{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import netCDF4 as nc\n", "import datetime as dt\n", "import subprocess\n", "import requests\n", "import matplotlib.pyplot as plt\n", "import cmocean\n", "import numpy as np\n", "import os\n", "import glob\n", "import dateutil as dutil\n", "from salishsea_tools import viz_tools\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with nc.Dataset('/ocean/eolson/MEOPAR/NEMO-forcing/grid/mesh_mask201702_noLPE.nc') as fm:\n", " tmask=np.copy(fm.variables['tmask'])\n", " umask=np.copy(fm.variables['umask'])\n", " vmask=np.copy(fm.variables['vmask'])\n", " navlon=np.copy(fm.variables['nav_lon'])\n", " navlat=np.copy(fm.variables['nav_lat'])\n", " e3t_0=np.copy(fm.variables['e3t_0'])\n", " e3u_0=np.copy(fm.variables['e3u_0'])\n", " e3v_0=np.copy(fm.variables['e3v_0'])\n", " e1t=np.copy(fm.variables['e1t'])\n", " e2t=np.copy(fm.variables['e2t'])\n", " e1v=np.copy(fm.variables['e1v'])\n", " e2u=np.copy(fm.variables['e2u'])\n", " A=fm.variables['e1t'][0,:,:]*fm.variables['e2t'][0,:,:]*tmask[0,0,:,:]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "t0=dt.datetime(2016,1,6) # 1st start date of run\n", "#t0=dt.datetime(2015,1,11) # 1st start date of run\n", "#te=dt.datetime(2016,12,1)# last start date of runfnum=18\n", "stm=np.shape(tmask)\n", "SiN=2.0\n", "#nlen=36\n", "nlen=20\n", "dlist=[t0+dt.timedelta(days=ii*10) for ii in range(0,nlen)]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'spring16spun_Z7'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#sdir0='/results/SalishSea/nowcast-green/'\n", "#sdir1='/results/SalishSea/hindcast/'\n", "#sdir1='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_Z2/'\n", "#sdir1='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_eff0/'\n", "#sdir1='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring2015_NoMZME/'\n", "#sdir1='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring15spun_Ztest/'\n", "sdir1='/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/'\n", "tit=[i for i in sdir1.split('/') if len(i)>0][-1]\n", "tit" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tmaskC=np.copy(tmask)\n", "tmaskC[:,:,370:490,:12]=0\n", "tmaskC[:,:,887:,30:70]=0" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160106-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160116-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160126-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160205-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160215-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160225-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160306-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160316-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160326-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160405-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160415-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160425-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160505-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160515-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160525-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160604-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160614-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160624-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160704-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160714-*[0-9].nc\n" ] } ], "source": [ "tlist=dlist\n", "SiGlobalTot=dict()\n", "SiTot=dict()\n", "BSiTot=dict()\n", "DiatTot=dict()\n", "changeSiGlobalTot=dict()\n", "for idir in (sdir1,):\n", " fformat1='%d%b%y/'\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/'):\n", " fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*[0-9].nc'\n", " fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*[0-9].nc'\n", " #elif idir==sdir0:\n", " # fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " # fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_grid_T.nc'\n", " elif idir==sdir1:\n", " fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc'\n", " sumSi=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumBSi=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumDiat=np.zeros((len(tlist),stm[2],stm[3]))\n", " ind=-1\n", " for idt0 in tlist:\n", " ind=ind+1\n", " cdir=idt0.strftime(fformat1).lower()\n", " iffT=idt0.strftime(fformatT)\n", " iffP=idt0.strftime(fformatP)\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/'):\n", " sffT=idir+iffT\n", " sffP=idir+iffP\n", " elif idir.startswith('/results/'):\n", " sffT=idir+cdir+iffT\n", " sffP=idir+cdir+iffP\n", " f=nc.Dataset(glob.glob(sffT)[0])\n", " print(sffT)\n", " fP=nc.Dataset(glob.glob(sffP)[0])\n", " #if idir==sdir0:\n", " # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0\n", " if idir==sdir1:\n", " e3t=fP.variables['e3t'][:2,:,:,:]\n", " Vol=A*e3t\n", " sumSi[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['silicon'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumBSi[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['biogenic_silicon'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumDiat[ind,:,:]=SiN*1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " f.close()\n", " fP.close()\n", " SiGlobalTot[idir]=np.sum(np.sum(sumSi+sumBSi+sumDiat,2),1)\n", " SiTot[idir]=np.sum(np.sum(sumSi,2),1)\n", " BSiTot[idir]=np.sum(np.sum(sumBSi,2),1)\n", " DiatTot[idir]=np.sum(np.sum(sumDiat,2),1)\n", " changeSiGlobalTot[idir]=[SiGlobalTot[idir][ii+1]-SiGlobalTot[idir][ii] for ii in range(0,len(tlist)-1)]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAFICAYAAABQl4kcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVOXZx/HvjRR7QbBEBLGLUVHXhr2LDTRiJCrF3kvs\nxhiTN8WuMVbAioJRwYhtQUQ0sS8gKlZsUZSioig2yv3+8ZwJ6zI7O7tTnim/z3Wda9qZc+49DHPP\n083dERERaRU7ABERKQ1KCCIiAighiIhIQglBREQAJQQREUkoIYiICFCGCcHMbjOzmWb2ehb7djGz\nJ83sVTMbb2adihGjiEg5KruEANwB7JPlvlcCd7n7psCfgL8VKigRkXJXdgnB3Z8Bvqz/nJmtY2a1\nZjbBzP5tZhsmL3UDxiX3nwJ6FTFUEZGyUnYJoRGDgFPdfUvgbODG5PnJwMHJ/YOA5cxs5QjxiYiU\nvNaxA8iVmS0L9ADuN7PU0+2S27OB681sAPAMMA1YUOwYRUTKQdknBEIp5yt3797wBXf/lKSEkCSO\nX7n7V0WOT0SkLJR9lZG7zwE+MLM+ABZsltzvYGapv/EC4LZIYYqIlLyySwhmNhx4HtjAzD4xs6OB\nw4GjzWwyMIVFjce7AG+b2TvAqsBfIoQsIlIWTNNfi4gIlGEJQURECkMJQUREgDLrZdShQwdfa621\nYochIlJWJkyY8Lm7d2xqv7JKCGuttRZ1dXWxwxARKStm9lE2+6nKSEREgBJICGa2hJlNMrNHYsci\nIlLNoicE4HTgzdhBiIhUu6gJIVmfYD9gSMw4REQkfgnhWuBcYGHkOEREql60hGBm+wMz3X1CE/sd\nZ2Z1ZlY3a9asIkUnIlJ9YpYQtgcONLMPgXuB3czs7oY7ufsgd69x95qOHZvsRisiIi0ULSG4+wXu\n3snd1wIOA8a5+xGx4hERqXax2xBERKRElMRIZXcfD4yPHIaISDTz5sGcOWH75ptF91OPe/aETp0K\nG0NJJAQRkUr1ww9w2WUwfXrjX/Zz5oT9Mnn0USUEEZGy9uCDcMklsPLKsOKKsPzysNxysMYasNFG\n4XHqudT9dM8Vo0+NEoKISAHV1oZkMGMGLLFE7GgyU6OyiEiBLFwIo0fDXnuVfjIAJQQRkYKZPDmU\nDPbZJ3Yk2VFCEBEpkNracLvXXnHjyJYSgohIgdTWQvfusNpqsSPJjhKCiEgBzJkDzz1XPtVFoIQg\nIlIQ48bB/PlKCCIiVa+2Nowj2G672JFkTwlBRCTP3ENC2H13aNs2djTZU0IQEcmzt9+Gjz6CvfeO\nHUnzKCGIiORZqrupEoKISJUbPRo22AC6do0dSfMoIYiI5NH338P48eXVuyhFCUFEJI+eeSZMZa2E\nICJS5WprYcklYeedY0fSfEoIIiJ5VFsbksFSS8WOpPmUEERE8uSjj+Ctt8qvd1GKEoKISJ6MHh1u\ny7H9AJQQRETyprYWOneGDTeMHUnLKCGIiOTBvHkwdmwoHZjFjqZllBBERPLg+efhm2/Kt7oIlBBE\nRPKithZat4bddosdScspIYiI5EFtbZjqeoUVYkfSckoIIiI5mjEDJk0q7+oiUEIQEcnZmDHhVglB\nRKTK1dbCKqtA9+6xI8mNEoKISA4WLAgD0vbeG1qV+TdqmYcvIhLXxInwxRflX10ESggiIjmprQ0D\n0fbcM3YkuVNCEBHJwejRsOWW0LFj7Ehyp4QgItJCs2eHEcqVUF0ESggiIi325JOwcKESgohI1aut\nDSOTt9kmdiT5oYQgItIC7iEh7LlnmMOoEighiIi0wJQpMG1a5VQXgRKCiEiLpFZHK9flMtNRQhAR\naYHaWth4Y+jUKXYk+aOEICLSTHPnwjPPVFZ1ESghiIg02/jx8NNPSggiIlWvthaWXhp22CF2JPml\nhCAi0ky1tbDrrrDkkrEjya9oCcHM1jSzp8zsDTObYmanx4pFRCRb770HU6dWVu+ilJjDKeYDZ7n7\nRDNbDphgZk+4+xsRYxIRySjV3bTS2g8gYgnB3T9z94nJ/W+AN4E1YsUjIpKN2lpYe21Yd93YkeRf\nSbQhmNlawObAi3EjERFp3I8/wrhxoXRgFjua/IueEMxsWWAEcIa7z0nz+nFmVmdmdbNmzSp+gCIi\niWefDWMQKrG6CCInBDNrQ0gG97j7yHT7uPsgd69x95qOlbAChYiUrdpaaNMm9DCqRDF7GRlwK/Cm\nu18dKw4RkWzV1sKOO8Kyy8aOpDBilhC2B44EdjOzV5Jt34jxiIg06tNP4bXXKrO7aUq0bqfu/h+g\nAptlRKQSVXJ305TojcoiIuWgthZWXx022SR2JIWjhCAi0oT58+GJJyq3u2mKEoKISBNefhlmz67s\n6iJQQhARaVJtLbRqBXvsETuSwlJCEBFpwujRsPXW0L597EgKSwlBRCSDL76Al16q/OoiUEIQEcno\n978Hd+jVK3YkhaeEICLSiBEj4Kab4JxzoHv32NEUnhKCiEgaH34IRx8d2g7+/OfY0RSHEoKISAPz\n5kHfvqGq6N57oW3b2BEVR8wV00REStLvfw8vvAD33Qddu8aOpnhUQhARqWfMGLjsMjjuOOjTJ3Y0\nxaWEICKSmD4djjwSNt4YrrkmdjTFpyojERFg4cKQDL75JiyTufTSsSMqPiUEERFCNdHYsTB4cCgh\nVCNVGYlI1XvuudCQ/Otfh66m1UoJQURKmnuYbXThwsIcf/bs0MW0Sxe45ZbKnt66KUoIIlLShg0L\ng8N23hnefTe/x3YPJYJPPw3jDVZYIb/HLzdKCCJS0u6+Gzp0gNdfh003Db1/FizIz7FvugkefBAu\nvRS22io/xyxnSggiUrJmzQorlR1zDEyZEtYj+O1vYaed4O23czv25MnhWD17wpln5ifecqeEICIl\n6/77Q2ngN7+BX/wCRo2CoUPhzTfDZHNXXdWy0sK334YG5Pbt4c47w+I3ooQgIiVs2DD45S8XLWxv\nBkccEUoLe+0FZ58NO+wAb73VvOOeeiq88w7ccw907Jj/uMtVownBzJ5Obmeb2Zf1ttlm9mXxQhSR\navTRR/Dss6EHUEOrrw7/+lf4Qn/nnVBauOKK7EoLd98Nd9wBF10Eu+6a97DLWqYSQupSdQA61ttS\nj0VECubee8NtuoQAobTwm9+E0kLPnnDuubD99qE6qTHvvgsnngg77ggXX5z/mMtdpoTQ1syWcPcF\n7r4A6AqcBOybPBYRKZhhw2DbbZuebXS11WDkSBg+HKZOhc03h8svh/nzf77fjz+GdoO2bUPJorXm\naVhMpoQwGlgHwMzWAV4CugFnmdlfixCbiFSpKVPg1VdDCSAbZnDYYeF9++0H550XSgtvvLFon/PO\ng0mT4PbbYc01CxN3ucuUENq7+zvJ/f7Ave5+IrA3cEDBIxORqjV8eOj5c+ihzXvfqqvCAw+E6qb3\n3gulhUsvDWMN/v53OO00OPDAwsRcCTIVmrze/d2AqwDc/UczK9AgchGpdu4hIey+e/iCby6zUDW0\n665w8slwwQXh+VRVkjQuUwlhipldamanAusDYwDMbAWgimf7EJFCeukleP/97KuLGrPKKmEcw333\nhQFt//wntGuXnxgrVaaEcAzwLbAhsI+7z02e/yVwdaEDE5HqNGxY+OI+6KD8HK9PnzDaeb318nO8\nStZolVGSAP6c5vlngWcLGZSIVKcFC8Iv+f3200RzMWiksoiUjKeeghkzcq8ukpZRQhCRkjFsGCy3\nHOy7b+xIqpMSgoiUhB9+CAPMDj4YlloqdjTVqdE2BDN7kJ93Pf0Zdz+4IBGJSFV6/HH4+uvGp6qQ\nwss0DuH6okUhIlVv+PAw8+juu8eOpHpl6mX0ZDEDEZHqNWcOPPxwWAhHcwzF0+SlT+Yx+gthHqMl\nU8+7+/oFjEtEqshDD4U2BFUXxZVNo/IdwO2E0ck9gfuAfxYwJhGpMsOGwVprwXbbxY6kumWTEJZ2\n99EA7v6eu19ESAwiIjlLrZt82GFhHiKJJ5vauh/NrBXwnpmdAEwDlitsWCJSLeqvmyxxZZMQzgSW\nAU4jtCUsDwwsZFAiUj2GDYONN160brLEk02V0Rru/o27/9fdj3T3XsBqhQ5MRCpfat1klQ5KQzYJ\n4aI0z/0uHyc3s33M7G0zm2pm5+fjmCJSPppaN1mKK9NI5b2BfYA1zKz+dNfLAzkvkGNmSwA3AHsC\nnwAvm9kod38j8ztFpFJku26yFEemEsJM4HXgB2BKvW0M+elltDUw1d3fd/efgHuBXnk47mKmTQtL\n6IlI6WjuuslSeJlGKk8CJpnZPcB8YN3kpanuPj8P514D+Lje40+AbRruZGbHAccBdO7cuUUnuuCC\n0JPhrbegS5cWHUJE8qyl6yZL4WTThlADTAVuBW4D3jGz7QsaVT3uPsjda9y9pmPHji06xp//HPo3\nn312noMTkRbJdd1kKYxsEsK1wL7uvr279wD2A/6eh3NPA9as97hT8lzede4MF14IDzwAT2qGJpHo\n8rVusuRXNgmhbf2GXnd/E2ibh3O/DKxnZl3NrC1wGDAqD8dN6+yzQ8PV6afDvHmFOouIZCPf6yZL\nfmSTECaa2c1mtkOy3QRMyvXESTvEKcBo4E3gPnefkutxG7PkknDNNaEh68YbC3UWEWmK1k0uXdkk\nhBOA94Fzk+194Ph8nNzdH3P39d19HXf/Sz6OmcmBB8Jee8Ef/gAzZxb6bCKSTmrdZI09KD2NJgQz\nuwPA3X9w98vd/cBku8LdfyhahHlkBn//O8ydG9oURKT4hg8P6ybvt1/sSKShTCWETYsWRRFtuGFo\nR7jtNnj55djRiFSXH3+EESO0bnKpyjS53dJmtjlhHYTFuPvEwoRUeBdfDHffDaeeCs89F/pCi0jh\nad3k0pYpIawBXEX6hODAbgWJqAiWXx4uuwwGDIChQ6F//9gRiVSHYcO0bnIpM3dP/4LZJHffvMjx\nZFRTU+N1dXV5OdbChbD99vDBB/DOOyFJiEjhzJkTBqEdfTRcf33saKqLmU1w95qm9qvaypJWreC6\n60Jvoz/9KXY0IpUvtW6yBqOVrkwJ4byiRRHJVlvBUUeFnkdvvRU7GpHKNmxYmEtM6yaXrkYTgruP\nKWYgsfz1r7DMMqHnUSO1ZyKSo9S6yX37at3kUla1VUYpq6wCf/wjjBkDowo2cYZIddO6yeWh0Ubl\nUpTPRuX65s2DzTeH774LU1uof7RIfu2wA3z1Fbz+euxIqlPeGpXNbH0zG2xmY8xsXGrLT5iloU2b\n0MD8wQdw1VWxoxGpLFo3uXxkGoeQcj9wMzAYWFDYcOLZbTc45JDQptCvX5gyW0Ryd+ed4VaD0Upf\nNm0I8939Jnd/yd0npLaCRxbBlVeG23POiRuHSKVYsACGDIE999S6yeUgm4TwsJmdZGarm1n71Fbw\nyCLo0gXOPx/uuw/Gj48djUj5Gz0aPv4YjjsudiSSjSYblc3sgzRPu7uvXZiQGleoRuX6vv8eunUL\nszFOnAits6lUE5G0eveG558PSaFtPpbVkhbJW6Oyu3dNsxU9GRTLUkvB1VfDa6/BzTfHjkakfE2b\nBo88EgZ/KhmUh0Z//5rZbu4+zswOTve6u48sXFhx9e4Ne+wBv/89/PrXYTIuEWme228PbQjHHBM7\nEslWphLCzsntAWm2/QscV1SphXS+/RYuuih2NCLlJ9WYvMcesM46saORbDVaQnD3PyS3A4sXTuno\n1i2sl3DttaFBbMstY0ckUj7GjAnjD664InYk0hxVP3VFJn/4Q6guOvVUzXMk0hyDBoX/O716xY5E\nmkMJIYMVVoBLLw29JO6+O3Y0IuXh00/h4Ydh4EA1JpcbJYQm9O8PW28Np50G996rkoJIU1KNycce\nGzsSaa5s5jJa2sx+b2aDk8frmVlFNyrX16oVDB8OG2wQht4femiYyldEFrdwIQweHJbIXHfd2NFI\nc2VTQrgd+BFILWsxDfhzwSIqQWuvDf/5T6g+GjUKNt4YRoyIHZVI6XniidCYrJHJ5SmbhLCOu18O\nzANw9++AqlvionVrOO+8MHq5c+cwEV7fvvDFF7EjEykdt9wSGpN7944dibRENgnhJzNbCnAAM1uH\nUGKoShtvHBqZ/+//Qilh443DWrEi1e6zz0IJesAANSaXq2wSwh+AWmBNM7sHeBI4t6BRlbg2bcKA\ntZdfhtVXD7+G+vWD2bNjRyYSj0Yml79s5jJ6AjgYGAAMB2rcfXxhwyoPm20GL74YxisMHx5KC48+\nGjsqkeJLNSbvuiusv37saKSlsulldBBhTYRH3f0RYL6ZqYYw0bYtXHJJSAwrrwz77x8m8/rqq9iR\niRTP2LHw4YdqTC53WVUZufvXqQfu/hWhGknq2WILqKuDCy8MK0RtskmYC16kGgwaBB06wEEHxY5E\ncpFNQki3j1YJSKNdO/jLX0Kj83LLwT77hF9Mc+bEjkykcKZPDx0rBgwI/wekfGWTEOrM7GozWyfZ\nrgYqcgnNfNl669A99ZxzwoyPm2wCTz0VOyqRwrj9dpg/XyOTK0E2CeFU4Cfgn8n2I3ByIYOqBEsu\nCZdfHga0tWsH++4LM2fGjkokv1KNybvsosbkSpBNL6O57n6+u9ck2wXuPrcYwVWCHj1C3+wffoAb\nb4wdjUh+PfkkfPCBGpMrRTa9jNY3s0FmNsbMxqW2YgRXKTbcMPQ+uuGGsGazSKUYNCj0rlNjcmXI\npsrofmAScBFwTr1NmuGss+Dzz2Ho0NiRiOTHjBnwr3+FGYGXXDJ2NJIP2fQWmu/uNxU8kgq3886h\na+rVV4eRnK008biUuTvuUGNypcnma+lhMzvJzFY3s/apreCRVRizUEp4+2147LHY0YjkJtWYvPPO\noUpUKkM2CaE/oYroOUJ30wlAXSGDqlR9+kCnTnDVVbEjEcnNuHHw3ntqTK402fQy6ppmW7sYwVWa\nNm3g9NNh/PgwTkGkXA0aBO3bw8EHx45E8inbFdMuMrNByeOqWjEt3449NoxiVilBytWMGfDgg2pM\nrkTZrpj2E9AjeVx1K6bl0worhEblf/4TPv44djQizXfnnWpMrlRRVkwzsyvM7C0ze9XMHjSzFXM5\nXrk5/fRwe911ceMQaa5UY/KOO8JGG8WORvIt1oppTwC/dPdNgXeAC3I8Xlnp0iUswTlokCa+k/Iy\nfjxMnarG5EoVZcU0dx/j7vOThy8AnXI5Xjk666yQDG69NXYkItkbNAhWWin8oJHKkzEhmJkBb1HY\nFdOOAh7P4/HKwlZbhWL3tdeG+liRUjdzJowcqcbkSpYxIbi7A4+5+xepFdPc/fNsDmxmY83s9TRb\nr3r7/A6YD9yT4TjHmVmdmdXNmjUryz+rPJx9Nvz3v/DAA7EjEWnanXfCvHlqTK5kFr7zM+xgdidw\nvbu/nNcTmw0Ajgd2Txqqm1RTU+N1dZUzJm7hwtAwt/zy8NJLYTSzSClyD9Nbr7Ya/PvfsaOR5jKz\nCe5e09R+2bQhbAM8b2bvJb2CXjOzV3MMbh9CO8SB2SaDStSqFZx5Zlh6U//JpJSpMbk6ZFNC6JLu\neXf/qMUnNZsKtAO+SJ56wd1PaOp9lVZCAPjuO+jcGbbfPixDKFKK+vaF2lr49FNYaqnY0Uhz5a2E\nkHzxrwnsltz/Lpv3NXHMdd19TXfvnmxNJoNKtfTScNJJ8PDD8M47saMRWdysWaExuV8/JYNKl83U\nFX8AzmPRWIE2wN2FDKranHwytG0L11wTOxKRn/v2W/jVr0JPuOOPjx2NFFo2v/QPAg4E5gK4+6fA\ncoUMqtqsuioccUSYX/7zrPpwiRTeN9/APvvAc8/BPfdAt26xI5JCy2qkctL9NDVSeZnChlSdfvvb\nsO7yTVqKSErAnDmw997wwgswfDgcdljsiKQYskkI95nZLcCKZnYsMBYYXNiwqk+3btCzJ1x/fUgM\nIrF8/XVIBi+/HCZh7NMndkRSLI0mBDNrB+DuVwIPACOADYCL3f0fxQmvupx1VhgNek+jw/RECuur\nr2CvvUJX6PvuC+0HUj0a7XZqZhPdfQszG+ruRxY5rrQqsdtpfe6w+eZhNOjrr2ugmhTX7NkhGUye\nHEbPH3hg7IgkX7Ltdto6w2ttzew3QA8zW2xdJHcfmUuAsrjUusv9+oU+3z17xo5IqsWXX8Kee4Yf\nIiNHwv5aAqsqZWpDOAHYEVgROKDBpo9Lgfz61/CLX2hFNSmeL76A3XeHKVPCSmhKBtUrUwlhdXc/\n0cwmufugokVU5dq2DQvonHcevPIKdO8eOyKpZLNmwR57wNtvh5Hye+8dOyKJKVMJITUQrWpHEcdy\n3HGw7LJw9dWxI5FKNnMm7LZbGCH/8MNKBpI5IXxhZmOArmY2quFWrACr0YorwtFHh/7f06bFjkYq\n0YwZsOuu8N578Mgjof1AJFOV0X7AFsBQQDXaRXb66fCPf4Tt0ktjRyOVZPr0UDL46CN49NGQGEQg\nQ0Jw95+AF8ysh7tX1so0ZaBr19AH/JZb4KKLQhWSSK4+/TQkg08+gcceg513jh2RlJJMA9OuTe7e\npiqjOM46KwwUuu222JFIJZg2DXbZJdw+/riSgSwuU5XR0OT2ymIEIovbZpuwTsK114Ypsltn+tcS\nyeDjj0PV0MyZMHo09OgROyIpRY2WENx9QnL7NPAG8Ia7P53aihVgtTvrLPjgg9A/XKQlpk8PJYNZ\ns2DMGCUDaVzGye3M7BIz+xx4G3jHzGaZ2cXFCU0gTB+wzjpw2WVhSguR5rr22tCAPGYMbLtt7Gik\nlGVqQ/gtsD2wlbu3d/eVCOsrb29mZxYrwGq3xBLwxz/ChAlhCmIlBWmOefPCOhv77x+qIEUyyVRC\nOBLo6+4fpJ5w9/eBI4B+hQ5MFjn88PArb+TIMLXFTz/FjkjKxSOPhDEHxxwTOxIpB5kSQht3X2z9\nrqQLapvChSTpnH46XHddaEs49FAlBcnOkCFhbqx99okdiZSDTAkh01eOvo4iOPXUMFDtoYfCoiXF\nSAoLFsCf/hT6rn/xReHPJ/nz8cdh1tyBA9VDTbKT6WOymZnNSfO8AUsWKB5pwimnhGmyTzkFDjkE\n7r8f2rUrzLlmzgzVVWPHhnP26RO6LLZR+bAs3HEHLFwIRx0VOxIpF5lGKi9RzEAkeyefDK1ahbEJ\nhxwSFjPJd1L4979De8Xs2TB4cJiFtX//UHV14435PZfk38KFcOutYSbTtdeOHY2UCxUky9SJJ4Zf\n7SeeGKa4GDEiP0lh4UK48kq48MIwfcbjj8Nmm4XXXn8drrgCfvnLkIykdI0dG7qaXnZZ7EiknGQc\nhyCl7YQT4OabwwRlBx8MP/yQ2/G+/BJ69QprMRx0UOjqmkoGAH/7G+y3H5x2Gowbl9u5pLCGDIH2\n7aF379iRSDlRQihzxx8fJsB77LHcksJLL8EWW4Q2guuuCwusL7/8z/dZYgkYNgw22CBUVU2dmnv8\nkn+zZsG//hWWYi1U+5JUJiWECnDccTBoUKjeOeig5iUF99BzaYcdwuP//Cf0ZjJLv//yy4fFVMzC\nKOqvv849fsmvoUPDgDSNPZDmUkKoEMceG6oJRo8O1T7ff9/0e+bMCQ3Hp50WVsuaOBG23rrp9629\ndmjIfvdd6Ns3dE2V0uAeOgFstx1svHHsaKTcKCFUkKOPDknhiSeaTgqTJ8OWW4bRz5ddFsY2tG+f\n/bl23TWULB5/HM4/P/fYJT+eew7eekulA2kZ9TKqMEcdFapzjj46VOk89BAsvfSi193D+gqnnBIS\nwFNPwY47tuxcJ5wQeh5deWX4NTpgQF7+BMnBkCFhMaVDD40diZQjlRAq0MCBcPvt8OSTISl89114\nfu7c8KV9zDGhzWDSpJYng5RrrgmjmI8/Pvw6lXi+/jp0BujbVyvsScsoIVSo/v1DUhg3Dg44ILQP\nbLNNaHC85JIwpcEqq+R+njZtwmjpNdcMDdr//W/ux5SWGT48JP9jj40diZQrc/fYMWStpqbG6+rq\nYodRVoYODcnBHTp2hHvugT33zP953nwzzLXftSs8+ywss0z+zyGZ1dSE3kWvvNJ4LzGpTmY2wd1r\nmtpPJYQKd+SRcO+9YS2FSZMKkwwANtoonOe110ICWriwMOeR9CZNCgMJjzlGyUBaTgmhChx6aKhO\nWGONwp6nZ88wtcWIEWFRHymeW28Ng9AOPzx2JFLO1MtI8urMM0Mp4U9/Cj2P1Nul8L7/Hu6+O8xp\n1ZyuwyINqYQgeWUW5lfq0SP0aJowIXZEle+BB0IPIzUmS66UECTv2rULA946dgwD5D77LHZElW3I\nEFh3Xdh559iRSLlTQpCCWHXVMChu9uzmz68k2XvnHXjmmTAQUY3JkislBCmY7t1Dt9cXXwwD1yT/\nbr01zELbv3/sSKQSKCFIQR18cJjr6K674O23Y0dTWebNC8tkHnAArL567GikEighSMGdcEK4feih\nuHFUmocfDuteayI7yRclBCm4Ll1g883Doi2SP0OGhLEle+8dOxKpFFETgpmdZWZuZh1ixiGF17s3\nvPCCehzly8cfh/moBg6E1hpNJHkSLSGY2ZrAXoCmQ6sCvXuH+ZQefjh2JJXh9tvD9TzqqNiRSCWJ\nWUK4BjgXKJ/Z9aTFNtkkTHynaqPcLVgQehftuWe4piL5EiUhmFkvYJq7T45xfik+s1BKePJJ+Oab\n2NGUt7FjwzTjakyWfCtYQjCzsWb2epqtF3AhcHGWxznOzOrMrG7WrFmFCleKoHdv+OmnUPctLTdk\nCKy8chgFLpJPBUsI7r6Hu/+y4Qa8D3QFJpvZh0AnYKKZrdbIcQa5e42713Ts2LFQ4UoR9OgBHTqo\n2igXM2eG7rv9+oUpQkTyqej9E9z9NeB/a3UlSaHG3T8vdixSXK1bh0FUI0eGkkLbtrEjKj9Dh4YB\naaoukkLQOAQpqt69w8ycTz8dO5Ly4w6DB4eSVrdusaORShQ9Ibj7WiodVI8994Sll1a1UUs8+2yY\n/kOlAymU6AlBqstSS4WRtQ89pGU2m2vIEFhuOejTJ3YkUqmUEKToeveGadO0eE5zfP013Hcf9O0L\nyy4bOxqPGjPuAAARjklEQVSpVEoIUnT77RembFa1UfaGDw9LZWpVNCkkJQQpupVXhp12UkJojsGD\nYbPNYMstY0cilUwJQaLo3RveeCOs+CWZTZwYtmOO0apoUlhKCBJFapSt1kho2nXXhZ5Zhx8eOxKp\ndEoIEoXWSMjOtGkwbFhYM3mllWJHI5VOCUGi6d0bnn8epk+PHUnp+sc/wuymZ5wROxKpBkoIEo3W\nSMjsm2/g5pvhV7+CtdeOHY1UAyUEiUZrJGR2661h/MFZZ8WORKqFEoJEk1ojYexYrZHQ0Pz5cM01\nsOOOsM02saORaqGEIFFpjYT0HnggLIJz9tmxI5FqooQgUWmNhMW5wxVXwPrrw/77x45GqokSgkSV\nWiPh0UdDSUHC1OATJ4a2g1b6HypFpI+bRKc1En7uyiuhY0c48sjYkUi1UUKQ6LRGwiJvvBFKS6ec\nEqYKFykmJQSJTmskLHL11eF6nHRS7EikGikhSEnQGglhxPbQoTBwYGhoFyk2JQQpCVojAa6/HubN\ngzPPjB2JVCslBCkJ1b5Gwty5cOONcNBBsO66saORaqWEICWjmtdIuO02mD1bA9EkLiUEKRmluEbC\n9Olw+eWhXv/rrwtzjtQ0FT16wHbbFeYcItloHTsAkZT6ayScc068OObPh8cfD5PLPfJImH7aLDR6\nP/ootGmT3/M9+CB88AFcdVV+jyvSXCohSEmJuUbCu+/CBRdA585w4IEhjt/+Ft58M1TpPPEEnHBC\nmFoiX1LTVKy7bjinSExKCFJSir1GwnffwV13wc47h7mDLr88LGT/4IPwySfh8YYbwoABcPHFITH8\n5S/5O/9//gMvvxwSzxJL5O+4Ii1hns+fOwVWU1PjdXV1scOQAnKHddaBjTYK1TOFOkddXagSGj4c\n5swJv9CPOgr694df/KLx9/XvH8YKDB0KRxyReyy9esGzz4aZTZdeOvfjiaRjZhPcvaap/dSGICUl\ntUbCDTeENRKWWy5/x/7iC7j77pAIXnstjAg+5JCwXvFOO4VzNxXbkCGh5HDUUdCpE+yyS8vjeftt\nGDUqlDyUDKQUqMpISk6+10h480047LDwy/+MM6BdO7jpJvjss0XVRU0lg5S2bWHkSFhvvTBm4M03\nWx7X1VeHWE4+ueXHEMknJQQpOflaI8E9lDS22AJGjw4NwpMnhzr7E06AFVZo2XFXXBEeewyWXBJ6\n9mxZA/jMmXDnnaEKapVVWhaHSL4pIUjJyccaCdOnh+kwTjkFdt01/JL/+99h003zE2OXLqHhe9as\nsIjN3LnNe/8NN8CPP4bGZJFSoYQgJSmXNRJGjYJNNoGnngrzAz36KKy2Wv5jrKmBe++FSZOgb98w\nXiEb330XEsKBB8IGG+Q/LpGWUkKQktSSNRLmzoXjjw89dzp1CjOnnnxy9u0DLXHAAXDddaG0cMYZ\n2Y1RuPPO0MCtaSqk1CghSElq7hoJdXWhrWDwYDj3XHjxRejWrfBxQkg6Z50VSiPXXJN53wULQmPy\n1lvDDjsUJz6RbCkhSMnKZo2EBQvCQLHttgtVMU8+CZddFnoDFdPll8OvfhV+9Y8Y0fh+o0bB1Klh\nao5CllxEWkIJQUpWU2skfPBB6DJ60UVhPMGrr4YG5BhatQqD1bbdNgxYe/759PtdeSV07Rq6rIqU\nGiUEKVmNrZHgHr58N9ssDDC7+24YNgxWWilOnClLLRWquNZYIzQYT53689efey5smqZCSpUSgpS0\nhmskzJ4dBpn16wfdu4dxBYcfXjrVLx07hjEKCxfCvvuGxuOUq64KSWvgwHjxiWSihCAlrf4aCePG\nhXEEI0fCX/8aupWutVbU8NJaf/3QVvDf/4b4f/ghlBYefBBOOgmWWSZ2hCLpaS4jKWmpNRIuvTSU\nDtZbL9TP1zQ5TVdc228fpsX49a/DaOT27cM6CqecEjsykcYpIUjJ69MHLrwwTDdx5ZXl8wv70EPh\nww/hvPPC46OPLswAOZF80fTXUvLmz4f33w9VMeXGPYxTuPXWMKK5WGMjROrLdvprtSFIyWvdujyT\nAYTG7htuCDOrKhlIqYuWEMzsVDN7y8ymmNnlseIQKTSz0IYgUuqitCGY2a5AL2Azd//RzDQBsIhI\nZLFKCCcCl7r7jwDuPjNSHCIikoiVENYHdjSzF83saTPbKlIcIiKSKFiVkZmNBdJ1svtdct72wLbA\nVsB9Zra2p+nyZGbHAccBdO7cuVDhiohUvYIlBHffo7HXzOxEYGSSAF4ys4VAB2BWmuMMAgZB6HZa\noHBFRKperCqjfwG7ApjZ+kBb4PNIsYiICPFGKt8G3GZmrwM/Af3TVReJiEjxREkI7v4TcESMc4uI\nSHoaqSwiIoASgoiIJMpqcjszmwV81MK3d6C0G64VX24UX24UX+5KOcYu7t6xqZ3KKiHkwszqspnt\nLxbFlxvFlxvFl7tyiLEpqjISERFACUFERBLVlBAGxQ6gCYovN4ovN4ovd+UQY0ZV04YgIiKZVVMJ\nQUREMqi4hGBm+5jZ22Y21czOT/O6mdl1yeuvmtkWRYxtTTN7yszeSFaKOz3NPruY2ddm9kqyXVys\n+JLzf2hmryXnXmwB68jXb4N61+UVM5tjZmc02Keo18/MbjOzmck0LKnn2pvZE2b2bnK7UiPvzfhZ\nLWB8VySrFb5qZg+a2YqNvDfjZ6GA8V1iZtPq/Rvu28h7Y12/f9aL7UMze6WR9xb8+uWdu1fMBiwB\nvAesTZgwbzLQrcE++wKPA0aYfvvFIsa3OrBFcn854J008e0CPBLxGn4IdMjwerTrl+bfejqhf3W0\n6wfsBGwBvF7vucuB85P75wOXNRJ/xs9qAePbC2id3L8sXXzZfBYKGN8lwNlZ/PtHuX4NXr8KuDjW\n9cv3VmklhK2Bqe7+vof5ku4lLNVZXy/gLg9eAFY0s9WLEZy7f+buE5P73wBvAmsU49x5FO36NbA7\n8J67t3SgYl64+zPAlw2e7gXcmdy/E+id5q3ZfFYLEp+7j3H3+cnDF4BO+T5vthq5ftmIdv1SzMyA\nQ4Hh+T5vLJWWENYAPq73+BMW/8LNZp+CM7O1gM2BF9O83CMpzj9uZhsXNTBwYKyZTUgWJ2qoJK4f\ncBiN/0eMef0AVnX3z5L704FV0+xTKtfxKEKJL52mPguFdGryb3hbI1VupXD9dgRmuPu7jbwe8/q1\nSKUlhLJgZssCI4Az3H1Og5cnAp3dfVPgH4S1I4ppB3fvDvQETjaznYp8/iaZWVvgQOD+NC/Hvn4/\n46HuoCS78pnZ74D5wD2N7BLrs3AToSqoO/AZoVqmFPUlc+mg5P8vNVRpCWEasGa9x52S55q7T8GY\nWRtCMrjH3Uc2fN3d57j7t8n9x4A2ZtahWPG5+7TkdibwIKFoXl/U65foCUx09xkNX4h9/RIzUtVo\nye3MNPvE/hwOAPYHDk+S1mKy+CwUhLvPcPcF7r4QGNzIeWNfv9bAwcA/G9sn1vXLRaUlhJeB9cys\na/Ir8jBgVIN9RgH9kt4y2wJf1yveF1RS53gr8Ka7X93IPqsl+2FmWxP+jb4oUnzLmNlyqfuExsfX\nG+wW7frV0+gvs5jXr55RQP/kfn/goTT7ZPNZLQgz2wc4FzjQ3b9rZJ9sPguFiq9+m9RBjZw32vVL\n7AG85e6fpHsx5vXLSexW7XxvhF4w7xB6IPwuee4E4ITkvgE3JK+/BtQUMbYdCNUHrwKvJNu+DeI7\nBZhC6DXxAtCjiPGtnZx3chJDSV2/5PzLEL7gV6j3XLTrR0hMnwHzCPXYRwMrA08C7wJjgfbJvr8A\nHsv0WS1SfFMJ9e+pz+DNDeNr7LNQpPiGJp+tVwlf8quX0vVLnr8j9Zmrt2/Rr1++N41UFhERoPKq\njEREpIWUEEREBFBCEBGRhBKCiIgASggiIpJQQqhy6WZzTJ7PasbOBu9Zq+FxWhjTL8zsgSz2uzDX\nc2UZz3gza/FauWZWY2bX5TOmBsffxcweydOxTklmD/XGBvSZ2Z7JdAyvJbe71Xtty+T5qRZmxU2N\nCdnJzCaa2XwzO6TB8RbUmz20mGMJpAElBLkD2CfN8+cDT7r7eoQ+9QWZXjgdd//U3Q9pek+anRDM\nbIkWhJQTd69z99OKfd4WepYw6CrTpIGfAwe4+yaEgXdD6712E3AssF6ypT5b/wUGAMPSHO97d++e\nbAfmFr7kQgmhynnjszlmM2Nn6hfhZDObDJxc7/m1zOzfya/CiWbWI3n+LjPrXW+/e8ysV4Nj/q+k\nYWYDzGykmdUmpZXLk+cvBZZKflXekzx3hJm9lDx3S+rL38y+NbOrkhgvMLP7653rf7+uzewmM6uz\nsFbFH9P8rUuY2R1m9nryK/jMNPv0SV6fbGbPpDnHJUmpbLyZvW9mp9V7bz8LE7pNNrOhyXMdzWyE\nmb2cbNun+3eod4ytzex5M5tkZs+Z2QaZrmND7j7J3T/MdI5kn0+Th1MI/w7tkhHGy7v7Cx4GON1F\n8rlx9w/d/VVgYaZjS2SxR8Zpi78Ba9Fgvnfgq3r3rf7jBvu9CuyU3L8idRxgaWDJ5P56QF1yf2fg\nX8n9FYAPSObmTxcP4Vfl+8m+SxJ+ua6ZvPZtvfdsBDwMtEke3wj0S+47cGhyvzXh1+oyyeObgCOS\n+6kRxUsA44FNk8fjgRpgS+CJeudcMc31eA1Yo/7r1FujgTDX/3NAO6ADYdR1G2BjwqjbDg1iGUaY\nJA2gM2Hak4bnrH/85Vm01sEewIimrmMj/64fksVc/sAhwNjkfk3qfvJ4RxqsTUEokR7S4Ln5hEkJ\nXwB6x/7/UM1ba0Sa4O5uZosNabew0taKHkoZEKoOeib32wDXm1l3YAGwfnKsp83sRjPrCPyK8IU1\nn8yedPevk3O+AXTh51MfQ1gfYUvg5aTaeikWTSq3gDChIO4+38xqgQOSdor9CPP6ABxqYZri1oTF\njLoREl7K+8DaZvYP4FFgTJpYnwXuMLP7gMUmL0w86u4/Aj+a2UzC9Ni7Afe7++dJnKlS2x5At+Rv\nAljezJb1ZAK/NFYA7jSz9QiJsE2917K5jlmzMLX4ZYR5enLRxd2nmdnawDgze83d38vxmNICSgjS\nmBlmtrq7f2b1Zuw0s9sJ6zh8Cvwmw/vPBGYAmxGqJn+o99pdwBGECckGZhHLj/XuLyD959aAO939\ngjSv/eDuC+o9vpcw59GXhJLLN2bWFTgb2MrdZ5vZHYRf0v+TPL8ZsDdh/qRDCesJ1N/nBDPbhpBo\nJpjZli38e1JaAdu6+w8Z9qnv/4Cn3P0gC2tujG/heTMys06EGTz71fvynsbPF9vJagZSXzQr6Ptm\nNp7w+VJCiEBtCNKYtDN2uvtAD41/+7r7V8BXZrZDst/h9d6/AvCZhymMjyRUw6TcAZyRHO+NHGKc\nZ2E6cQgN34eY2Srwv15SXRp539OEZRGPJSQHCFUtc4GvzWxVFpV0/sdCr5tW7j4CuCg5RsN91nH3\nF939YmAWP5+iOZNxQB8zWzkVf/L8GODUesfv3sRxVmDRl/CALM/dLEnJ8FHCMqHPpp73MOvtHDPb\n1kKRph/pZ3qtf6yVzKxdcr8DsD2Qy2dCcqCEUOXMbDjwPLCBmX1iZkcnL10K7Glm7xKqLS5t5BAD\ngRssLDRu9Z6/EeifNORuSPiyBcJ894TlQ2/PMfxBwKtmdk+SWC4CxpjZq8AThGqfxSSlhUcIX/qP\nJM9NBiYBbxHq7Z9N89Y1gPHJ33o3kK40ckXS4Pw6oa1gcjZ/iLtPAf4CPJ1cs9T06KcBNUlj8xuE\nkklDrVn06/9y4G9mNokWlADM7DQz+4Tw6/5VMxuSZrdTgHWBi21Rd9FVktdOAoYQZlR9j2Q1NjPb\nKjluH+AWM5uS7L8RUJf8zU8Bl+b4I0FyoNlOpejMbGlC4+sWqTptaTkzO53QkH1ukzuLZKA2BCkq\nM9uDsEjQNUoGuTOzW4FfEtozRHKiEoKIiABqQxARkYQSgoiIAEoIIiKSUEIQERFACUFERBJKCCIi\nAsD/AwQ9d1k3JTi/AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig,ax=plt.subplots(1,1,figsize=(6,5))\n", "ax.plot(SiGlobalTot[sdir1]-SiGlobalTot[sdir1][0],'b-')\n", "ax.set_xlabel('10-day intervals since Jan 1 2015')\n", "ax.set_ylabel('Difference in Total Si')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# copy restart and add 7 to Si old and new" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## repeat for N" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160106-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160116-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160126-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160205-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160215-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160225-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160306-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160316-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160326-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160405-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160415-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160425-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160505-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160515-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160525-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160604-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160614-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160624-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160704-*[0-9].nc\n", "/data/eolson/MEOPAR/SS36runs/CedarRuns/spring16spun_Z7/SalishSea_1h_*_ptrc_T_20160714-*[0-9].nc\n" ] } ], "source": [ "tlist=dlist\n", "NGlobalTot=dict()\n", "VolTot=dict()\n", "NO3Tot=dict()\n", "NH4Tot=dict()\n", "PONTot=dict()\n", "DONTot=dict()\n", "DiatTot=dict()\n", "MyriTot=dict()\n", "NanoTot=dict()\n", "MiZoTot=dict()\n", "changeNGlobalTot=dict()\n", "for idir in (sdir1,):\n", " fformat1='%d%b%y/'\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " fformatT='SalishSea_1h_*_ptrc_T_%Y%m%d-*[0-9].nc'\n", " fformatP='SalishSea_1h_*_ptrc_T_%Y%m%d-*[0-9].nc'\n", " #elif idir==sdir0:\n", " # fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " # fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_grid_T.nc'\n", " elif idir==sdir1:\n", " fformatT='SalishSea_1h_%Y%m%d_%Y%m%d_ptrc_T.nc'\n", " fformatP='SalishSea_1h_%Y%m%d_%Y%m%d_carp_T.nc'\n", " sumNO3=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumVol=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumNH4=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumPON=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumDON=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumDiat=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumMyri=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumNano=np.zeros((len(tlist),stm[2],stm[3]))\n", " sumMiZo=np.zeros((len(tlist),stm[2],stm[3]))\n", " ind=-1\n", " for idt0 in tlist:\n", " ind=ind+1\n", " cdir=idt0.strftime(fformat1).lower()\n", " iffT=idt0.strftime(fformatT)\n", " iffP=idt0.strftime(fformatP)\n", " if idir.startswith('/data/eolson/MEOPAR/SS36runs/CedarRuns/'):\n", " sffT=idir+iffT\n", " sffP=idir+iffP\n", " elif idir.startswith('/results/'):\n", " sffT=idir+cdir+iffT\n", " sffP=idir+cdir+iffP\n", " f=nc.Dataset(glob.glob(sffT)[0])\n", " print(sffT)\n", " fP=nc.Dataset(glob.glob(sffP)[0])\n", " #if idir==sdir0:\n", " # e3t=np.expand_dims((1+fP.variables['sossheig'][0,:,:]/np.sum(e3t_0*tmask,1)),0)*e3t_0\n", " if idir==sdir1:\n", " e3t=fP.variables['e3t'][:2,:,:,:]\n", " Vol=A*e3t\n", " sumVol[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumNO3[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['nitrate'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumNH4[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ammonium'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumPON[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['particulate_organic_nitrogen'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumDON[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['dissolved_organic_nitrogen'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumDiat[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['diatoms'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumMyri[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['ciliates'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " sumMiZo[ind,:,:]=1e-3*np.sum(tmaskC[0,:,:,:]*Vol[0,:,:,:]*f.variables['microzooplankton'][0,:,:,:],0) #mmol/m3*m3*10^-3=mol\n", " f.close()\n", " fP.close()\n", " NGlobalTot[idir]=np.sum(np.sum(sumNO3+sumNH4+sumPON+sumDON+sumDiat+sumMyri+sumNano+sumMiZo,2),1)\n", " VolTot[idir]=np.sum(np.sum(sumVol,2),1)\n", " NO3Tot[idir]=np.sum(np.sum(sumNO3,2),1)\n", " NH4Tot[idir]=np.sum(np.sum(sumNH4,2),1)\n", " PONTot[idir]=np.sum(np.sum(sumPON,2),1)\n", " DONTot[idir]=np.sum(np.sum(sumDON,2),1)\n", " DiatTot[idir]=np.sum(np.sum(sumDiat,2),1)\n", " MyriTot[idir]=np.sum(np.sum(sumMyri,2),1)\n", " NanoTot[idir]=np.sum(np.sum(sumNano,2),1)\n", " MiZoTot[idir]=np.sum(np.sum(sumMiZo,2),1)\n", " changeNGlobalTot[idir]=[NGlobalTot[idir][ii+1]-NGlobalTot[idir][ii] for ii in range(0,len(tlist)-1)]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAFICAYAAABQl4kcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXBxBQFBsgCCJiI1ZENIqIZdHYwFDWaFQQ\niYiiRn9Ro8EuGBsaExUFBVRU7LHGgiV+7YJ0FEEssYIVEaV+fn+cuzKus7PDTrlT3s/H4z52dubO\nvZ+dnd3PnHPu+Rxzd0REROrFHYCIiBQGJQQREQGUEEREJKKEICIigBKCiIhElBBERAQowoRgZmPM\nbIGZzUxj383N7Fkzm25mL5hZm3zEKCJSjIouIQDjgIPS3Pdq4HZ33wm4BPh7roISESl2RZcQ3P1F\n4OvE+8xsSzN70swmm9n/mVmH6KHtgOei288Dh+cxVBGRolJ0CaEGo4BT3X1X4Ezgxuj+aUDv6HYv\nYD0z2ziG+ERECl6DuAPIlJmtC3QB7jOzqrsbRV/PBK43s+OAF4FPgJX5jlFEpBgUfUIgtHK+dfeO\n1R9w90+JWghR4ujj7t/mOT4RkaJQ9F1G7r4IeN/MKgEs2Dm63czMqn7Gc4ExMYUpIlLwii4hmNnd\nwKvAtmb2sZkNBI4GBprZNGAWqweP9wXmmNm7wCbA8BhCFhEpCqby1yIiAkXYQhARkdxQQhAREaDI\nrjJq1qyZt2vXLu4wRESKyuTJk7909+a17VdUCaFdu3ZMmjQp7jBERIqKmX2Yzn7qMhIREUAJQURE\nIkoIIiICKCGIiEhECUFERAAlBBERiSghiIgIEHNCMLODzGyOmc0zs3PijEVEpNzFlhDMrD5wA3Aw\nYanLo8xsu7jiEREpd3G2EHYH5rn7fHdfBkwgV2seT5sG48bl5NAiIqUizoTQGvhfwvcfR/f9gpkN\nMrNJZjZp4cKFdTvTqFEweDB8803dni8iUgYKflDZ3Ue5e2d379y8ea21mZIbOBCWLoW77spucCIi\nJSTOhPAJsFnC922i+7KvUyfo2BFuvTUnhxcRKQVxJoQ3ga3NbAszawgcCTySs7MNHAhTpoRNRER+\nJbaE4O4rgFOAp4C3gXvdfVbOTnj00dCokVoJIiI1iHUMwd2fcPdt3H1Ldx+e05NtuCH07g133gk/\n/pjTU4mIFKOCH1TOqoED4dtv4aGH4o5ERKTglFdC2G8/2GILdRuJiCRRXgmhXj0YMACeew7mz487\nGhGRglJeCQHguOPADMaOjTsSEZGCUn4JYbPN4He/C6UsVq6MOxoRkYJRfgkBwuDyxx/D00/HHYmI\nSMEoz4TQsyc0a6bBZRGRBOWZEBo2hGOPhUcegboWzBMRKTHlmRAgdBstXw533BF3JCIiBaF8E8L2\n28Nvfxu6jdzjjkZEJHblmxAgtBJmz4bXX487EhGR2JV3QvjDH2CddTS4LCJCuSeEpk3hiCNgwgRY\nvDjuaEREYlXeCQFCt9HixXDffXFHIiISKyWEvfaCbbdVt5GIlD0lBDM4/nh4+WV45524oxERiY0S\nAkC/flC/PowZE3ckIiKxUUIAaNkSDjsMbrstTFYTESlDSghVBg6EBQvg8cfjjkREJBZKCFUOPhha\ntdLgsoiULSWEKg0aQP/+8MQT8OmncUcjIpJ3SgiJjj8eVq0KYwkiImVGCSHR1ltDt27haiMVvBOR\nMqOEUN3AgTBvHrz4YtyRiIjklRJCdX37hhpHGlwWkTKjhFDdOuvAUUfB/ffDd9/FHY2ISN4oISQz\ncCD8+CPcfXfckYiI5I0SQjKdO8OOO6rbSETKihJCMmbwpz/BpEkwfXrc0YiI5IUSQk2OPhoaNlQr\nQUTKhhJCTTbeGHr1gvHjYenSuKMREck5JYRUBg6Er7+Gf/877khERHJOCSGVigrYfHN1G4lIWVBC\nSKVePRgwACZOhA8/jDsaEZGcUkKozYAB4evYsfHGISKSY0oItWnbFg44AG65BRYvjjsaEZGciSUh\nmFmlmc0ys1Vm1jmOGNbI+eeHNRL+9re4IxERyZm4Wggzgd5AcZQU7doVTj0V/vUvVUEVkZIVS0Jw\n97fdfU4c566zyy6D9u3DIjpLlsQdjYhI1hX8GIKZDTKzSWY2aeHChfEF0qRJWDjnvfdg6ND44hAR\nyZGcJQQzm2hmM5Nsh6/Jcdx9lLt3dvfOzZs3z1W46dlnHxgyBK67Dl56Kd5YRESyrEGuDuzu3XN1\n7Fhdfjk8/njoOpo6NayfICJSAgq+y6jgrLtumLk8d264+khEpETEddlpLzP7GNgTeNzMnoojjjrb\nf3846SS49lp45ZW4oxERyQpz97hjSFvnzp190qRJcYcRfP99WESncWOYMgXWXjvuiEREkjKzye5e\n65wvdRnV1XrrhdnLc+bAhRfGHY2ISMaUEDLRvTsMGgQjRsBrr8UdjYhIRpQQMnXVVdC6dSiC99NP\ncUcjIlJnSgiZato0dB298w5cfHHc0YiI1JkSQjYceGBYXe3KK+HNN+OORkSkTpQQsmXECNh0Uzju\nOK3BLCJFSQkhW9ZfH0aNgtmz4ZJL4o5GRGSNKSFk08EHh8HlK66AyZPjjkZEZI0oIWTbNdfAJpuE\nrqNly+KORkQkbUoI2bbBBqHraOZMGDYs7mhERNKmhJALhx4K/fqFRXXeeivuaERE0qKEkCv/+Ae0\naBHGFNR1JCJFQAkhVzbcEG6+GaZPDy0FEZECp4SQSz16wDHHwPDhMG1a3NGIiKSkhJBr110HG28c\nZjIXUalxESk/Sgi5ttFGcNFFYV6CWgkiUsCUEPKhb1+oXx/uuy/uSEREaqSEkA/NmsF++8G996rb\nSEQKlhJCvlRWwrx56jYSkYKlhJAvvXqp20hECpoSQr40bw777hsSgrqNRKQAKSHkU2UlzJ0bJquJ\niBQYJYR86tUL6tVTt5GIFKQGNT1gZl1SPdHdX8l+OCWuRYvV3UaXXgpmcUckIvKzGhMCcH6S+xzY\nHmgD1M9JRKXuiCNg8GCYMQN22inuaEREflZjl5G7H5y4ARcBK4EFQN88xVd61G0kIgWq1jEEM9vH\nzCYCI4Ab3X03d38o96GVqMRuI11tJCIFpMaEYGa/M7MXgfOAYe7e1d3/k7/QSlhlJcyZE1ZVExEp\nEKlaCP8BNgcWA6eZ2YOJW37CK1G9e6vbSEQKTqpB5QPyFkW5adEC9tknJISLL9bVRiJSEGpMCO7+\nbD4DKTuVlXDyyTBrFuywQ9zRiIhoYlps1G0kIgVGCSEum2wC3bopIYhIwVBCiFNlJbz9dug2EhGJ\nWarSFQ8RZiYn5e69cxJROendG045JbQStt8+7mhEpMylusro+lyd1MyuAnoAy4D3gAHu/m2uzlew\nWrYM3Ub33hvWXRYRiVFcVxk9A5zr7ivM7ArgXOCvOTxf4aqsDK2EWbPUShCRWKVTumJLM5tgZtPN\n7N2qLZOTuvvT7r4i+vY1QrG88tSnT5iHoMFlEYlZOoPK44CxgAEHA/cC92QxhuMJs6LLU8uWsPfe\nSggiErt0EsI67v4UgLu/5+7nERJDSmY20cxmJtkOT9hnKLACuDPFcQaZ2SQzm7Rw4cI0wi1ClZUw\ne3bYRERikk5CWGpm9YD3zGywmfUA1qvtSe7e3d13SLI9DGBmxwGHAUe711z2091HuXtnd+/cvHnz\n9H6qYqNuIxEpAOkkhDOAJsBpwF7An4ABmZzUzA4CzgZ6uvuSTI5VElq1UreRiMQunYTQ2t2/d/eP\n3P1Ydz8caJnhea8ntDKeMbOpZnZThscrfpWV4Uqjt9+OOxIRKVPpJITzktw3NJOTuvtW7r6Zu3eM\ntsGZHK8kqNtIRGKWaqby74CDgNZmdk3CQ02BVbkOrOy0agVdu4aEcMEFcUcjImUoVQthATAT+AmY\nlbA9TRpXGUkdVFaGVdTeeSfuSESkDNWYENx9irvfCmwL3Aa8HG0PuvuXeYqvvKjbSERilM4YQmdg\nHnArMAZ418z2ymlU5WrTTWGvvZQQRCQW6SSEfwCHuPte7t4FOBS4LrdhlbHKSpgxA+bMiTsSESkz\n6SSEhu7+8xRad38baJi7kMpcnz7hq1oJIpJn6SSEt8zsJjPrGm0jgSm5DqxstW6tbiMRiUU6CWEw\nMJ8ws/js6PaJuQyq7FVWwvTp8G5GRWVFRNZIjQnBzMYBuPtP7n6lu/eMtqvc/ae8RViO1G0kIjFI\n1ULYKW9RyC+1aQNduoSV1ERE8iTVEprrmNkuhHUQfsXd38pNSAKEbqMzzgjdRttsE3c0IlIGUiWE\n1sAIkicEB/bPSUQS9O0bEsJ998HQjEpHiYikJVVCmOfu+qcfl6puIyUEEcmTdK4ykrhUVsK0aTB3\nbtyRiEgZSJUQ/pq3KCS5vn3DV11tJCJ5kKq43dP5DESSaNMG9txTCUFE8kJdRoWushKmToV58+KO\nRERKnBJCoVO3kYjkSa0Jwcy2MbPRZva0mT1XteUjOAE22wz22APuuQfc445GREpYqstOq9wH3ASM\nBlbmNhxJauBAOOEEGD0aBg2KOxoRKVHpdBmtcPeR7v6Gu0+u2nIemax2/PFwwAGrZy6LSPH44gs4\n4gh46aW4I6lVOgnhUTM72cxamdlGVVvOI5PV6tWDceOgcWM45hhYvjzuiEQkXTfdFMYA99sP/vnP\ngu76TSch9AfOAl4BJkfbpFwGJUlsuincfDO8+SZcemnc0YhIOlatCh/munaFQw6BP/85fKj74Ye4\nI0uq1oTg7lsk2drnIzippm9fOO44GD4cXn457mhEpDYvvAAffAAnnwwPPQTDhsHdd4f5RQV4Kbl5\nDc0XM9vf3Z8zs97JHnf3B3MaWRKdO3f2SZPKvHGyaBF07BhuT50KTZvGG4+I1OyYY+Cxx+Czz2Dt\ntcN9Tz8NRx0FK1fCHXdAjx45D8PMJrt759r2S9VC2Cf62iPJdljGEUrdNG0a3kQffhianyJSmL77\nDh54AP74x9XJAODAA2HyZNhqK+jZE84/PySHAlDjZafufmH0dUD+wpG07LUX/O1vofl56KGrJ6+J\nSOGYMAF++ilcJVhdu3bhqqMhQ8Lf8RtvwF13wcYb5z3MRDV2GRUidRklWL48JIb33gvrL7duHXdE\nIpLot7+FJUvC36clXWcsGD0aTjkFWrUKLYpdd816KNnoMpJCttZaMH58+AQyYEC4mkFECsOsWeFT\n//HHp04GECadvvRS+Bveay8YMyY/MSahhFDMttkGrr0WnnkmXN8sIoVh7Fho0CAMKqdjt93CuELX\nrqEywYknwtKluY0xiXRqGa1jZueb2ejo+63NTIPKheKEE8JVCuecAzNmxB2NiCxfvvrqoebN039e\n8+bw1FNw7rkwahTsvTf873+5izOJdFoIY4GlwJ7R958Aw3IWkawZM7jlFlh/fTj66NCFJCLxeeIJ\nWLAg+WByberXh8sugwcfhHfegU6d4Nlnsx9jDdJJCFu6+5XAcgB3XwLU0ikmedWiReh3nDEDzjsv\n7mhEsuv552GjjWD27LgjSc+YMdCyJRx0UN2P0atXqErQokW4TPWKK/JS8iKdhLDMzNYGHMDMtiS0\nGKSQHHoonHQSjBiR108UIjnlDmeeCd98UxzjZJ9/Do8/Dv36hTGETGy7Lbz+eris/JxzQgn8HEsn\nIVwIPAlsZmZ3As8CZ+c0Kqmbq68Ob6L+/cMfkEixe+ABeOst2HzzcFXdd9/FHVFq48eHSWYDsjR9\na911w3yG++8PFVNzLJ1aRs8AvYHjgLuBzu7+Qm7DkjpZZx24885Qbnfw4IKuqihSqxUrwize3/wG\n7r03FIS77ba4o6qZe+gu6tIFOnTI3nHNoE+fUPU4x9K5yqgXYU2Ex939MWCFmf0+k5Oa2aVmNt3M\npkYrsW2ayfEkwa67wiWXhD+g8ePjjkak7saPDwOrw4bB7ruH7cYbC/eDzuuvw9tvZ691EINaZyqb\n2VR371jtvinuvkudT2rW1N0XRbdPA7Zz98G1PU8zldO0ciXsuy9MmxZmSbZrF3dEImtm6dIwz6ZF\nizDBywxuvz10h06cCBUVcUf4ayeeGJLYZ58VXNHJbM5UTrZPRqMlVckg0oRowFqypH79cB00wLHH\nFkzhLJG0jRoFH30ULsGsmul7xBHQrBnccEO8sSWzZEkoa11ZWXDJYE2kkxAmmdk1ZrZltF1DWCQn\nI2Y23Mz+BxwNXJDp8aSadu3CH85LL8GVV8YdjUj6Fi8O3UT77gvdu6++v3HjMIv34YfzPmGrVg88\nAN9/X9TdRZBel1ET4Hyg6jfzDDDM3VMu+WNmE4GWSR4a6u4PJ+x3LtC4qrpqkuMMAgYBtG3bdtcP\nP/wwZbySwB2OPDJMcnnttdVFs5YuDesqLFoU3sTJblf/vmXLcNlfHga2pMxddhkMHQqvvBIWkkn0\nwQfQvv3qar+FYr/9QpKaO7f22kUxSLfLKPZqp2bWFnjC3XeobV+NIdTBN9/ATjuFr40bh3/yy5bV\n/jyz0PRdbz1o2BDmzw8D1ZWVuY9Zytc338AWW0C3bvDII8n36dkzDOB+9BE0apTf+JKZPx+23DIk\nqKFD444mqXQTQq1jAWa2DXAm0C5xf3ffP4Pgtnb3udG3hwPv1PVYUosNNwxN7OuvD4t0VP2Tb9p0\n9Zbs+yZNVn/SWbkSdtwRLr44b5e/SZm68srQIk316X/IEHj00dWLz8Rt3Ljwt9KvX9yRZCydLqNp\nwE2EcYOfRyfdvc7jCGb2ALAtsAr4EBjs7p/U9jy1EGI0YUJY9u+ee/IyQUbK0Oefh+6gXr3CfJqa\nrFoVJmC2aBH/2uIrV4YWzXbbwZNPxhtLCtm8ymiFu4909zfcfXLVlklw7t7H3Xdw953cvUc6yUBi\nVlkZJghdfLHWXpDcGD48dGdefHHq/erVC2VaXnklrCsep+eeC2MHdSlkV4DSSQiPmtnJZtbKzDaq\n2nIemRSW+vXhwgtDgbH77os7Gik1778PN98criLaaqva9x8wIHSB3nhj7mNLZcyY0C3bs2e8cWRJ\nOl1G7ye52929fW5Cqpm6jGK2cmUYoHYPlVXr1487IikVxx0XuiXfey/95WD/9Kdw7f8nn8AGG+Q0\nvKS++SYse3nCCfCvf+X//Gsga11G7r5Fki3vyUAKQFUr4e231UqQ7Jk9O0ykPOWUNVsbfMiQMCFs\n3LichZbS3XeHS7hLpLsI0mshrAP8P6Ctuw8ys62BbaO6RnmlFkIBWLUqtBJWroSZM9VKkMz16ROW\ngZ0/P8xEXhNdusCXX4aaR/m++q1z51CAL+5xjDRkc1B5LLAM6BJ9rxXTylm9eqGV8M47YV6CSCbe\nfDNMnPzLX9Y8GUBoJcydG+ob5dP06WEN5BJqHYBWTJO66NMHdtghVFVVnSTJxNChsPHGcMYZdXt+\n375hLeJ81zcaOzZM2Dz66PyeN8e0YpqsucRWQh5WcZIS9fzzoavo3HPrXhCuUaMwqPvYY5CvsjbL\nloUxj549QzIrIVoxTeqmd+8we1mtBKkL99A6aN0aTj45s2OdeGL4etNNmceVjkcfha++KrnuIqgl\nIZiZEcpKaMU0+aWqVsKcOeFqC5E18dhj8OqrcMEFYT5BJtq2hR494JZb4KefshNfKmPHhkR24IG5\nP1eepUwIHi5BesLdv6paMc3dv8xTbFLoevUKVxxdemm42kIkHatWhdbBVltlr1z0kCHhaqP778/O\n8Wry6afwn/+EukUleIVdOl1Gb5nZbjmPRIpPvXpw0UXw7rtqJUj6JkwIExsvuQTWWis7x6yoCCus\n5Xpw+fbbQ0Ir8nUPapLOPIR3gK0IReh+IFxh5O6+U+7D+yXNQyhAq1ZBp05hgtDs2dAgo8X0pNQt\nXx5qYjVpAlOmZHfuwHXXwemnh8tBO3XK3nGruIeiei1bwosvZv/4OZTNeQi/A7YE9gd6AIdFX0VW\ntxLmzoW77oo7Gil0Y8eG8hTDh2d/Iln//rDOOrlrJbzySnifl2jrANIrXfEhsBmwf3R7STrPkzJy\n+OHQsaPGEiS1H38MlUz33BMOPTT7x99gAzjmmPDB5Ouvs3/8MWNCy6aEF4mq9R+7mV0I/BU4N7pr\nLWB8LoOSImMWWgnz5qWuYy/l7cYbw6DsZZflbpnJk08OVxqNHZvd4y5eHObc/OEPsO662T12AUnn\nk34voCdh/AB3/xRYL5dBSRHq2RN22UWtBElu0SL4+9/DpZr77pu78+y8M+y1F4wcmd11O+6/H374\noaS7iyDNmcrR5adVM5Wb5DYkKUpVrYT33oPxakBKNddcEyZzDR+e+3MNGRLeh089lb1jjhkDW28d\nkk0JSych3GtmNwMbmNkJwERgdG7DkqLUo0e4uuPSS8PVJCIQ5geMGBFmt3eu9UKXzPXpA5tskp3F\nc5Yvh9Gj4f/+L8xMzlVXV4GoMSGYWSMAd78auB+oWgf5Ancv7NUgJB5VrYT589VKkNVGjAjdLZde\nmp/zNWwY6hs9/nhYia0uVqwIcw5+8xsYNAh23z0cs8SlaiG8CmBmd7j7M+5+lruf6e7P5Ck2KUaH\nHQa77qpWggRffQXXXw9HHBEWos+XE08Ml7WuaX2jlSvDVUrbbx8uY23aNNQueu21kitkl0yqhNDQ\nzP4IdDGz3tW3fAUoRaaqlfD++6EipJS3664LV+icd15+z9umTbgc+tZb06tvtGpVWN9jxx1DSevG\njeGhh8Ikt8MOK/muoiqpEsJgYG9gA8JEtMTtsNyHJkXr0ENDX/GwYWollLNvvw0JoXfvsH5Gvg0Z\nElooqUq0r1oVFujZeedwSalZWB52yhT4/e/LJhFUSZUQWrn7ScC57j6g2lZ6dV8lexJbCbffHnc0\nEpd//jNcbnr++fGcf7/9oEOH5DOX3eHhh0P3Zp8+4YPL3XeHldD69s3/cpwFItVPXTURbXA+ApES\nc8ghYSBu2LCwoIiUl0WL4B//CPNTOnaMJwazMFHtzTfDBiERPP447LZbaAEsXhy6NmfNgiOPLMkK\npmsiVUL4ysyeBrYws0eqb/kKUIpUVSvhgw/gttvijkby7YYb4Jtv4msdVOnXL5SbuOGGMC9hjz3C\nmMDXX4fZzG+/HcpdlHkiqFJjtVMzawh0Au4A/lT9cXf/b25D+zVVOy0y7qFuzeefhxLZDRvGHZHk\nw+LF0K5daCE+8UTc0cBJJ62+2qht25Ck+vfPXuntIpButdMaaxW7+zLgNTPr4u4LsxqdlIeqVsLB\nB8O4ceF6bil9N90UBnPjbh1UOfPMsP73H/4QJpfpg0mNUrUQ/uHup5vZo0RlKxK5e89cB1edWghF\nqKqV8NlnYcKamualbckS2GKLsJLeM5qyVCgybiEQuooArs5OSFKWzOC008K13VOm5Kd0gcRn9GhY\nsCCslSxFJ1WX0eTo63/NrHl0W11HsuYqKsLXZ59VQihlP/0EV1wRqpnuvXfc0UgdpLzY1swuMrMv\ngTnAu2a20MyU+mXNbLJJmJj07LNxRyK5dOutoWuwUMYOZI2lKm73/4C9gN3cfSN33xD4LbCXmZ2R\nrwClRFRUwEsvwdKlcUciubB0KVx+eSgPvd9+cUcjdZSqhXAscJS7/1wu0N3nA8cA/XIdmJSYioqw\nhOKrr8YdieTCbbfBxx+H1kGZlXsoJakSwlru/mX1O6NxhPK5gFeyY599whVG6jYqPcuXh9XQdt89\nrIgmRStVQkhVb0C1CGTNNG0aygUoIZSe8ePDjPQLLlDroMilSgg7m9miJNv3wI75ClBKSEUFvPFG\nqHMjpWHFirAsZqdOoX6VFLUaE4K713f3pkm29dw9K11GZvYXM3Mza5aN40mBq6gIC5D8N+9VTyRX\nJkwI6xdr7KAkxFbj1cw2Aw4EPoorBsmzPfcMC4+o26g0rFwZqtnutFOoaipFL86i39cCZ5OkLIaU\nqMaNoWtXJYRScf/9MGdOWA2tTNcPKDWx/BbN7HDgE3efFsf5JUYVFTBzJnzxRdyRSCZWrQrrZm+3\nXVhgRkpCqlpGGTGziUDLJA8NBf5G6C5K5ziDgEEAbdu2zVp8EpOqMhbPPQdHHRVvLFJ3Dz0UFpW5\n6y61DkpIjdVOc3ZCsx2BZ4El0V1tgE+B3d3981TPVbXTErByJTRrFj5V3nJL3NFIXbjDLruEiYaz\nZ6uCbRHIRrXTnHD3GUCLqu/N7AOgc7JJcFKC6tcPxc80jlC8Hn0Upk0Ls5OVDEqK2nqSfxUVYSLT\n/PlxRyJryh0uuQTat4c//jHuaCTLYk8I7t5OrYMyk1gOW4rLk0/C5Mnwt79Bg7x3MEiOxZ4QpAx1\n6ACtWikhFJuq1sHmm8Oxx8YdjeSAUrzkn1loJTz1VLh8UVepFIdnn4XXXoORI7UucYnSX6LEo3t3\nWLgwzEmQwucOF18MrVvDgAFxRyM5ooQg8dA4QnH573/DAkfnnAONGsUdjeSIuowkHm3awDbbhIRw\nhhbgy6nPP4cRI8Ig8LrrQpMmYavt9tprry5Yd+ml0LIlDBwY788iOaWEIPGpqIA77ggLrKylNZdy\nZuhQGDs2zBlYsSL955mtThJffAHXXBOShJQsJQSJT0VFGKB8803o0iXuaErTvHlhAtmpp8J118Gy\nZfDDD2FbvDj9240awYknxv3TSI4pIUh89tsvfAp99lklhFy5+OJwRdC554bvGzYM24YbxhuXFCQN\nKkt8Ntoo1MTRwHJuzJ4Nd94Jp5wS+v9FaqGEIPGqqIBXX4UlS2rfV9bMRReF/v+zz447EikSSggS\nr4qK0K/90ktxR1Japk2D++6DP/85VJcVSYMSgsSra9dwhZG6jbLrwgth/fXhL3+JOxIpIkoIEq8m\nTcJay0oI2TNpEjz8cEgGGjyWNaCEIPGrqIC33oKvv447ktJwwQVhwP7Pf447EikySggSv4qKUCvn\nhRfijqT4vfIK/Oc/YSC5adO4o5Eio4Qg8dt991AuYeLEuCMpfuefDy1ahEtNRdaQJqZJ/NZaC7p1\n0zhCpl54AZ57LpSYaNIk7mikCKmFIIWhogLefRc+/jjuSIqTe2gdbLopDB4cdzRSpJQQpDCoHHZm\nnnkmzOXMi0eDAAARw0lEQVQYOlQF6KTOlBCkMOy4Y5hApYSw5qpaB23bqjy1ZERjCFIY6tWD/fcP\nCcF9dR1+qd1jj8Ebb8Do0Vq8RjKiFoIUjooK+PRTmDMn7kiKx6pVYd5B+/bQv3/c0UiRU0KQwqFx\nhDX30EMwdWooZKdFhiRDSghSONq3h803V0JI18qVoWZRhw7wxz/GHY2UAI0hSOEwC62EBx8M/+zq\n1487osJ2770waxZMmKDXSrJCLQQpLN27w7ffwpQpcUdS2FasCN1EO+4IlZVxRyMlQglBCsv++4ev\n6jZKbfz4MJHvkkvCFVoiWaB3khSWTTaBHXZQQkhl+fKQCHbdFQ4/PO5opIQoIUjhqagIs26XLo07\nksI0diy8/35ICpqvIVmkhCCFp6ICfvwxrLUsv7R0KQwbBnvsAQcfHHc0UmKUEKTw7LNPuGpG3Ua/\nNno0/O9/cOmlah1I1ikhSOFp2hR2200JobolS2D48JAwqybxiWSREoIUpoqKUJ9n0aK4IykcI0fC\n55+rdSA5o4QghamiIkxOe/HFuCMpDIsXw+WXwwEHwN57xx2NlCglBClMe+4JjRur26jKv/4FX34Z\nWgciOaKEIIWpcWPo2lUJAeC77+Cqq+DQQ+G3v407GilhsSQEM7vIzD4xs6nRdkgccUiBq6iAGTNg\nwYK4I4nXsGHwzTdh3oFIDsXZQrjW3TtG2xMxxiGFqupKmueeizeOOM2YAddeC3/6E3TqFHc0UuLU\nZSSFq1Mn2GCD8u02WrUKBg+GDTcMA8oiORZnQjjVzKab2Rgz2zDGOKRQ1a8P++4bf0L46Sf44IP8\nn3fMGHjlFbj6ath44/yfX8pOzhKCmU00s5lJtsOBkUB7oCPwGTAixXEGmdkkM5u0cOHCXIUrhaqi\nItTtmT8/v+d1h0mTYMgQ2HRT2HLL/HZdLVwIf/0rdOsG/frl77xS1nK2QI67d09nPzMbDTyW4jij\ngFEAnTt39uxEJ0UjcVnN9u1zf77PPw+lpceNC4vPNG4MvXvD5MlwzDEwbRo0b577OM4+O0zKGzlS\nk9Akb+K6yqhVwre9gJlxxCFFoEMHaNUqt91Gy5bBAw9Ajx7Qpg2cdVYon3HzzfDZZ3DnnXDPPfD1\n1zBgQGg95NKLL4aEdNZZsN12uT2XSIK4ltC80sw6Ag58AJwYUxxS6KqW1XzssTCw2qEDbLtt6MJp\n2LDux3UPq7KNGwd33QVffRW6hs46C/r3D+dJtPPOoS//1FPhuuvg9NMz+rFqtGwZnHQStGsH552X\nm3OI1CCWhODux8ZxXilS/fuHFsK5566+r3592GKLkBwStw4doEWLmrtZFiwIn/jHjYPp06FRI/j9\n7+G440JZiFRrEw8ZAhMnhu6cbt1ycxnoNdfA7NkhAa6zTvaPL5KCea6bv1nUuXNnnzRpUtxhSFy+\n+y4sGzlnDrzzTvg6Zw7MnRuuBKqy/vq/ThQQxgYefzysR7z77iEJHHlkuKwzXV99BR07wtprh3GF\n9dbL3s/3/vuw/fZhnYMHHsjecaXsmdlkd+9c635KCFL0Vq2Cjz5anSASt48/Xr1fy5Zw7LGhxbH9\n9nU/34svwn77hUHm227LPH4IXVg9esALL8Dbb8Nmm2XnuCKknxDiGkMQyZ569UKfe7t28Lvf/fKx\nxYtDC+L776FLF2iQhbd8t25w/vlw8cXQvXtIMpn6979D62XECCUDiY1aCCJ1sWJFGOyePDkMTm+9\ndd2P9f334WqijTcOcx+ykbREEqTbQlDpCpG6aNAgDE43ahTGIZYurfuxLroodG2NHKlkILFSQhCp\nqzZtQnmJt9765RVQa2LatHAZ66BBYQ0IkRgpIYhk4vDD4ZRTQkXSJ9awaG9V8bqNNoK//z038Yms\nASUEkUxddVWYuNa/P3z6afrPu+UWeO21MOFto41yF59ImpQQRDLVuDFMmABLloQrjlaurP05CxaE\n4nX77JOdq5REskAJQSQbOnQI6x4/91x6axecdRb88IOK10lBUUIQyZYBA+Coo+DCC8M6BjV5/nm4\n/faQFH7zm/zFJ1ILzUMQyaZFi2CXXcI8halTf10WY+nSMN6wbBnMnKl6RZIXmocgEoemTeHuu8Pg\n8gkn/LpU9tVXh5Ia11+vZCAFRwlBJNt23x0uuywUqBs1avX98+fDsGHQpw8cckh88YnUQAlBJBf+\n8pdQV+n000PXkHson92gAfzjH3FHJ5KUEoJILtSrFyqhrr9+KG0xfjw8+SRcckmY4SxSgJQQRHJl\nk03gjjvC2sz9+oXB5FNPjTsqkRopIYjk0gEHhDpHDRrATTepeJ0UNCUEkVwbPhw+/xz22CPuSERS\nUkIQyTWzsNaBSIFTQhAREUAJQUREIkoIIiICKCGIiEhECUFERAAlBBERiSghiIgIoIQgIiIRJQQR\nEQGUEEREJFJUS2ia2ULgwzo+vRnwZRbDyTbFlxnFlxnFl7lCjnFzd29e205FlRAyYWaT0llTNC6K\nLzOKLzOKL3PFEGNt1GUkIiKAEoKIiETKKSGMqn2XWCm+zCi+zCi+zBVDjCmVzRiCiIikVk4tBBER\nSaHkEoKZHWRmc8xsnpmdk+RxM7N/Ro9PN7NOeYxtMzN73sxmm9ksM/tzkn32NbPvzGxqtF2Qr/ii\n839gZjOic09K8nicr9+2Ca/LVDNbZGanV9snr6+fmY0xswVmNjPhvo3M7Bkzmxt93bCG56Z8r+Yw\nvqvM7J3o9/eQmW1Qw3NTvhdyGN9FZvZJwu/wkBqeG9frd09CbB+Y2dQanpvz1y/r3L1kNqA+8B7Q\nHmgITAO2q7bPIcB/AAP2AF7PY3ytgE7R7fWAd5PEty/wWIyv4QdAsxSPx/b6Jfldf064vjq21w/o\nBnQCZibcdyVwTnT7HOCKGuJP+V7NYXwHAg2i21ckiy+d90IO47sIODON338sr1+1x0cAF8T1+mV7\nK7UWwu7APHef7+7LgAnA4dX2ORy43YPXgA3MrFU+gnP3z9z9rej298DbQOt8nDuLYnv9qqkA3nP3\nuk5UzAp3fxH4utrdhwO3RbdvA36f5KnpvFdzEp+7P+3uK6JvXwPaZPu86arh9UtHbK9fFTMz4Ajg\n7myfNy6llhBaA/9L+P5jfv0PN519cs7M2gG7AK8nebhL1Jz/j5ltn9fAwIGJZjbZzAYlebwgXj/g\nSGr+Q4zz9QPYxN0/i25/DmySZJ9CeR2PJ7T4kqntvZBLp0a/wzE1dLkVwuu3N/CFu8+t4fE4X786\nKbWEUBTMbF3gAeB0d19U7eG3gLbuvhPwL+DfeQ6vq7t3BA4GhphZtzyfv1Zm1hDoCdyX5OG4X79f\n8NB3UJCX8pnZUGAFcGcNu8T1XhhJ6ArqCHxG6JYpREeRunVQ8H9L1ZVaQvgE2Czh+zbRfWu6T86Y\n2VqEZHCnuz9Y/XF3X+Tui6PbTwBrmVmzfMXn7p9EXxcADxGa5oliff0iBwNvufsX1R+I+/WLfFHV\njRZ9XZBkn7jfh8cBhwFHR0nrV9J4L+SEu3/h7ivdfRUwuobzxv36NQB6A/fUtE9cr18mSi0hvAls\nbWZbRJ8ijwQeqbbPI0C/6GqZPYDvEpr3ORX1Od4KvO3u19SwT8toP8xsd8Lv6Ks8xdfEzNaruk0Y\nfJxZbbfYXr8ENX4yi/P1S/AI0D+63R94OMk+6bxXc8LMDgLOBnq6+5Ia9knnvZCr+BLHpHrVcN7Y\nXr9Id+Add/842YNxvn4ZiXtUO9sb4SqYdwlXIAyN7hsMDI5uG3BD9PgMoHMeY+tK6D6YDkyNtkOq\nxXcKMItw1cRrQJc8xtc+Ou+0KIaCev2i8zch/INfP+G+2F4/QmL6DFhO6MceCGwMPAvMBSYCG0X7\nbgo8keq9mqf45hH636vegzdVj6+m90Ke4rsjem9NJ/yTb1VIr190/7iq91zCvnl//bK9aaayiIgA\npddlJCIidaSEICIigBKCiIhElBBERARQQhARkYgSQplLVs0xuj+tip3VntOu+nHqGNOmZnZ/Gvv9\nLdNzpRnPC2ZW57Vyzayzmf0zmzFVO/6+ZvZYlo51SlQ91Gua0GdmB0TlGGZEX/dPeGzX6P55Fqri\nVs0J6WZmb5nZCjPrW+14KxOqh+ZzLoFUo4Qg44CDktx/DvCsu29NuKY+J+WFk3H3T929b+17ssYJ\nwczq1yGkjLj7JHc/Ld/nraOXCZOuUhUN/BLo4e47Eibe3ZHw2EjgBGDraKt6b30EHAfcleR4P7p7\nx2jrmVn4kgklhDLnNVdzTKdiZ9UnwmlmNg0YknB/OzP7v+hT4Vtm1iW6/3Yz+33Cfnea2eHVjvlz\nS8PMjjOzB83syai1cmV0/+XA2tGnyjuj+44xszei+26u+udvZovNbEQU47lmdl/CuX7+dG1mI81s\nkoW1Ki5O8rPWN7NxZjYz+hR8RpJ9KqPHp5nZi0nOcVHUKnvBzOab2WkJz+1noaDbNDO7I7qvuZk9\nYGZvRtteyX4PCcfY3cxeNbMpZvaKmW2b6nWszt2nuPsHqc4R7fNp9O0swu+hUTTDuKm7v+ZhgtPt\nRO8bd//A3acDq1IdW2IW98w4bfFvQDuq1XsHvk24bYnfV9tvOtAtun1V1XGAdYDG0e2tgUnR7X2A\nf0e31wfeJ6rNnywewqfK+dG+jQmfXDeLHluc8JzfAI8Ca0Xf3wj0i247cER0uwHh02qT6PuRwDHR\n7aoZxfWBF4Cdou9fADoDuwLPJJxzgySvxwygdeLjJKzRQKj1/wrQCGhGmHW9FrA9YdZts2qx3EUo\nkgbQllD2pPo5E4/flNVrHXQHHqjtdazh9/oBadTyB/oCE6PbnatuR9/vTbW1KQgt0r7V7ltBKEr4\nGvD7uP8eynlrgEgt3N3N7FdT2i2stLWBh1YGhK6Dg6PbawHXm1lHYCWwTXSs/5rZjWbWHOhD+Ie1\ngtSedffvonPOBjbnl6WPIayPsCvwZtRtvTari8qtJBQUxN1XmNmTQI9onOJQQl0fgCMslCluQFjM\naDtCwqsyH2hvZv8CHgeeThLry8A4M7sX+FXxwsjj7r4UWGpmCwjlsfcH7nP3L6M4q1pt3YHtop8J\noKmZretRAb8k1gduM7OtCYlwrYTH0nkd02ahtPgVhDo9mdjc3T8xs/bAc2Y2w93fy/CYUgdKCFKT\nL8yslbt/ZgkVO81sLGEdh0+BP6Z4/hnAF8DOhK7JnxIeux04hlCQbEAasSxNuL2S5O9bA25z93OT\nPPaTu69M+H4CoebR14SWy/dmtgVwJrCbu39jZuMIn6R/Ft2/M/A7Qv2kIwjrCSTuM9jMfktINJPN\nbNc6/jxV6gF7uPtPKfZJdCnwvLv3srDmxgt1PG9KZtaGUMGzX8I/70/45WI7aVUg9dVVQeeb2QuE\n95cSQgw0hiA1SVqx090HeBj8O8TdvwW+NbOu0X5HJzx/feAzDyWMjyV0w1QZB5weHW92BjEut1BO\nHMLAd18zawE/XyW1eQ3P+y9hWcQTCMkBQlfLD8B3ZrYJq1s6P7Nw1U09d38AOC86RvV9tnT31939\nAmAhvyzRnMpzQKWZbVwVf3T/08CpCcfvWMtx1mf1P+Hj0jz3Golaho8Tlgl9uep+D1VvF5nZHhaa\nNP1IXuk18Vgbmlmj6HYzYC8gk/eEZEAJocyZ2d3Aq8C2ZvaxmQ2MHrocOMDM5hK6LS6v4RADgBss\nLDRuCfffCPSPBnI7EP7ZAqHePWH50LEZhj8KmG5md0aJ5TzgaTObDjxD6Pb5lai18Bjhn/5j0X3T\ngCnAO4R++5eTPLU18EL0s44HkrVGrooGnGcSxgqmpfODuPssYDjw3+g1qyqPfhrQORpsnk1omVTX\ngNWf/q8E/m5mU6hDC8DMTjOzjwmf7qeb2S1JdjsF2Aq4wFZfLtoieuxk4BZCRdX3iFZjM7PdouNW\nAjeb2axo/98Ak6Kf+Xng8gw/JEgGVO1U8s7M1iEMvnaq6tOWujOzPxMGss+udWeRFDSGIHllZt0J\niwRdq2SQOTO7FdiBMJ4hkhG1EEREBNAYgoiIRJQQREQEUEIQEZGIEoKIiABKCCIiElFCEBERAP4/\nTZTL+vm2J7cAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#plt.plot(SiGlobalTot[sdir0]-SiGlobalTot[sdir0][0],'r-')\n", "#plt.plot(SiGlobalTot[sdir3]-SiGlobalTot[sdir3][0],'g-')\n", "#plt.plot(40,test-SiGlobalTot[sdir1][0],'r*')\n", "#plt.plot(40,test2-SiGlobalTot[sdir1][0],'k*')\n", "fig,ax=plt.subplots(1,1,figsize=(6,5))\n", "ax.plot(NGlobalTot[sdir1]-NGlobalTot[sdir1][0],'r-')\n", "ax.set_xlabel('10-day intervals since Jan 1 2015')\n", "ax.set_ylabel('Difference in Total N')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VNXWwOHfTihSItIEpEtTBBtRELxWFAQERa+KonAR\nFbkWLgKC2D9REcGOXFAQkQAiVoqCSrEBBgREkSKidAOW0CHJ+v5Yk0uM6XNmzsxkvc8zT8LMmXNW\nTg4re/beZ20nIhhjjIkdcX4HYIwxxluW2I0xJsZYYjfGmBhjid0YY2KMJXZjjIkxltiNMSbG+JbY\nnXPjnXO/OudWF2Dbus65T5xzq5xzC5xztcIRozHGRCM/W+yvAe0LuO3TwOsicirwKPBEqIIyxpho\n51tiF5FFwG9Zn3PONXDOfeicW+ac+8w5d1LgpabAp4Hv5wNdwhiqMcZElUjrYx8L3CkiLYABwOjA\n8yuBroHvrwQSnHOVfYjPGGMiXgm/A8jknCsPtAamO+cyny4d+DoAeNE51xNYBGwF0sMdozHGRIOI\nSezop4c/ROT07C+IyDYCLfbAH4CrROSPMMdnjDFRIWK6YkQkFfjJOfdPAKdOC3xfxTmXGesQYLxP\nYRpjTMTzc7rjFOAroIlzbotz7mbgBuBm59xK4DuODpJeAKx1zq0DqgHDfAjZGGOigrOyvcYYE1si\npivGGGOMN3wZPK1SpYrUq1fPj0MbY0zUWrZs2S4RqZrfdr4k9nr16pGcnOzHoY0xJmo5534uyHbW\nFWOMMTHGs8TunIt3zn3jnJvp1T6NMcYUnpct9ruBNR7uzxhjTBF4ktgDZXQ7Aq94sT9jjDFF51WL\n/VlgEJCR2wbOuVudc8nOueSUlBSPDmuMMSa7oBO7c64T8KuILMtrOxEZKyKJIpJYtWq+s3WMMcYU\nkRct9jZAZ+fcJmAqcJFz7g0P9muMMaYIgp7HLiJD0MJcOOcuAAaISPdg92uMMZFOBA4ehH378n/s\n3atfe/SAhg1DG1ckle01xpiItXUrXH01pKT8NWFn5Dqy+HfOQevWUZbYRWQBsMDLfRpjTCSYMAEW\nL4Zu3aB8eShX7u+P3J7PfJQpo8k91KzFbowx+RCBpCT4xz/0a6SzkgLGGJOPVatgzRq4/nq/IykY\nS+zGGJOPpCQoUUL72KOBJXZjjMlDRgZMmQLt2kGVKn5HUzCW2I0xJg9ffAGbN0dPNwxYYjfGmDxN\nmaKzWTp39juSgrPEbowxuThyBN58E7p00amM0cISuzHG5GLePNi9O7q6YcASuzHG5CopCSpW1IHT\naGKJ3RhjcrB/P7z7Lvzzn1CqlN/RFI4ldmOMycEHH2gtmG7d/I6k8CyxG2NMDpKSoGZNLSMQbSyx\nG2NMNr/9BnPmwHXXQXy839EUniV2Y4zJZsYMneoYbbNhMlliN8aYbJKSoEkTOOMMvyMpGkvsxhiT\nxdatsHChDpqGo3Z6KFhiN8aYLKZN0/rr0TgbJpMldmOMySIpCRIToXFjvyMpOkvsxhgTsHYtLFsW\nvYOmmSyxG2NMwJQp2q9+7bV+RxIcS+zGGMPRdU0vuABOOMHvaIJjid0YY4Dly2H9+ujvhgFL7MYY\nA2hrvWRJuOoqvyMJniV2Y0yxl54OU6dChw5apjfaWWI3xhR7ixbBtm3RPXc9K0vsxphiLykJypWD\nyy/3OxJvWGI3xhRrhw5p0a8rr4SyZf2OxhuW2I0xxdpHH8Hvv8fGbJhMltiNMcVaUhJUqQJt2/od\niXcssRtjiq09e+D993Vd05Il/Y7GO5bYjTHF1nvvwYEDsdUNA5bYjTHF2JQpUKcOtG7tdyTeCjqx\nO+dqO+fmO+e+d85955y724vAjDEmlFJSdOC0WzeIi7EmbgkP9pEG3CMiy51zCcAy59w8Efneg30b\nY0xIvPWW3nEaKzclZRX03ykR2S4iywPf7wHWADWD3a8xxoRSUhI0bQqnnup3JN7z9AOIc64ecAaw\nJIfXbnXOJTvnklNSUrw8rDHGFMovv8Dnn+ugabSua5oXzxK7c648MAPoJyKp2V8XkbEikigiiVWr\nVvXqsMYYU2hTp+rXWOyGAY8Su3OuJJrUJ4vI217s0xhjQiUpCVq1ghNP9DuS0PBiVowDXgXWiMio\n4EMyxpjQ+e47WLkydlvr4E2LvQ1wI3CRc25F4NHBg/0aY4znpkzR6Y3XXON3JKET9HRHEfkciMHh\nB2NMrBHRxH7xxVC9ut/RhE6MTcs3xpjcLV0KGzfGXgmB7CyxG2OKjaQkKF1aa6/HMkvsxphiIS0N\npk2Djh2hQgW/owktS+zGmGLhuedg587Y74YBS+zGmGJg0iQYMAC6doUrrvA7mtCzxG6MiWkzZ8K/\n/gUXXaR97PHxfkcUepbYjTEx6/PPdXWkM86Ad9/VgdPiwBK7MSYmrVoFnTpB3bowezYkJPgdUfhY\nYjfGxJyNG6FdOyhfHubOheJWd9CLhTaMMSZi7NgBl1wChw/DZ5/p0nfFjSV2Y0zM+OMPaN9epzV+\n8okupFEcWVeMMSYsRGDdOv0aCgcOQOfO8P338Pbb0LJlaI4TDSyxG2PCYupUaNJE66DPn+/tvo8c\ngWuv1VkwkybBpZd6u/9oY4ndGBNyIvD001C7NmzbpnPK27WDZcuC33dGBvTuDR98AC+9pAm+uLPE\nbowJuS++gOXL4f77Yf16GDlSk3pioibideuKtl8RGDgQXn8dHnkEbr/d27ijlSV2Y0zIPfssVKoE\n3bvDMcdA//7w44/wwAMwa5YOct52G2zdWrj9Dh8Oo0bBnXfqvoyyxG6MCalNm+CddzRxly179PkK\nFeDRRzXB9+0LEyZAw4Zw773w22/573fcOBgyRIt6PfssOFvu538ssRtjQurFF3Upur59c369WjV4\n/nlYu1Zv/x8xQheZfuIJ2Lcv5/fMmAF9+ujUxgkTdP/mKDsdxpiQ2bMHXnlFE3atWnlvW7++9pWv\nXAnnnQf33act+Jdf1lkvmT79VFvpLVvCW29BqVKh/RmikSV2Y0zITJwIf/4J/foV/D3Nm8P77+vU\nxYYNtaV/8sm6VunXX0OXLtCokVZtLFcudLFHM0vsxpiQyMjQxS3OOQfOPrvw72/TBhYt0sHVcuWO\nttIrV4aPPtLBWJMzS+zGmJCYPRs2bChcaz0756BDB/jmG5g8We8snTcPatb0Ls5Y5CRU9/fmITEx\nUZKTk8N+XGNM+LRtq/PTN26EElaVyhPOuWUikpjfdtZiN8Z47ttvtQjXHXdYUveDJXZjjOeee07n\nrPfu7XckxZMldmOMp1JS4I03oEcPG+D0iyV2Y4yn/vtfOHQI7rrL70iKL0vsxhjPHD6sFRYvuwxO\nOsnvaIovS+zGGM+8+aYuTXf33X5HUrxZYjfGeEIEnnlG7xIt7gtd+M0mIhljPJFZc33MGKu06Ddr\nsRtjPPHss1CxItx4o9+RGEvsxpig5VZz3fjDk8TunGvvnFvrnNvgnBvsxT6NMdHjxRe1++Xf//Y7\nEgMeJHbnXDzwEnAZ0BTo5pxrGux+c5J+KI3Nn/8cil0bY4qoMDXXTXh40WI/G9ggIhtF5DAwFeji\nwX7/5otTbyf+gnP5/fvtodi9MaYIilJz3YSWF4m9JrA5y7+3BJ77C+fcrc65ZOdcckpKSpEOVOXh\nOzg2/XdS2nRB9h8oWrTGGM9k1lxv1UprpZvIELbBUxEZKyKJIpJYtWrVIu2jabfT+PTmJBr+kcyG\nc3voVWWM8Y0XNdeN97xI7FuB2ln+XSvwXEhcPq4zr538FI2+mc6OPg+H6jDGmAJ49lntV+/a1e9I\nTFZeJPavgUbOufrOuVLAdcD7Huw3R85B54X3kFT2ZqqP+z8Ovjo5VIcyxuQha831kiX9jsZkFXRi\nF5E04A7gI2AN8KaIfBfsfvNSpaqj1nujWcD5xN/aC778MpSHM8bk4LnnoEwZuOUWvyMx2XnSxy4i\ns0WksYg0EJFhXuwzP+e1LcWSgTPYlFGHg+2v0DskjDFhYTXXI1tU33l6z+OVeSRxJgf2HOFQu8sh\nNdXvkIwpFqzmemSL6sReogQ8+U4TeiW8Rfy6NaRfcx2kpfkdljExLbPmevv2WsnRRJ6oTuygI/K9\nJl9MX0YT/9EcGDDA75CMiWmZNddtimPkivrEDnD55VD27lt5hn46ojNmjN8hGROTrOZ6dIiJxA4w\nfDhMPv1pPirZEbnjDvj4Y79DMibmZNZcv/tuq7keyWImsZcuDVPejKdnqSlsLN0Uufpq+OEHv8My\nJqZYzfXoEDOJHaBRIxgxJoGL9n/AvrTS0KkT7N7td1jGxASruR49YiqxA3TvDhf2qMul+94l/Zct\neq/z4cN+h2VM1Bs+HOLjreZ6NIi5xA5a9P+3JudwV7nxsGgR3H67jvoYY4rkl1/g1Vfh5put5no0\niMnEXr48TJ0Krx64nqSGD8L48fD0036HZUzUeuIJ/TpkiL9xmIKJycQOcPrpMHIkdN/wEGtPvwbu\nvRfefdfvsIyJOps3H22t16njdzSmIGI2sQP07QtdrojjrNWvsbfpWXDDDfDNN36HZUxUsdZ69Inp\nxO6ctjSOq1GGtnvfI6NSZb0PevZsv0MzJips3qzrmfbqZa31aBLTiR208tyUKZC8pTqDTpuLVKsG\nHTtCnz6wd6/f4RkT0Z58Ur9aaz26xHxiB2jTBh55BEbOOonX+n4NAwfC2LHaEf/VV36HZ0xEymyt\n/+tfULeu39GYwigWiR1g8GC46CLodXtpbtj6FNuSFkB6Opx7LgwdanPdjcnmySd1WeH77vM7ElNY\nxSaxx8frpJghQ/TuuXo3ncegdis5cF1PePxxXWb9u5Au/GRM1Niy5WjfurXWo0+xSewACQmawzds\n0I+Xo145luPff5Wp3d4lY/MWaNFCS9dlZPgdqjG+ymytW996dCpWiT3TCSfoCjCrV2vp0W5TutCc\n1fzUuB307w9t2+qtdsYUQ1u2wLhx2vipV8/vaExRFMvEnumkk2DGDB0/rdL0eE789l0GV32VI199\njTRvDq+/bqUITLEzfLj1rUe7Yp3YM7VqBQsWwKxZjtnVe9H44CpWpJ+qK/X+85+wa5ffIRoTFlu3\n6oSxnj2ttR7NLLEHOAcdOuiNqY++Xp+ulRYwiOEceft9jpzU3G5qMsWCzYSJDZbYs4mP10UE1qyL\np8aoQVyc8DVrdleFjh3583q7qcnErqyt9fr1/Y7GBMMSey6OOQb+8x/44JfTeGvQ14wqMZCEKWPZ\nWb8l7Nnjd3jGeM761mOHJfZ8VKgAjw4vzXU/P8VTF8yhyq4f2HqlrTRgYktma71HD2utxwJL7AV0\nwgnQ/6N2vFjxQWp+Mon01yf7HZIxnhk+XG/EttZ6bLDEXgilSkGd/w7lM84l/bbbYeNGv0MyJmjb\ntmlr/aab4MQT/Y7GeMESeyFdcXUJnjtrMvsPxZN+TTc4csTvkIwJyvDhkJamJZNMbLDEXkjOweDR\ndegt44hfthQefNDvkIwpsm3b9C7sHj2stR5LLLEXQWIilL3xal6NuwUZPhw+/dTvkIwpkqeestZ6\nLLLEXkTDhsGgks+wLaEJdO9ud6eaqLN9u7bWrW899lhiL6LataHvwHJ0SJ1Kxq7dWt/U6sqYKDJ8\nuA4RWWs99gSV2J1zI5xzPzjnVjnn3nHOHedVYNHg3nvh1+qn8XzNp+CDD+Cll/wOyZgCyWyt33gj\nNGjgdzTGa8G22OcBzUTkVGAdUKyqN5cvD489Bv/ZdBfbz+gAAwbAqlV+h2VMvp56ylrrsSyoxC4i\nc0UkLfDPxUCt4EOKLj17wqmnOjrvnoBUrAjdusH+/X6HZUyutm+HMWO0td6wod/RmFDwso+9FzAn\ntxedc7c655Kdc8kpKSkeHtZf8fEwciQk/3I80zu9Dt9/D/fc43dYxuRqxAhrrcc6J/kM+DnnPgaq\n5/DSUBF5L7DNUCAR6Cr57RBITEyU5OTkIoQbuTp1gs8+g+03DqLsSyPg7bfhyiv9DsuYv9ixQ2vB\nXHstvPaa39GYwnLOLRORxPy2K5HfBiLSNp8D9QQ6ARcXJKnHqhEjoHlzGJz2GM8nzoebb9YJ77Vr\n+x2aMf+T2bd+//1+R2JCKdhZMe2BQUBnESnWHcsnnwx9+sDoV0qx4dEkOHxYOzHT0/0OzRgANm/W\nvvUbbrC+9VgXbB/7i0ACMM85t8I5N8aDmKLWQw/pTJl+LzWC0aNh4UJ44gm/wzKGr76Cli21JIa1\n1mNfsLNiGopIbRE5PfDo41Vg0ahqVR2QmjUL5lW/Ea6/Hh5+GL780u/QTDElAi+/DOefD2XKaIJv\n1MjvqEyo5Tt4GgqxOHia6eBBaNpUW+7fLEwlvsXpuizNihVwXLG6f8v47OBB6NsXJkyAyy6DyZOh\nYkW/ozLBKOjgqZUU8Ngxx+it2t9+CxNmHAtJSbBli3bAF9+xZRNmv/wC556rSf2BB2DmTEvqxYkl\n9hC4+mpo3Vr7Mvec0goefRSmTbP5ZSYsPvkEWrSA9evhvff08ouz/+nFiv26Q8A5GDUKdu7U1jv3\n3gsXXgh33gnr1vkdnolRIjrt9tJL4fjjYelS6NzZ76iMHyyxh0jLllpdYORI2LwtHiZN0n6arl1h\n7Vq/wzMxZu9evelo0CC9xBYvhiZN/I7K+MUSewg98YS2ou67D6hZE6ZM0SVrTjvt6HpkxgRp/Xpt\nSMyYoTcgvfkmJCT4HVUMWrRIbzjs1k2nvkXwspiW2EOobl3o3x/eeAO+/hq45BKtJdOxIwweDK1a\nwcqVfodpotgHH+gNzjt3wkcfwcCB2hVoPLZxo34UEoG5c7WGyAknaPfqkiURNzHCEnuIDR6s/Z39\n+wd+99Wra9Nq+nS9FTAxUddNPXTI71BNFMnI0BviOnfWu0iXLYO2eRb/MEWWmgqXX64nff58LY/5\n3ns6bjZunDbQGjeGRx6BDRv8jlaJSNgfLVq0kOLkv/8VAZG33sr2wq5dIjfeqC82bSqyeLEv8Zno\n8ttvIh066GXTs6fI/v1+RxTD0tL0ZJcoIfLJJ39//Y8/RF59VeTCC0Wc019Kq1YiL74okpLieThA\nshQgx1piD4MjR0ROOUXkxBNFDh7MYYNZs0Rq1RKJixPp319k376wx2iiw6pVIg0aiJQsKTJ6tEhG\nht8Rxbh77tE0+fLL+W/7yy8iw4eLNGum7ylRQqRTJ5GpUz3762uJPcJ8+KGe7ZEjc9ngzz9F+vTR\njRo0EJk/P5zhmSiwdKlI2bIiNWqIfPGF39EUwbZtmvhSU/2OpGDGj9f/j3fcUfj3rlwpMnCgyAkn\n6D4SEvTj1ccf66eAIrLEHoHatxcpV07k7bfz2Gj+fE3sIHLbbZrwjRGRtm1FqlXT/Bh1Vq8WqV1b\nr+u2bXP56BpBPvtMPxa1basfuYsqLU27cP71L03uIDJtWpF3Z4k9Am3dKnL22XrWhw7N4w/3vn36\nETAuTrtoZs0Ka5wm8nz5pV43I0b4HUkRfPqpSIUKItWrizz4oP4g114rkp7ud2Q5++knkSpVRBo3\n1gENr+zfr90yQXS1WmKPUAcOiPTqpWf+ssvyuW4WL9ZBVRDp3l0HW4OQkaHHN9HnsstEKlcW2bPH\n70gKadIkbfk2bSqyaZM+99RTR7s4Im2QIDVV+8iPO05k7Vq/o/mbgib2fFdQMt465hh45RU46yy4\n6y79+u670KxZDhu3bAnLl8OwYXq309y5Whe4fHldyOPQIf2a/fsc/p266xA/rDrM+n0nUP/dZ2nd\nwSpNRovkZJgzBx5/XH/1UUFEA77/frjgAnjnnaPVTQcM0DX6Ro3S6b+RsvhqerquQrJmjZ7wxo39\njqjoCpL9vX4U5xZ7Vl98oZ9Oy5YtQLfbihUiZ56pLZ3cHqVKiZQvr027GjVE6taV9AaNZFvlZpLM\nmbI0vpUcoqR865rLomnR2FFbPHXpIlKxYhQNtxw5InLLLXpN3nBDzv3p6en6KRRExo4Nf4w5ufde\njeeFF/yOJFdYV0x02LZNpHVr/U0MGpTPgHlamsiGDfqRdts2kd279bP5oUN/+0ibkaF/LDIH5Xv3\n1mm1v02bK/viyslP1JMF49aF9oczQVuxQn9/Dz/sdyQFlJqqswQyB5Ly6mo5fFj7mOLi8plREAYT\nJ2rMffpEXvdQFpbYo8ihQyK3366/jUsuCborXdau1f2AyBlniHz11V9f/33uUvktvrLs4HiZP2p5\ncAczIXX11TqZwssxvJDZulUvuPj4grfC9+4VadlSpHRpkYULQxtfbr78Uj/tXnih/rGJYJbYo9Ar\nr+j1Va+eyDffFP79+/ZpI6lUKZFjjxV5/vncZ2r9uWSNbCtVR/4kQT59cH5QcZvQ+O47vZlx6FC/\nIymA1atF6tTRrsDZswv33l27RE46SWfOrFwZmvhy8/PPIscfr1OMg21RhYEl9ii1ZIlIzZoiZcqI\nvPFGwd/3/vv6ByGzW3P79vzfs2fNZtlYtqkcpJTMv3NG0YM2IXH99XrfQwjuTPdW1umMy4v4CfDn\nn3Vqb/XqIhs3ehtfbvbsETntNG0Fff99eI4ZJEvsUWzHDpHzztPfTr9+ed8f8dNPIp07y//KzRT2\nhtW9v+yW1RXOkTTiZOGNETKIZWTtWu16HjjQ70jy8cYbf5/OWFSrV+soccOGIjt3ehNfbtLTRa64\nQk/ynDmhPZaHLLFHucOHRe66S39DF1zw9+v84EGRYcO0ZV+2rN6pfehQ0Y61P2WvLK16mQjIl52G\nRfTgUXHRo4f+bnfs8DuSXGRk6AWYeYH+/rs3+/3iC/3BW7QIbemBoUM19meeCd0xQsASe4x4/XWR\nY47Ru7G//lqfmzdPb4oDka5d9VNssA7uOSzza+n0s+Rz747cuwKLgR9/1PHHfv38jiQXBZnOGIyZ\nM/UEhKr0wOTJ8r+pYlHWiLHEHkOWLdNxqdKlRdq1k//VCfP6E+Thg+kys1E/EZBvT72+6B8BTFBu\nuUV/11u3+h1JDlJTdYpiQaYzBuO11yQkpQcWL9aTe/75UXl9W2KPMSkpIhdfrNfkww+HrjTAkcMZ\nMu2MJ0RA1p7YXjL27A3NgUyOfv5Zu6z79vU7khxs31746YzBGD5cPCk9cOCAyKJFIk88oVXU6teP\nghHpnFlij0Hp6eG5+zA9XeS1c8dJGnGyqUZLyUiJ/GlgsaJvX03sXnSveeqnn/RjYrlyhZ/OWFQZ\nGbo+AYg89ljB35eSIvLeezry3Lq1zv/NvDu7eXMdpI1SBU3sVismisTFwbHHhuc4Ny7szauXV+HG\n2dexo/E/qPbNR8TVrR36gxdj27bBq69Cz55Qp47f0WSxZo2u17tvH3z8sS4FFw7OwYgR8OuvWnPm\n+OPhllv+uo2Irkf6+ef6+OILjRegZEktxtSvH7RpA61bQ5Uq4YndZ5bYTY7i4qD3zCsY0+0jrp/W\nmd9PacNxS+YSf8pJfocWs0aMgLQ0XSc3YixbBu3aaZJctAiaNw/v8ePiYPx42LUL+vTRQmL16/81\nke/YodtWrKjJ+6ab4NxzdT3hY44Jb7wRwmnrPrwSExMlOTk57Mc1hScCL9+2gq7j2lOudBplPp1N\nidZn+x1WzNm5E+rVg2uvhdde8zuagEWLoFMnqFRJW+oNG/oXy759cPHFsGTJ0efq19cE3qaNfj35\nZP1DEMOcc8tEJDG/7azFbvLkHPQdezqjE76g3ahLqXF+W+J/WoOrVdPv0GLKyJFaYfm++/yOJGDW\nLLj6ak2e8+ZBTZ9/3+XKaUzjx0PduprM/Y4pgsX2nzfjmb4jGzDzrnnEpx1i120RUj87RuzaBaNH\nw3XXRUgJ8ClT4Ior4JRTtNUeKQm0cmUYOBCuuSZyYopQlthNgfV67EReKNmfqrMn6uoPxhPPPgv7\n90fIehP//a8uNtG6NXz6abEZbIw1niR259w9zjlxztlVEMMSEmDTdUPY6aqRdmc/7YA3Qfn9d3j+\nebjqKmja1Odghg/XAcoOHeDDD8MzBcuERNCJ3TlXG7gU+CX4cEyk6973WO6TYZRY/AVMn+53OFHv\n+edhzx6dzecbERgyRKfjdOumy9iVKeNjQCZYXrTYnwEGAdZ8KwZatoSvm/ZkbdnTYdAgOHDA75Ci\nVmqqdsN06QKnneZTEBkZ0LcvPPmkttYnTdKpjSaqBZXYnXNdgK0isrIA297qnEt2ziWnpKQEc1jj\nI+eg1y3x3Lb/Gfj5Z3jmGb9DilovvQR//AEPPOBTAEeOQPfuMGaMttZHj4b4eJ+CMV7Kdx67c+5j\noHoOLw0F7gMuFZE/nXObgEQR2ZXfQW0ee3TbtUsnJSytfRWn7fgI1q+HGjX8Diuq7N2r89bPPhtm\nz/YhgAMH4J//1CmETz4J997rQxCmsAo6jz3fFruItBWRZtkfwEagPrAykNRrAcudczn9ETAxpEoV\nuPJK6LXrKeTIkQiZzhFdxoyB3bt9aq2npkL79voXZcwYS+oxqMhdMSLyrYgcLyL1RKQesAU4U0R2\neBadiVi9e8PyPxvwQ7t+eqvksmV+hxQ1DhyAp5+Gtm3hnHPCfPBdu+Cii+DLL2HyZLjttjAHYMLB\n7jw1RXLRRdqVcG/qUN6v+hr85z+wcKF2wps8jRunJQTefLOQb5w2TZv46ek6wJn5KFUq739nfe7j\nj3Vs5N13oWPHkPx8xn+eJfZAq90UE3FxcPPN8MADx5Iy7DGqDr0VZszQ29BNrg4e1Oni552njwIb\nNQruuQfOOEMnvB85ojUIjhz562Pfvr/+O/s2CQk6R/3880P2Mxr/WYvdFFnPnvDQQ/D83l7836kv\n6u3enToV24p6BTFhgpbnnTixgG/IyNBppSNH6l1Mb7xh59fky0oKmCKrVQsuuwzGT4wnfeSzsGmT\nTsw2OTp8WCegnHOOFios0BtuvFGT+r//rV0xltRNAVhiN0Hp3VtboHMOXqiFo4YNO1of2/zF+PHw\nyy/aTZ7vUERqqvaBJyXB44/DCy/YHHNTYJbYTVA6doRq1eCVV9CVIg4d8vn++Mj055/w4IPar96+\nfT4b79iK5Y1xAAANXUlEQVShfeDz5+uMoyFDbFDaFIoldhOUkiW1r33mTNheriHcfbc2Tb/5xu/Q\nIsqwYTrTcNSofHL0unVaWXHdOvjgA+jRI2wxmthhid0E7eabdQbexIloa71KFZ3+aNUfAV2S87nn\ndMW2Fi3y2HDJEl1AYu9eWLBABzCMKQJL7CZojRppz8Err4AcWwEefVTntL/zjt+hRYRBg6BECe0q\nz9WsWXpzwLHH6s1DZ50VtvhM7LHEbjzRuzf8+KPmc3r3hmbNYMAA7XMvxhYt0un9994LJ5yQy0YT\nJmiJx5NO0qTu59qiJiZYYjeeuOoqqFAhMIhaooR2Jv/0k/ZBFFMZGdC/v04LHTAghw1EtPO9Vy+d\n/7hggY5EGxMkS+zGE2XKaAXYt97SVYG45BK4/HJ47DG9f74YmjRJS+g8+SSULZvtxfR0uOMOHZPo\n3l0HShMSfInTxB5L7MYzvXtrz8vkyYEnnn5aK175VnDcP/v2wX33aVnebt2yvXjggC7IPHq0dsBP\nnKi1XIzxiCV245nTT9dZH+PGBSbENG4Md96p/TMrVvgdXlg99ZTeuPXMM1pX539+/x0uvVQHlp97\nTgvHxNl/Q+Mtu6KMp3r3hlWrslTxfeABqFSpWE1/3LJF79W69lqdkv4/mzbBP/4BS5fC1Klw111+\nhWhinCV246lu3bS//ZVXAk9UrKjTHxcsgPfe8zO0sBkyRAdOhw/P8uQ77+hHmi1btLriNdf4Fp+J\nfZbYjacqVNCclZSk/cwA3Hqrlpr1Y/rjkSOwerW2kO+/Xz85bNkSssMtXaoFGPv3h7p10Z/3rrug\na1ftmlq+HC68MGTHNwYKsOZpKNiap7Ht88+1x2HCBC03AMDcudCunfZR5Dj3L0gZGdrVsXo1fPut\nfl29Gtau1eQOZMTFIy6OuLLH4IYNg759PS2sJaI/94YNugxswq8/an/MsmXQr5824W2Q1AShoGue\nWmI3nhOBk0/WygKff57lhU6ddJ3NSpUK/zjuOJ0fL6JFsjITd2Yi/+472L//6LHq1eNAg2Z8F9ec\nudub8daaZnyX3oSabGVqpb6c/dtHenfn2LHaReKBN9/UPD5uHPSuMF0HHOLitJBXly6eHMMUb5bY\nja+eflrX3fj+e03yAPz6K7z8sn797be/P/78M+8B1mOP1UT5xx9Hn6tWTe9ybdYMOaUZG8o0Z8aa\npkz/MIHly3WTJk20onCXLtqa7vUvYWDtqTy2tx9xv+/W7pmHH4Zy5Yr88x48qD9n1YSDLG7Tn7gx\nL0OrVtoFVLdukfdrTFaW2I2vfv0VatbUYo9PP13AN6Wna3LPKelnPg4f1gwaSOZHjqvKZ5/puOz7\n72tvjHO6mEWXLvpo0uSvh5k9W1fwa3bCb3xy9mASpozT5Pvyy0UuvPXkkzB+yDqWNbiGhB9XanfT\n449r+UtjPFLQxI6IhP3RokULMbHvqqtEqlQROXTI2/2mpopMny7SvbtIxYoiIFK6tEinTiLjxons\n2JH/Pj7/XOS440Rq1hTZOHGRyMkn646uvVZk+/ZCxbN9u0ivYybL/vjyIpUri8ycWcSfzJi8AclS\ngBxrid2EzJw5eoVNn+7N/ubNE+nQQaRUKd1vpUoiN90k8vbbInv3Fn5/q1aJ1KihfxwWLzwo8uij\n+heiQgWRMWNE0tPz38m+fbKwSW8RkP1nthHZvLnwgRhTQJbYje/S0kRq1xZp1y64/Xz/vUjHjnq1\n1qol8p//iCxYIHLkSPAx/vijSIMGImXLinz4oYisXSty4YV6sNatRVavzjOw/Q2biYDMPWuINwEZ\nk4eCJnabx25CJj5eCxfOnQs//1z49+/apRUJmjeHzz7T2YLr12vhyPPP10kywTrxRJ2506iR1iyb\n9k1j+OQTncmydq3OmBk6VOu7ZDVxIpKYyMGfd3J1+Q9J/OhxbwIyxgsFyf5eP6zFXnxs2iTinMhD\nDxX8PYcOiYwcqX3gcXEit98usnNnyEIUEZE//hA57zyN9aWXAk+mpIj06KGt94YNRT7+WPt8As+l\nNDtfarBVXnghtLEZkwnrijGRol077ZJJS8t7u4wM7S9v0ECvzHbt8u4J8dr+/SKXX67HfuQRjUdE\nRD75RBM7iFSrJuKcpN33gJzU8IicdJLI4cPhi9EUbwVN7NYVY0Kud2/YvBnmzct9m8w77bt2hdKl\nYc4cLalyyinhi7NMGXj7bV0/+qGHdKpmRga6ZN2332pJgqpVYe5cXqj6KD9sKMHIkTaj0UQem8du\nQu7wYZ3Tfv75uhBHVtu2ad3y11+HypW1Xtgtt/jbXZ2RoWXSR46E66/X0ghZKwHs3q2r1519tv7x\ncc6/WE3xUtB57DbaY0KuVCltBT/3nN64dPzxWiBs5EgdEE1L0/t5hg7VImJ+i4vTkjZVq8LgwXpf\n1FtvHb0x9ZFHIDVV47ekbiKRdcWYsLj5Zk3gr72mrfMmTbS7o0MHWLNGF6aIhKSeyTldgHrsWJ3V\nc8klmuB/+EEXPrr1Vr351ZhIZC12ExYnnwxt2mgLWAQSE7WMyrnn+h1Z3m65RbuIunXTrqSqVbXl\n/uijfkdmTO6sxW7CZsgQnZM+aRIsWRL5ST1T1646mLtpE8yff3QM1ZhIZS12EzYdO+ojGl10ESxc\nCNOn24p2JvIFndidc3cC/wbSgVkiMijoqIyJQGeeqQ9jIl1Qid05dyHQBThNRA455473JixjjDFF\nFWwf++3AkyJyCEBEfg0+JGOMMcEINrE3Bv7hnFvinFvonDvLi6CMMcYUXb5dMc65j4HqObw0NPD+\nSkAr4CzgTefciZLD7azOuVuBWwHq1KkTTMzGGGPykG9iF5G2ub3mnLsdeDuQyJc65zKAKkBKDvsZ\nC4wFLSlQ5IiNMcbkKdiumHeBCwGcc42BUsCuYIMyxhhTdMFOdxwPjHfOrQYOAz1y6oYxxhgTPkEl\ndhE5DHT3KBZjjDEe8KVsr3MuBSjCYmmA9uFHcnePxRcciy84Fl/wIjnGuiKSb0ELXxJ7MJxzyQWp\nR+wXiy84Fl9wLL7gRUOM+bEiYMYYE2MssRtjTIyJxsQ+1u8A8mHxBcfiC47FF7xoiDFPUdfHbowx\nJm/R2GI3xhiTB0vsxhgTYyI2sTvn2jvn1jrnNjjnBufwunPOPR94fZVzLmxLIDjnajvn5jvnvnfO\nfeecuzuHbS5wzv3pnFsReDwYrvgCx9/knPs2cOzkHF738/w1yXJeVjjnUp1z/bJtE9bz55wb75z7\nNXAXdeZzlZxz85xz6wNfK+by3jyv1RDGN8I590Pg9/eOc+64XN6b57UQwvgeds5tzfI77JDLe/06\nf9OyxLbJObcil/eG/Px5TkQi7gHEAz8CJ6L1Z1YCTbNt0wGYAzi0uuSSMMZXAzgz8H0CsC6H+C4A\nZvp4DjcBVfJ43bfzl8Pvegd644Vv5w84DzgTWJ3luaeAwYHvBwPDc4k/z2s1hPFdCpQIfD88p/gK\nci2EML6HgQEF+P37cv6yvT4SeNCv8+f1I1Jb7GcDG0Rko2jZgqnoSk1ZdQFeF7UYOM45VyMcwYnI\ndhFZHvh+D7AGqBmOY3vIt/OXzcXAjyJS1DuRPSEii4Dfsj3dBZgY+H4icEUOby3ItRqS+ERkroik\nBf65GKjl9XELKpfzVxC+nb9MzjkHXANM8fq4fonUxF4T2Jzl31v4e+IsyDYh55yrB5wBLMnh5daB\nj8lznHOnhDUwEOBj59yyQC387CLi/AHXkft/KD/PH0A1Edke+H4HUC2HbSLlPPZCP4HlJL9rIZTu\nDPwOx+fSlRUJ5+8fwE4RWZ/L636evyKJ1MQeFZxz5YEZQD8RSc328nKgjoicCryAljgOp3NF5HTg\nMuDfzrnzwnz8fDnnSgGdgek5vOz3+fsL0c/kETk32Dk3FEgDJueyiV/XwstoF8vpwHa0uyMSdSPv\n1nrE/1/KLlIT+1agdpZ/1wo8V9htQsY5VxJN6pNF5O3sr4tIqojsDXw/GyjpnKsSrvhEZGvg66/A\nO+hH3qx8PX8BlwHLRWRn9hf8Pn8BOzO7pwJfc1rT1+/rsCfQCbgh8MfnbwpwLYSEiOwUkXQRyQDG\n5XJcv89fCaArMC23bfw6f8GI1MT+NdDIOVc/0Kq7Dng/2zbvAzcFZne0Av7M8rE5pAJ9cq8Ca0Rk\nVC7bVA9sh3PubPRc7w5TfOWccwmZ36ODbKuzbebb+csi15aSn+cvi/eBHoHvewDv5bBNQa7VkHDO\ntQcGAZ1FZH8u2xTkWghVfFnHbK7M5bi+nb+AtsAPIrIlpxf9PH9B8Xv0NrcHOmtjHTpiPjTwXB+g\nT+B7B7wUeP1bIDGMsZ2LfixfBawIPDpki+8O4Dt0lH8x0DqM8Z0YOO7KQAwRdf4Cxy+HJuoKWZ7z\n7fyhf2C2A0fQft6bgcrAJ8B64GOgUmDbE4DZeV2rYYpvA9o/nXkNjskeX27XQpjimxS4tlahybpG\nJJ2/wPOvZV5zWbYN+/nz+mElBYwxJsZEaleMMcaYIrLEbowxMcYSuzHGxBhL7MYYE2MssRtjTIyx\nxG6MMTHGErsxxsSY/wdpwrpD2Ph8AAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(SiGlobalTot[sdir1]-SiGlobalTot[sdir1][0],'b-')\n", "plt.plot(NGlobalTot[sdir1]-NGlobalTot[sdir1][0],'r-')\n", "#plt.ylim((-5e9,0))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pickle\n", "pickle.dump(SiGlobalTot[sdir1],open(sdir1+'SiGlobalTot_'+tit+'.pkl','wb'))\n", "pickle.dump(NGlobalTot[sdir1],open(sdir1+'NGlobalTot_'+tit+'.pkl','wb'))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'spring16spun_Z7'" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tit" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:python36]", "language": "python", "name": "conda-env-python36-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }