTDPTzP393sv7+Xjcj9nu5nPd\nyve6v5/P9bk+FkJAREQyT424AxARkXgoAYiIZCglABGRDKUEICKSoZQAREQylBKAiEiGSvoEYGYP\nmtlSM5tbgef+2cxeNbM5Zva6mbWIIkYRkVSU9AkAeBjoUcHn3go8GkLYFbgGuCFRQYmIpLqkTwAh\nhDeBb0t+z8x2NLPJZlZgZm+ZWeuiH+UArxV9Pg3oE2GoIiIpJekTQBlGAueGEPYABgP/Kvr+bOCw\nos/7AvXNbKsY4hMRSXq14g6gssysHrA38LSZFX+7TtHHwcAIMzsReBNYAqyJOkYRkVSQcgkAv2v5\nPoTQZsMfhBC+pOgOoChRHB5C+D7i+EREUkLKTQGFEH4E/mtm/QDM7Vb0eRMzK35NlwEPxhSmiEjS\nS/oEYGZPAu8CO5vZYjM7BTgGOMXMZgMfsm6xd1/gIzP7D7ANcH0MIYuIpARTO2gRkcyU9HcAIiKS\nGEm9CNykSZPQqlWruMMQEUkZBQUF/xdCaFqR5yZ1AmjVqhX5+flxhyEikjLM7POKPldTQCIiGUoJ\nQEQkQykBiIhkKCUAEZEMpQQgIpKhqiUBmFkPM/vIzBaa2aWl/NzMbHjRz+eY2e7VMa6IiGy6KicA\nM6sJ3A30xPvxDzCznA2e1hPYqegxELinquOKiEjVVMc+gHbAwhDCpwBmNgbvzTOvxHP64Cd1BWC6\nmTU0s2YhhK+qYfw/eL3btSzKOZDf27Rjq63436NxY3/Urp2IUUVEUkt1JIBtgS9KfL0YaF+B52wL\n/CEBmNlA/C6Bli1bVjqY8O137DTtPjq/dhUjOIdBXMcKtlzvOfXrr0sIGyaIkl+X/F6DBlBDKyYi\nkkaSbidwCGEkfuIXeXl5le5UZ40b0fy7efx+6RWce98Izmgyjvln3sWC7L4s/9ZYvhyWL4dvv+V/\nn//3v/71d99BWb3xatRYdwdRVpIo7evNN6/Sfw4RkYSpjgSwBNiuxNctir5X2edUG2uwJbXvGQ4n\nHUvt009nt2sOZ7eDD4YRI2AjdxVr1sD331Nqktjw68WLYfZs/95PP5Udy2abVf5uo3FjqJV0qVlE\n0k11XGZmAjuZ2fb4Rf0o4OgNnjMBOKdofaA98EOi5v/X064dzJwJd94JV14JOTlw7bVw7rmlXmFr\n1lx3Ma6MX39dlxw2ljSWL4d589Z9b/Xqsn9ngwaVu9to2tSntkREKqpazgMws17AHUBN4MEQwvVm\ndgZACOFe88N7RwA9gJ+Bk0II5XZ5y8vLC9XWDO7zz+Hss2HiRGjbFkaOhLy86vndmyAEWLGi9CSx\nsUTyfRkHXJrBP/8Jl/6hCFdEMomZFYQQKnRxS+oDYao1AYBfdZ991u8AvvkGzjkHrrsupd46r17t\naxUbJojnn4fnnoOHH4YTTog7ShGJixJAeX74AYYOhX/9C5o397WBQw+t/nEi9Ntv0KsXvPEGTJoE\n3bvHHZGIxKEyCSAzCxsbNPCL/rvv+gR6376eAL74ovw/m6Rq14Zx4yA7Gw4/HAoL445IRJJdZiaA\nYu3bQ34+3HwzvPKKLxLfccfGV2eTWIMG/u6/QQO/G1i0KO6IRCSZZXYCAMjKgosv9vKczp1h0CBP\nDAUFcUe2SVq0gJdegp9/hp49fb1ARKQ0SgDFWrWCF1+Ep56CL7/0EtJBg7xUJ8Xk5sL48fDxxz67\ntWpV3BGJSDJSAijJDPr1gwUL4IwzfP9ATo6X2KSYrl29IuiNN+DEE2Ht2rgjEpFkowRQmgYN4O67\n4Z13oFEjXyDu29e3/6aQo4+Gm26CMWO0P0BE/kgJYGP22svXAm66CV5+2Utshg/3nhEp4uKLff/b\nLbfAXXfFHY2IJBMlgPJkZcGQIfDhh9CxI5x/vieGWbPijqxCzHwmq08fD338+LgjEpFkoQRQUdtv\n7zWWY8b4foE994SLLoKVK+OOrFw1a8Lo0V7cdPTRPrMlIqIEUBlmcOSRvkg8cCDcdpsvEr/wQtyR\nlWvzzT3M7baDgw+Gjz6KOyIRiZsSwKZo2BDuuQf+/W9fMD7kEN9+uyRhHa6rRZMmvkegZk3fI/DN\nN3FHJCJxUgKoir339rWAG27w6aHsbG8xkcSLxDvu6A1Rv/kGevdOiRksEUkQJYCqysryGssPP4QO\nHbzTaIcOSd2MZ889YexYeP99n9FK0c4XIlJFSgDVZYcdYPJkePJJP3sgLw8GD974cWExOuggb4Y6\naRKcdVbZR2GKSPpSAqhOZnDUUb5IfMopMGyYLxJPnBh3ZKU6/XS4/HIYNQquvz7uaEQkakoAidCo\nEdx3H7z9NtSr52+3+/XzHkNJ5rrr4Ljj4O9/99YRIpI5lAASaZ99fKL9+uu90Vx2ts+7JNEisRnc\nfz906wanneZdsUUkMygBJFrt2j7P8sEHvhPr7LM9McyeHXdk/1N8mExOjg6TEckkSgBR+ctfvJ/Q\nE0/Ap5/CHnt4i4kkWSQuPkymYUM/TObzz+OOSEQSTQkgSmbei2HBAjj5ZO/Qlpvru7OSwLbb6jAZ\nkUyiBBCHxo1h5Eh46y3v0dCrlxfkf/VV3JGRmwvPPQeffOJdsHWYjEj6UgKIU8eOvkh83XV+6Ezr\n1t5iIubTW/bd1yuC3nwTTjgh9nBEJEGUAOJWuzYMHQpz5/oW3bPO8kXiDz6INawBA+Dmm33H8CWX\nxBqKiCSIEkCy+MtfYMoUeOwxWLgQdt/dW0z8/HNsIQ0eDOecA7fe6ufgiEh6UQJIJmZw7LG+SHzC\nCX4SWW6ut5iIKZw77vC1gAsugGefjSUMEUkQJYBktNVWvjvrjTegTh0vyRkwAL7+OvJQig+T2Wsv\nOOYY74AtIumhSgnAzBqb2RQz+7joY6MynveZmX1gZoVmll+VMTNK586+K+uaa/wsx9atvcVExKuy\ndevChAl+mMwhh+gwGZF0UdU7gEuBV0MIOwGvFn1dlq4hhDYhhLwqjplZ6tTxRj1z5vjmsTPOgE6d\nfNE4Qk2a+ExUrVrQo0csNyMiUs2qmgD6AI8Uff4IcGgVf5+U5a9/halT4ZFH/C1427beYuKXXyIL\nYYcdvKXR0qXe306HyYiktqomgG1CCMW7l74GtinjeQGYamYFZjZwY7/QzAaaWb6Z5S9btqyK4aUZ\nMzj+eF8kPu44P4ksNzfSDm4lD5Pp31+HyYiksnITgJlNNbO5pTz6lHxeCCHgF/rSdAwhtAF6Ameb\nWeeyxgshjAwh5IUQ8po2bVqZ15I5mjSBBx+EadP8RLIDD/QV2oh6NxQfJvPSS3DmmTpMRiRV1Srv\nCSGE/cv6mZl9Y2bNQghfmVkzYGkZv2NJ0celZjYeaAe8uYkxS7F99/Wuojfd5LuJv/zS7wayshI+\n9OmnwxdfeKfrli19mUJEUktVp4AmACcUfX4C8PyGTzCzLcysfvHnwAFAtCuY6axOHbjySr8jeP11\nGDQosqGvvdZnpK68UofJiKSicu8AynEj8JSZnQJ8DvQHMLPmwP0hhF74usB4Myseb3QIIZ6dTens\n2GP9buDWW2G33fx0lwQz8+Mkv/zSh2vWzGejRCQ1WEjiCdy8vLyQn69tAxW2Zo1P0L/6Krz2mjeb\ni8CPP3pl6qefegO5tm0jGVZESmFmBRUtt9dO4HRSsyY8+SRsvz0cdhgsWhTJsFtu6YfJNGqkw2RE\nUokSQLpp2NBbS69a5U18ImomV3yYzC+/6DAZkVShBJCOWrf2O4HCQj95LKJpvr/9bf3DZH79NZJh\nRWQTKQGkq169fKPY2LFw442RDbvvvr5ZWYfJiCS/qlYBSTIbMsR7CA0d6juGDz44kmGPOgoWL4aL\nL/YGcrfeGsmwIlJJSgDpzMzbSn/0ke8Unj4dcnIiGfqii3wNetgwTwLnnx/JsCJSCZoCSnd16/rE\n/OabQ58+ka3OmsHtt0Pfvr43bdy4SIYVkUpQAsgELVr4cV6LFsGRR0bWwa1mTXjiCR0mI5KslAAy\nxd57wz33+LnDEZ7yXnyYTMuWfpjMggWRDS0i5VACyCQnnwznngu33QaPPhrZsCUPk+nZU4fJiCQL\nJYBMM2wY7LcfDBwI770X2bAlD5Pp3VuHyYgkAyWATJOVBU895Vt3+/b1Tm4R2XNPH7qwEPr1g99/\nj2xoESmFEkAm2morbxexYoUngQi37Pbu7UsRkyfrMBmRuCkBZKrcXHj8cZgxw6eDIrwSDxwIV1wB\nDzzgZwqISDyUADJZnz5wzTXw2GO+MByha67xw2SuugoeeijSoUWkiHYCZ7qhQ/0gmSFD/K4gohNd\nig+T+eorP0ymeXMdJiMSNd0BZLoaNfw8x9xcb+Lz8ceRDV27NjzzjA99xBEwa1ZkQ4sISgACUK+e\nLwrXquW7tX74IbKhSx4m07s3fPZZZEOLZDwlAHGtWvnb8YULvW/DmjWRDd28uR8m8+uv3sX6228j\nG1okoykByDpdusDw4TBxopfpREiHyYhETwlA1nfmmXD66X6IzJNPRjp0ly7eoeKtt7xCSIfJiCSW\nqoDkj4YPh3nzvHfQX/8Ke+wR2dBHHumHyQwe7OcIDBsW2dAiGUd3APJHxeU5W2/t8zERd2+78EI4\n7zzfmnDHHZEOLZJRlACkdFtv7ZVBy5fD4YfDqlWRDW3mF/++fT0ZPPNMZENLEgnBd4t37w7nnOOH\n2xUURPpPMe1ZSOJmLHl5eSE/Pz/uMDLbU0/5vMypp8LIkX51jsgvv0C3br4/YOpU6NgxsqElZitX\n+nLU44/Djjt6F9kVK/xntWr5yaZt2657tGnjJcUCZlYQQsiryHO1BiAb17+/Hyx//fWw227+Viwi\nxYfJ7LOPb0945x1o3Tqy4SUm8+b5xsAFC7xlyOWX+/uOTz+F999f95g8GR55ZN2f23HHdcmgODE0\naxbf60gFugOQ8q1d6/MxEyfCK6/4eQIR+vRT6NDBE8L06fCnP0U6vEToscfgjDN8b+Lo0X4HuDFf\nfeXJoLBwXWL45JN1P99mm/XvFNq29bMpaqTx5Hdl7gCqlADMrB9wNZANtAshlHq1NrMewJ1ATeD+\nEMKNFfn9SgBJ5Mcf/Sr89dcwc6b/XxSh/HwvE23dGl5/HerXj3R4SbBffoHzz/f+UJ07ewVy8+ab\n9rt++MHbW5W8W5g3b91R2PXr+81syaSQk+O1D+kgygSQDawF7gMGl5YAzKwm8B+gO7AYmAkMCCHM\nK+/3KwEkmYULoV07P0zmnXcivwpPmuRTQd27+9RQVlakw0uCfPyxHxA0ezZcdplP+9Sq5snpVavg\nww/XTwqzZ8NPP/nPa9f2zYglk8Kuu6bmG43I1gBCCPOLBtzY09oBC0MInxY9dwzQByg3AUiS+ctf\nYOxY6NHDd2qNGxfpvXSvXn6YzMCBPk1w//2RrklLAjzzjG83qVXLjwzt3Tsx49SpA7vv7o9ia9b4\ne5rihFBYCC+8AA8+6D8383/yG04hbb11YmKMQxSLwNsCX5T4ejHQvqwnm9lAYCBAy5YtExuZVF73\n7r47a9Agf6t29dWRDn/aafDFF36QTMuWfp6ApJ7ffoOLL/Y9h+3b+/uKP/852hhq1oSdd/bHUUf5\n90LwU1JL3inMmOHFcMWaN1+/+qhtW9h++9R8M1JuAjCzqUBpy25DQwjPV3dAIYSRwEjwKaDq/v1S\nDc4/3++f//EP2GUX3ycQoX/8AxYt8tyzZAncdJN3E5XU8PnnXlw2YwZccIH//SXL/LuZz3Buuy0c\ndNC673/33bqF5uKPkyev65nYoMH61Udt2/p6VbJPU5abAEII+1dxjCXAdiW+blH0PUlVZnDvvV6n\nd/zxsNNOPmEa4fCjRkGTJnD77b4eMHy4zyOn4ruwTPLii/5PZs0an/6J+L3DJmvUCLp29UexX36B\nuXPXv1u47z7/Pvi00y67rJ8Ydt0VttgintdQmmopAzWz1yl7EbgWvgjcDb/wzwSODiF8WN7v1SJw\nkvvqK9hzT3+bM3OmX5EjNmuWrwkUFPj88d13Rz+VIOVbvdobzN50k18Qn37a59fTzZo18NFH65el\nvv/+uhbnNWp4e60N1xW22qr6YoiyCqgvcBfQFPgeKAwhHGhmzfFyz15Fz+sF3IGXgT4YQri+Ir9f\nCSAFzJwJnTp5iegrr8Ryz7t6Ndx1l19gzOC66+Dcc32OV+L35Zc+x/7WW95o9o47YLPN4o4qOiH4\nulXJhPD++/69Yi1a/DEptGy5aXe0kSWARFMCSBGPPw7HHQdnneVvwWPy+ecewqRJ3sB01Cj/H0ni\nM3UqHH00/PyzT48cc0zcESWP5cv/eKfw0Ue+77JhQ79rSHQCIISQtI899tgjSIoYPDgECOG++2IN\nY+3aEMaODWGbbUKoWdPDWrky1pAy0urVIVx9dQhmIeTkhDBvXtwRpYaffgrh3XdDGD9+038HkB8q\neI3VHYBUjzVrvGxi6lR47TWfForRd9/BJZf4XUCrVr5/oEePWEPKGEuXwrHHwpQpfmN4zz3JtfCZ\n7ipzB5DGHTEkUjVr+v79HXbw0o5Fi2INp1Ejb1765ps+39yzp09FfPNNrGGlvbfe8mm3t97y5PvI\nI7r4JzMlAKk+DRt6TeaqVX6QzM8/xx0RnTr5POvVV/vG5exs7zGfxDe+KWntWrj5Zi+T3Hxzb9p3\n6qkqy012SgBSvXbe2e8ECgt9j38SXGnr1PEdw7NnQ26uX5i6dvUFN6m6b7/1fH/JJd40tqDAm61J\n8lMCkOrXqxfccIPv77/hhrij+Z/iTqKjRnky2HVXbynx229xR5a6Zszw/jqTJ/tmvKee0sEsqUQJ\nQBJjyBCfdL/iCu+wlSRq1PA7gPnz/d3qlVf6nPW//x13ZKklBN97UXxK29tv+94LTfmkFiUASQwz\nb9e5++5e/D0vuZq//ulPMGaMn3GzcqVfyM44A77/Pu7Ikt+PP/opoeedBwce6Lux27WLOyrZFEoA\nkjh168Jzz/mq4CGHrNsPn0R69fI+8Rde6FND2dneoyYJli6S0uzZvsnu2We9rcPzz0PjxnFHJZtK\nCUASq0ULv1p88YX3Ayg+limJ1KvnHa5nzPAzZPv1gz591t+qn+lC8Oqpvfby4q5p03yWL52PVswE\n+uuTxNt7b98NNGWKXzWS1B57eBK49VZ49VU/JvDOO9e1/M1UP/0EJ57oaycdO3rLgpj3+Uk1UQKQ\naJx8sq8S3n677w5KUrVqwUUX+bRQp07er75DB69qzUTz5/v8/mOP+V6KyZPT60SsTKcEINEZNgz2\n28/7N0+fHnc0G9WqlS8QjxnjTeby8rzOPQn2tkVm9Gjv9r1smTd6veoqdVhNN0oAEp2sLC8Ub9HC\nazCXJPe5QGZe7TJ/Ppx0ku90zc31i2E6+/VXr4g65hgv4ioshP2reiyUJCUlAInWVlt56cjKlZ4E\nio9PSmKNG3uF0Ouv+9GFBx7ozc6WLo07sur3ySc+5XXffX7H89prfgaupCclAIlebq6fITBzpk8H\npUjNZZcu/m74yiv9RiY7Gx56KGXCL9ezz/o7/s8/9717N97oayKSvpQAJB59+sA113giuO22uKOp\nsM0280PpCwu9Sujkk6FbN/jPf+KObNP99hsMGuRNXFu39iqfkgeiS/pSApD4XHEFHHGEl4a+/HLc\n0VRKTg688YZPlcya5X2Frr8+9foKLVoEnTv7MY3nnedtnHWmcuZQApD4mPkcSm6ur7am2NvoGjV8\nBmv+fL+hueIKn0J55524I6uYSZO8D9K8eX5I+513+hqHZA4lAIlXvXq+KJyV5e0ifvgh7ogqrVkz\nb3z6wgveJ6djRz+bOFlfyurVcPnl0Ls3bLedt28+4oi4o5I4KAFI/Fq18gY8n3ziHURTdOvtQQf5\nu+kLLvCpoexsX1hNpkXir77yks4bboDTToN334Wddoo7KomLEoAkhy5dvKH8pEkwdGjc0WyyevV8\nTfu992CbbXxhtW9fWLw47si8pLNNGy++evRRPzKzbt24o5I4KQFI8jjzTDj9dG8zOXp03NFUSV6e\nX2hvucU3jmVne//8OG5u1q71g2+6d/dtGDNm+GHtIkoAklyGD/cmPKec4pPTKaxWLRg82PsK7bOP\nV9nsvTfMmRNdDMuWQc+evndhwAC/+P/tb9GNL8lNCUCSS+3avh6w9dZ+0OzXX8cdUZVtvz289JLf\n1Pz3v9519LLLEr8J+t//9iqfN97w6Z7HHvMpKpFiSgCSfLbe2iuDli/3SfRVq+KOqMrM/B34ggVw\nwgm+y3aXXWDq1OofKwRvad2li29cmz7dF3x1XKNsqEoJwMz6mdmHZrbWzPI28rzPzOwDMys0s/yq\njCkZok0bePhhL6o/++zkKqWpgsaN/aTMadO8s2b37nD88T5VUx2++85vnC6+2D8WFPh/SpHSVPUO\nYC5wGPBmBZ7bNYTQJoRQZqIQWU///l4R9MADMGJE3NFUq3339eMV//53bzmdne3HJFQlz+Xn+0a0\nl17yTV1PPw0NGlRbyJKGqpQAQgjzQwgfVVcwIn9wzTW+QWzQID+mK41stpm/vMJC78Fz4oleo79w\nYeV+Twhw992+0Lx2rbdzOO88TflI+aJaAwjAVDMrMLOBEY0p6aBGDV+93HlnvyP49NO4I6p2OTnw\n5ptw773+Ln6XXXyj1u+/l/9nV6zwtYVzzvHkMWsWtG+f+JglPZSbAMxsqpnNLeXRpxLjdAwhtAF6\nAmebWeeNjDfQzPLNLH9ZdU2MSmrbckuYMMHf6h5yiF/10kyNGr4FYv5831F8+eU+nbOxg9PmzPH9\nBs8844vKL7zgdf4iFVVuAggh7B9CyC3l8XxFBwkhLCn6uBQYD7TbyHNHhhDyQgh5TZs2regQku52\n3NEb7syf76uma9fGHVFCNG/uc/cTJngvob339nf3P/64/vMeesjf6a9Y4Tt8L7nEk4hIZST8n4yZ\nbWFm9Ys/Bw7AF49FKqd7dz9X+LnnvCl/Gjv4YN9Adt558K9/+TTRc8/5mcQnneTnEOyzj/fu71zm\n/bTIxlW1DLSvmS0GOgATzezlou83N7NJRU/bBnjbzGYDM4CJIYTJVRlXMtj55/tq6TXXwLhxcUeT\nUPXre5/+996DJk28p9Cf/+zVQldd5UcobLNN3FFKKrOQxPXVeXl5IT9f2wZkA6tWeR3lnDk+V9Kt\nW9wRJdzvv3syeOIJP5z+gAPijkiSlZkVVLTcXrOGknrq1PE+y61a+ZXwhhvSdk2gWFaWb+4qLNTF\nX6qPEoCkpmbNfG6kf38vmenbF77/Pu6oRFKKEoCkrnr1vMPanXf6OQJ77hltq02RFKcEIKnNzEtl\nXn8dfvoJ9toLHn887qhEUoISgKSHffbxbbDt2vlpJ2efDb/9FndUIklNCUDSx5/+5P2VBw/24vnO\nnZPjLEaRJKUEIOmlVi0/h/Hpp30n1e67+1ZZEfkDJQBJT0cc4YfyNmniO4hvvDFtzhQQqS5KAJK+\nWrf2Q3D79fMzGPv29QY7IgIoAUi6q1cPnnzSt9FOnOjtMz/4IO6oRJKCEoCkPzPvITRtmpeKtm/v\nPRVEMpwSgGSOjh29VHTPPeHYY73PskpFJYMpAUhmKS4VvegiP0exSxeVikrGUgKQzJOVBbfe6qWi\nc+eqVFQylhKAZK4NS0VvukmlopJRlAAksxWXih5xBFx6KRx2mEpFJWMoAYjUqwdjxsDtt8OLL/oi\nsUpFJQMoAYiAl4pecIGXiq5Y4V1FVSoqaU4JQKSk4lLRPfbwUtFzz1WpqKQtJQCRDTVrBq++Chde\nCCNG+PnDKhWVNKQEIFKarCwYNgyeesrXA3bf3aeHRNKIEoDIxvTr51VCTZrA/vvDzTerVFTShhKA\nSHmys/0A+sMPh0su8Y8qFZU0oAQgUhH168PYsXDbbTBhgpeKzp0bd1QiVaIEIFJRZjBo0LpS0fbt\nYfTouKMS2WRKACKV1anTulLRY46B885TqaikJCUAkU1RXCo6aBDcdZeXii5ZEndUIpVSpQRgZreY\n2QIzm2Nm482sYRnP62FmH5nZQjO7tCpjiiSNrCxfExg7FubMUamopJyq3gFMAXJDCLsC/wEu2/AJ\nZlYTuBvoCeQAA8wsp4rjiiSP/v29q2jjxioVlZRSpQQQQnglhLC66MvpQItSntYOWBhC+DSE8Bsw\nBuhTlXFFkk52tu8XKC4VPeII+PHHuKMS2ajqXAM4GXiplO9vC3xR4uvFRd8rlZkNNLN8M8tftmxZ\nNYYnkmDFpaLDhsHzz3up6Icfxh2VSJnKTQBmNtXM5pby6FPiOUOB1UCV2yeGEEaGEPJCCHlNmzat\n6q8TiZaZ9xB67TW/A2jXDp58Mu6oREpVq7wnhBD239jPzexE4CCgWwilTnwuAbYr8XWLou+JpK/O\nnb1UtH9/OPpoePddP4aydu24IxP5n6pWAfUAhgCHhBB+LuNpM4GdzGx7M6sNHAVMqMq4IimhWTO/\nEyguFe3aVaWiklSqugYwAqgPTDGzQjO7F8DMmpvZJICiReJzgJeB+cBTIQRNjEpmKFkqOnu2l4q+\n/nrcUYkAYKXP2iSHvLy8kJ+fH3cYItVj3jyvEvr4Y7jhBhg82NcMRKqRmRWEEPIq8lztBBaJSk6O\nl4r27QtDhqhUVGKnBCASpfr1/ZAZlYpKElACEIlayVLRH37wUtExY+KOSjKQEoBIXIpLRdu2hQED\n4Pzz1VVUIqUEIBKn5s29gdwFF8Dw4V4q+uWXcUclGUIJQCRuWVlw++0+DVRcKvrGG3FHJRlACUAk\nWRx5pFcJNWwI3br5zuEkLtOW1KcEIJJMiktFDz0ULr4Y+vVTqagkjBKASLLZckt4+mm/A3juOa8S\nUqmoJEAwqeRjAAAIwElEQVS5zeBEJAZmcNFFkJfnU0Pt28MDD/jncQoB1qyB1avh99+j+dikCZx8\nMtSpE+9rT0NKACLJrEuXdV1FjzoKpkyB1q2jvQBv+DEOd94Jo0ZBp07xjJ+mlABEkl1xqejFF3up\n6IYLw7VqeSVRZT/Wrbtpfy7qj1OmwJln+r6JgQPhppt8oVyqTM3gRFLJypWeAIovkDVrZkZDuZ9+\ngquu8nLZrbf29tqHH54Zr72S1AxOJF3Vq+f9hDbbzBNAplwAt9jCF8VnzPBzFvr180qpL74o/89K\nmZQARCR17LGHJ4FbbvGpoZwcGDHCF6al0pQARCS11KrlZynMnQsdOsC550LHjvDBB3FHlnKUAEQk\nNe2wA7z8Mjz2GCxc6C00rrgCfv017shShhKAiKQuMzj2WJg/H44+Gq6/HnbdVcduVpASgIikviZN\n4JFH4JVXfD2ga1c49VT49tu4I0tqSgAikj66d/e1gCFD4OGHITsbxo5VU70yKAGISHrZfHPfLDZz\nJmy3ne+gPvhgWLQo7siSjhKAiKSntm1h+nS47TbfSZ2T4y0lVDL6P0oAIpK+atWCQYO8m2qnTn7y\nWocOfvCOKAGISAZo1QomTYLRo+Gzz3xD2WWXwS+/xB1ZrJQARCQzmMGAAbBgARx/PNx4I+yyC7z6\natyRxUYJQEQyS+PG8OCDfuE3g/33hxNPhOXL444sckoAIpKZ9tsP5szxqaAnnvCS0dGjM6pktEoJ\nwMxuMbMFZjbHzMabWalNus3sMzP7wMwKzUz9nUUkOdStC//8JxQUwPbbwzHHQK9evk6QAap6BzAF\nyA0h7Ar8B7hsI8/tGkJoU9E+1SIikdl1V3jnHS8Tfest+NvfYNiw+E5Ai0iVEkAI4ZUQQvF/oelA\ni6qHJCISg5o14bzzYN48nx4aPBj22gvefz/uyBKmOtcATgZeKuNnAZhqZgVmNnBjv8TMBppZvpnl\nL1u2rBrDExGpgJYtYcIEbyGxeDHsuacfx/nzz3FHVu3KTQBmNtXM5pby6FPiOUOB1cATZfyajiGE\nNkBP4Gwz61zWeCGEkSGEvBBCXtOmTSv5ckREqoEZ9O/vXUZPOslPI8vN9WZzaaTcBBBC2D+EkFvK\n43kAMzsROAg4JpRxwHAIYUnRx6XAeKBdtb0CEZFEadQIRo3y9tJZWXDggXDccZAmsxNVrQLqAQwB\nDgkhlHp/ZGZbmFn94s+BA4C5VRlXRCRSXbp4+4grroAxY7xk9NFHU75ktKprACOA+sCUohLPewHM\nrLmZTSp6zjbA22Y2G5gBTAwhTK7iuCIi0dpsM7j2Wl8U/utf4YQT4IAD4JNP4o5sk1kZszZJIS8v\nL+Tna9uAiCSZtWvhnnt8E9nq1XD11d50Lisr7sgws4KKlttrJ7CISGXVqAFnn+0lowccAJdc4tVC\nKfaGVQlARGRTtWgB48fDuHGwdCm0bw8XXggrV8YdWYUoAYiIVIUZHHaY3w2cdhrcfruXjL5U1rao\n5KEEICJSHRo2hHvv9VYSdet6T6EBA+Cbb+KOrExKACIi1aljRygs9IXhceO8ZPShh5KyZFQJQESk\nutWpA1dd5XsHcnLg5JOhWzf4+OO4I1uPEoCISKJkZ8Obb/rUUEGBn0D2z3/C77/HHRmgBCAiklg1\nasDpp3tfod69YehQP5P4vffijkwJQEQkEs2b+5rA+PHw7bfQoYO3n16xIraQlABERKJ06KFeMnrW\nWTBihB8+8+KLsYSiBCAiErUtt/SL/9tv++cHH+ztp7/+OtIwlABEROKy994wa5Y3mXv+eV80HjXK\new1FQAlARCROtWt7m+k5c/xs4oEDoWtX+OmnhA+tBCAikgx23hmmTfM7gJ12gi22SPiQSgAiIsmi\nRg049VS4//5ohotkFBERSTpKACIiGUoJQEQkQykBiIhkKCUAEZEMpQQgIpKhlABERDKUEoCISIay\nkITHlBUzs2XA55v4x5sA/1eN4aQCveb0l2mvF/SaK+vPIYSmFXliUieAqjCz/BBCXtxxREmvOf1l\n2usFveZE0hSQiEiGUgIQEclQ6ZwARsYdQAz0mtNfpr1e0GtOmLRdAxARkY1L5zsAERHZCCUAEZEM\nlXYJwMx6mNlHZrbQzC6NO54omNmDZrbUzObGHUsUzGw7M5tmZvPM7EMzOz/umBLNzDYzsxlmNrvo\nNf8j7piiYmY1zex9M3sx7liiYGafmdkHZlZoZvkJHSud1gDMrCbwH6A7sBiYCQwIIcyLNbAEM7PO\nwErg0RBCbtzxJJqZNQOahRBmmVl9oAA4NJ3/ns3MgC1CCCvNLAt4Gzg/hDA95tASzswuBPKALUMI\nB8UdT6KZ2WdAXggh4Zvf0u0OoB2wMITwaQjhN2AM0CfmmBIuhPAm8G3ccUQlhPBVCGFW0ecrgPnA\ntvFGlVjBrSz6MqvokT7v3spgZi2A3kA0ZyRmmHRLANsCX5T4ejFpfmHIdGbWCmgLvBdvJIlXNBVS\nCCwFpoQQ0v41A3cAQ4C1cQcSoQBMNbMCMxuYyIHSLQFIBjGzesA44IIQwo9xx5NoIYQ1IYQ2QAug\nnZml9XSfmR0ELA0hFMQdS8Q6Fv099wTOLpriTYh0SwBLgO1KfN2i6HuSZormwccBT4QQno07niiF\nEL4HpgE94o4lwfYBDimaEx8D7Gdmj8cbUuKFEJYUfVwKjMenthMi3RLATGAnM9vezGoDRwETYo5J\nqlnRgugDwPwQwm1xxxMFM2tqZg2LPq+LFzosiDeqxAohXBZCaBFCaIX/v/xaCOHYmMNKKDPboqiw\nATPbAjgASFh1X1olgBDCauAc4GV8YfCpEMKH8UaVeGb2JPAusLOZLTazU+KOKcH2AY7D3xEWFj16\nxR1UgjUDppnZHPyNzpQQQkaURWaYbYC3zWw2MAOYGEKYnKjB0qoMVEREKi6t7gBERKTilABERDKU\nEoCISIZSAhARyVBKACIiGUoJQEQkQykBiIhkqP8HPVZRzillHwEAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(SiGlobalTot[sdir1]-SiGlobalTot[sdir1][0],'b-')\n", "plt.plot(NGlobalTot[sdir1]-NGlobalTot[sdir1][0],'r-')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pickle\n", "pickle.dump(SiGlobalTot[sdir1],open('SiGlobalTot_'+tit+'.pkl','wb'))\n", "pickle.dump(NGlobalTot[sdir1],open('NGlobalTot_'+tit+'.pkl','wb'))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'spring15spun_Ztest'" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tit" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:python36]", "language": "python", "name": "conda-env-python36-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }