{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import os\n", "from salishsea_tools import geo_tools\n", "from salishsea_tools import viz_tools, places\n", "import pandas as pd\n", "import netCDF4 as nc\n", "import datetime as dt\n", "import linecache\n", "import glob\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "llon=places.PLACES['S3']['lon lat'][0]-.01\n", "ulon=places.PLACES['S3']['lon lat'][0]+.01\n", "llat=places.PLACES['S3']['lon lat'][1]-.01\n", "ulat=places.PLACES['S3']['lon lat'][1]+.01" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (7,9) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" ] } ], "source": [ "#2012:\n", "dfs=list()\n", "df=pd.read_csv('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search3928586/BritishColumbiaFerries_Tsawwassen-DukePoint_Turbidity-ChlorophyllandFluorescence_20120509T231233Z_20130117T052029Z-clean.csv',\n", " skiprows=78,header=None,\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", "df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", "df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", "df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", "iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", "dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "#2013:\n", "df=pd.read_csv('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search3928586/BritishColumbiaFerries_Tsawwassen-DukePoint_Turbidity-ChlorophyllandFluorescence_20130117T052039Z_20131214T042429Z-clean.csv',\n", " skiprows=78,header=None,\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", "df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", "df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", "df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", "iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", "dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (1,3,5) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" ] } ], "source": [ "# 2014\n", "df=pd.read_csv('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search3928586/BritishColumbiaFerries_Tsawwassen-DukePoint_Turbidity-ChlorophyllandFluorescence_20131214T042439Z_20140804T234320Z-clean.csv',\n", " skiprows=78,header=None,\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", "df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", "df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", "df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", "iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", "dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (3) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" ] } ], "source": [ "#2015\n", "df=pd.read_csv('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search3928586/BritishColumbiaFerries_Tsawwassen-DukePoint_Turbidity-ChlorophyllandFluorescence_20140804T234330Z_20150604T070614Z-clean.csv',\n", " skiprows=78,header=None,\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", "df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", "df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", "df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", "iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", "dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))\n", "\n", "df=pd.read_csv('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search3928586/BritishColumbiaFerries_Tsawwassen-DukePoint_Turbidity-ChlorophyllandFluorescence_20150604T070624Z_20160307T160206Z-clean.csv',\n", " skiprows=78,header=None,\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", "df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", "df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", "df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", "iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", "dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "#2016\n", "df=pd.read_csv('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search3928586/BritishColumbiaFerries_Tsawwassen-DukePoint_Turbidity-ChlorophyllandFluorescence_20150604T070624Z_20160307T160206Z-clean.csv',\n", " skiprows=78,header=None,\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", "df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", "df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", "df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", "iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", "dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))\n", "\n", "df=pd.read_csv('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search3928586/BritishColumbiaFerries_Tsawwassen-DukePoint_Turbidity-ChlorophyllandFluorescence_20160307T160215Z_20161019T064047Z-clean.csv',\n", " skiprows=78,header=None,\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", "df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", "df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", "df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", "iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", "dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))\n", "\n", "df=pd.read_csv('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search3928586/BritishColumbiaFerries_Tsawwassen-DukePoint_Turbidity-ChlorophyllandFluorescence_20161019T064056Z_20161115T220747Z-clean.csv',\n", " skiprows=78,header=None,\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", "df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", "df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", "df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", "iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", "dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (1) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n", "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (3,5,7,9) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n", "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (1,3,5,7,9) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" ] } ], "source": [ "#2017\n", "flist=glob.glob('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search4979680/*Tsawwassen-DukePoint_Turbidity*')\n", "for ii in range(0,len(flist)):\n", " df=pd.read_csv(flist[ii],\n", " skiprows=67,header=None,usecols=[0,1,2,3,4,5,6,7,8,9,10],\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", " df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", " df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", " df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", " iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", " dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (5) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" ] } ], "source": [ "#2017-2018\n", "flist=glob.glob('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search7672208/*Tsawwassen-DukePoint_Turbidity*')\n", "for ii in range(0,len(flist)):\n", " df=pd.read_csv(flist[ii],\n", " skiprows=59,header=None,usecols=[0,1,2,3,4,5,6,7,8,9,10],\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", " df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", " df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", " df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", " iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", " dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (1,3,7,9) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n", "/home/eolson/anaconda3/envs/py38/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3050: DtypeWarning: Columns (3,7,9) have mixed types. Specify dtype option on import or set low_memory=False.\n", " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" ] } ], "source": [ "#2018-\n", "flist=glob.glob('/ocean/eolson/MEOPAR/obs/ONC/turbidity/nearSurface/search13411521/*Tsawwassen-DukePoint_Turbidity*')\n", "for ii in range(0,len(flist)):\n", " df=pd.read_csv(flist[ii],\n", " skiprows=61,header=None,usecols=[0,1,2,3,4,5,6,7,8,9,10],\n", " names=('TimeUTC','CDOM','CDOMQC','Chlorophyll_ug','ChlQC','Turbidity_NTU','TurbQC','Lat','LatQC','Lon','LongQC'))\n", " df['Lat']=pd.to_numeric(df['Lat'],errors='coerce')\n", " df['Lon']=pd.to_numeric(df['Lon'],errors='coerce')\n", " df['Chlorophyll_ug']=pd.to_numeric(df['Chlorophyll_ug'],errors='coerce')\n", " iidfnd=(df.Lon>llon)&(df.Lon<ulon)&(df.Lat>llat)&(df.Lat<ulat)&(df.Chlorophyll_ug>=0)\n", " dfs.append(df.loc[iidfnd].reset_index().copy(deep=True))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "df0=pd.concat(dfs,ignore_index=True)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "dts=[dt.datetime(int(r[0:4]),int(r[5:7]),int(r[8:10]),int(r[11:13]),int(r[14:16]),int(r[17:19])) for r in df0['TimeUTC']]\n", "df0=df0.assign(dts=dts)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "df0['Year']=[int(ii.year) for ii in df0['dts']]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "df0['YearDay']=[int((ii-dt.datetime(ii.year-1,12,31)).total_seconds()/(24*3600)) for ii in df0['dts']]" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "df0['rd']=[int((ii-dt.datetime(2000,1,1)).total_seconds()/(24*3600)) for ii in df0['dts']]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "dfM=df0.groupby(['rd']).mean().reset_index()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Year</th>\n", " <th>YearDay</th>\n", " <th>Chlorophyll_ug</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2012.0</td>\n", " <td>131.0</td>\n", " <td>5.747836</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2012.0</td>\n", " <td>132.0</td>\n", " <td>5.919421</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2012.0</td>\n", " <td>133.0</td>\n", " <td>3.728985</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2012.0</td>\n", " <td>134.0</td>\n", " <td>1.100204</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2012.0</td>\n", " <td>135.0</td>\n", " <td>0.806439</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Year YearDay Chlorophyll_ug\n", "0 2012.0 131.0 5.747836\n", "1 2012.0 132.0 5.919421\n", "2 2012.0 133.0 3.728985\n", "3 2012.0 134.0 1.100204\n", "4 2012.0 135.0 0.806439" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dfM.loc[:,['Year','YearDay','Chlorophyll_ug']].head()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "df3=dfM.pivot_table(index='YearDay',columns='Year',values='Chlorophyll_ug')" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "df4=df3.reset_index().copy(deep=True)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['YearDay', 2012.0, 2013.0, 2014.0, 2015.0, 2016.0,\n", " 2017.0, 2018.0, 2019.0, 2020.0],\n", " dtype='object', name='Year')" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df4.keys()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAGrCAYAAADJtv/+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3xc1Znw8d8zXRr1alnFstx7wWA6ppdACIEQSCNZsqRANnlDCsm7Wcgm2ZBskt1kSSAk8IYAIUDASwmh24DBTe6WLdmyLVnN6n2kqef9Y0ZCtiVLtqVRe76fz3xm5tYzj45mnnvuueeKMQallFJKKaUmA8toF0AppZRSSqlo0eRXKaWUUkpNGpr8KqWUUkqpSUOTX6WUUkopNWlo8quUUkoppSYNTX6VUkoppdSkocmvUkoppZSaNDT5VUqpKBARp4g8IiLlItIuIttE5Oo+8y8VkWIR8YjIGhGZ1mfexZFprSJSdsx2M0TkKRGpjsx/X0RWRvGjKaXUuKLJr1JKRYcNqAAuAhKBHwDPiEi+iKQBz0empQCFwNN91u0EHgW+3c9244DNwBmRdR8D/i4icSP0OZRSalwTvcObUkqNDhHZCfwQSAU+b4w5NzLdDTQAy4wxxX2Wvwz4ozEmf5DttgEXG2O2jFTZlVJqvNKWX6WUGgUikgnMBoqABcCOnnnGmE7gQGT6yW53KeAASoenpEopNbFo8quUUlEmInbgSeCxSMtuHNB6zGKtQPxJbjcBeBz4oTHm2O0ppZRCk1+llIoqEbEQTlB9wF2RyR1AwjGLJgDtJ7HdGOAlYIMx5qfDUFSllJqQNPlVSqkoEREBHgEygRuNMf7IrCJgSZ/l3MCMyPShbNcJ/C9QBXxpOMuslFITjSa/SikVPQ8C84DrjDFdfaavBhaKyI0i4gL+DdjZc7GbiFgi0+3ht+ISEUdknh34G9AFfM4YE4ri51FKqXFHR3tQSqkoiIzbWwZ4gUCfWV8yxjwZGcnhAWAasJHw6A9lkXVXAWuO2eQ7xphVInIRsJZw8ts38b3aGPPe8H8SpZQa3zT5VUoppZRSk4Z2e1BKKaWUUpOGJr9KKaWUUmrS0ORXKaWUUkpNGpr8KqWUUkqpScMWzZ2lpaWZ/Pz8aO5SKaWUUmNYe3eAeFdU0xE1SWzZsqXBGJN+7PSo1rb8/HwKCwujuUullFJKjVFPbz7Md5/bxS9uXcZ1S6aOdnHUBCMi5f1N124PSimllIq6vTVt/NsLRZw/M41rFmWNdnHUJKLnGZRSSikVNa/uPsK7++t5e28diTF2/vuWpVgtMtrFUpPIoMmviDwKXAvUGWMWRqalAE8D+YTvWHSzMaZ55IqplFJKqfGsyxfk317YzbNbKklw2ZiXlcA9V88lLc452kVTk8xQuj38CbjqmGn3AG8ZY2YBb0XeK6WUUkr16/urd/Hslkr+5ZKZbPu3K3j6S+ewLC95tIulJqFBk19jzLtA0zGTrwcei7x+DPjYMJdLKaWUUhNEIBjizb213Lwih29eMUe7OahRdaoXvGUaY2oAIs8ZAy0oIneISKGIFNbX15/i7pRSSik1Xu2ubqO9O8D5s44bdUqpqBvx0R6MMQ8bY1YYY1akp2ulV0oppSabDw40AHBOQeool0SpU09+a0UkCyDyXDd8RVJKKaXURPJBaSNzMuNJj9eL29ToO9Xk90Xgtsjr24AXhqc4SimllJpIvIEgm8uaOHemtvqqsWHQ5FdEngLWA3NEpFJEbgfuBy4Xkf3A5ZH3SimllFJH2VregjcQ4rwZaaNdFKWAIYzza4y5dYBZlw5zWZRSSik1wby7vx6LwFkFKaNdFKUAvb2xUmqSKTnSjjcQHO1iKDUpBEOG/91WxYWz00lw2Ue7OEoBmvwqpQZR19bNj17ew60Pb+CK/3qH6pau0S7SKWvq9PHpP27gO3/bOdpFUWpSeHd/PTWt3XxyRe5oF0WpXpr8KqVOSER4cmM5Hn+QA/Wd/Hl9+WgX6aQUH2njT+8fotsfvrVqa5efL180Y8jrB4IhfvFaCZXNnhEspVIT0zObK0h1O7h0XuZoF0WpXoP2+VVKTW7p8U6KfngVVovwpccLeXrzYb5x2SxcdutoF21IfvL3vby3v4Hfv3uQmtZu7r58NvOyEoa8fmF5Mw+sKcUfDPG9a+aNYEmVmlgaOry8ubeW287Jx2HTtjY1dmhtVEoNqudWpJ87J59mj5+Xd9aMcomGpr7dy/ulDVw2LxOrRViWl8SXVw291RfgnX31Rz0rpcKMMbyxp5bV2yoxxhw1b0dFC5/8/XqCIcMtZ2mXBzW2aMuvUmrIzp2Ryox0N4+vL+OmM3JGuziDemVXDSED37lqDjPS4wgZg906tGN+YwwiwruRpLf4SDs1rV1kJcaMZJEnpbZuv14MNY60d/spqm7jkXWHeGNPLQB/31nD7ecX4AuGeKawgn/sqiEzwcWf/2klMzPiR7nESh1Nk1+l1JCJCJ9eOY1/f3kP+2rbmZ05tn/UXtxRzZzM+N5yWpFB1zHGcN+LRdisFr50UQFF1W1cv3QqL2yv5t199XzyzLyRLvak8uaeWu54vJD/vGkJN46DA6rJzBjDb9eU8l9v7icYMjhtFr539VxsVgs/+0cxb+4N3+w13mnjny8s4KurZpIYowc1auzR5FcpdVKuWzKVH/99Dy9ur+ZbV84Z7eL08gVC/Peb+7hywRSW5CZR2exhS3kz3z7JMooIBnhk3SFaPH4A/vmCAjYebOKdffWcOyONbRUtXLc4C5HBk2l1Yg+9c4CQge+v3sXszHjcTiseX5C5U+KxDdBK/+KOah5ddwi7VchMcLE8L5mc5BhsVmFRdlK/t9ANBEPUtXupae2iuqW797nZ4+P8mWl8ZHEWLlu4H7vFon/XY5XWtfObt0p5cUc1H1mcxU1n5LA0J4lktwOAKxdkUt4Yvih0cU4i8dqSr8YwTX6VUiclPd7JuTPSeHFHNXdfMXvEE8C3i2tZMDWRzATXcfN8gRAiYLda+NUb+3jonQM8vqGc39y6jF+/uR+rRbhu8dST3uf3rp7HutIGnttaSVqck/lZCayakx5p/W2gwxsgFDJ8bFn2SW/bHwyxemsVQWOYnRnPkpzEAZO8iW5HRQuF5c3cefEMVm+t4roH1vXOi3VYuWFZNj+4dv5RF1c+W1jBd57bycz0ONLinGwtbz6qD7rVIpw3M41Yu5W2bj9t3X6aOnzUtnsJho7ulxrntBHjsPLC9mq+89xOjAm3Wl63dCpXLpjCjHQ3Hd4A+2o7CIZCuB02VuSnkBJJ+CYybyDIpkNNvFNSz5qSOg7UdyICd18+m7sumXnc/31Ociw5ybGjVFqlTo4mv0qpk/bRpVP5zt92sqOylaW5SQMud7jRw/sHGrjlzNxTSpIffvcA//FKMWlxDn77qeWsLEglFDKUNXby0o4a/vTBIQBuOiOHP647xEcWZ7H9cAtf+H+bibFb+e2nlpOXevI/yDEOK//9yaV8/HcfcNHsdCwW4ZK5Gfx1cwVn5afgDYa476Uizp2ZSkb88Ul5dUsXa0vq6fQGEAknBgkuG/UdXh5ce4DiI+29y2Ylurh+aTZTk1wkxzqYnRlPZoITf9D0JmdjRbc/eEqjfPiDId7YU8tTmw5T09pNSqyDs6ansLemjTinjS9fNINrF0/lr5sOM39qAi67lfdLG3hy42G2V7Tw359cysyMOB5+9yD3v1rM+TPT+MPnVvSWpaa1i8YOH13+IG/treONPUewWoQEl53MeBdzMhPISnQxNSmGrCQXUxPDzwkuO8YYNpc1897+eqwW4XCjh+e3VvKXjYf7/SwWgRXTUrhsfgYXzc5gRrr7qIOXQDBEbbuX6pYuZmfGj6nT/sGQoaEjfBAQ77JhtQjBkCEUgu5AkMrmLoqqW3mnpJ4PDjTS5Q/isFlYOT2F287N58oFU/o9CFVqvJFjr9AcSStWrDCFhYVR259SamS0dvk588dv8skzc/n36xcMmNj+9JW9/P7dg6yak85PblhEdlIMxhgqmrrITHTitPWfSBljeKawgu8+t4vL5mVwsKGTg/WduB1WgsbQ7Q8BcOncDDy+IOsPNlKQ5ublfzmfujYvv3pjH/98QQGLchJP63PurGxhalIMaXFOjDFsr2hhcU4Shxo6ueY37zEzPY6zpqfQ6Q2wv64DA1gFtlW0MNBX65QEFz+8fgHzsxLYUdnCM4WVvLe/fsDlk2Pt4aQtMYbclBiyk2KId9lwO224HZFnp5U4p404Z/i902ah2x+irdtPqttx0i3Lf3zvILurWunwBkiIsZOZ4OKD0gZ2VLZyZn4y1yzKIsZuJWQgZAwJMXYK0tzkp7mJc37YptLW7ef1olp+89Z+Djd5yE6KYVF2Ig0dXrYebiZk4J/Om86/XTe/33K8tbeW//P0dtq9AeZOSWBvTRvXLJrCr25eOqJD7bV3+9ld1cahhk7cTitzpsTjtFlp6vTyzr4G3thTy96aNgCcNgspbgdd/iAeXxBfINS7nT//01lcODt9xMp5Ir5AiG2Hm9lV1dr7KG/0HNf63Z+8lFhWzUln1Zx0zi5IJdah7WQj4Z199eSnxpKbHNvb1cYYQ6cvSDBkcDusw3JWKBQy7K/roL7dS35aLGlxTqwWwSpy2l18/MEQ9e1eDBDnsJEQY0NECIVMVLoPGWPwBkJ0egN4fEHS4pzEOKy0d/t5aUcNnz572hZjzIpj1zut5FdErgJ+DViBPxpj7j/R8pr8KjVx3PWXrby8s4bspBiWT0smPc5Jenz4cXZBCjnJsYRChsc3lPPTf+yl2x9iepqb9u4ADR1espNiuOuSmWQnxeANhOj2B3sfL+6oZnNZM+fOSOX/feFMvIEQj68vp6nTB8CczHjOyE9mRnocxhg2HmoiNyWW7KTojcTw3JZKHnznALWt3TjtVmZlxGGzCh5fkHNnpPKxZdlkJrgIBg0VzR7auwMkxtgpSHcfl7h1+4N0eAPUt3vZV9tOY4cPu81CW5ef6pYualq7qWruoqLZg8c3+K2ZLQI9Oc5737mY3JSTa/3+2lPb2F7RjNtho7XLT01rNwumJnBOQSpvFddxqKFzwHXT4pw4bRa8gSANHeG/14KpCXz90llcGhlyDsKttW/treO6xVNJjB24dbSp08cj6w7yTGElnz83n6+umjEm+lpXNnvYdKiJvTVttHj8xDqsuBxWYu02MhKcTE2KYUlOIkmx0e0iUVrXwe/WlvLGnlrauwNA+OzCwuxE5mTGMyXRhc0itHX7CRl6EyCHzUJOUgwz0uNO6WyJOjkeX4AF976GMeCyW0iKcWC1CPXtXnzB8AFUUqydjy3N5uYVucyfGh6bPBgy7KluY29NG75gCKfNQnZyDCluBxYRLAL+oGHDwUbeL22krr2biiYPzZHrF45lswg3Ls/hO1fNYU9NG1vLW4hz2fAHQ+w70o43GCIz3kV3IEhtazdH2rpp6/YzJzOehBg7bxfX9V4bAeHPYgx4AyGyk2KYkRGHJdI1bXqam4xIf/wuX5DGTh/ljZ1UtXSxPC+ZKxdOIT3OictuJcZhxW4VMHC4ycPuqlZq2720doX31e0PsquylYMNnUcd0DmsFhZmJ7C3pp0uf5Dyn107vMmviFiBfcDlQCWwGbjVGLNnoHU0+VVq4vD4Ary8s4bXi46wv66DhnYvnZHE7IFPLePaPn1tDzd6eGV3DVvKm4l1WFmSk8TqbVXsqmrtd9vp8U7+5ZKZfPLMPB0cvw9jDG1dATp8ATq9PY9w4uzxBejwBmjvDtDlCxLrtJIYY+faxVNP+9R7IBjqbYEyxlDT2g3Q+2Pb7PFzqKGDgw2dHG704A8aHDYhL8XNouxEzpuZOiYS1omq1ePn/QMNvLmnlhd2VOOyWbhmURaXz89k+bRk0uKOvwBQja5AMMSuqlZKjrRTWtdBW7cff9CQEe8kNS6cyG6vaOH1olp8wRDzsxKwW4XSuo7e79nBFKS5yU2JZUqCixX5yWQnx1DW4KGly0coZAiG4EhbN88UVhAy5rizT1mJLlx2K7Vt3bjsVjITXExJcOJ22thb00ZDh4+L56Rz5vQUbBahvTtAbVs3IoLDaqG8yUN5YycCdPmDlDV6jjozEu+0kZMSS2aCk02HmgY9sLdZhMQYOyJgs1iYPzWBOVPiw2fCHOEuYvtr29lc1sy8rAQ+eWYuy/KShz35PQe4zxhzZeT99wCMMT8daB1NfpWa2Dq94VbdFLdj0Ku9e7oRBEIGl82Ky27BZbfitFtIjnUMeTxepSa7y3/1DvvrOoh32rjxjBy+dslMUjXhnRCaO328sL2Kl3fW4LJbmZHuZvm0ZJbmJhFjt9LlD1LR1EVbtx8T6YZkgMXZieSnuYe0jz3VbTy7pYIz81O4eE5GOEEVhr2/ejBk6PCGz0bE2K1HNWx0+YJsO9xMhzdAV+QMoC9oECAzwcXinEQy4p0nfRAtIsOe/N4EXGWM+WLk/WeBlcaYu45Z7g7gDoC8vLwzysvLT2l/SimllDremuI64l02luYmTdqRQ5Tqz0DJ7+n0Yu8v/T4ukzbGPAw8HClEu4iUnMY+1dClAQ2jXYhJROMdPRrr6NJ4R4/GOro03tEzWrGe1t/E00l+K4G+N+zOAaoHWaekvwxcDT8RKdRYR4/GO3o01tGl8Y4ejXV0abyjZ6zF+nTOj2wGZonIdBFxALcALw5PsZRSamIREaeIPCIi5ZGzYNtE5Oo+8y8VkWIR8YjIGhGZ1mfexZFprSJS1s+214hIvYi0icgOEbk+Sh9LKaXGnVNOfo0xAeAu4DVgL/CMMaZouAqmlFITjA2oAC4CEoEfAM+ISL6IpAHPR6alAIXA033W7QQeBb49wLa/DmQZYxIIX2PxhIhkjcinUEqpce60Rq42xrwCvHISqzx8OvtTJ0VjHV0a7+gZl7E2xnQC9/WZ9LKIHALOAFKBImPMswAich/QICJzjTHFxphNwCYRuWyAbe/s+xawE+6WVtPf8idpXMZ7nNJYR5fGO3rGVKyjeoc3pZRSYSKSCZQDS4GvAA5jzFf6zN8N3GuMea7PtMsI31Aov5/tvQxcBjgJn5G7xhgTOnY5pZSa7PSehUopFWUiYgeeBB4zxhSLSBxQf8xirUD8ULdpjLk2st3LgLma+CqlVP90QECllIoiEbEAjwM+wtdNAHQACccsmgC0n8y2jTF+Y8w/gCtF5KOnW1allJqIopL8ishVIlIiIqUick809jnZiEiZiOwSke0iUhiZliIib4jI/shz8miXczwSkUdFpC5yGrpn2oCxFZHvRep6iYhcOTqlHr8GiPd9IlIVqd/bReSaPvPGTbwlfHuiR4BM4EZjjD8yqwhY0mc5NzAjMv1U2CLrD1ae3MhIEXtFpEhEvh6ZrvV7BJwg3hOifo8lIuISkU2R0U+KROSHkelat4fZCWI9duu1MWZEH4AVOAAUAA5gBzB/pPc72R5AGZB2zLSfA/dEXt8D/Gy0yzkeH8CFwHJg92CxBeZH6rgTmB6p+9bR/gzj6TFAvO8DvtXPsuMq3sBDwAYg7pjp6YS7OdwIuICfARv6zLdEpl9NuJ+wi3AfYYC5kekxhC90+wzhVuXlQyhPVs9yhLtY7IvEVOv3yPz9B4r3hKjfY+lB+EZccZHXdmAjcLbW7ajGeszW62i0/J4FlBpjDhpjfMBfAR2DMjquBx6LvH4M+NgolmXcMsa8CzQdM3mg2F4P/NUY4zXGHAJKCf8PqCEaIN4DGTfxjozb+yXCF7gdEZGOyOPTxph6wonvT4BmYCXhsdN7XAh0ER5dJy/y+vWeTRP+kakj3G/468AnjTFbByuTMaamZzljTDvhYSuz0fo9Ik4Q74FovE+RCeuIvLVHHgat28PuBLEeyKjHOhrJbzbhsS17VHLif3Z1agzwuohsEZE7ItMyjTE1EP7SBTJGrXQTz0Cx1fo+cu4SkZ2RbhE9pyrHTbyNMeXGGDHGuIwxcX0eT0bmv2mMmWuMiTHGrDLGlPVZd21k3b6PVZF5e40xK40x8caYJGPMmcaY1SdbPhHJB5YRbrXR+j3Cjok3jPP6PRaJiFVEthM+MHzDGKN1e4QMEGsYo/U6Gsmv9DNNx1cbfucZY5YTPv15p4hcONoFmqS0vo+MBwn3YV1KeOzaX0ama7yHQWS0ieeAbxhj2k60aD/TNN4nqZ94a/0eAcaYoDFmKZADnCUiC0+wuMb6NAwQ6zFbr6OR/FYSHmy9Rw5QHYX9TirGmOrIcx2wmvAphFqJ3OUp8lw3eiWccAaKrdb3EWCMqY18uYaAP/DhKTKN92mS8PBozwFPGmOej0zW+j1C+ou31u+RZYxpAdYCV6F1e0T1jfVYrtfRSH43A7NEZLqIOAj3Y3sxCvudNETELSLxPa+BK4DdhON8W2Sx24AXRqeEE9JAsX0RuEVEnCIyHZgFbBqF8k0ocvStem8gXL9B431a+ow+sdcY86s+s7R+j4CB4q31e/iJSLqIJEVexxAe/7oYrdvDbqBYj+V6PeI3uTDGBETkLsJ3HLICjxpjTnX4HtW/TGB1+HsVG/AXY8yrIrIZeEZEbgcOA58YxTKOWyLyFLAKSBORSuBe4H76ia0xpkhEngH2AAHgTmNMcFQKPk4NEO9VIrKU8KmxMsIXjmm8T995wGeBXZH+egDfR+v3SBko3rdq/R52WcBjImIl3ND3jDHmZRFZj9bt4TZQrB8fq/V60Nsbi8ijwLVAnTFmYWRaCvA0kE/4A91sjGkebGdpaWkmPz//9Eqs1Bhn6L9Dk1JKKaWiZ8uWLQ3GmPRjpw8l+b2Q8N2H/twn+f050GSMuV/CN61INsZ8d7BCrFixwhQWFp7SB1BqPDhY38FVv36Pv3xxJSvyUwZdvrCsiTOmJRNptVdKKaXUMBGRLcaYFcdOH7TP70mOcarUpPZ2cR2+QIj1BxoHXXZzWRM3PbSeNSV6HaJSSikVLad6wduQx48VkTtEpFBECuvr609xd0qNPff/o5ivPLHlqGnv7W8AoKj6RKNFhW0pD/cU2lU5+LJKKaWUGh4jPtqDMeZhY8wKY8yK9PTjul0oNW6tLanjrb3hll4AbyDIpkPhkyR7agZPaHdUtABQUqvJr1JKKRUtp5r86vixalILhgwHGzrxBUPsq20HYGt5C13+IEtzkzjc5KGt23/CbeysbAWg+Ej7UdMP1HfQ1OkbmYIrpZRSk9ypJr86fqya1CqbPb0tvj1J7PulDVgtwu3nTwdgzwm6PtS1d1PV0kVyrJ2yhk66/R+O8nLvC0V86g8bRrD0Siml1OQ1aPIbGXNzPTBHRCojY+PdD1wuIvuByyPvlZqwgqGjR0XZX9vR+3pXVbj7wnulDSzNTWJlQXiUhxMlvzsrwgnzDctyCJkPt+cLhNhS3szZBanDWn6llFJKhQ1ltIdbjTFZxhi7MSbHGPOIMabRGHOpMWZW5PnY0SCUmjDe2FPLovte4zdv7adnaMDS+nCyujQ3iR0VrVS3dLGrsoULZqWREe8iLc55wovedlS2YLUIN56RDcDeI+Fld1WFu06snD74MGnq9B2s7+B/t1XhD4ZGuyhKKaWiZMTv8KbUeLZufwN3PrkVl93Cr97YR2uXn3/9yDz213aQEe/kvJmp/P6dg/zhvYMA3HRGDgALpiZQVN064Ha3V7QwOzOeuVMScNktlET6/W44GD6OPEuT3xHV7Q/y2Uc2srksPOJGi8fH58+bPsqlUkopFQ0jPtqDUuNVXVs3dzxeSEG6m7XfvpjPnTONR9YdYv2BRkrrO5iVGcei7CQCIcNjH5Rx5YIp5CTHAuHkt7SuA2/gw768xhi+/ewOPv6799lc1sSSnESsFmF2ZjzFkZbfDQcbmZ0ZR2qcc1Q+82Sx/kAjm8uaufPiGSzPS+LBdw4c1e9aKaXUxKXJr5o0PL4Ag93RsK+MBBc/uWEhj9++khS3g+9fM4/EGDt/2XSYA3UdzEyPY3FOIgAhA1/o03K4KDuRQMiwu+rD1t/X99Ty7JZKvIEQucmxfGRxFgBzp8RTcqQdf1D7+0bL28V1xDqsfO2SWXzz8jnUtnl5dkvlaBdLKaVUFGjyqyaFUMhwx5+38H+e3n5S692wLIf0+HArrMtu5YZl2byyq4YOb4CZmfFkJbpIj3eyYGoCZ+Yn9653dkEqIrBuf/hOb75AiJ++speZGXG8cOd5vPHNi7hgVnjc67lTEmjo8PHDl4rw+IKsnK7J70gyxvB2cR3nzUzDZbdy3sxUlucl8dBabf1VSqnJQJNfNSk8+v4h1pU2cOZp9qW95axcegZ+mJkeh4jw+8+ewQOfWo6I9C6X7HawcGoi60rDdzV8cmM5ZY0e/u8187BZj/63u2lFDhfOTueJDYcBekeLUCNjX20HVS1dXDI3fGNKEeHuK+ZQ1dLFg2sPjHLplFJKjTRNftWEV3ykjZ+/WsJl8zL51Fl5p7WtuVMSWJqbBMCszDgAluclMz3Nfdyy589KY9vhFpo6ffxu7QHOKUhl1Zzj73KY4LLz2BfO5Oc3Lubuy2eTpv19R9RbxbUAXDznw7uynzczjeuXTuXBtQcoresYaFWllFITgCa/akILhQzffW4XCTE2fnbjoqNaZ0/Vt66Yw61n5ZLqdpxwuQtmphEIGb773E7q273cdcnMAfcvItx8Zi5fu3TWaZdPDcwYw+tFtSyYmsCURNdR8/71I/Nx2S1852876PJp9wellJqoNPlVE9rqbVXsqGjhe1fPG7YRFM6flcZPP7540ER6+bRknDZLeJzg7ETOnTEx+/LurmqlvLFzRLbd3OnjsQ/KKGsYnu3/4vUStle08InIkHR9pcc7+ckNi9he0cJtj26ifZDbUyullBqfNPlVE1anN8DPXi1mSW4SNyzLjvr+XXZr73i9X1k1Y1hanceaLeXNfPzBD/j0HzcO68Vixhh+8VoJ59z/Fve+WMQNv3ufrYebT7hOMGQoOdI+YDkeX1/Gb9cc4Nazcrnt3Px+l7luyVR+fcsyth5u5rZHN+HxBU7zkyillBpr9CYXasL6+avF1LV7eeizZ2CxjE7i+ZFndbwAACAASURBVOmV03A7bFy5YMqo7H8w3f4gj31Qxu3nTz/uQryBGGOobO6iuqWLO/+ylcQYO5XNXTz0zgG+cdnsE65b1dLFhgON7K1pwxsI4bJbuGLBFFZMS6a+w0tjh485mfHc/2oxD797kOuWTOXG5dnc+2IRtz68gQtmpbEsL5lleUmkup3sqGxhf207ZY0eNpc10eLxkxbn5Pbzp/PRpVPJTooBwuP63vfSHi6dm8GPrl94wgOR65ZMxW4VvvrkVr765Fb+8LkV2PuJTWldB0XVrVy/NPoHVkoppU6dnMy4p6drxYoVprCwMGr7U5PXq7uP8OUntnD7+dP5wbXzR7s4UeUNBFlTXM8lczNw2I5O2rr9QT73yCayk2P42iUzuee5XWwqa+KJ21dy/qy0QbddWtfB957f2XtntHiXjdVfPY9fv7Wf14uOcO91C4DwxYBpcU5Wb6uiuKaNJblJlDd28tzWKoIhg8tuIdZho8MbwBcIkRHvpK7dC0BijJ3WLj+fO2caP/zoAkSEhg4vv3y9hI2HmjhYf3QXCJfdQk5yLIuzEzlzegqv7Krhvf0NAMzJjOeiOek8t6WSxFg7L9x5HvEu+5Di+NSmw3zv+V2cOyOVn9+0uPcGJgCvFR3h7md2EOe0seZbq4hxWIe0TTU8vIEgB+o6SYixkRHvOq6eK6UUgIhsMcasOG66Jr+qhz8YYntFC3uq26hs9pAU62B5XjJLc5PGzY+7MYa1JfV8/a/byE9z87cvnzvpfhi/9/wuntp0mDsvnsG3r5x71LwH3t7PL17fh80iBEIGh9XCL29ewnVLpg64vX217TzwdinFR9o4WN+J22njrotnkp/mZmF2AlmJMdS0dnH1r9+jxXN0P1kRyEmOoaKpC4fNwqfOyuPWs/KYmRGH1SJ4fAFWb6vi/dIGFmUnkRbn4L39DaTHO/m/18zrt8W+xeNjW0ULzZ0+FuckUZDmPm650roO1hTXsaakjs1lTbhsVlbfeR4zM+JOKpbPbK7ghy8VAXDHhTP4yOIp/OHdQzxdWMGS3CQe+sxyshJjTmqb6tQFQ4aXdlTzi9dLqGzuAiDF7eD286dz27n5xDn1ZKZS6kOa/Kp+BUOGLeXN/HXTYV4rOkJn5Cp3p82CNxACwGYR5k9N4PvXzBuTdx+rae3im0/voLatm5AxlDV6yE2J4YnbVzIt9fghyCay1dsq+T9P7yAr0UVtWzerv3oeSyJDs1W1dHHpL9eyanYG37xiNr9bU8otZ+X1+zd9d189pXUdFB9p4/mtVcQ6rJw1PZXZmXF84bzpvTf+6Kut20+rx48I7K1pp7LZw2XzMslNiaWp04dFICn2xCNkjIT2bj/eQOiUh5CrbPbww5f28Mae8BBpdqvw+XPzufuKObjs4+OgcCwLhgzrDzRSkO5maqSbSnOnjx+8sBuHzcI9V4cP4J7eVMFTmw5T3drNgqkJ/NN50/EHQ7xadIS1JfUUpLv58z+ddVQLvVJqchsXya/HFyBkOOWj90MNnTxbWIGnzzBFMQ4rBWluclNiSYq1094d4EhrNysLUsiId/X2XwyGDO3dAfbVttPlD5IW52BaqpsZ6XHYrYIvGMJpC//QBUOGdaUNPLXxMJUtHpJiHCTG2EmMtZObHEtanIMt5c0cbvKwcnoqSbF23txbS327lwSXnS5/kKZOH93+IHEuGw/cupxFkdvkno5A5Pa4wZChrTvAK7tq2F/XwfysBJbkJrI4JwmPN8C2ihYqmz1UNnexvaKF9u4A8U4bH1mcxao56Syflkx6nJMWj59tFc1sKW+msKyZH1w7n4XZp1/O4dLlC7KlvJm7n92OxxvkwtnpeHwBrlo4hY8vz+m3n+ZEZIxBRHi/tIEvPlbIopxEfv+ZM7j61+8R67Dyn59YQmKMne8+t5Oi6lbe/OZFgyYI1z+wjh2VrcQ6rHx0yVS+c9VcUgYZ2m2i21PdxpqSOq5dnDXpDqpG0s9fLeZ3kZuLZCW6OGNaMlvKm2ns8AHgsFno9gcJhAznz0zjM2dP44r5mUe19n9woIEvP76FGIeVb14+m8U5SczKiBtyP/axzhsI8vlHN3PtkixuWJZNrENbuJUaijGZ/BaWNfHAmlKOtHZT3dJFW3f4yurMBCcFaXEUpLuxWoRObxCX3UKM3UrQGIIhgz9oCIZCBIKGQMjQ2uXnvf31WESI7XOKvssfxB88/jPGOW18amUe7+6rp/hI+4BltggYwBhIdTtIdjs43OTBFwiR6nawKCeRti4/LV1+mjt9NEdO+8a7bOQkx1J8pA1joCDdTUFaHO3dfmIdVpLdDmLsVt7aW4fdJrx81wXYrEKnN0BGgotuf5C3i+to7fJjt1qwW4UuX5D3ShsoOdKO22ElL9XNVQumEOOwsPFQE/+7rYraNm9v2ZNi7SzKTmRvTRsNkR+SHmlxTqYkOlmUncTK6SlcsSBzTH6hBkOGg/UddPW5gr+s0cNfNx1m46EmgiHD1EQXj37hTOZOSRjFkkbfgfoO7nxyK/XtXi6bl8nqbVVMT3PzxBdXkh7v5IMDDdz55FaaI62xcQ4b//6xBdyw7Phhvo5V3thJnNNGitsxIUepUGPD+6UNfOaRjVy3eCrL85IoLA8fbCe47Pzy5iXEOKz8z1v7SYtz8qmVeRSkD9xtpeRIO7c/trm3O4TTZmHOlHjS4pxkxDtZmJ1Ifqobm1XIS4ntbWUeD8obO/nKE1vZU9NGjN1KRoKTpFhHuGEnOYZkt4NOb4CyRg+BYIhYp4381Fimp4Ubb1z2cCNQerxT/5/VpDIiya+IXAX8GrACfzTG3H+i5Y9NfjcebORHf9/DlIQYpia5yEqMwWA4WN/JwfoODkXG9oyxW/EGQnT5g1hFsFkFqyWcEFotgt1qwWYRLp6bwT9fUHDUKdlAMERFcxc1LV00e/y4nVbiXXZ+u6aUt4vrmJMZz61n5ZIQYyfWYWVmRjzxLhv17V4ONnSyv7YdAexWC1UtXTR1+shPc7MkJ4nL5mf0tgb3aOv2U9fWHfmStdDQ4aXTGxiwpWhLeTOf/P168lJjqWnppssfpCDNTUOHt/dgoK+MeCdLc5PoDoTYU93am9RaLcIFs9K4eUUuKW4HFhGW5ibhsFkwxlDd2s2uyhacdivL85JJjBnaRT/Drb7di8NqwWkPd6vw+AJ0eoN0+YJ0+cOPbn+Q0roONpc1saW8mfZ+4pCdFMP1S6eyJDeJswtSR+3zRFNFk4cNBxvZU9NGly/IyztrcNgsLM9LZk1JHUtzk3j0tjNJjP0wFp3eAH/dXEFzp48vnJc/bGMdK3U6vvz4Fpo8PvbWtJER7+Slr50/LAffoZChvMnDzsoWdlW2UlLbTrPHR1VzV2/DRI+c5BhWTk9lZUEK87MSKEh3j8kGgB7GhLuo/X1XDc2dPuo7vByq76SmrZuen/HMBCdOm5VOb4DGTt9x24h32ijIiGN6aix5KbHkpbrJSY7BGbkuYu6UhHFzfYcam7r9QVo8fjq8AdLjnaP+2zzsya+IWIF9wOVAJbAZuNUYs2egdcZan9+6tu4xcST8+PoyfvN2KZfPzyQ/NZYNB5tIcNm4eUUuMzLi8AVC+IIhLCLkp8b2lrenv27IGBbnJI7pL+4eZ/7kTerbvYMvCMzMiOPM/BRWTEsmqU9ClxBj54y85FEbvmw0vLOvntse3QRArMOK22ljdmYcP79pCdlJMbR4fMQ5bRPmNK+a2G55eH34bFqcg29ePpuZGfEjur+e7m01rd34gyH21baz8WATm8qaaOqTJGYnxTA9zU2K29H7iHfZcDttuB02Yp3W8LPDis0q2CKNMDarBbtFsFgEgd7v6PBrEASk53V4ft95IvQmsC675aR+k4IhQ1uXH2dkBJUeLR4fZY0eQsbQ6Q1wqKGTA3UdlNZ3UNbgoaa1i9AxP/+vfuOCSXcGbaz4oLSBB985QIzdikWEZk+4XqbHO4lz2rBahKsWTuGCWemjXNKj/dcb+1hTUofVEh6Vp7K5q7cu/+rmJXx8+eBnGkfSSCS/5wD3GWOujLz/HoAx5qcDrTPWkl8Vfc8WVtDWHaDbH8Rps+B2hn9IYh02YuxWYhwWnDYrU5NiJn0f077auv2s3lrF2QWpzMqIm1SJv1IjJRQyvWf4SiOJ4eEmD02dPpo6ff2edRpp235wOclR+O7zBUJUt3RR2dyFPxS+uPnM/BQdMWOUrCmp49dv7qfLFyRkTLgOGKhrD58RDgQN/3LprAFv0DNaHll3iHX76wmEDIkxdmZmxJER78LtDJ9lzk0Z3QtQRyL5vQm4yhjzxcj7zwIrjTF3HbPcHcAdAHl5eWeUl5ef0v6UUkqpaPIFQnR4A3R6A3h8QTp9ATze8HP4epNQ77M/aAgZgzHhlmb48HqR8HNkmgGD6TM9/L6nBfjz5+brKCJKDZOBkt/TOcTrr+npuEzaGPMw8HCkEO0iUnIa+1RDlwY0jHYhJhGNd/RorKNL4x09aV/RWEeT1u3oGa1YT+tv4ukkv5VAbp/3OUD1IOuU9JeBq+EnIoUa6+jReEePxjq6NN7Ro7GOLo139Iy1WJ/O1TGbgVkiMl1EHMAtwIvDUyyllJpYRMQpIo+ISHnkLNg2Ebm6z/xLRaRYRDwiskZEpvWZd3FkWquIlJ1gHxeJiBGRH4/wx1FKqXHrlJNfY0wAuAt4DdgLPGOMKRqugiml1ARjAyqAi4BE4AfAMyKSLyJpwPORaSlAIfB0n3U7gUeBbw+0cRGxEx56cuOIlF4ppSaI07qs0xjzCvDKSazy8OnsT50UjXV0abyjZ1zG2hjTCdzXZ9LLInIIOANIBYqMMc8CiMh9QIOIzDXGFBtjNgGbROSyE+zibuB1IGOYiz4u4z1OaayjS+MdPWMq1lG9w5tSSqkwEckEyoGlwFcAhzHmK33m7wbuNcY812faZYRvKJR/zLamAW8Ay4EHgEpjzL+O+IdQSqlxSEfEV0qpKIt0UXgSeMwYUwzEAa3HLNYKDPXuD78BfmCM6Ri+Uiql1MSkya9SSkWRiFiAxwEf4esmADqAY2+tlQC0D2F71wHxxpinB1tWKaVUlJJfEblKREpEpFRE7onGPicbESkTkV0isl1ECiPTUkTkDRHZH3lOHu1yjkci8qiI1EVOQ/dMGzC2IvK9SF0vEZErR6fU49cA8b5PRKoi9Xu7iFzTZ964ibeE71v7CJAJ3GiM8UdmFQFL+iznBmZEpg/mUmCFiBwRkSPAJ4FviMgLQyhPbmQUib0iUiQiX49M1/o9Ak4Q7wlRv8cSEXGJyCYR2RGJ9Q8j07VuD7MTxHrs1mtjzIg+ACtwACgAHMAOYP5I73eyPYAyIO2YaT8H7om8vgf42WiXczw+gAsJ96XcPVhsgfmROu4EpkfqvnW0P8N4egwQ7/uAb/Wz7LiKN/AQsAGIO2Z6OuFuDjcCLuBnwIY+8y2R6VcT7ifsItxHGMJdI6b0eTwN/BeQMoTyZAHL+2xnXySmWr9H5u8/ULwnRP0eSw/CN+KKi7y2Ex4F5Wyt21GN9Zit19Fo+T0LKDXGHDTG+IC/AtdHYb8qHOfHIq8fAz42imUZt4wx7wJNx0weKLbXA381xniNMYeAUsL/A2qIBoj3QMZNvCMXpX2J8AVuR0SkI/L4tDGmnnDi+xOgGVhJeOz0HhcCXYRH18mLvH4dwBjTbow50vOIzOs0xgwaQ2NMjTFma892CA9bmY3W7xFxgngPRON9ikxYTx94e+Rh0Lo97E4Q64GMeqyjkfxmEx7bskclJ/5nV6fGAK+LyBYRuSMyLdMYUwPhL12GfwikyWyg2Gp9Hzl3icjOSLeInlOV4ybexphyY4wYY1zGmLg+jycj8980xsw1xsQYY1YZY8r6rLs2sm7fx6oB9vN5cwojPYhIPrCMcKuN1u8Rdky8YZzX77FIRKwish2oA94wxmjdHiEDxBrGaL2ORvIr/UzT8dWG33nGmOWET4veKSIXjnaBJimt7yPjQcJ9YJcCNcAvI9M13sNAROKA54BvGGPaTrRoP9M03iepn3hr/R4BxpigMWYpkAOcJSILT7C4xvo0DBDrMVuvo5H8VgK5fd7nANVR2O+kYoypjjzXAasJn0KoFZEsgMhz3eiVcMIZKLZa30eAMaY28uUaAv7Ah6fINN6nScLDrj0HPGmMeT4yWev3COkv3lq/R5YxpgVYC1yF1u0R1TfWY7leRyP53QzMEpHpIuIg3I/txSjsd9IQEbeIxPe8Bq4AdhOO822RxW4DBr36Ww3ZQLF9EbhFRJwiMh2YBWwahfJNKD0/VhE3EK7foPE+LX1Gn9hrjPlVn1lav0fAQPHW+j38RCRdRJIir2OAy4BitG4Pu4FiPZbr9Wnd3ngojDEBEbkLeI3wyA+PGmOGMnyPGrpMYHX4exUb8BdjzKsishl4RkRuBw4DnxjFMo5bIvIUsApIE5FK4F7gfvqJrTGmSESeAfYAAeBOY0xwVAo+Tg0Q71UispTwqbEywheOabxP33nAZ4Fdkf56AN9H6/dIGSjet2r9HnZZwGMiYiXc0PeMMeZlEVmP1u3hNlCsHx+r9Vpvb6yUUkoppSaNEW/57SstLc3k5+dHc5dKjahgyFDW2IndaiEnORZLf934lVJKKRV1W7ZsaTDGpB87ParJb35+PoWFhdHcpVIjpsMb4DN/3EhHdSvBkCE3J4k/ff5Mkt2O0S6aGmavFx3hvJlpuJ2n9pXZ1OmjoztAXmrsMJdMKaXUQESkvL/pUbm9sVITya7KVu76y1Yu+Nnb7Kpq5YFPLeehz5zBzsoW/ry+3/+z4zyxoZyKJs8Il1QNh7KGTu54fAvPFFYMvvAAfvTyHj7/J712RimlxoKotvwqNZ6EQoYH3znApfMymDslAYC/bank+6t3Eee0cfHcDG5ansO5M9MAyE2OpbS+40SbBOBIazf/+r+7WZyTyPNfORebVY9Bx7J9te0AHBjC33Ygu6taqWjyYIwhcmGqUuNSMGTYUdnC8rzkwRdWaowa9Fc3cleOOhHZ3Wdaioi8ISL7I8/6X6AmnCc3lvOfr5Xwl42HAXi/tIFvPbuDM/KSefObF/Grm5f2Jr4A09PcHGoYPEEqiSRTOytb+cN7h/AGgjR0eEfmQ6jT1nNAc6ih85TW9waCHGroxB80NHX6hrNoSkXd6m1VfPx3H/QeFCo1Hg2lyelPhAeG7use4C1jzCzgrch7pSaMsoZO/uOVYgCKj4S/5DceasIi8MjnV5DST7/e6WluDtV3MtgIKvsi2zt3Riq/fL2Ehfe+xrk/fZvatu5h/hRqOJTWhZPfg/WnlvweaugkEArXido2PchR49uGg41A+OBdqfFq0OTXGPMu0HTM5OuBxyKvHwM+NszlUmrUGGO45/md2KzCJXMz2FfbjjGGvTVtTE9zE+vov7dQQbqbTl+Q+vYTJzj7attJi3Py61uWcfWiLD66JBtfMMTW8uaR+DjqNB2IJL81rd14fIGTXr/kyIctZLXteoCjxrctke+pvTUnugu2UmPbqXY2zDTG1ABEnjOGr0hKja41JXVsONjEd66cw4Wz0mjx+Klv97K3po15WQkDrjc9zQ3AwUFOj++rbWfOlDjS4538z63L+I+PL8RuFbZXtgzr51CnzxjDgfpO0uOdAJQ1eKhr7+bZk7j4re/p4dpWTX7V+NXQ4e3t/qPJrxrPRvxKGxG5Q0QKRaSwvr5+pHen1GkJhQw/f7WEaamx3HJWHnMiF7ptLmumsrlrSMnvifqGhkKGfbUdzM6M753mtFmZl5XAjgpNfsea2jYvHd4Al80LH98faujkobUH+fbfdg65m8q+2g7yI0OcabcHNZ4VloVbfWdnxrG3pm3QLl5KjVWnmvzW9tyzOfJcN9CCxpiHjTErjDEr0tOPG2dYqTHlxR3VFB9p5+4r5mC3WpidGQfAC9urAJiXFT/gulMTY3DYLCdMfqtauujyB49KfgGW5CSxu6qNYEh/TMaSnv6+l83LBOBgfQdrSsJfd4eHOFTdvtp2FmQnkup2cET7datxbEt5Ew6bhU+ckUuzx6/1WY1bp5r8vgjcFnl9G/DC8BRHqdH1/LYqCtLcXLsoC4DUOCdpcU7WloTPWpyo5ddiEaanuk94YVRP/8/jkt/cJDq8AQ6exnBa6uR1+4P88b2DdPv7v618aV3477UoO5GpiS7eLqnrPbgpbxw8+fX4Ahxu8jAnM57MBBd1miyocWxzWTNLchJZkpsEaNcHNX4NZaizp4D1wBwRqRSR24H7gctFZD9weeS9UuOaMYbdVa2syE/G0uc+xXOnxOMLhkiKtTMlwXXCbQw23FnPMGc9Lco9luQkArBduz5E1Qvbq/jx3/fyWtGRfueX1ncQ77KRHu9kerqbbYc//PsMpeW3tK4DY8J/78wEp7aUqXGryxekqLqVM6alMDdyBmxvjQ53psanoYz2cKsxJssYYzfG5BhjHjHGNBpjLjXGzIo8HzsahFLjTk1rN02dPhZlJx41vaeVdt6UhEFvUDA93c3hJg+BYKjf+ftr25ma6CLeZT9qekF6HHFOmw4f1EcwZAiNcDeQV3aFk96e4ZuOVVrXwcyMOESkt0/3jHQ32UkxQ7pDX9+W/imJrn77/IZC4YOuU/HL10v45jPbT2ldpYbKFwjxjae34Q8aLpqdToLLTk5yDHu05VeNU3prKaUiehKQBcckv3OmhFtpT9Tlocf0NDf+oKGyuavf+cVH2pk95fh+w1aLsCg7UVt++/jYb9/n23/bOWLbb/X4eb+0AYANB48/fg+FDPtrO5iZHv77F6SFny+ek0FuSgzljYOP+7uvth2HzcK0VDcZ8S4aO734jzkw+vuuGq79n3XsOskDH18gxGMflLF6W5V2p1Ajpq6tmy8/sYXXimq597r5nDMjFYD5WQna7UGNW5r8KhWxu7oNi4RbePuanxVOhhdMHTz5Legd7uz4rg+tHj/7attZkpPU77rnzEhlV1Ur6/Y34A+GuPeF3fzHK3uHlGSNNmMMP3u1uHcM0KEIBEP86f1DtHr8x80rb+xkV1Urz22tZOcIDQH35t5aAiHDdUumcqihkyPHDEO2s6qVxk4fZxdEfuwjf/8rFkxhWoqbw039H+D0VVLbwayMOKwWYUqiC2M4bhzodfvDCfjGQ/23Pg/k/dIG2roDGMOA3TbGimc2V/CTv+8Z7WKok/TEhnJW/WIt6/Y38KOPLeQL503vnbckN4mD9Z3j4vtJqWNp8qtUxO6qVmZmxBHjsB41fWF2An/43AquWzJ10G30tOr21xfugwMNhAxcMCvtuHkA/3xBATPS3dz97Hbu+stWHltfziPrDrHqF2t5aUf1KXyi6CmqbuPBtQf4zVv7h7zOmpJ67ntpD3c/u+O4IZPe3Re+wNDtsHL/P4pHZEilf+yuITsphi9dWADA+oMNR81/regIVotwaWSYs5XTU1jzrVWcNT2FvNRYGjq8g970Yt+RduZEus1kJoTHCj52iLQNkaR36+GTu8nJK7tqiHfamJ7m7u2+MRZ9UNrAPc/v5NH3ywa8sHA8213Vyl82Hmbb4eYJNVrLvtp27n2xiOV5ybzxzQv57NnTjpp/0xk52CzC4+vLR6mESp06TX6Vithd1crCqYnHTRcRLp+ficM2+L9LgstOXkosRdXHn8J+r7SBOKet90rpY8U4rPz6lmU0dfp4raiWf/3IPD645xLmTUngF6+XDNiPeCzoSc7XlTbQ2DG0sWzf3FMbft5by+Mbjv4BXVtST15KLN+6cg4fHGjkN2+V0tp1fAvxqerwBnh3XwNXLZzCvKwEElw21h84uuX1taIjnF2QQlJs+FbWffv95qWEx+090UVvrV3hoaB6DogyIxdL9k1+q1u6KG/0YLcKW8qbh5zk+4MhXt9Ty+XzM7lucRYbDzXSMMS4R0Nbt597X9jNj1/ew11PbcNhsxAMmaPudjdaXthexaZDH3Zz6VuvPL4AxUdO7lT+91fv4vurd3HD7z7gOyPYTWckdfuDrC2p603ejTH86OU9uB1WfnPrMqaluo9bJzPBxVULp/BMYcUp3flQqdGkya9ShPu11bV7WZh9fPJ7shZmJ7C76vgf0HX7Gzi7IBW7deB/u4XZifzmlmX88hNL+OIFBWQmuPj6ZbMob/Tw8s6a0y7bSAiFDC/tqKYgzU0wZHhl99GtkMGQ4atPbmHlf7zJj17eQ2Wzh2DI8FZxLdcuzuLiOen8+O97e7s3eANBPjjQyEWz0/n0ymlcNDud/3pzH+f+9C22nWTr6EDW7a/HFwxx+fxMrBZhZUHqUf1+S+vaOVjfyZULpvS7fm/ye4LhzvZHRvb4sOW3J/n9MEnt6erw8WU51LZ5qWoZvCsFwOtFtbR2+blmURZXL8oidApdH7aUN9HpHZmk5eUdNTy2vpwnNpbjsFp46DNnALC7n4PC4RYKGd7dV483cHwr8welDXz9r9v/P3t3Hh9XVTd+/HNmX7MvzZ7uK91IC2UpIEXKJpsgqCAKgj9BcUNBHxEUHlEUH0VFKotlF5DKIktBWrrSNt2bNmmTNPu+zmQms5/fH3ca0jZJ02Zvz/v1mldm7tw798w3Z+793nPPPZfblm+hweXj3d21zPvlSt7YVgXAfW/sZun/reWLT2xgUy8XQXbn8YcoqHHx1TOzuXlRDv/aVsXW8rF1/beUkp+t2MMtz27h/jf3IKXkg4I61h5o4u4lU0iwm3pd9pazcnH5QqzYXj2MJVaUgVPJr3LKk1KSH+2rOhjJ78z0WCpavLh8n7UoVTR7qWjx9trlobtLTkvj2tMzu15fND2VqalO/ryqmOq2zqMumBppWytaqWn38d0LJzMpxcHbOw7vovG/7+7j3d11ZCfYeG5jGTc/vZlNpc00dQS4aEYqv7tuDskOM7c/t5UGany4qwAAIABJREFUl4/8slY6g2HOm5KMyaBj+TcW8s53zsFpMfLzN/cc96nllzdX8I1/bCEQ+ixu/93XQIzFQF5OPACLpyRT0eLlT/89gJSS96MJ/OdnHCP57aPl99CwdpOjw9ol2EwY9YLadh9FdW48/hCflrQQazXy1egp5SP7TO+rdXHVX9bzsxW7qY8ma196ciN3vrSNcTEWzpmcxLRxTiYk23lze/+7xmwsaebaJzbyvX/uGJIuJWv2N5Iea2HfL5ey8b7PRUcIMFBQM/QXSD3yfiE3P7OZx1buP2x6uzfID1/bSXaCDX8owndf2c49r+0kIuE37xeSX9bCmztqWDwlmZq2Tm55dkvXTU56s7OyjXBEcuH0VH6ydBqpMWZ++c6+IR+lZCAa3X5aPYGu16/lV/GvbVXMyojhxU0VXP74Or71wjYmpziO6upwpNNz4pmVEcNfV5X0+4yPoowGhpEugKKMpJ2Vbdzy7GZavUEMOtHnHdz669CFUXtrXJyWEUthnYtN0dOs5/Qj+T2STif4zoWTuOul7Zz9yMekOM28/Z1zuloSR9qK7dVYjDoumpFKRYuXxz7cz23L8ymqdxGJaHe1+/rZufziipmsL27iK09t4jsvb8egE5w/NYVYq5G/35zHtU9s4Nq/bcBq1GPS67quKgftoOSnl03nuy9v59X8Sm5cmN2vsjV3+Hnonb14AmGeXX+QO86bSCQiWVXUwPlTUzBEW+FvXJDF9opWHvtwP2/vrOFAQwd5OfGMi+05xnE2I06Loc/kd3+dG7tJT0acFdD+jylOC39fW8rfPikhI86KPxRh4fgEpqc5sZn0bCtv5cq5GYDWleSe13diNerZU93Oi5sqAMiMt/LTS6dxfV4WFqPWP/36vCweea+wa2i2voTCER58uwCjXvDh3npttInZx+7P3l+hcIT1JU1cdlraYUMDzkyPpeAEh3Tr/tn7at14AiH0OkF2gg2PP8TaA014A2HavAGWrSkl2WnmmfUHuWFhNhtKmnh63UEaXH58wTBvfPssNpQ088h7hcTbjPz62tl89+XtfO2ZzcRajTx+4zx8wTBL/28N33l5Oyu+fVZXnI+0pawVIWB+djx2s4EfXzyNH762k6fXHeSb0b7k3UkpkZLDxhEfakV1bt7YVsX3L5pCVWsn1z+5EV8wzC1n5dLcEWDF9mrOmZTE8m8s5Ffv7OX1rVV898LJ3Hbu+GN29RJC8NBVp/GlJzdy+/NbefG2M3qNlaKMJir5VU46bl+QVzZXMiHZTrzdxLoDWl/br52Vi/6Inc7jHxcD8IsrZjA7M/ao8XdPxKFRIQpqXLy+tYrXt2qnVNNjLV2jQRyvy2enk+K0UFTn4hdvFfD0uoPcd8k0/uffe/D4Qzxy7exh3+l4/CEe+s9eXt5cybXzM7GbDVw9L4O/ri7uGtXCZNCRnWDjO5+bDMDZk5K4cWEWL2+u5JxJScRatXjPSI/hbzedzhOri2l0+7lxYRZ28+Gbpytmp/HCxnIe/aCIS09L61q2L49/XIwvFGFedhx//O8BvjA3nbp2H00dga4L2QAMeh2/+6LWAr32QBM/vGgKX1qY1evnCqElXsdq+Z0yznlYArh01jj21bpYMj2V5zaWUd3m58wJiRj0OuZmxbE12q1ja3kr3//nDuZmxfHXr87H1Rnita2VLMhJ4IJpKUfV42vnZ/K7D4p4ZXMF/3P5jB7L09zhZ1dVO9srWimsc/P4jfNYtqaUX7xZQF5OQq+J/vHaUdmG2xfivCmH385+ZnoMz31aTjAc6bPrT098wTDL1pTy8uYKatv7Htbtohmp/OrKWVz4+9XcuOxT6lw+5mfHcc6kJM6fmszszDhmpMXQ6tHOPOTlJvCfXTV8UFDPTy+dTKzVSKzVyO+um8Oty/P58eu7ePS62ZgNR/++8stbmJrq7KqLV8/LYOXeOh5+dx9hqY2JGwxHGBdjYVtFG79+bx+pMRZeuu2MrgOvofbJ/gaeXFPK6qJGXL4gOiE4b0oyf11dgs2k55r5Gfx46TT0OsEDX5jJ/ZfPOK7kfG5WHI9dP5c7X9rGzc9s5ldXzmJqtJ97o9vPtopWlkxPParOdrfuQBNnT0o85jjqijJYVPKrnFSklNzz2i7e76H/44aSJv54w7yupKqsycN/C+v5zgWTDhvCZ6BSnBaSnWbe31PLtoo2rpybzsLxCUxNdQ5o475wfAILxyewtbyVFz4tJzPe2tUa2OwJsOymvKNGqhiIcETyaWkzhXVuGlw+shJszM2KY3paDGXNHu54fisljR3ccd4EfnDRFACyEmwUPLi0zx3dfZdOp7DOfVTr7XlTko9KmLoTQnD/FTO4/PF1PPlJCT9eOq3H+SqavTz0n71YjHre21PL9XmZfPv8SSx57BO+89J2chLt6ARHrUunE9x36XTu62d8shNsbClrparVS2a87bD3pNQu7jqyz/DPuyWmX1qQxVs7a7hyrtbqeuaERB77cD/3vbGb1UUNpMVZePqWBcRajaQ44b5LpvdalmSnmc/PTOVf26q4Z+nUoxK1BpePK/+yvitxPGtiIpfPTmNSioNrn9jAVX9Zz7KbT2d2t2H48stauPeN3TS4fCQ7zeTlJHDO5CQMOkFpk4e3d9bgDYT58dKpXHZaWleL5if7G9HrBGdNOvwsx6yMWAKhCCWNHUzrNpxge2eQ7RWtnDkhEZNexz82lLGnup0zJyQyM0Ob7yf/2sWeaheLpyTzk6XTSIkxEwxLKpo96HSCcyclk+Aw0dzhJyveFj1bMplH3ivk5kU5/OKKmYfVSYNex32XfhbPB78wi5npsdy8KLdr2oXTU7nn4qk8+kERNW2dPHnT6SQ6zF3vhyOS7dHf9yE6neDPX57P917ZwSPvFfLIe4WHxSAjzsrmgy38eVUx31sypdf/Z1+C4Qh/X1vKxpJmrp6XwRVz0vs8mLh98UQmpzr58eu78AXD/PP2RcxIj6Gq1Uus1XjUAf+JtEpfNjuNzuAcfvXOXi7901rycuLJiLfy7u5afMEI509N5o9fmkes7egD1te3VvGj13by+I3z+jWijqIMBjEU/b16k5eXJ/Pz84dtfUdqdPtJcpjU0eUAhcIRAuEIOiHQ6wR6IXD7QtS5fOyubqeixcu18zMOu0LYG9DGIz2yNQ+0FqlPS1v4/MzUfrcINbh8+EMRshIOTzr+sf4gD7y9l3sunsrC8Qk0uv2cMT6Bd3bV8uDbBZw1MYnnb12IEIIH3irgxU3lrL/3c6Q4B7cLwdef3cyqokZMBh3rfnwBKYPYRaGozs3F/7cGgHnZcdywIIt739hNot3M9XmZ3Lgw+6i49EZKyZoDTSyenNT1u5BSsmxNKS9sKqcyOpatQScIRfsxxlqNhMIRzEY9j984j7MnHX9XjoH43ivbeb+gjtU/uuCo1soOf4hr/rqemjYfcTYjobDk33eezbhYCyu2V/HzfxfQ4Q+xIDee17511oDK8WlpM99cno9OJ/j2+ROZnhbD5FQH42IsNHUEWPDwR9x/+Qy+cU7/Dqx8wTC/+6CIZ9YfxKDT8a//dxanZfa/D/qa/Y3c/Mxm/uey6dx27men3L2BEDcs+5Tihg7+dMM8YqxG5mTFdiXI+2pd3LY8n+q2TqxGPUlOEwk2E7ur28mIt3LB1BRq2nxsKm3G3e0CudNz4vEGwuyrdWEz6fEGwuTlxNPiCRBvN/Gv/3d4fA/Uu7noD2v4/XVzuPb0TGrbO3l2fRkvbaqgwx8iNcZMZryNreWtxFgMuHyfrctpMfDY9XO5aEZqv+MhpeRAgzbO8kC2+W/vrOFH0b7CL37zjK5tRUFNO5f9aR3/96W5XDUv47BlQuEIHxdqoyfodIIGlw+72cAX5qRzz+u7tIOeOekcaOig3uUjFJH87NLpXHt6JqFwhO2VbWwobqbZ48dq0nN6djwXTEth7YFGfvt+EYV1blJjzNS7/Ewb5+Sfdyzqan2WUrJ8QxlfzMvC0W176/YF6QyEB3VbdKRWT4Bla0vZUNzEgYYOls4ax5RUJ79fWUSC3cSXF+Zw9bwMshKsCCEobujgisfXMScrlhdvO7PPg2ZFORFCiK1Syryjpp8qyW8wHOHSP64l3mbiwStnkhpjoajOTVOH1g9sYoqD9FgrHf4QUkosRj1Wkx6rUY/FqB+2H6WUku2VbQSip2p7OtUmpaSs2UtnIMykFEe/huCSUlJY52ZfrYuq1k4qW7w0ewIsnpzElXMzkECbN0BbZ5CyJg97ql3Uu3y4fEHcvhBuX5AOfwi3L4Q3cOyxOs0GHV9akEWzJ8C+GhcHmz1ICTmJNqaPi2F6Wgx5ufGYDDq++/J2att9TEpx8LWzcunwhWh0+2mM/m+klCTazSQ5TbR3BimsdbO1ohWLQc8/vr6AOVlxPLP+IO/vqWN3dTsXTkvh7zfnHbXDe35jGT9/s4BHvzib+TnxXPH4OpbOGsdj18/t77+n3373QRF/XlXM1xbl8OCVswb9829/Lp9P9jfyn++ey6QUBxtKmnhm3UE+LmzoGkv4stPSyMtNoN7lQ68TLMhN6KrHUkp2V7fzq3f2sqWslee+sZDF3VpCb35mM/5gmK+emcM5k5KIsxmpau1kW0Ur6w404QmE+NllM7r6sw6nyhYvn/v9ahZPTuaCaZ91XfAGQnxc2ND1fXpKyhtcPp5cU8r5U5M5d3Lvrcz9Vd7s4bsvb2dnt7uzWY16hABvIMyLt51x3AcHe2tcdAbDnB69GK+/IhHJ157dzNoDTdy4MItkp4VdVW1sPthCZzDM32/KY0kvyWNzh583tlVT5/LR1OGnqcPP5BQnP7p4alcCFQxHKKpzo9cJEh0mUpwWwhHJq/mVFNW5MRt1rNhWTYPbz/eXTOHuJZMPW0c4Ipn5i/c5LSOWZKeZlQX1SOCy09JYMiOV5zaUUVDj4oEvzOD6vCz213dwsKmDNm+QcyYnHdW6Ppw2ljRz6/ItpDjNXS3a5c0e1hc3s/bHF/T7YBO0YeCu/PN62rwBZqbHkhFnpaSxg/zyVi6clsLOqjaaOgIIoQ2d2BkIEwhHsBh1+IIRMuKs3H/FDD4/I5V3d9dx9yvbWTQxkWdvWYBeJ3jk/UKe/KSUX14587CW7JG0raKVP3y4n7XRG7pkxFnJiLdS0ewlGI7w7t3njpprGEaL1/IrOdDQQSgsCUcihCKy62Bq8eRkPjctBYNOEJbyuLsRdSel7PPgUEpJMCwx6sUJH0S2dwYpbuigucOPQS+Ykuok2WnGoNMdlVuFwhH8oUiPDWWHhCOSSLfvHYm+7qkr0ZAkv0KIpcAfAT3wlJTykb7mH8nkNxLdSP/m/UJae7ij1LGYDDpiLAacFu1CF6fFQIzFSCgiafEEyE6wcf7UZBLtZvQ6waQUB4l2E9VtnbR3BklxmrGZDQhACO2fV97sZU91O2sONFLS4CErwUp1m6/rlpEWo45EuxmzQceEZAc5iTb217vZVdXeNTalSa9jWpqTmekxSKmd/raZ9MTbTMRajRh0gspWL5sPtlDWbVimFKcZh9lAaVPPd+exGHVkxFlxWIzR723AYf7s+5sNeiJSEolIwlLiMBtIibEwbZwTh9nAQ//Zy3t76siMtzIjLYYZabEIAYV1LvbVuimLJsOgbQi/df5Elq0p6WpptJv0JDnN2ExazA7tkGOtRjLjbVw4PYW3d9ZQ2+5jXIyF0iYPp+fEc96UZL5+dm6PfXcjEcmXlm1kf712BbdBJ3j1W4uYmNz3BUInYmt5C/e8tosXv3kGabGDnyB2BsI0uv1kJx6+061t7+TVLVW8trXyqFssJznMTEl14PaFKGvy4PaHSLSb+PHSqVx3etZhpzt9wfCovnDl9yuLuvprd2cy6Lj/8hldoycMByklzZ4AxQ0dHGjo4GCjByEgwW7i9sUTBrRjOl6hcIRfv1fI0+sOohMwMdnBoomJXDIr7bALCIdKZyDMyr11XDg99bBWx0O++tQm1hU3kRZr4eKZ47j1nPFdiaOUkkA40uMB/2iwpayFn7y+67AW6elpTp77xsLjTgoO7XcPLRcMR/jVO3tZsa2ac6ckcfnsdM6amEiczUQoHGFVUSMrC+o4Y0IiV849vJvDK5sruPeN3eTlxJMWZ+XtnTV85YxsHrpq1qg7y1nZ4mV1UQOfHmyhucOPQHD3ksldd1FUPvOt57fyyf5GDDqBXi+0vzqBNxDG7QsddjbOZNBh0usIhCMkO8xMT4thRnoMM9KcTE+LIc5qYl1xEzur2qhu7aTB7aPZE6DVE6C9M0h2go2JyQ4ONnuoaPZyKCsU0LUOm0lPZryVmemxzMuOY15WPMlOM1vKWnD5gszPjsdm0lPe7KW8xUt5k4fyFi8ljR2UNvZ+F8CJyXbychJocPvYX99BnctHOCJJcpjITbSTm2RHSm1M9Jr2TmrbfV0j9yQ5zDjMemqi06xGvZarWAx889wJ3Lgwe/CTXyGEHtgPXARUAVuAG6WUvd7DcqS7PYDWuvn8xnIsRj1TxzkZF2vBoNNOvzR2+HGYDeiEwBcM4wuG8QbCdAbDdAbCuP0hXJ2ftYS6fSF0QhBvN1JU5z4qqT5UGY9lXIyFGekxVLd2YjbquHFhNskOM5+WNtPqDeILhimqd1Pe7GFyipM5WXHMzYrFajJQUN3O7up2CmpcGPU6khwmvIEwrd4A7uhGOslhZkZ6DJfMGsfC8QlkxFm7Eps91e18sr8Ru0lPnM1ErM1IeqyVicn2AV+Q0deFLW5fkC1lLZQ0eLj29EwS7CYCoQh17T4SHaYej/qOPEJtcPm4Ydmn+EMRfn3NaYe1XPamuMHNpX9aR06CjWduWXBcLTZjiZSSghoX+2pdZMRbafMG+c+uWupcPhxmA9kJNqanxXDZaWk99sMbC5o7/IQPbb+kdpMQh9kw6nb4I6He5SPWahx1BzC+6LY0vo+xY09lx2qF683f15Ty+tYqSho7uHpeBr+5dvawjiihDJ9QOMLa4iY+LW3GYtBj0Ak6AiFCYYlBL6iJNqCVNnZw5Ih7JoOOzDgrKTFmEu1mEuwmHBYDBxs9lDZ1kJNoZ2KyA4NOINFGJjHoBEa9jlZvkPJmD7uq24+6RXtPLEbtYufcRDuzM2OZkR5DssOCP6TlM23eIP5gmF3V7eyobGNcjIUpqU6yE2xYTXoqmr0cbPZQ1uRBJwQZ8VbS46ykxVqwm7T8oLa9E7c/RGacFatJjyd6dtrtD3HF7HSWzho3JMnvIuABKeXF0df3AUgpf93bMqMh+R0q4YhkX60Lb0BLmvfXu6lr9zEh2UGC3UhjR4DOaL9XiXZElRlvY+o4JxOT7UOyww6FtVMlo20HOJj8oTB6IY4rUa9s8ZLoMGEzqes9FUU5eYQjUvWbVQDtLMz+eq2rY1OHNqrM3Ky4ATdqSSmpafexvaKVepef03PiibcZ2VbRSjAkyUm0kZNoJ8VpHhUHYL0lvwPZ+2cAld1eVwFn9LDi24Hboy/9Qog9A1in0n9JQNNIF+IUouI9fFSsh5eK9/BRsR5eKt7DZ6Ri3WMfuIEkvz2l9Ec1I0splwHLAIQQ+T1l4MrgU7EeXirew0fFenipeA8fFevhpeI9fEZbrAfS/l0FdB8FPhPo//01FUVRFEVRFGWYDST53QJMFkKMF0KYgBuAtwanWIqiKCcXIYRZCPG0EKJcCOEWQmwXQlzS7f0LhRCFQgivEGKVECKn23sXRKe1CyHKevjsMiFEpxCiI/pYOUxfS1EUZcw54eRXShkC7gI+APYBr0opC46x2LITXZ9y3FSsh5eK9/AZq7E2oF0ncR4QC/wceFUIkSuESALeiE5LAPKBf3Zb1gM8A9zTx+dfIaV0RB+fH8Ryj9V4j0Uq1sNLxXv4jKpYD+tNLhRFUZTPCCF2AQ8CicAtUsqzotPtaBeHzJNSFnabfwnamOq5R3xOGXCblPKjYSq6oijKmDV8o68riqIoXYQQqcAUoACYCew89J6U0gOURKf314tCiEYhxEohxJxBLayiKMpJRCW/iqIow0wIYQReBJZHW3YdQPsRs7UDzn5+5FeAXLRhfVYBHwgh4gantIqiKCeXYUl+hRBLhRBFQohiIcS9w7HOU030gpfdQogdQoj86LQEIcSHQogD0b/xI13OsUgI8YwQoqH7GNV9xVYIcV+0rhcJIS4emVKPXb3E+wEhRHW0fu8QQlza7b0xFW8hhA54HgigXTcB0AHEHDFrDODuz2dKKddLKTullN7ojYbagHP7UZas6IV0+4QQBUKIu6PTVf0eAn3E+6Sp36OFEMIihNgshNgZjfWD0emqbg+yPmI9euu1lHJIH4Ae7fTdBMCEdmpvxlCv91R7AGVA0hHTfgvcG31+L/CbkS7nWHwAi4H5wJ5jxRaYEa3jZmB8tO7rR/o7jKVHL/F+APhRD/OOqXijjY/+LFrrrLXb9NuB9d1e2wEvMO2I5ZcAZf1Yzz7gC/2YLw2YH33uRLtl/QxVv4fs/99bvE+K+j2aHtHfmiP63AhsAs5UdXtYYz1q6/VwtPwuBIqllKVSygDwCnDlMKxX0eK8PPp8OXDVCJZlzJJSrgFajpjcW2yvBF6RUvqllAeBYrTfgNJPvcS7N2Mt3k8A09FGZujsNn0FMEsIca0QwgLcD+yS0YvdhBC66HSj9lJYhDbEJEKIbCHE2UIIU3T6PWh3U1p/rMJIKWullNuiz91oSXMGqn4PiT7i3RsV7xMkNR3Rl8boQ6Lq9qDrI9a9GfFYD0fy29NtkPv6sSsnRgIrhRBbhXZLaYBUKWUtaBtdIGXESnfy6S22qr4PnbuEELui3SIOnaocM/EW2ri9dwBzgbpuY/J+RUrZCFwLPAy0ot0q/oZuiy8GOoF3gezo80Nj+TrRkupWoBpYClwipWw+zvLlAvPQWm1U/R5iR8Qbxnj9Ho2EEHohxA6gAfhQSqnq9hDpJdYwSuv1cCS//boNsjJgZ0sp5wOXAHcKIRaPdIFOUaq+D40ngIloiWMt8Pvo9DETbylluZRSSCkt8rPxeB1Syhej738kpZwmpbRKKc+XUpZ1W3Z1dNnuj/Oj7xVIKWdLKe1SykQp5YVSyvzjKZsQwgH8C/ielNLV16w9fbXjWZfSY7zHfP0ejaSUYSnlXLQ70C4UQszqY3YV6wHoJdajtl4PR/KrboM8DKSUNdG/DWinUBcC9UKINIDo34aRK+FJp7fYqvo+BKSU9dGNawT4O5+dIlPxHiChjTzxL+BFKeUb0cmqfg+RnuKt6vfQklK2AavRzoqouj2Eusd6NNfr4Uh+1W2Qh5gQwi6EcB56Dnwe2IMW569FZ/sa8ObIlPCk1Fts3wJuENqtbMcDk4HNI1C+k8qhnVXU1Wj1G1S8B0QIIYCngX1Syse6vaXq9xDoLd6qfg8+IUSyiA73J4Swol0sWoiq24Out1iP5nptGOoVSClDQohDt0HWA8/IY98GWTk+qcAKbbuKAXhJSvm+EGIL2u1TbwUqgOtGsIxjlhDiZeB8IEkIUQX8AniEHmIrpSwQQrwK7AVCwJ1SyvCIFHyM6iXe5wsh5qKdGitD6zur4j1wZwM3Abuj/fUAfoqq30Olt3jfqOr3oEsDlgsh9GgNfa9KKd8RQmxE1e3B1lusnx+t9Vrd3lhRFEVRFEU5ZRyz5VcIkQU8B4wDIsAyKeUfhRAPAN8EGqOz/lRK+W5fn5WUlCRzc3MHVGBlbAhLSYcvRKzVCECD208wFCE9zoroqau7oiiKoijKINq6dWuTlDL5yOn96fYQAn4opdwW7Ve6VQjxYfS9P0gpf9ffQuTm5pKff1wXIStj1FNrS3noP/t4/JtnclpmLHkPfYgvGCE3J56nbs4j3m4a6SIqiqIoinISE0KU9zT9mBe8ncCg3IrC7up2AF7ZUsF7u2vxBSN8+/yJ7K5u5+F3941w6RRFURRFOVUd12gP/RyU+8hlbhdC5Ash8hsbG3uaRTkJ7Ykmv+/truO5jeXkJtq45+KpXDU3nQ/21OEPqesIFEVRFEUZfv1Ofo9jUO7DSCmXSSnzpJR5yclHdbtQTkLeQIjSJg+XzBpHIBxhd3U7V8/LRAjBpael4faHWLu/aaSLqSiKoijKKahfye9xDsqtnOL21bqQEq6Zn8ncrDgArp6n9ZQ5e1ISsVYj7+6uHckiKoqiKIpyiurPaA+9Dsp96P7YHD54sXKKK6jR7o46KyOGn18+gx2VbWQn2gAw6nVcPDOV93ZrXR/MBv1IFlVRFEVRlFNMf1p+Dw3K/TkhxI7o41Lgt0KI3UKIXcAFwPeHsqDK2LGnup0Eu4lxMRZOz4nn1nPGH/b+oa4Pa47o+tDuDVLc0DGcRVUURVEU5RRzzJZfKeU6oKeRWfsc01c5dRXUuJiZHoPoZUDfsyclkWA38e8d1Vw0IxWANm+AL/5tI23eAFt+tqTXZRVFURRFUQbiuEZ7UJRjCYQi7K93Mysjttd5jHodV8xO48O99bR3BukMhLl1eT7FDR00dQRo9QaHscSKoiiKopxKVPKrDKqiOjfBsGRmekyf810zP5NAKMJ7u2v5+Zt72FbRyvV5mQAcbPIMR1EVRVEURTkFqeRXGVRrDmhjOS8cn9DnfLMzY5mYbOfRD4p4fWsVd10wiW+dNxFQya+iKIqiKENHJb/KoFpd1MCsjBhSnJY+5xNCcM38TJo9AU7PiefuCyeTlWBDrxMcbFIXvSmKoiiKMjSOecGbovRXuzfI1vJW7rxgUr/mv3FhNjVtnXz7gkkY9NpxWHaCjbIm71AWU1EURVGUU5hKfpVBs7a4kYiE86em9Gv+BLuJh68+7bBpuYk2SlW3B0VRFEVRhojq9qAMmlWFjcTZjF13dTsR45MclDV5kFIOYslG3j+3VPDCp+UjXQxFURRFOeWpll9lUEQikk/2N7DBdDpDAAAgAElEQVR4cjJ63YmP0Ts+2U5nMEy9y8+42L77DY8Vf/rvAR77cD9CwNysuD6HgRtKy9aUYDcb+MoZOYDWTSXWZhyRsiiKoijKSFEtv8qgaOrwk+Qwc8G05AF9zvhEOwCl0Yve/KEwP1uxm0c/KGTdgaYx0yK8tbyFe17byaV/XMtjH+7nC3PSSbSbuP/NPUQiw/8dtle08uv3Cnn0gyKC4QiNbj8L/vcjXt5cMexlURRFUZSRpFp+lUGREmPh/e8tHnByOj5ZS37LmrycNRFey6/ixU0V6AT8ZVUJr9x+JmdOSByMIg+J4oYOfvXOXj7Z30is1cjszFh+snQadyyewBvbq/nRazu5/609XDIrjTPGJ3Rd6DeUwhHJ/W8WYNAJ2rxB1hc3sa/WTSAUYUFu/JCvX1EURVFGE5X8KoNqoLclTouxYDboONjUQSAU4YnVJczPjuOpry1gwcMfsb64aVQmv75gmL+uLuGJ1cVYjXruu2QaNy3KwWb67Cd2zbwMVhU18OKmCl74tILpaTH879WzmJc9tAnoM+sOsru6nd9fN4cH3irg7Z21bC1vYUFuPJNSnEO6bkVRFEUZbVTyq4wqOp0gN9HOf/c1EJFQ3dbJw1fPIsFuYlZGLBtLmke6iD3yBsI8v7GMS09L438um0Gy03zUPDqd4C9fno/LF2RVYQO/freQa57YwD9vX3TMm4IcjwaXjz98dIBzJyfR6Pbz8Lv7uGhGKtfMz2B9SRP/3lFNOCL5zucmD9o6FUVRFGWsUH1+lVHn+xdNpr0zyNPrDjInK47zpmj9iBdNSGRnVRveQGiES3i0BLuJD39wHn+8YV6PiW93MRYjV87NYOUPFhNnNfKPDQcHrRxSSn70+i5e3lzBt1/cxi/eKmDJ9FT+/OV5CCG4fHYa4YjEaTFw6Wlpg7beQ+tWlNHO4w/hC4ZHuhiKoowg1fKrjDpLZ6Vx3pQU3t5Zw/yc+K6uFIsmJvK3T0rIL2tl8ZSBXVg3FJIcfSe9R4qxGLl2fib/2FBGg9t3zLvi9aXB5cMXjPDhvnrW7G/kgStmkJVgo6jezW3nTMBk0I5zz5mUTGqMmS/MScdq0p/w+o60p7qdW5dvYVKKgx9cNIVGd4CCmnYS7SayEmxMS4shPdbSY7cYjz9Eg9tPosNEOCzZXNaCLxhmTmYcOYm2AXelORkEwxGK6txsr2xjf50bjz9EKCKxm/XE2Uykx1mJRCRNHX6cFgPJTjMef5hWT4CvnzMeh7n/m/p6l48V26txmA3csCDruPqlB0IRPtpXj8WoIyvehj8UwR+KYDHqSHFajnlgONjCEUlteyc1bT7avAFWFTWyYnsVEQkLcxO4eVEOn585bljLNBCRiGRvrUv735v05CTau37bvalo9lJY5+KCaSkYe/lfvru7lqfXHeTqeRlcl5eJ2XD0tkFKSXtnEIfZgEGvwx8K094ZRCAIRSJ0+ELYzAbGxVgGNOKPogwHMZDWGiHEUuCPgB54Skr5SF/z5+Xlyfz8/BNen3Jq8/hDzHlwJd9cPIGfLJ020sUZFCWNHVz4+0/48dKpfPv8nu+M5w+F8fjDhCOSJIepKxmsaPby3p5a3t1Tx87Ktq75F09JZvnXF/SaNHr8IcwGXY9JTTgie9xx+YJh9DqBACpavLR4AiQ5zAgBu6ra+ekbu7GbDfhDYVq9wR7Xq9cJLAYdaXFWpqY6cfmClDR0UNPu6zU+45PsXDMvg6YOP7uq25mTGcdls9PI63ZQdCzhiKTR7afFEyDBbup1CL02b4D99R3Uu3yEIhHMBj1xNiOhsMTlCxJrNZLsNKOPrrf7ljM1xkKs1cjOyjb+9kkJOp3AaTZQ3uylqs2L2xfCbjJwxvgEshNtCAQTU+wszE0gJebw8kgpqWzpZHtlKzsr29lR2UpBjQt/KAKA02Ig1mrEoBN4AlqCG4qOICIEHLlJ/+8Pz2NisqPPGG0pa+GfWyopqnOzt9ZFOPp5czJjufXcCWTEWdEJLbn1hyLodYLJKQ7qXD6WrSmlzRtkZnoM7+2po6Kl9zs0Tkl1sHB8AjPTYzl7YhLZibbD3veHtHoejkgiEShr9rCruh0B2M16dlS0saOqnUAoQjgSIRyRCCEw6nWEwhG8gTBOi4FEh4m6dh+VLZ0EwpGuzzcbdFw1NwOnxcDaA03ctCiHr56Z02dsRlogFKG82cOuqnaWrSmlqN7d9Z5BJxifZGfqOCdOixGXT/vtmQ060mOt+IJhnttYTiAcYXKKg3svmcZ5U5K7fvvNHX7+vKqYZ9eXEWcz0uYNkmA3cdbERKanxWDQCepcPgpr3RTWuWj1BtHrBDEWQ6+/c4NOMHWck1npsYSlxBsIYTbosRj1WI16nBYDSQ4TSQ4ziQ4zSQ4TiXYzDotBJc3KoBNCbJVS5h01/USTXyGEHtgPXARUAVuAG6WUe3tbJi8vT17wk6dp7PDT3BEgIrUdrbZT1JMWZyHBZkKvE+iiO9qq1k7Kmj3ohMBs0Gk7HAkRKaMPbSckpcRuMuC0GPAGwrR6Azx7y4KjdizK2HbtExvwBcN8b8kU3L4guUl29EJQ2+7DHwpj0OlIiTGTFW8jxWlGNwY2pjcs20hFs5fbF0/AZjIQlpJ6l4+iOjdFdW7Kmj0cGh0twW4iJ9FGTVsn9S4/AKdlxLJ01jhSnGb8oQhXzEkn1npi4/f+5PVdvLmzmnibliRmJ9g42ORhT3U7fY3QNiHZzgu3noHDYuDdXbXkJtmZnx2PyxekvNnD3lo3tW2ddAbDVLZ0cqDBTazVyMRkBxOT7YyLtdLi8ROOwILceGwmA1srWnl7Rw2by1qwGvVMT3Oyp8ZFIBRhXnYcS6ansr2ilTZvkJQYMy2eAMUNHpKdZialOOgMhKht91Hc0NGVOALMSIshNUZrGe3wh+jwh2jq8OMNnPipcJ2AKalOCuvcJNhNxFmNtHcGyUqwkZNoI9ZqpLkjwKelzTR7Aoctm+QwMyFZq8duf5CDjR480bKYDTpOy4hlblYcc7LimJsVR2a89bDEPxxt8dUJQYLdhCcQotHtx2k2EGczHbNlEOCtnTX86p29TBvnZE5mHF88PZPd1e384q0CWo4o75GcFgNZ8TYK61xMSXXyo89PJc5mpLqtE4tRj9mgwx+KUNbkYV1xEzsq2nD7ta5LM9JiSLCb8AZClDd7j4rNkaxGPXOz4rCbDRii+w6JJBCKYNDpsJn1uDpDNHv8pDot5CTZyE20kxlvJc5qIjv6vzhESjlqzyy0e4O8sKmcZWtKae/UEs2JyXZuXzyBZKcZty/E/no3RXUdFNW76AxEiLFqLfy+QJh6t59wRHLNvAwWT0nmdyuLqGrtJNFuYkZ6DKGwJL+8hWBY8rVFOfzsshlsPtjC61sr2VDSTINb275YjXqmjHMyI83JhCQHLl+QFk+AFKeFBIcJ0BJeu9lAhy9ERYuXPdXt7Kt1YTbosJkNBEIROoNhOgNhPIHQUQdoh9hMeuxmA0kOM+/dfe7QB3kMeGbdQZo6/PiCEZZMT+GsSUl8tLeexz8+oP2OJCQ7zTgtBi0fOiIvktF8qetvt+mHzhIlO80kObS/MRYjvmAYg16QnWAj0W7GoBeYDfp+bUv6srfGRYPbp+V9QsvzjHodZoOuK7+rbuuk0e3HH4pg1GnbtIjUGidavUHtbIMAo06g1+kw6AV3XtBzwxEMTfK7CHhASnlx9PV9AFLKX/e2TF5enoy98XfYTNqRn04IwlI7yvcGwtS2ddLWGfzsyF9K0mKtTEi2I4TAFwwjAJ0Q6HTaX/jsr8cf0lpYoqcCH7pqFulx1hP6fsro9PuVRTz+cXG/5n39W4vIyx28C8mGykd767njha1drW2gteDlJtqZmupkyjgnCTYjEthX66KypZOMeCvTxjm5eOY4shJsvX/4cXp/Ty3bKtpo9QSobuukrMlDRryVM8YnYjboCEYk2Qk2khwmmqIHsDkJNmZnxg1qN4ruGlw+YqxGLEY9Hn+IFdureWJ1CdVtnUxIspMSY6bB7SfWamRSsoMGt5+DTR4cZm3DPjnFQW6SnUS7ifIWL6uLGvD4w9jNehxmQ9fONjXGzORUJ5lx1q7Tui2eACa9DofFQLs3SFNHANmtzVegJV/76zvYVNrM3Ow47rpgEk5Lzwcfh3Y6oYhkX62LLWUtFNa5KW/2IBBYTXrGJ9mZnOpgblYcU1KdvZ6qHky9JYG+YJjyZi81bZ0AmKI7qUAowv56N0IIrpmfgdNixB8KY9LrjplMRiKSsmYPH+2r5+PCBgKhCBajnuwEGxlxVowGXdeOcVyMhTlZsRj1Oto7g+Qk2no8JT9W/HTFbnZWtiHlZ2cODu2DtWna8/bOYNfB7YXTUrhiTjrjk+zMyojtd+toMBzB4w8RZ9MSVH8ozKrCRt7ZVUN1WycRCadnx3PDwiympB4+6ouUEn8oQjAcwWYa3BbZUDhCizdAc0eApg4/TdHGsA5/iA5fCE/0mo5fXzN70NY5li3+7SpqogeSP7hoCt84Zzxr9jfy9LqDXd2ZGtw+PP5wV14k0EZeEuKz1zohQGgH6gLtPbdPO1Bu6vB3nT3qzS1n5fLAF2YO6Lvc/cp23txRM6DPMOq1uhgMy67XBx6+tNf5hyL5/SKwVEp5W/T1TcAZUsq7jpjvduB2gOzs7NPLy9UtXpUT1+YN8OHeeiYkO4i1Gihr8iKBtFgLFqOeUCRCXbuPqtZOrpidPmbuYBYKR3D5QngDIfQ6QZzVNGTJ5MkgGI7g9oVIsJtGuiiK0m+PflBIYa0b7fhAcOg4QUtWPktKbCYDE1PsnDMpidmZJ367eGXs660r2mCKRCRtnUEa3X7aO4PYTHr8oQgVLR7avEFCYcnM9BjOmpQ0oPWUNXlo9miNJlrXJkkgHOnqTiWB9FgLqTEWzEYdwbCkpSOAEBBvNxFvM2I16rsOsCMRSTDaRa03vSW/A7ngraf/xlGZtJRyGbAsWgi3EKJoAOtU+i8JaBrpQpxCVLyHj4r18FLxHj4q1sNLxXv4jFSse+zUP5DktwrI6vY6EzhWe3ZRTxm4MviEEPkq1sNHxXv4qFgPLxXv4aNiPbxUvIfPaIv1QDqTbQEmCyHGCyFMwA3AW4NTLEVRFEVRFEUZfCec/EopQ8BdwAfAPuBVKWXBYBVMURTlZCKEMAshnhZClEe7gG0XQlzS7f0LhRCFQgivEGKVECKn23sXRKe1CyHKevn8u4UQB4UQHiHEPiHElGH4WoqiKGPOgC4jllK+K6WcIqWcKKV8uB+LLBvI+pTjomI9vFS8h89YjbUBqATOA2KBnwOvCiFyhRBJwBvRaQlAPvDPbst6gGeAe3r6YCHEbcCtwGWAA7icwetfN1bjPRapWA8vFe/hM6piPaCbXCiKoignTgixC3gQSARukVKeFZ1uR0te50kpC7vNvwTthkK53abpgPLo8v8dxuIriqKMSUM/gKSiKIpyFCFEKjAFKABmAjsPvSel9AAl0enHkhl9zBJCVEa7PjwYTYoVRVGUIwxktAdFURTlBAghjMCLwHIpZaEQwgE0HjFbO+A8auGjZUb/fh44DYgDVqKNyPP3wSmxoijKyWNYWgaEEEuFEEVCiGIhxL3Dsc5TjRCiTAixWwixQwiRH52WIIT4UAhxIPo3fqTLORYJIZ4RQjQIIfZ0m9ZrbIUQ90XrepEQ4uKRKfXY1Uu8HxBCVEfr9w4hxKXd3htT8Y62yD4PBNAuGgboAGKOmDUGcPfjIzujf38rpWyTUpYBTwK93/bos7JkRS+k2yeEKBBC3B2drur3EOgj3idN/R4thBAWIcRmIcTOaKwfjE5XdXuQ9RHr0VuvtdttDt0D0KOdvpsAmNBO7c0Y6vWeag+gDEg6YtpvgXujz+8FfjPS5RyLD2AxMB/Yc6zYAjOiddwMjI/Wff1If4ex9Ogl3g8AP+ph3jEVb7SbAz0LrAKs3abfDqzv9toOeIFpRyy/BCg7YpoN8AOLu037IbCiH+VJA+ZHnzuB/dGYqvo9NP//3uJ9UtTv0fSI/tYc0edGYBNwpqrbwxrrUVuvh6PldyFQLKUslVIGgFeAK4dhvYoW5+XR58uBq0awLGOWlHIN0HLE5N5ieyXwipTSL6U8CBSj/QaUfuol3r0Za/F+ApgOXCGl7Ow2fQVan91rhRAW4H5gl4xe7CaE0EWnG7WXwiK08dWRUnrRRob4sRDCKYTIBL4JvHOswkgpa6WU26LP3WjDVmag6veQ6CPevVHxPkFS0xF9aYw+JKpuD7o+Yt2bEY/1cCS/GWjD+xxSRd8/duXESGClEGKrEOL26LRUKWUtaBtdIGXESnfy6S22qr4PnbuEELui3SIOnaocM/EW2ri9dwBzgTohREf08RUpZSNwLfAw0AqcgXbjoEMWo3VveBfIjj5f2e39u9C6TtQAG4GX0IZGO57y5QLz0FptVP0eYkfEG8Z4/R6NhBB6IcQOoAH4UEqp6vYQ6SXWMErr9XAkv6KHaWp8tcF3tpRyPnAJcKcQYvFIF+gUper70HgCmIiWONYCv49OHzPxllKWSymFlNIipXR0e7wYff8jKeU0KaVVSnm+1PruHlp2dXTZ7o/zu73vklLeIKV0SimzpJS/lNHzi/0RveDuX8D3pJSuvmbt6av1dz2Kpod4j/n6PRpJKcNSyrloF4UuFELM6mN2FesB6CXWo7ZeD0fyWwVkdXudidY6oQwiKWVN9G8D2inUhUC9ECINIPq3YeRKeNLpLbaqvg8BKWV9dOMaQRvB4NApMhXvARLayBP/Al6UUr4Rnazq9xDpKd6qfg8tKWUbsBpYiqrbQ6p7rEdzvR6O5HcLMFkIMT7aR+0G4K1hWO8pQwhhF0I4Dz1HG/JoD1qcvxad7WvAmyNTwpNSb7F9C7hBaLeyHQ9MBjaPQPlOKod2VlFXo9VvUPEeECGEAJ4G9kkpH+v2lqrfQ6C3eKv6PfiEEMlCiLjocyvaxaKFqLo96HqL9Wiu10M+zq+UMiSEuAv4AG3kh2eklAVDvd5TTCqwQtuuYgBeklK+L4TYgnb71FuBCuC6ESzjmCWEeBk4H0gSQlQBvwAeoYfYSikLhBCvAnuBEHCnlDI8IgUfo3qJ9/lCiLlop8bK0PrOqngP3NnATcDuaH89gJ+i6vdQ6S3eN6r6PejSgOVCCD1aQ9+rUsp3hBAbUXV7sPUW6+dHa71WtzdWFEVRFEVRThnDeoe3pKQkmZubO5yrVBRFUZRRqaatk0SHGbNB3YlaUYbC1q1bm6SUyUdOH9bkNzc3l/z8/OFcpaIoiqKMOuXNHs57dDV3XTKNO86bONLFUZSTkhCivKfp6nBTURRFUYZZvcsPQKs3OMIlUZRTj0p+FWUMKW/28Ov39hEMR0a6KIqiDECD2wdAe2dghEuiKKcelfwqyhjy3MZynvyklI/21o90URRFGYCGQy2/HtXyqyjDTSW/ijKGfLK/EYDnP+2xG5OiKGNEfbTlt9WrWn4VZbip5FdRhkCrJ8BTa0sH3D0hEpE8tbaUyhYvVa1eihs6yE6wsaGkmeIG9yCVVlGU4dYYbfltU31+FWXYqeRXUYbAy1sqeOg/+3hlS+WAPmfNgUYe+s8+7n9zD2v2NwHw2y/OxqTX8cKnFf36jNLGDjYUNw2oHIqiDK5DLb9to6TPrxrzXzmVDCj5FUKUCSF2CyF2CCHUGGbKkNte0cp3X96OP9TzzWDqXb5eN+IVzV5WFzWws7JtyC8YWx9NNv/40QE8/tAJf84z68sAWFXUyJNrSsiIs3LG+AQuPW0c/9padczP3lreypV/Wc9Nz2xmd1X7CZdDGTuklKw70EQ4opKZ0ayh22gPI5145pe1MPvBleypPnwbccfz+Vz1l/WsO6AOnpWTy2C0/F4gpZwrpcwbhM9SlD69tKmCt3bW8GoPLaoVzV7OfuRjXt9a1eOyX//HZm55dgtX/mU9f/hwf5/rKWvy0ODSWmY6A2EeeKuA6rbOfpXRFwyTX9bKwtwEmjr8/H1t6VHztHfb4e2uaueWZzfT3nn46c8D9W7W7G/kzgsmkhZrobzZy+IpyQghuGlRDm5/iDd31PRYBm8gxPMby7jp6U0k2k0k2k3c8/pOAiE1SsTJbmNpM199ehMf7VMXRY4mVa1eHnirgBc3af3166Pbl0AoQmdw8O7sGgxHeOS9wn5vrwA+3FeP2xfi52/uIRI9aGrzBli5t5491e189elNvLy5f2eaFGUsUN0elDFDSsnaaAvEX1eX4A+FWXegqatFc+XeOkIRyb93VB+1bGWLl5JGD988dzwLcuP5z+7aPltbvvGPLfy/F7cB8OaOav6xoYxfvb0XgKfWlnLObz7mkfcKqWr1HrXstvJW/KEId5w3gUtmjeOptQfxddu5tXcGOeuR//LkGi0p/vvaUlYXNbJsTQkARXVulm8o43/f3YfJoOMbZ4/n+0umAPC5aSkAzM+OZ3paDM9tLDvse2wtb+FnK3az6Ncf8/M3C5ieFsOrdyzioatmUVjn5m+flPQv2MqY9fG+BgCKGzpGuCRjTzgiaerwD+pnBsMRfvN+Iec/upp/bCjjidUl+IJhXL4QmfFWYHD7/eaXtfK3T0p4YnVxv5fZcrAFq1HP9oo2Xt+mNR58WtqClLD8GwuZnOLgrV4OtBVlLBpo8iuBlUKIrUKI23uaQQhxuxAiXwiR39jYOMDVKaey4oYO6lw+Lp+dRm27jy89+SlffXoT33phK+GI7Grp2ljSfNQObM0Bre59aUE2V83LoLzZS1F9zxeMtXoClDZ52Freyp7qdl7ZUolOwPsFdTy1tpRH3itECC1pvfLP67tacA5ZX9KEXidYOD6B6xdk0eEPselgS9f7n5Y24wmEeWbdQVo8AT4oqMOk1/HMujJWFTVwzV/X84u3ClhV1Mj1eZkkOsxcl5fJ699axJLpWvIrhOCmM3MorHOzraIVbyDEfW/s5tonNvLGtmoWT0nm9W8t4vVvLSIlxsLnZ47jijnpVLR4R/wUqzK0VhVpyW9po2eESzJ8whHZ1WI5EL95v5DL/rSW5kFKgJs7/Fz/5EaeWF3C1fMy+PrZuVS1dnYdmExNdQKDO+LDpoPNALy5vYbOwLFblH3BMLur27l5UQ7zs+P4zXuFeAMhNpQ0YTPpWZCbwOempZBf3jKgLlyKMpoMNPk9W0o5H7gEuFMIsfjIGaSUy6SUeVLKvOTko26vrCj9tiba6nvvJdM4PSeeHZVtnDs5ieq2TlZsr2ZLWSsXTkshIuH9PXWHL7u/kYw4KxOT7Vw0IxUhYGVBz6eFd3fr9/bAWwXsqGzjh5+fyrgYCw/9Zx8pTjPv3HUu7373XDqDYb7z0nZC3foQry9uZk5mLE6LkUUTErEa9Xzc7RT0of7ADW4/d7+yHX8owqPXzSYYjvD1Z7cQazXy0Q/OY/PPLuSXX5gFaMluXm4CQoiuz7lybjpOs4Fbnt3Cgoc+4pUtFdxx3gTy/2cJj98476j5H7t+Dr+7bs5h05STS0WzdoYD4GBTzy2/Fc1e2k6C4bUiEUl5s4c//fcACx/+iGv/tqHrxhEn4qVNFSxbU8rSmeNIdJgHpYwvfFrBjso2/vzleTx63RwumKodvK4q1A5Qpo7Tkt/BbPndVNqCw2zA7Q/x7u7aY86/o7KNYFiycHwC9106nWZPgNe3VrG+uImF4xMwGXScNyWZYFiysaR50MqpKCNpQMmvlLIm+rcBWAEsHIxCKUpP1h5oZEKyncx4G098ZT4rvn0Wz96ygLRYCw+8VUA4Irnzc5OYkGw/bKMfCkfYUNzMuZOTEEKQ4rQwPzueDwrqelzPrqo2AK6Yk05+eStGveDGhdn87LLp2E16/vClucTajEwd5+Thq2exuayFJ1Zr3QlcviC7qto4e1ISABajnrMnJfHfwoauFtf1xU2cOzmJnEQbaw80MTHZzhfmpHPzolwS7CaWf2Mhk1IcpDgt6HS9J6p2s4FfXjWTJdNT+eLpmbz8zTO575Lp2M2GHuc36lUvp/4azovFpJTsq3UN6DP2VLdT2eLtavU9a2IiB5uObvmtbuvk0v/P3nmGx1VcDfid7eq9y+py790G9xqa6Z2EhAChBEgISUg+EkhIICGNQCAQOphmmuk2uOBuS+6WLav33lda7WrLfD92LUu2ZMu2mu15n2cf7c69d+bs0ey9Z86cOfPvjfzfJwfOqL3+pqrJyuacGrbl1bLucBU/fWc3Yx9bzZyn1vOPb7IYEeVPZrmZy5/dfNyirZ7wwc4SHll5gLnDwnjkkpG9JvfmnBrGxARwydhoAEZF+wOw1vN/GtrLnt82h4tdRfVcPSmWxFAf3utBtpk0z6zU5PhgJscHMSEukGfX5pBb3cIFye772KSEILz02vYZNIXibKfrp2QPEEL4ABoppdnzfjHwh16TTKHogM3hZFteLddPiQMg3N9EuL8JgJumxfG31VmE+hoZHxvIxWOi+M+6HKqarIT7m9hT3IDZ5mD20KMzD4tHRvDEV5kU11kYEuzdqa19JY0khvpw77wUPttbxuJRkQT7GLh0XDRLRkVi0B01Iq+YEMuHO0v5YFcJ985PYWNWDS4JF3qMX4AFI8L59lAlWZXNBHjpya1u4fopcWg0gj9+fpCrJsUihOCRS0bwy6XDMOm1PdbLFRNiuWJC7Gnp9HzAaneekj6P8PBH+9BqNPz5itF97il/N62Yhz/az6u3TmGeJ6a7I1LKdhn2lTTwpy8OkRrhy5SEYBaOiODzfWX85uMDGLQawv2NJIR4M394OFtya2mwtBHobWiv5+GP9tNsc/Dd4WrsTteADYj2FDcQ5mckJtDrhOdZ7U6ue3Ebe4sbOpUHeOm5dFwUY2MDmZoYTHKYLwdKG7n9jXSufG4Lv1w6jCWjIgnxNeBt6P4xZ4Dh/NkAACAASURBVLU7eeSTA6zYWcK0xGCeuWECul7SSYvNwa6iem6fndReFuJrJCrAfU+Co8Zvb3l+95U0YHO4mJ4UQmSAiSe/ymRfSQNjYwO7vWZHQR3DIvwI8NYDcOfsJH7ylnu9w4zkEACMOi0zk0PaN9lRKM52Ttv4BSKAjz03ZR3wtpTy616RSqE4hs05NVjtLmalhh537Pqpcfx7bQ4LR4Sj0QiunBjLc+tzeXZdDn9YNpo1mVVoBO1eDICloyN54qtMPtldyk8XpHaqb39pI1MTgxkW6ce/b5jAxLijD46Ohu8RloyK4JGVGeTVtPDNwQqCvPVMig9qP35kqnNNZiWRHoN9ZkoIiaE+NFrauGlaPOAObTgdQ6032FPcwI78WiL8TcQFezMiyu2hyqtuwcugJTbIq91QarLaabTYjxs0DASNrXbqWtpIDPU57tiK9GKe+CqTNT+fQ5CPocd1bsmp4f30Eu6am9znhu+RTUwA/rb6MHOHhXVqs6Tews0vbWf+8AgeWJTKvW/vpsHSRkZZE29tK8Kk17T/LpwuyZbcWm6dmUBCiFsf+TUtTIhzf/f30orZkFXN3GFhrD9cTVpBHTOTj/899TVmq51r/7sVg07DHy8fxcS4IHKrm3l7exF51S08e+NERno8pG9tK2RvcQP3L0hlWmIwErdXfmpi8HG/ldExAXx53ywe+mAfj39xiMe/OIROI7h4bBS3XZjImJiATrqtMlu5442d7C1p4L75Kdy3IPWkhq/LJU84G9OR7fm1OFyy00AYYFR0AOWNVnQaQVKY+//UW2EoR9YWTE0MZkZyCK9uzucXK/by6b0X4nBJrHYnoR1COhotdnYV1nPFxJj2skUjI0kI8aah1c5Iz30AYM6wMNZkVvG7lQcI8jZw19xkTHothbUtNLU6GBMb0CvfQaHoD07b+JVS5gHjelEWhaJbXtlUQIS/kVmpx8eNh/oa+fjume1epMRQH26YOoTl24sYExPASxvzWDgiot2zARAf4sOs1FDe3FbInXOS243aKrOV8kZru6fksnHRJ5Vt3vBwWJnBqowK1mZWsWhkZKeHaGSAidEx/ry0MZ9wPyPBPgZGRPqj0Qh+vnjYGemlt9icU8NTqw63f9ZpRLuhceRzbJAXAV56DpQ1oRGw4iczGT+ke49SX7OnuIF7396Fj0HHV/fPOs4oGRsbSF1LG69uKeDni4b2qE6r3cnDH+8nIcSb+48ZFPUF32VXk1vdwvzh4azNrGJVRgVLR0cB0GxzcNtr6ZQ2tPLK5ny+3F9OldnK+3fOYEJcEDsL61m5p5QgbwP3L0xFKwSrD1YwPSmE2ha3MeU2foPYmlvL71ZmMCMphGdumMCkP37LusyqATF+1x+ups3pIjbYi5+9t7e9PNTXgEYIrntxKy/cPIkxsQH8Z10OF6aE8rMe/v+CfAz87/uT2JJbS2lDKwfLmliRXszKPWUMjfDl8gkxLBsfw478Wp74MhOz1cF/b57EklGRJ617T3ED17+4leU/nt5pcNsdm7JrMeo0x507Ktqfbw9VEu5nxKTX4m3QUt9Lnt/t+XUMjfAl2DPY+8tVY7n11TRufXUHGWVNSAnP3jiBqAAvHv/iIJtz3DNV8zvMOGg1gmdvnEi9pa3Tb2rBiAj++vVhVqSX0Gp3YmlzcNfcFK59YStVZht3zEriwcXDunQQKBSDjTPx/CoU/cLBsiY25dTwy6Xd31hHRXf2OjywcCif7C7joQ/2ER/izVNXHz9O+9GFifzw1TS+OlDOsvFuz8eRtGljT8GLERvkzbAIP17ckEeT1cGikRHHnfOXq8by5y8PsTmnlsvHR/fYe9Rf3D03mVtmxFPVZCWnqoV9JQ0IAcMj/Wm1OymsbaGgxkJNs407Zyexck8Z972zmy/uuxA/k/7kDXjYV9KAr1FHUpjvKclX02xjRXoJV02MIdzfxPLthfx+ZQYR/ib+fOWYLvU5LNKPRSMjeG1zPnfMTsK3m1hogLSCOt7YWsj+kgYKay28/eNpZ+SFrzbbeG59DjGBXkxJCGbcMYMEl0vSZLXz0sY8IvyNPHfTRC7690ae+CoTo06LUafhqdWHyalu5rUfTiG9oJ6n12TzwMJUJicEA27v3tTE4E71HjGcvQ06tBpBfk0LhyvM3PFGOnEh3jx/80T8THqmJQWzNrOK3158NL61qNbCX77OJL+mhXvmpTA6xp+vDlRQWGvBbLUzNjaAhSMiCPExYjJoMOpOTz/fHKwkxMfA1/fP5uuMCuwOF6F+RmYkhVDdbOOWl7dz40vbiQowUW+x86ulw0+pfiFEe8w9wM8WDeWzvWV8vLuUv359mL9+7R7kjYkJ4NUfjjnu3tEVUkqe+PIQVruL1QcremT8bs6pYUpC1x5qgDDPLFCgl75Xwh4cThc7C+q4cuLRMKi5w8K5aVocy7cXsWRUBEV1rfzotTQ0QuBn0nH33BQWjAhnQlzn73NExo7EBHqx/9HFCCH47cf7eWlTPtvz66hvsXPJ2Ghe2JDHip0lLBoRwbVThnTS0Qvf5fLNwUqW3z7ttPuNQtGbKONXMSgprG3h76uzCPDSU97YirdBy01T43t8faivkZ8vGsqz63L43/cnd/L6HmFOahhJoT68simfy8ZFI4Rgd1EDGnF0YUpPmT8inOfX52LUaZg99Hhv2qjoAJb/eDp51c29tpK8NxFC4G/S42/SkxLux9LRJ/aEzR8eznUvbuOhFft49kZ3nGRpQys7C+upaGzlyomx7dOrR2JWV2VUcM/yXei0gj8uG801k4ccV6/D6Tpu6vnzfWX8bmUGdS1tvLI5nyWjInhrWxHzhoXxr+smdPm/PcK981L45mAlb20r5Cdzko87XtVk5ek12SzfXkSor4HxQ4K4e24KM1N65hHNq27moQ/2UdfSxtLRkdwyPZ5IfxM/e28PmzpsKf3IJSO57cJEAFZlVPB/nxyg2uxOp/XQEnec9x+Xjeb+d3fzw9fSALcn9O/XjGNWahizUsO4elJse17Yk2HQaRgS5EVeTQuPfHIAo17D6z+a2h7/O29YOH/4/CAZZY1ICcu3F/HhrhJ0GkFUgIl73t7VXleorxGTXsPn+8r585eZgNs7OC42gJnJocxMDmFifFCPBgttDhfrMqv43hh37PyxMysxgV6svOcC3ksr5t20Ym6YGnfG0+kBXnpunh7PzdPjKaxt4cv9FUQHmrh0bM8HoeuzqtmeX4dBp2nP1nIiqsxWDleauXxCzHHHjtxbwv3cv49Ab0OvhT3895ZJncIaAP6wbDQ/nZ9KZICJFpuDRz45gEGn4ZdLh7d7iHvKkbCRhy8awXdZ1ewraeR3l4zkRxcmcu3kWFakl/DF/nKGR/m1G7/b8mp58utMpIQV6SXcPP3k93EpJfk1LXgbdEQGmLo9b29xAyt2FpNR1sTk+CB+c9EIlc1G0SNEf+b8nDx5skxPV7sgK7rG4XSxv7SRbw9V8sqmAjQC7C5Jm8PFrTMTePSyUadV54ni+N7cWsAjKzOYlhhMcrgv7+4oYlJ8ECt+MvOU2kkvqOPq/25l4YhwXvrBlFOW82zkpY15PP7FIRaNjCA13JcXNuS1h0kMj/Tj1R9O4YkvM1mVUcG4IYHsLqpnVHQA3gZte2zqI5eMRKsRNFrsPLhiL9vzarlnfgrXTxmC2ergia8O8eX+CsbGBnD33JR2z+RVE2P5y1VjerQ46ZaXt3OwrIk1D85pN/5a25w89lkGH+4qwemS/PCCRH6+aGi3mTK6Ym1mJfe+vRuDTsPo6AC25tXiY9Ayb3g4K/eU8ecrxrBoZASPfHKArzMqmDssjGarg/TCekZG+XPVpFhCfAwsHR3Zbji2OVysOVRJq93JRWOizsj7fOurO9iRX4elzckfl43ilhkJ7ccKalqY+7f17Z+NOg1XTozl/gWphPkZ+WR3KfUWt0EfG+SO7S6us7A5pwZLm5PqZhvb8mrZV9KI0yUx6DRMigtiTGwAiaE+jB8SyLAIv+OMy43Z1dzy8g7+9/3JXc6QDDZe3JBLWYOVNZmVCASXj4/mmXU57Py/RSc0HNML6vjJWzt59dapxxnvUkpm/XUdl46L5ldLh3PTS9tobXPy0d0X9PXX6VUOljWxJbeG2y5M7GRw2hxOnC6Jt0FHg6WN7z29EZNei79JR7XZxrqH5gKgEQK9VsOB0kY+2FlCdpWZqiYbXgYttc1tlDa0otcKvj8jgfvmp3Ya5DqcLp5dl8Mza3Mw6TTEh/hwsLyJn85P4cFBEkqmGBwIIXZ2tQOxMn7PEqSUWO0uvAwDN2UkpaSp1YFLSkx67SnL4nC6KKi1EBlgwteo48v95Tz++UFMBnfcW3ZlMzaHCyFg4YgI/rBsFEadlm8PVbJkVCQBXj2fXu8pTpfk9S0FvLAhlyqzje9Pj+fBJcPwP4Wp/CP13LN8FzdPj+fCLhblnau8vqWA33+aAcA1k2K59YIEqsw27nxjJxKJwyW5bFw0hyvMRAaY+PcNE/Ax6Pjzl4d4eVM+C0dEkBrh3j2qymxl/JBA0grq2+s3aDXcvzCVO2cnodNqaLLaSS+oY+7Q8B577TLKGrns2c1cMSGGv10zjmabgx+9lkZ6QR03TYvntgsTSehiwdyJqG22seAf3xEd4MXLt04mKsCLwtoW7nt3D3uLG1gyKoL/3jwJIQROl+TxLw6y5lAVob4G5gwN5665yX0eG/nYZxm8urmA2CAv1j4497j2Pt1bRm2zDV+jjgUjIk7ZCwjuxWtpBXVsyallW34tWZXN7Vto+5t0TEkIbg/P8DPpeWpVJt9lVbP7kcUDei/rKfP/vp4as41QXyOPLRuFj1HHlc9t4dkbJ7SnL+uOI8/WrjyRjRZ7e+jIPW/v4lB5E2sfnNsXX2FAeXt7Eb//9AAf330BdS1tfP+VHVyQEsKeogbsLklskJd7Ua1ey7BIPyL9TVgdTow6DRemhpFR2sj76cWE+Br50+WjuSAllMwKM//3yQEOlTdx5YQYHl02Cj+jjl9/uJ/30ov569VjufaYWSUpJa9sLuC7rGpCfQ0kh/kyNTG4fQFyWkEdOwvrsbQ5sTmc2OwubA4XVruTOksb1U02piYG89DSYQyPPLVZQcXAoozf08Tl2Tlsxc4Syhtb0Wo0/P7SkUzsECNV1tBKgJf+hF6jIzsG9WTKu9ps450dRSzfXkhrm5MgHwPVZhuWNidB3noSQ31IDPVlTIw/F42NItyv87TQ1txaPttXxrxh4cQGefH0t9nk1TQzNMIdA3lkuk9KSXWzjfIGK5Y2J1aHE6vnb2ubC5eUCAHlDVZyqprZXVxPZdPRnY8CvfVMigvinvkpnfRxRG+7i+t5d0cxe4obcLgk5Y2tWO0u/E3uh+0ne0oZGeVPXLA3zTYHQyP8GDckkFkpoae0Or83sDmcNFsdgzIkYbCzMbsao07bKf50VUYFf199mN9cNIK5w45P3wVuz/GfvjyEVghGRPnzh2WjmBAXxJbcGg6UNuKl1zIjOZSU8FOLD+6Kp1Zl8p91udw6M4GN2dUU1Fr453Xje7SgsSseeHc3X+wv54v7ZrWnqwL3VrarMiqYMzTslGKh+4IjsxpPXT22yxCTvsDlkpTUt7KzqI4d+XVsz687bqe5m6fH8fjlY/pFnjPl2OwODqeLCX/4hkvGRfHElWN7pY3ffryfrw5UsOuRRb1S32CjsLaF+BAfpJRc98I2dhfXc8nYaML8jGRVmpmSEMzN0+O7dW4cKG3kFyv2kllxdEfOCH8jj102ulN4lt3p4kevpbE1t5bXfzSV6UkhHCpvoqbZxtvbi1h9sJLkMB8sbU7KG4/fDMXfpCPQ24BRp8Go17TH3gd66wnwMvD5vjKabQ5umBrHQ4uHUdNso7DWgrdRS2ygN0OCvU4YcuFyST7dW8bazCqK6iw4XRI/kw5fow5fz18fo47bLkw8LnRFcfqcE8av1e6krqWNFpsDvVZDY6ud3OpmvA06xsYGEBVgau98NoeTnKpmmq3uFCxOl2RHfh02hwtfo46N2dVszK4hLtibmCAvduTX0dhq57Jx0SwdHUlCqA9rD1Xx3PocsiqbiQ4wMSzSj6zKZiqbrFw/dQheei1pBfXsKW4g0FvP7bOSCPDSU222MSzSj6ERvrTYnHyxv5zXthQgpeSKCTHEBXtT0WQlKdSXlHBf9hY3kFlpRq8RngdHPVLC3GFhxAd7U2exE+prINTXSGlDK/nVLeTVNFPZZEMj3IsafnhBAg6X5NM97oUdWo1on4L2M+qYnBDE4QozZY1WxsQE4GvUsa+kgZYebH+p1QiGBHkxbkggo6L9MWg1tLQ5KW1o5esDFdS1tHHxmCj+dMVoDpWb+c+6HPYUN9Bsc+Bj0DIzJRQvvZYQXwPDI/1Yc6iK1QcrWTQygmdumDBg6b0UA0+jxY63Udvn+WatdieXPLOJnKpmxg0J5P4FKcwffnrT7t9lVfODV3Zw3/yUQZOtoysaLXY+21fGDVPj0A7gAstqs420gjrMVjtTEoJJDPU5q+Myb38jncyKJjb+cn6v1Pe3VYd5bn0OOX+6aNAthO1tWmwO7E5Xe/hRT2lzuPh4dwmNrXa8DTr37pZdDC6brHaufn4LZQ1WDDoNdZ6sJzqN4OGLRvCjCxIQQlDX0sauwnrqLG04XZIxMQGMjPI/of4bLG08vSabN7YW4pKSY02nmEAvwv2NNFsd+Jp0hPq637e0OYgP8aG4zsKe4gYi/U0kh/tg0GpotjkwW92vljYHLTYHax+cOyjSSJ4r9InxK4RYCjwNaIGXpJRPnuj80zF+q8xW3t5exLrMKvaWnHjnHqNOQ5ifkdY2J/WWNo5s0qTVCATg6LBrk14rmJIQTGlDK2UNrUyMC8LLoGVDVjUdTmNYhB93z0vm4jFR6DwG928/3s+qjAq0GkFiqC+XjotiR34d6w93nQBcCLhyQizeBi3vpxdjc7jw82w/eeR4XLA3Urq9qfOHh3PJ2OiTerxyqsx8sruMd9OKqGl2/8gNOg23XZjIPfNS2JRdTVGdhWsmDSHIx4DLJfl4dyn/WZeDt1HLxLggUsJ9iQ7wwtuoxUuvdYczeP5qBLgkBPsYup2ibbE5eHlTPv9ek42XQYvZ6iA6wMT8EeFMjAti8ajILlfZVzVZCfU1nvM3e8XgodFip9XuPOECmp6wKqOClzbm8eZtZ5YRQnF2ciTUZ8ND84gLOXMj5Ujs/N7fLT7h4k1Fzyipt3DP27uJC/Zm4Qj37OeQIO/2TZHOlEPlTXyyu5TkcF9Sw31ptTvJrWpmS24tzTYHvkYdTVY7NeY2/Ew6vAxa8mtakBIeWJjKVRNjT/jc67ipjeLM6XXjVwihBbKARUAJkAbcIKU82N01p2P8FtdZmP3UOiYMCeTC1DCiA0x4G3U4XS689DpSwn0wWx3u7T3rW6lqsuJt1BHqYyA1wg8fo5bdRQ24pOSClFCCvA3Ut7QxIsq/fWq949RWZZOVXYX15NW0MCzCj/nDex5bmF/TglGnIdjHQGaFmfyaZvyMepLDfduT8FvaHAgEXgYt5Y2t5FQ1Myo64LTi7Y5gtTtZc6iKAC/35goDEUu3v6SRx784yIzkEH4yJ1kZBYpzGvWAOn+paLSSUdbIBSmhvXKf+3BnCQ+u2Mt3D80lPuTUYs8VCsWJ6QvjdwbwqJRyiefzwwBSyie6u+Z0wx46btGpUCgUCsW5wppDldz2ejqT4oMI8NKj1QiCvPX8tYvc5AqF4tTozvg9kzy/MUBxh88lwLQuGr4DuAMgLi7utBpShq9CoVAozkXGDQlkVmooZquDarMNh0titvbOjm8KhaJrzsT47WrO7zg3spTyReBFACGEWQhx+LirFH1BKHDybOyK3kLpu/9Quu5flL77j3Zdv3fnAEtyfqD6dv8xULrucleVMzF+S4CO+XNigbKTXHO4K/ezovcRQqQrXfcfSt/9h9J1/6L03X8oXfcvSt/9x2DT9ZnkF0oDUoUQiUIIA3A98GnviKVQKBQKhUKhUPQ+p238SikdwL3AKuAQ8L6UMqO3BFMoFIpzCSGEUQjxshCi0BMCtlsI8b0OxxcIITKFEBYhxDohRHyHY/M8ZY1CiIJj6o0TQjQf85JCiAf78espFArFWcMZZZaXUn4ppRwqpUyWUv6pB5e8eCbtKU4Jpev+Rem7/zhbda3DvUh4DhAAPAK8L4RIEEKEAh95yoKBdOC9Dte2AK8ADx1bqZSySErpe+QFjAFcwIe9JPfZqu+zEaXr/kXpu/8YVLru1x3eFAqFQnEUIcQ+4DEgBLhVSjnTU+6De3HIBCllZofzF+LeUCjhBHX+HpgrpZzXl7IrFArF2Urf7imqUCgUii4RQkQAQ4EMYBSw98gxKWULkOspP1W+D7zeGzIqFArFuYgyfhUKhaKfEULogeXA6x7Pri9w7P7tjYDfKdY7C4gAPugNORUKheJcpF+MXyHEUiHEYSFEjhDi1/3R5vmGEKJACLFfCLFHCJHuKQsWQnwjhMj2/A0aaDnPRoQQrwghqoQQBzqUdatbIcTDnr5+WAixZGCkPnvpRt+PCiFKPf17jxDiog7Hzip9CyE0wJtAG+5FwwDNgP8xp/oD5lOs/gfAh1LK5h7KMsSzkO6QECJDCHG/p1z17z7gBPo+Z/r3YEEIYRJC7BBC7PXo+jFPuerbvcwJdD14+7WUsk9fgBb39F0SYMA9tTeyr9s9315AARB6TNlfgV973v8a+MtAy3k2voDZwETgwMl0C4z09HEjkOjp+9qB/g5n06sbfT8K/KKLc88qfePeHOhVYB3g1aH8DmBzh88+gAUYfsz1C4GCbur2wu0tnn8K8kQBEz3v/YAsj05V/+6b/393+j4n+vdgenl+a76e93pgOzBd9e1+1fWg7df94fmdCuRIKfOklG3Au8CyfmhX4dbzkdi/14HLB1CWsxYp5Qag7pji7nS7DHhXSmmTUuYDObh/A4oe0o2+u+Ns0/fzwAjgUilla4fyj4HRQoirhBAm4HfAPulZ7CaE0HjK9e6PwiTc+dU7cgXQgNuw7hFSynIp5S7PezPutJUxqP7dJ5xA392h9H2aSDdHZkD0npdE9e1e5wS67o4B13V/GL8xuNP7HKGEE//YFaeHBFYLIXYKIe7wlEVIKcvBfdMFwgdMunOP7nSr+nvfca8QYp8nLOLIVOVZo29P3t47gfFARYecvDdJKauBq4A/AfXANNwbBx1hNtAKfAnEed6vPqaJHwBvSI9r5TTkSwAm4PbaqP7dxxyjbzjL+/dgRAihFULsAaqAb6SUqm/3Ed3oGgZpv+4P41d0Uabyq/U+F0gpJwLfA+4RQsweaIHOU1R/7xueB5JxG47lwN895WeNvqWUhVJKIaU0yQ55eaWUyz3Hv5VSDpdSekkp50opCzpcu95zbcfX3GPqXyKlfOR0ZBNC+OLOC/yAlLLpRKd29dVOp83zmS70fdb378GIlNIppRwPxAJThRCjT3C60vUZ0I2uB22/7g/jtwQY0uFzLFDWD+2eV0gpyzx/q3BPoU4FKoUQUQCev1UDJ+E5R3e6Vf29D5BSVnpuri7gfxydIlP6PkOEO/PEh8ByKeVHnmLVv/uIrvSt+nffIqVsANYDS1F9u0/pqOvB3K/7w/hNA1KFEImeGLXrgU/7od3zBiGEjxDC78h7YDFwALeef+A57QfAyoGR8JykO91+Clwv3FvZJgKpwI4BkO+c4sjDysMVuPs3KH2fEUIIAbwMHJJS/qPDIdW/+4Du9K36d+8jhAgTQgR63nvhXiyaierbvU53uh7M/VrX1w1IKR1CiHuBVbgzP7wipczo63bPMyKAj933VXTA21LKr4UQabi3T70NKAKuGUAZz1qEEO8Ac4FQIUQJ8HvgSbrQrZQyQwjxPnAQcAD3SCmdAyL4WUo3+p4rhBiPe2qsAHfsrNL3mXMBcAuw3xOvB/AbVP/uK7rT9w2qf/c6UcDrQggtbkff+1LKz4UQW1F9u7fpTtdvDtZ+rbY3VigUCoVCoVCcN/S557cjoaGhMiEhoT+bVJwn1DTb8DHo8DJoB1oUhUKhUCgUg4CdO3fWSCnDji3vV+M3ISGB9PT0/mxScY7x1rZCnlp1mI2/moe/SQ9AVqWZxf/cwIwR4bz0gykDLKFCoVAoFIrBgBCisKvyftneWKHoDax2J//6NpvGVjtbc2vby9/eXgTAppwarHYVoqVQKBQKhaJ7lPGrOGt4Z0cRNc02tBrBxuxqAFrbnHy4q4TYIC+sdlcno1ihUCgUCoXiWJTxqzgrsNqd/Pe7XKYlBjNvWBgbs2sA+GxfGWargyeuHIO3QcuazMoBlrQzm3NqePRTldxEoVAoFIrBgjJ+FWcFG7NrqGyycdfcZGalhlFYayGnysz/NuSRGu7LhSmhXJgSytpDVQymDCZvbi3ktS0FNLbaB1oUhUKhUCgUKONXcZaQUdaIEDA1MZhZqaEA3PHmTrKrmnn4ouEIIVg4IoKyRiuHys0DLK0bKSXphfUA5FU3D7A0CoVCoVAoQBm/irOEg2VNJIb64G3QkRjqQ2yQF3nVLVwzKZb5wyMAmDvcnc1k7SAJfSiqs1DTbAMgt7plgKVRKBQKhUIByvhVnCUcLG9iZJQ/AEIIlo6KZEiwF/93ycj2c8L9TIyLDWBNZlV31fQrOz1eX1CeX4VCoVAoBgvK+FUMehpb7ZTUtzIy2r+97DcXjeDbn88hwEvf6dz5wyPYU9zQ7nEdSNIL6/Ez6UgK9SG3l43fr/aX83+f7O/VOhUKhUKhOB84qfErhHhFCFElhDjQoSxYCPGNECLb8zeob8VUnM8cKm8CaPf8Amg0AqPu+N3cFowIR0pY1wfeX5dLcrii5/HEOwvqmRgXRHK4b6+HPTyzNoe3thWxr6ShV+tV0ucJMQAAIABJREFUKBQKheJcpyee39eApceU/RpYI6VMBdZ4PisUfcLBMo/x28Hz2x2jov2J8DeyNrOKnCozK9KLcbnc2R8aLG2YraefdeGdtCKW/GsDu4vqT3puY6udrCozk+KDSA7zpbC2BYfTdcJrWmwOiussJ607v6aFg54BwfJtRT0TXqFQKBQKBdAD41dKuQGoO6Z4GfC65/3rwOW9LJdC0U5GWRNhfkbC/UwnPVcIwfzhEazJrOJ7T2/koQ/28ZuP97PucBWz/rKOX6zYe1oySCl5fUsBACt2lpz0/J2FdUgJk+ODSA7zwe6UFNe3nvCav60+zMX/3kib46iR7HRJfvvxfq5+fgtXPreZQ+VNfLm/HIA5Q8P4dG8ZTWdg0CsUCoVCcb5xujG/EVLKcgDP3/DuThRC3CGESBdCpFdXV59mc4rzmY6L3XrCpWOjaHO4uHRsNHfMTuLdtGJ++GoaLW0OtuTWtnuCT4Xt+XVkVTYT6mvgs71lJ91G+f20EgK99UyMd4c9AORWHY37dXYhw+acGpqsDg6UNbaXbc2tZfn2IuxOF4W1Fu55exef7C5lUnwQDy4eSqvdycrdpaf8fRQKhUKhOF/p8wVvUsoXpZSTpZSTw8LC+ro5xTlGVqWZnCpzj0IejjAzJZR9jy7mH9eN5zcXjeC3F43g2smxPHbZKMxWB1lV3cft7iys5z/rckgvqKOqyUp5YytWu5M3txUS4KXnySvHYrY6+Obg0XRqm7JryK48WmdxnYXVByu4cWocJr2W5FC38ZtX4zZ+q5qsTH78G95LOxqyUN/SRlal+/iO/KMTLZ/uLcXXqOO9O2fwzI0TyK9pIbuqmYvHRDE2NpCxsQE8vSZbZZNQKPqBikbrQIugUCh6Ad1pXlcphIiSUpYLIaKAwZFbSnFO8NX+cj7fV069pY2tebV467V8b3TkKdXhbzqaBeL22UkAFNa6F52lF9QzPLJrY/rPXx7qlKKsIz++MJF5w8OJCjCxfHshUxODeX1LAc+tzyXQW89Hd80kKcyXN7YWIITglhnxAAR46wn1NZBb5W7/X2uyqbfY+WR3GddNiQMgrcBt8Bq0Grbn1fKTOclY7U6+OlDBklGRmPRaZiaH8tP5qbzwXS4XjYkC4B/Xjue6F7Zy80vbef8nM4gN8j4lPSkU5ztOl2RjdjU5Vc1cPzUOX+Pxj0WH08UfPj/IG1sL+e/NE1k6OmoAJFUoFL3F6Rq/nwI/AJ70/F3ZaxIpzmuK6yzc/94eAr30RAaYuGtOMrfPSiLIx3DGdccFexPqa2RXYT03T48/7rjZamdPcQO3zkxgelIwtS1tCAQ1zTZqmm3cMTsJrUZw8/R4nlp1mGl/XgPAlRNiWJ9VzQ9fS+P6KXG8m1bM90ZHEhXg1V53Upgvm3JqWJVRwXtpxfiZdOwoqKPRYifAW8+O/DoMOg2Xjo1mdUYFTpdk/eFqzFYHl42Pbq/nZwtTue2CRAK83cZ9Srgvb942jetf3Mpdb+3iw7tmYtCpDIYKRU+oaLRy9X+3UOKJx38/vZiXvj+FuJCjg8hGi51739nFxuwavPRaXt1ccELjd29xA6kRvngbTvfxqlAo+pqT/jqFEO8Ac4FQIUQJ8HvcRu/7QojbgCLgmr4UUnH+8ORXmWgErLz3gk7GY28ghGBSfGD7lsPHsj2vDqdLsmRUJDOSQ7qt5+65ycxMDmFnYT2RASYuHhPF7uIGbvrfdv7ydSYxgV7cOz+l0zU/WziUe97exZ1v7sTHoOUf147n9jfSWZ9VxbLxMewoqGPCkEBmDw3lw10lHCpv4pPdpYT4GLiggyxCiHbD9wgjo/156ppx3PnmTv7+zWEe/t4IwO3ROlDayLghgaerMoXinOZ/G/Mob7TyzA0T8DXpeODdPVzzwha+e2geJr2W/JoWbnstjeJ6C3+9aix1ljae/CqT7EozyWG+tNqd+HTwFH97sJIfv5HOrNRQXr11CjqtGoieLq9vKaClzcHdc1NOfrJCcYqc1PiVUt7QzaEFvSyL4jxnR34dX+wv5/4Fqb1u+B5hcnwwqzIqqTJbj8sesSnH7dmZGH9iY1EIwYS4ICbEHU1vPTEuiB2/df8k/Ez6466ZkRzC1w/M4smvMpmeFMKC4eGE+hpZfbCSBSMiOFDayL3zUpiSEAzAbz7ez76SRu6cndSjB+iSUZHcOC2OFzfkUW22ER3gxSd7SilvtLLxl/OIDuxan40WO8t3FHLt5CGE+hpP2o5Cca7QYGnjnR1FXDYumkvHuWdX/n3DBH7wyg5WH6xk6ahIbn5pO5Y2B2/dNo1pSSHUNtv4x+osnl6TTUl9KwW1Le3hTjXNNn790T5CfY1szK7hia8yeaTDDpSKnuNwuvjXt1k0ttpZMDyCYZF+Ay2S4hxDDUsVA0JVkxV7h7y3h8qbuOutnUQHmLhzTlKftTspwW2w7urC+7spp4apicFdbp7RE/xM+i4N3yOE+5n4x7XjuXbyEDQawcIR4Xx3uJqnv83CJWFaUgjRgV4MCfZiX0kjV0yI4RdLhvW4/UcuHsmycdF8d7iaZ9flEBPoxTM3TCDMr3uj9jef7OevXx/mkn9vYmfhsRkNzz2klLyfVsyB0saTn6w4p3lzayGWNid3zD56v5mVEkpMoBfvpxXz0a4SShta+ed145mW5J59CfE18r0xkXy+r5wcT/aW299IJ72gjruX76Kp1cHyH0/j1pkJvLwpnw96kBbxXMPudPHBzhJ+/HoaH+wsOa3sOjsL66m32HFJeGpVZh9IqTjfUUFJin5lf0kj//w2i7WZVUQFmLhmUiw2p4v30oox6bS89eNpfRorNyraHy+9lrWZVZ3i9sobW90LXqYM6bO2j2XRyAjeTSvmfxvzmZUayqR4t2H+4KJhlDdauXN2EhqN6HF9XgYt/7p+AlJKzDZHp0V/XfH5vjK+2FfODVOHsCmnhque38rwSD+unBjDrTMTTzl2uKbZRpC3Ae0pyNyfSCl57LODvLalgOgAE6t/Pue4xU1vbi3g64wK/rBsNMlhvj2qt66ljcZWOwkh3ggxOL/7+UZRrQUhICrA1OXMSWFtC69szmfusDBGHLNz5LWTh/DPb7PIrjIzJiaAOUM7Zym6b0EqWiG4b0Eq5Y1Wbn55O1f/dyveBi2PXzGaYZF+/PbiEWRVmvnNx/tJDvPpNEvUH1Q0Wgn3M57S/aM3KG1o5eaXtpNf00KAl55vD1Xx9Jos2hwu6lvsOKVkTEwAn9xzwQnr+eZgJQathh/PSuS59bnsyK9jamJwP30LxfmAkPLUR2Wny+TJk2V6enq/tacYPNidLp7+Npvn1ufg76Xnxqlx7CluYEtuLQathhHR/jxz/YROC036it98vJ8Pdpaw+Vfz272i7+wo4uGP9vPV/bM6PQz7EpdLsiqjgtExAQwJ7t8sDVVmK0v+uYG4EB8+/MkMWtqcvJ9WzKqMCtIL60kN92XJqEiqzFaumzKESfEnfvAU11lY/M8NzB0WxnM3TRyURuCfvzzEixvy+N7oSL7OqODWmQn8/tJR7cdrm23M/us6WtqceOm1/OmK0Vw5MfaEde4srOOHr6bRZHUQG+TFxLgghkf5uY0ujYb0gjrqLXbumJ3E6JiA05a9wdLG5pxawvyMDI/yO+nApi9wOF18e6iSlHBfkkJ9qW62odWIPgmXcbrkaQ+iVqQX89AH+wDw0mu5ZUY8d85OIsQjZ0FNCzf8bxtWu5P37pzB0IjOU+qlDa1c+Je1SEmPMjt8faCC4joL104e0ikev76ljWX/2YzV7uTt26eTEt6zwVRPWL69kOfW5fKzRUO5amJMp9/b8u2F/PbjA0xJCOIvV40lqYeDuNPFbLVTXNeKn0nHD17ZQXWzjX9cO54Fw8NZubeUz/aWE+JjINjXgE4jiArw6nLB8RGklMz923oSQ314/qZJzP3bOsL9THxyzwWDdmCtGLwIIXZKKScfV66MX0Vf4XC6qLfY+S6rmufX55Bb3cK1k2N55JKR7eEBja12fI26fr2p5VY3s+Dv33HfglR+vmgoVU1Wvvf0RsL9TXzx0wv73VsyENQ02/j9pxn8bGEqKeGdH/5rMyt55JMMyhtbMeq0mPQavrx/1gnjsO9evpMv91cA8Mdlo7hlRgLgNvDXZ1XxxtZCNELw6KWjuhzgVDZZ2ZZXS2GtBT+TjknxQYyN7b2Fejvy67j2ha3cNC2Oxy8fze9WZrB8eyErfjKz3eP++OcHeWVzPm/dNo1/r81mW14dd81N5qHFw9BoBE6XJMuz0EmnEXy2r4xffbiPqAAvfjAjni25tWSUNVHacHQnPy+9Fr1WYLY5uHFqHI9dNuqUFkHlVjfzj2+yWJ1Rgd3pvlfrtYJfLR3ObRcmdjnIkFJSbbYR5mfs8SDE6ZJkV5kprLXgb9J3ueDzsc8yeHVzQbsMdqdEr3VnP/nxrCSiA0ynPeiRUrKrqIGv9peTVliPlJJP773wlOtJK6jjxv9tY0pCMJeNi2ZrXi2f7S1Dr9VwydhoTHoNH+0qxcugZfmPp3U70L39jXRK6lvP+H6QVWnmxv9tw+mSvPrDqYzvhcWn+0oauOr5LZh0Wsw2B9OTgvnTFWOICfTi9S0FPPFVJpPig8iuNNPS5iQ60MTY2ECevHLMcWFZVruTTdk1NLbasTlcWO1OogJMLB0d2aP/ZU6VmVte3kG5J/+xSa/hrdumMTnh9L20WZVmFv9zA3+6YjQ3TYtn5Z5S7n93T/vnE9Fic3CgtJHMCjN2pwshBGarnTaHi1BfIyOi/JmeFDwoB+eKvkEZv+c4TpfkYFkTW/Nq2JpbS251C+OHBDJ+SCB6nQZfo7Y9B2xlk5XsymYyK5q4d14qY2JP7JE6VN7EnW/uxO50oRGCkdH+TEt0P1z8vfRszatlb3ED2VXNhPkaifA3sSGrmu35tRwJ9xoe6ccvFg9j4ciIvlZFj/jx62nsKmrg1Vun8NSqw6QX1vHZvReSGqEWVoDbaHW4JCX1Fi55ZhOjYwJ46QeT8TXoyKoyU2NuY1pSMHqthm15tVz/4jYeWJja7s1/cNFQRkT58/fVh9lb0kiEvxFLmxOnSzItMZiGVjtXTYzlpmlx/GddDn9bndWpfY2ABxYO5Z55Ke0Do/qWNp7/Lpf1h6uYlhjC0tGRTEsMPs6YzK9pYX9pI7NTQwn0NmC1O7nIs2306p/Nxtugo8lq56KnN2JzuFh5zwXYHC6W/GsDl42L5m/XjMPudPG7lRm8s6OIqQnB3D47if9tyGNHQR2B3nrC/YxkVTYzLjaAl2+d0sn7abbaqTbbsLQ5GRrhh9Xh5Olvs3l5Uz4XjYnkV0uHs6uoHpcL/L30VDRZKW9oRacRBHobmJ4Ugt3p4t20Ilakl2DSa7l28hAuGhOJ2epg+fYivj1UyczkEC4fH0OYv5HsSjMVjTaqm21sz6ulymxjztAwHr98dKdZBZdLcrjSzJbcWnYW1qHVaNBrBBuya6hptrWfd+vMBH578Qj0Ht1+uLOEB1fs5cZpcYyLDSC3uoXYIC8OlTfxXloxLgmB3nouHx/DzxYNJcDrqJFVVGvhi/3lWNoc3DgtjqgAL9ocLl7fUsALG3IxaDXodRoKay0YdBrGxwYyLSmYny8aepyRUtbQyrrDVRwobaK+pY3JCe5Bkp9Jx9cHKnh5Uz5hfkY+ufuCdi9sTpWZVzYXsHJ3KXaX5PLx0dwzL4X4EJ9u+7/V7kRKdyjRmVJQ08L3X9lBZZOVRy8bxfVThpy28dVktXPJvzfhcLr4/L5ZrMqo4IkvD2G1uzDpNTRZHSwaGcGzN06g0WLnrW2FFNRa+HJ/OZPig3j9R1MB2JZXyzcHK/l0bxlmq+O4du6dl8KDi4/XP8DuonqeWnWYAC892/Jq0Wo0/HLJMKqbbVyQEnrKBv6+kgY+3l1KVZONeksbxfUWiuta2f6bBUT4m5BScv2L2zhcaWbtg3MJPibtpZSSHfl1vJtWzJf7y7F12B7+CFrP4BVgTEwAt8yIZ87QMCL8TcedqzhzpJSDZoDRJ8avEGIp8DSgBV6SUj55ovOV8ds3tNgczHxyLY2tdgCSQn1ICfdlV1FDpwdaR4SAxBAffn/ZqONi2o6luM7CP77JQq8VWO0u9pc2kl/TglYj2suEgNggL2qb27C0OUkO82HhyAhiAr1IDvNlZnLIoPkxAGzPq+W6F7e1f/7zFWO4cVrcAEo0ePloVwk/f38vAN4GLZY299bO4X5GUsJ92V3UQLCPgTUPzqHF5uCu5bvad6mL8Dfy0JLhLBsfTbXZ7W0urW/FJSWZFWbGDQlkb3EDl46L5s7ZSaRG+NLYaueJLzP5eHcpKeG+XDEhhrzqFr4+UI7F7mRKfDD7SxtptTvdW0jHBRHopafe0kZ2VXN7zlYfg5bFoyLJKGskq7KZN340ldkd+npWpZmrntuCj1FHbYsNvVbDqgdmtxuLUkreSyvmb6sPU9Pchp9Rxz3zUzhY1kRBbQs/vCCBy8bF9HjW4qWNeTz+xaEuj+k0AqeUdLwdG3Uarp4Uy88WDe1kXEspeWNrIc+tz6Gy6ejv28egJdDbwPghgSSEevPq5gJa7U5CfY0Eexsw6DSUNrRS19IGwJBgL3QaDWarg2mJwSwcGU5ymC8r95Tx8qZ8Qn2NJIX6UNFkpajOwoykEN68bepxg43c6mY2Zdewu6ieT/eWEeRtYGJ8EEadhv2ljRTWWgD3gEarEcSH+FDVZKXJ6mBWaihhvkYaWu0sGhnBpeOiu9xk4ghHUokFeOnx99JRXNfa6fjikRE8csnILsOIWtucOFyuEy5K7Stqmm387L09bMyuYdn4aP513fjTuh+uzazk7uW7OnlXq802/vltFq1tTq6eFMuMpJDjvNUr95TygCd/emOreyGZl17L4lERXDNpCHHB3hj1GgxaDX9dlck7O4q5ZXo8985P6WQgljW0ctmzmwHw99Lha9TxzA0TTjiQ6I7KJiv3LN9FemE9Jr2G6EAvgrwNBHnrmRQfzF1zk9vPzao0c/G/NxIX7M0Lt0wiJdyParOND3eV8H5aMXk1LfgZdSybEM2C4RGMjPbHpNcipWyfWay32PnmYAXPr8+lwNMnb5+VyG8vVhk5eoLd6eL99GJig7wJ8TFQ2tBKTbMNX6OOEB8jccHeHChr5J0dRSwdHXlSL31/0evGrxBCC2QBi4ASIA24QUp5sLtrlPHbd/x99WGSw3yZkRzSfrOSUlLb0oZLSppaHZTUW9AIQZifkYQQnzPyauRVN/PhrhJabE7mDQ9nSkIQ3gYdLpek3tJGsI9hUBm7XbEtrxaz1UGor9tgGOzyDiRbc2vZXVxPRaOVMTEB+Jl0vJ9eQmWTlcnxQdw4Lb5TOqKcqmb2lzaweGRkpzyoR3C6JE+tOsx/v8vl5ulx/OGy0Z0e2FJKPttXzqub89ld1ICfSceSUZHcPiuJYZF+tLY5+S6rmlUZFWRVmmlsteNv0pMY6sPUxGCGRvixfHshG7NrGBnlz2Xjo7lh6vGDmw1Z1Ty4Yi9LR0Vy55ykLnfIa7Y5+GxvGXOGhnWbMq6nrDlUSXGdhWlJIXjptTS22onwNxHh7zZuK5qsbMquQUpYMjqykwf1WKR0e3EbLXaGRvgdtxFMaUMrK9KLqWi0UtfShsMlCfI2MDM5hBnJISf8Ll8fqGD1wQpK6loJ9jEwKT6I66YOOWms8YHSRp5ek01xnYVmm4ORUf5MSwphsWfG57UtBZTWtxLsa2DxyAjmDgvvqeoAsLQ5qG1uIzbICyEEZQ3uhaqNrW4dDOaUWC6X5PnvcrE7XTywcOhp11PTbDutOOuVe0pZc6iKhFAfJgwJZEZyCCb98c8Al0vy2GcZvLGtEK0QJIf5YtRrCPM1UlDbQmWTjU/umXlcuNSp4nC6uOXlHSwcGcG1k2NPOijZklvDT9/ejdnqwNuoxWx14HRJpiQEcd2UOC4aE9mjxdIul3vgvTG7muFR/id1/ijcFNVamP3UupOeFx1g4oGFQ7m2HxePn4i+MH5nAI9KKZd4Pj8MIKV8ortrlPGrUCg6UtVkPWlsanmj2wA73RR0CoXi1CmsbeHtHUUU1LRgtbuoMtswW+38cdlo5g0/tUFLb1He2MpLG/NxOF0Eehu4dFx0ry4kVHSPyyWpNFspqW+lxmwjOtCLCH8TzTYHVWYrxXUWIgO8uDAldFAtTOzO+D2TnFIxQHGHzyXAtC4avgO4w/PRJoQ4cAZtKnpOKFAz0EKcRyh99x9K1/2L0nf/Meh1Pf/XAy3BUX5+5lUMen2fQwyUrruMvzgT47cr0/44N7KU8kXgRQAhRHpXFrii91G67l+UvvsPpev+Rem7/1C67l+UvvuPwabrM9nhrQToGNQRC5SdmTgKhUKhUCgUCkXfcSbGbxqQKoRIFEIYgOuBT3tHLIVCoTi3EEIYhRAvCyEKhRBmIcRuIcT3OhxfIITIFEJYhBDrhBDxHY7N85Q1CiEKuqh7vBBio+d4iRDid/30tRQKheKs47SNXymlA7gXWAUcAt6XUmac5LIXT7c9xSmjdN2/KH33H2errnW410nMAQKAR4D3hRAJQohQ4CNPWTCQDrzX4doW4BXgoW7qfhvY4Ll2DnCXEOKyXpL7bNX32YjSdf+i9N1/DCpd9+smFwqFQqE4ihBiH/AYEALcKqWc6Sn3wb04ZIKUMrPD+Qtx51RPOKYeCzD5SKpJIcQKYNeJsu8oFArF+cqZhD0oFAqF4jQRQkQAQ4EMYBSw98gxKWULkOsp7wn/Ar4vhNALIYYBM4Bve1dihUKhODdQxq9CoVD0M0IIPbAceN3j2fUFGo85rRHo6U4CnwNXA61AJvCylDKtl8RVKBSKc4p+MX6FEEuFEIeFEDlCiEGUJfDcQQhRIITYL4TYI4RI95QFCyG+EUJke/4GDbScZyNCiFeEEFUdc1SfSLdCiIc9ff2wEGLJwEh99tKNvh8VQpR6+vceIcRFHY6dVfoWQmiAN4E23OsmAJoB/2NO9QfMPagvGPga+ANgwp2FZ4kQ4u4eXDvEs5DukBAiQwhx/5E6Vf/ufU6g73Omfw8WhBAmIcQOIcRej64f85Srvt3LnEDXg7dfSyn79AVocU/fJQEG3FN7I/u63fPtBRQAoceU/RX4tef9r4G/DLScZ+MLmA1MBA6cTLfASE8fNwKJnr6vHejvcDa9utH3o8Avujj3rNI37vzorwLrAK8O5XcAmzt89gEswPBjrl8IFBxTNhmoP6bsAeDzHsgTBUz0vPfDvWX9SNW/++z/352+z4n+PZhent+ar+e9HtgOTFd9u191PWj7dX94fqcCOVLKPCllG/AusKwf2lW49fy65/3rwOUDKMtZi5RyA1B3THF3ul0GvCultEkp84Ec3L8BRQ/pRt/dcbbp+3lgBHCplLK1Q/nHwGghxFVCCBPwO2Cf9Cx2E0JoPOV690dhEu4Uk+A2oIQQ4kbPeZHAdXSIIe4OKWW5lHKX570Zd+aeGFT/7hNOoO/uUPo+TaSbZs9HveclUX271zmBrrtjwHXdH8ZvV9sgn+jHrjg9JLBaCLFTuLeUBoiQUpaD+6YLDMyG7Ocm3elW9fe+414hxD5PWMSRqcqzRt/Cnbf3TmA8UCGEaPa8bpJSVgNXAf/P3n2HR3Wcix//znatdtW7UEEgIXrvxsbGvde4xQHXxIlv7NSbOM1JfrlxnJv4Ok63sY17NzaOG7hhwCBEB1GEeu/S9j6/P3aRBUiIIgkB83mefVZ79pTZV7O7786ZM/M7oIPwVPE39dj8bML9ed8DsiN/fwQgpbQB1wLfi2y7FdgZ2dexlC8XmEq41UbV70F2SLzhFK/fw5EQQiuE2Ao0AyullKpuD5I+Yg3DtF4PRfJ7VNMgKydsvpRyGnAJ8B0hxNknu0BnKFXfB8c/gFGEE8cG4E+R5adMvKWUVVJKIaU0SSktPW4vRJ5fJaUslFJGSSkXSikre2z7WWTbnreFPZ7/REo5U0oZK6VMk1LeLaV0HW3ZhBAW4A3ggUgy3eeqvb20oz2OEtZLvE/5+j0cSSmDUsophGegnSWEmHCE1VWsT0AfsR629Xookl81DfIQkFLWR+6bCZ9CnQU0CSHSASL3zSevhKedvmKr6vsgkFI2RT5cQ8ATfHWKTMX7BInwyBNvAC9IKd+MLFb1e5D0Fm9VvweXlLIT+Ay4GFW3B1XPWA/nej0Uya+aBnmQCSGihRDWA38DFxI+7fkOsDiy2mLg7ZNTwtNSX7F9B7hJhKeyHQnkA0UnoXynlQNfVhHXEK7foOJ9QoQQAlgK7JZS/rnHU6p+D4K+4q3q98ATQiQLIeIif0cRvlh0D6puD7i+Yj2c67VusA8gpQwIIQ5Mg6wFnpL9T4OsHJtU4K3w5yo64EUp5QdCiI2Ep0+9E6gGbjiJZTxlCSFeAhYCSUKIWuBXwMP0Elsp5S4hxKtACRAAviOlDJ6Ugp+i+oj3QiHEFMKnxioJ951V8T5x84HbgB2R/noAD6Lq92DpK943q/o94NKBZUIILeGGvlellO8KIb5E1e2B1lesnxuu9VpNb6woiqIoiqKcMQa95benpKQkmZubO5SHVIYxKaHD5SPebED01v1dURRFURTlOG3atKlVSpl86PIhTX5zc3MpLi4eykMqw9j7Oxq494XNPHD1BG6bk3Oyi6MoiqIoymlECFHV2/Ihmd5YUXqzpaYTgJeLqk9ySRRFURRFOVOo5Fc5abZWdyIE7Kq3sbOu62QXR1EURVGUM4BKfpWTwh8Msb2uk+umjcCo0/CSav1VFEVRFGUIqORXGRIdTh/tTl/3472Ndjz+EOcUJHPZxHTe2VpPq8N7EkuoKIqiKMqZoN/kNzIfc7MQYmePZQlCiJVCiNLIffyR9qEodz9bzJKnvxrDekuQjhTwAAAgAElEQVR1BwBTs+P45jmj8AVD3P/yFoIhNfSeoiiKoiiD52hafp8hPCVgTz8BPpZS5gMfRx4rSq9q2l0UV3WwvbaL8hYHAFuqO0myGMmMi2JMmpXfXj2Btfvb+O83tvPx7iZsHv9JLrWiKIqiKKejfpNfKeVqoP2QxVcByyJ/LwOuHuByKaeRFdvDU3YLAe9ubwBga00nU7PjiMxKx9dmZLFkXi6vb6rlzmXFXP3XtTi8gUEtV7PNQyAYGtRjKIqiKIoyvBxvn99UKWUDQOQ+pa8VhRD3CCGKhRDFLS0tx3k45VS2YlsD07LjmJmTwLvb69lU1UF5q5Np2Qf3lnnoyvFs+cUF/O2WaVS2OfnZWzsYrBkI9zbamfvwJ8z43Sp++uZ23D41i6WiKIqinAkG/YI3KeW/pZQzpJQzkpMPm2RDOc3tb3awu8HGFZMzuHxyOvuaHNzxzEayE8zcPCvrsPXjow1cNimd751fwNtb63lzc92AlcUfDHW39L5UVI1WCBYWJPNSUQ3/Wl12Qvv2BUKc+7+fsXzLwJVXURRFUZSBd7zJb5MQIh0gct88cEVSThdSSv69ugwh4LKJ6VwyIR2NgEAwxJOLZxBnNvS57bfPHc2kEbH87dP9hAboIrglTxfxjaeKcPuCLN9ax4XjU/m/m6Zy2cR0/vV5OU02z3Hve1+TnYpWJ1+Utg5IWRVFURRFGRzHm/y+AyyO/L0YeHtgiqOc6lrsXm745zoefn8PD761k1eLa7lnQR4pMSaSrUb+cN0klt0xi4JU6xH3o9UI7pg/kvJWJ2v2n3hCGQpJNlV1sK6sjSVPF9Hp8nPjzHDL848vHkMgFOJPH+09pn0GQ7K7JXl7bXiSjn1N9hMuq6IoiqIog+dohjp7CfgSGCOEqBVC3Ak8DFwghCgFLog8VhTW7m9lY2UH//y8jJeKqrnn7Dx+cklh9/M3zMhiRm7CUe3r0onpJFmMLFtXecLlqm534fGHSIg2sKGincy4KOaPSgIgJzGaJfNyebW4ls/2NiOl5M3NtazrkXS7fAdffBcIhlj8VBE3P7EegB114amaS5vtarg2RVEURRnGdP2tIKW8uY+nFg1wWZTTwK76Lgw6DZ/+cCFlzQ4W5Cd1j+hwrAw6DbfMyuLxT/dT3eYiO9F83OXaG2mR/dMNk/nDB3v4xtxcNJqvyvX9C8bwRWkr33tlKxdPSOOlohqMOg2vfnMuu+pt/OLtnfzphslcPTUTgN+/v6e7Rbqhy93d8uvxh6hpd5GbFH3cZVUURVEUZfCoGd6UAVXSYKMwzUpmXBRnFyQfd+J7wC2zcwBYvvXgC8mklMc0EsS+xnDyO2tkAu/fv4BbZmcf9HyUQcvfb52GPyh5qaiGW2dnk2QxctvSDTz41g4E8IcP9uDxB3lzcy1L11SwqDA8yMn7OxrZ12Rn3qhE4KtEuzevFdewvrztqMutKIqiHJvSJrsaxlI5IpX8KgNGSsmuehvj0mMGbJ9psSYmjYjjs70HX1P58+U7mfv7T3hrS+1RJcF7m+xkJUQRbdT1mZDnJVt4+vaZ/N+NU/h/V09g6ZIZSOCi8aksXTKThi4PP3h1Gz9+fTtz8hL4523TyU4w88QX5fiDkmunjQC+SrQPtafRxo/f2M6dz2ykotV5bIFQFEVR+lXZ6uSi/1vNk2sqTnZRlGFMJb/KgGno8tDp8jM+Y+CSX4BzxySzpaaTdqcPgE/3NvPChmoCIcn3XtnGz5bv7GcP4QvRxvRzkR3AzNwErp6aiRCCwrQYih48n39+fTrnFCRzdkEy/9nRwOgUC//+xgz0Wg2LxqbQ0BUeJWJOXgJZCVHsbbLTZPPw+MelB7U+/PmjfVgMOvQ6Dd9+YTMevxpbWFEUZSB9sKuRkIQXN1QP2EhByulHJb/KgNlVbwNgXEbsgO733DEpSAlflLZg8/j56Rs7KEi1sOa/z+XGGVm8VlxDq8N70DY9P/R8gRDlLU7GpPWf/B4qyqDtbil+6IpxXDs1k2V3zCLGpAfg/LGpAMSb9eGpmlOt7Guy89A7u/jTyn3d/YK31XTyUUkTdy3I49GvTWF3g43HPyk9rngop75XN9ZQFpnq+1QRDEm21nQO2sQzijIQPtzViEGrobrdxZeqi5nSB5X8KgOmpN6GEFB4HEnmkUzMjCUx2sCq3c384NVtNNs9PHL9ZEx6LXefPRJ/UPJacW33+k+tqWDybz6iqCI8K3d5q4NASPY7vFp/8pIt/PnGKaTGmLqXzcxNwGrUMXFEeKrmglQrpc0O3t/ZCMBHJU0A/OXjUuLNeu44K5dzC1O4cnIGS9dUnNDYwsqp6cNdjfz4je38/r3dJ7soR83jD/KdFzZz9d/Wdk9RrijDTWOXhy3VnXzrnDxio/S8VFR9soukDFMq+VUGzK76LkYmRRNt7HcQkWOi0QjOGZPMim31rCxp4peXj2NKVhwAo1OszBqZwEtF1QSCIR5bVcpv3i3B5Qvy49e34fYF2Rvpg3s8Lb/9Meg0/PO26Tx4aWH3MaSEjFgTiwpTWFnSRGWrk0/2NnPb3FyskRbjH1xYQCAoeezjwWv99QaCFFe2D8iFH75AiOVb6vjha9uo73QPQOnOTDaPn1++vRONgE/2NA9aLN2+4FG30PbX/aau083Xn9zAhyWNWI06Xt44OAlFp8vHqpIm1pW1UtXmPG1bmD3+IEvXVLC5uuOkHL+xy9Pdhex0s7Ik3Ohw5ZQMrpmayUe7mthe23mSS6UMRwObpSinjU1VHSRZDOQkHv2QXbvqbUzLiR+U8iwqTOXNzXV8Y24OS+aPPOi5W2Zl88ArW1nwyKc0dHm4dmom10zL5LalRTz41g7sHj86jSAvyTIoZZs/Oqn77ylZcei1gp9fPg5/MMTHe5r58Rvb0QrBrT1GmMhJjObW2dk8v6Gaq6dkMmvk0Y19fCx+95/dPPtlFUkWA+cUpJBkMTAmzdp9YV5vWh1eog06ogza7mXbajr51vObuvs2f1nWxvN3zWbkKTScm5SS/3ppCzXtLn522bhBiXdPbl+QVbubWJCf1D2ToZSS364oocXu5S83T+W+F7fwanEND5xfcNC2dZ1u/IEQuUnRdDh9/HN1GXPzElk4JqXf43r8Qf73w70sXVtBssXIOQXJ/OyysYfNpljd5uI/Oxp4b0cDO+q6WJCfxN0L8piWE48l8uPV6Q3w5uZaHvlgL0Ep+evN0yhrcfDnlftOaOhBhzfA4qeK0GsFF49PI85sYH+zg2XrKrF7vxpPOy3GRHaCGQTMyUvkhukjeGdbPZ/uaebRG6eQlXD48TtdPprtXoIhyZhU60HDGZ6oUEiytqwVnUZDdqKZzLio7ueCIcmrxTXUtLvQaTVsqe5gS3UnFqOOUSnR/O7qieQmRVNU0c5P3txOeYsTq0nH8u/MZ1Ry759L1W0uhKDX13k8vIEg//q8nL9+uh+DVsMD5+dz/fQRxEbp6XT5aXV4GZVs6Y5ZIBhiXVkbW2s6KWtxYNBqSLIaMWg1xJv13DQrG5Ne289Rw6SU+IMSg+7w9rZgSFLT7sKg0+D2B1lV0kRlm4vfXzux3/0GQ5JAKIRRp8UfDLFiWwN5ydGMTrGyZF4uK7bVc+Vf13LN1Ey+c+5oRqcMzneAcuoRQ/nresaMGbK4uHjIjqccn2XrKnloxS5io/Q8f+dsEqINrNrdxLljUg76IK7vdFPf6cZq0vPEF+W8vqmWX1w+jjvPGnmEvR8fKSUbKtqZkROPTnvwB6jHH2TRnz4n2qjlu4vyuXRCOhqN4Gdv7eCFDeFWqgX5STx35+wBL1dvPP4gJr2WLref6b9dSSAkuWxiOn+7ddpB67U5vFz3j3XUd3p4+LqJR0xKj9WeRhuXPvYFi8amohGwpbqTTrefeaMSeeb2WX1u95M3tvP6plrGZcQwLTueEfFR/OmjfSRaDPz26gkkRRtZ/HQRDm+A7AQzU7PiuO+80WTFm6nrdJMaY8Kg01BSb+PV4hq+uyifhOi+p7EOBEOH/T8Hw9tb67j/5a1YjDoc3gD/dd5ofnDhmEE5lt3j585niimqbCdKr+WGGSO4ff5IXiuu4e+flfGdc0fxo4sKuW3pBvY3O/jix+ei02pYV9bKXz/Zz7qycD/FuXmJ7Guy0xZppbth+giMeg1lzeHEKd5sID7aQLxZT5xZT1mLkw92NlLd7uLaqZkEQpIPdjYyMima5+6cRUyUnlW7m1i6poIt1eHWsMlZcUzPjuedbfXd/ebTYkwkWgxUtjpx+oLMGpnA/14/mexEM/Wdbub/4RPuO/fw+AWCIbbVdrGluoO85GjmjUo6LDmSUnL/y1t5d3s9uUnRlLd8NerJxePTWDwvF4CyFgcbKtpptXvxBILd5QXQaQQzcxN48e7ZCCGQUlLW4mDpmgpe31SLPxj+Tps8IpYHLx3LyORoYkz6o07UehMKSX62fAcvFdV0LxufEcMF41IZlWzhxQ3VfFnehlYjCIYk+SkWZo1MwBcIsXJ3E4LwtQtvbqkjMy6K711QwP+8t5vYKD2P3TSFsekxdLn9tDl8GHUa3t1ez18+3o9EcudZeVw9NYMEs4GUHl2ujkWzzcNdzxazvbaLyyal4/QG+GxvCxA+e+ULhM8OJVmMzMiJxx8Msa22k1ZHuO5lxkURDEnanN7u+E4aEcs/vz6djB4/AnqL28rdTTy6ch/7mx3MHZVIQaoVu8ePzR2g3eVjd73toB89EO7q9tq35nb/zzz+IJf95QvSYk2kxphIjzXh9YdYsb2eTpefiyeksbfRzp5GOw9eWsg9Z48Cwmda/v5pGc+sq8AbCLGoMIWbZ2UzJSsOhzdAeYuT0mY7GiEwG3REG7Xhe4OWmCg9abEmEqMNJzxkp3LyCCE2SSlnHLb8RJJfIcTFwGOAFnhSSnnEmd6ONvk9UKa+KlwoJGl1eulw+nH7g8SYdGQlmNFpBIGQxOMP4g2E8AZCtDt8lDbb8QZCZMRFUZBqIT227zfr8fAFQjTbPTR2eWi0eWi1ewlKMOo0FKZZGZseQ7RRh9MbYGVJU/cv6Ra7F7snQJLFQHpsFOlxJjRCsL/ZQYfLRyAoKUyzsmhsKokWA6GQxOYJ4A0EsZp0JEQbmZIVh5QSmztAk91Dk81Dk82L0xtgek48WQlmNla00+X2k5ccjV6rodPlx6jXRL40DRh1GqraXOyo6+LTPc18VNLEuWOS2dfkoMvtxxcI4QuGMOo0fH1ODokWAztqu/gwclUthL+Q7jk7j/vPz8eoO/4vmePlD4bQacRBdcYfDFHW4iAtxkRslP6kfIDdtnQDX5S28so9c5idl3jY850uH/c+v5kvy9t4//4FjB2AYeKklNz65AZ21dv47IcLie+RfPqDIfRHSDbXl7exel8Lm6o62F7bhdsfZFx6DM/cMZMUa/iLt6LVyQvrq6hud7G6tIVAUGIx6eh0+clKiOKaqSN4YnV597Yv3j37sJZHKSVPra3kD+/vIdasZ2ZuPD+/bNwRv0gP1dDlZvW+FoQQXDQ+jdgofa/rNds9XPJ/XzAiwcwLd83m1+/s4rVNtfzx+kmkx0bxzrY65o9O4uIJaUesu+Eky0mTzUMgJJmaHUeMSY8vEEKI8Htg7f42fv/+bvY22nnw0rHsbrDx9tZ6fJGuJzfPyuZ/rpmAEIIPdjbwrec3MzcvkbRYE29FEqMbZ2ah1Qhe3FBNWqyJX10xjhXb6nlyTQXRBh35qRbcviDtTh8dLl93MmLQapieE8+3Fo7inIJkIDzj4t3PFuP2BznwUZ+baObmWdlcOjG9+8esxx9kTWkruxtsVLa5aHd6SY0xcf30EUzPiT/ovbPk6SK21XRydkEyTm+QFruHZruXFruXQI8LTU16DVdOzuC8whT2NNppsnnx+oO8uaWOH100hm8vHEVthxt/MERMlJ4ki7HP2O9vtvPu9gYW5Cext9HBg2/t4NsLR9Hu9PHxnmZa7F4MWg03zsxidl4CHS4/f/m4lBZ7OKE36jRcMiGNyVlxNHZ5GJVs4WuR6c37I6XkV+/s4tkvq/jm2XmcU5BMSYONFdsb2FYTTsrNBi0PXTmeG6aPIBiSB/2gq2x1cvszG6lqc3L7/JF8/4ICoo06Nla2c+uTG7rrz6FfxZdPSseo0/LG5q+uZ1hUmMKvrxrPiHhzd9ng4O/KPY02fvz6dqZlx3P11ExKm+w8unIfHS4/j944hYsnpCGlZH15O7vqu2js8pAWayLGpOfz0hZ2N9gwG7TkJERzxeQMFuQnHdSVTUrJRyVNfP+VreEyjU1lcuR7KBiSBKUkFJJ0uvy8v7ORuk43I5OiOacgmdWlLTR0eoiN0hMTpSPGpGdMmpVJI2K7v0sW5Cd1v74DOpw+frZ8R/g7titc3wAWjkkm2Wri3e31WI06fnXleC4cl3rYZ32bw8uydZW8WFTdndAfrWiDltGpVvJTLOFbqoX8lPBY9gN5ZuFUY/P4kZI+P3eHiwFPfoUQWmAf4emNa4GNwM1SypK+tjma5Le2w8W9z29mT6MNi1FHIChx+4NEGbREG3T4giHsHn/3B/4BB+rg0YxskhpjZG5eImcXJFOQaiXFasTpC9Ll9tPl9qPXCDLjo7C5A5S1hC+WMuk1ZMRFYTXqKGmwsa2mix11nVS0Ovt9MwkBIxOjabJ5cPqCmA1aRqdYSIsxYTHqaHF4aejy0NDpJiglo5ItJFuNCGBzdSddbn+v+81NNPPZj84lEAyR//P3D/vwPB4pViPXTR/BDy8cQ32nm/96aQtj063cMCOLp9dWsmJbPQBxZj03z8pm9sgE2p0+JmfF9Xn67ky2dn8rK0ua+NUV4/pMvv3BEJ/vbeH8cakDcsxVJU3c9Wwxv75yfHdL2vHwB0NUtjrJTjT3mRQ22Tz8e3U5Tm+AMWlWXi2uZXeDjWnZcXx9Tg4/eWMHsWY9UXoteq0gP8VKbJSemg4X68raOKcgmcRoAx+VNGHSa/nJJYWUtTio6wi/F7LizcwemYDTF2BXvY11+1vZWW87bAppQ2TYuaumZJARF0WHy8+72+r5bF8LLXYvOo3g3e+eRWFaDP5giCVPF7GurA0pv2r5Mmg1SCTxZgNXTs5gRm48GiHocPmoaHXx3o4Gqttd3cfUCEiINtLm9CJl+EvS6QuSGG3gjzdM4rzC8P+z2e7h+fXhYZe+f0FB9xdmMCR5/JNSlm+po6rdxZ3zR/KDC8cc1OWkpy63H4tRh7bHF66UEqcvSKfLR0K0AbPh8J5sJfU2/rOjHrNBx5hUK+cWphy0j2O1rqyVB9/cAYBJryUlxkSK1Uiy1cj4jBhm5iawt9HOezsaeHtrPW5/ECEgMdqAzRPgwnGp/OWmqcedOBz4cbeurA2zQcuisanMzUtk0diUgy5GtXv8fLy7Gbs3wJ4GGyu21WPzBDDoNFw7NZOHr5t0VMer7XBx6WNfcNOsbH56SeFB72OXL9x6mBJj7P5x2BuHN0Cbw3tYN7Jmm4cNFe3sabSRZAnH0OsPkR5nYl5k+vW9jXb2Nzsobbbzr8/L8QdDxEcb0GsE7S4fHn+47o7LiOHKyRk89nEpQoS7rRz4nsyMi+Jft01nQubAjcRT1uLgidXlfFTS1GsfYo2ABfnJXD99BJdMSBvQMzyhkMQXDHW3DAeCITRC9Fun/MEQn0b62kcbdWQnmBmTFu4e4/IGcfoC3fedLh+NXR4q21zsb3awr8nenXRD+MddbmI0yVYjyRYjiRYDcWYDZoOWaKMOi1FHtDHcinzg8YHnjDrNKd+a/NSaCn77nxLyUyyMTY8hMdpIZny4gTHFaiJKr6XN6aXd6UOv1WDSazHpI/c6LSaDBqNOS7szHOdoozbcmBAM4fEHcfuCeAIh3L4g3kCwe5nbH8LpDeD2BzHqwvuL0msxGbSYdBr8QYnN42dmbsKBH+4DnvzOBR6SUl4UefxTACnl7/va5tDkd3N1B49/XEqUQYvFqCPZauSVjbV4A0FumpmF2x9Er9UQpdfi8gVx+QIYdVosJh3psSYSog1E6bV0uPxUtzkJRVpbTXotRr0Gk05LTJSO0SkWTHotdR1udjfY2FzdyZr9rSfU6d+k1zA+I5b8FAtpsSbSYkzh+1gTyRYjOq0GhzfA7nobJQ02SuptxJn1XDd9BNOz43t9k/b2Kz4QDLGjLtwCpxECqyn8xnF4g4SkZFp2uI/tc+uriIvSkxoTLotOK1hf3kZdh5sZuQmkxBgpb3ESDEnizOHWqg6Xjw6nD08gRE6CmYI0K3lJ0Ud8Ux64OMag1ZzRv3qHM48/yMtF1Xx9Ts6QdCnoKRiSbKrqYHJWLEadltX7Wnh+fRXmSGJY1uzA6Qtg0mu5aWY23zw7D41GUNpk585lxVS3u9BFfnxqhaCmw9X9Ba7VCKZmxTE9Nx6jVkNMlJ4F+cl4/EGWb61jxbb6g36IWow6Fo1NoSDVytxRid3vFYAul58H39rB9Jx4bpmdTVFFO2v2t6LVCMqaHXy6t/mgH9gaAXNHJXLFpAxyk6IJhSTry9tosnlJiw2fsWlzepmYGcsVkzOO6RS7lBJvIHRCp+WHqy63n31NdgrTrN0Xew6ENoeXL8vbWDgmpbuPcn+8gSB2T+C4TmPXdbrJiDWd9ISltsPFCxuq6XT58AUkCdF6ogw6PP4gK0uaqGh1kpUQxYt3zcGo07C2rJWx6TEUpAxs/+eegiGJ3eNHoxFohUCrEWgi9yfyI2s46nL52d9ip7TJQWmzg8pWJ61OH612L60OL97A0V9cfNWUDB67aeoglnZw7W6wsaqkieKqDspbHbQ5fLh8QzN2vVYjMOk0+IKhwxpCD/jBBQX816L8QUl+rwcullLeFXl8GzBbSnnfIevdA9wDkJ2dPb2qqqr7uXVlrTz8/h7cviA2j58Wu5fsBDNPLp7B6JSBvzK/p1BIsrfJTlWbkxa7F4tJR2yUntgoPV5/iNpON1ZjOHE26rS4/AHqO910uf0UpsWQn2IZ8sRCUU5nNo+ffY12xmXEdLdgunwBttV0EROlY1Sy5YgJYiAYoriqA6c33Lo3Iyehz1bU/nS5/NR1uglJSWzkR2VvF+soynARCknWlbVRmG49YhcSZXAc+BHr8gVxegM4fYHwvffA4/C9yxduxcxPtXD5pIyTXewB1erwUtrkoN3pw+0PEm/Wk2gxEgiG8PgjLbr+8Ov3BEJ4/UHizQbSYk24fEHsHj8GXbjB09R9++pxVI9lB36I+iMtxR5/uJVYrxPEmPSYI2P0D0byewNw0SHJ7ywp5X/1tU1/3R6O9tSFoiiKoiiKohxJX8nviQx1Vgv0vGJgBFB/pA02bdrkEELsPYFjKkcvCWg92YU4g6h4Dx0V66Gl4j10VKyHlor30DlZsc7pbeGJJL8bgXwhxEigDrgJuKWfbfb2loErA08IUaxiPXRUvIeOivXQUvEeOirWQ0vFe+gMt1gfdyc2KWUAuA/4ENgNvCql3DVQBVMURTmdCCGMQoilQogqIYRdCLFFCHFJj+cXCSH2CCFcQohPhRA5PZ47N7KsSwhR2cu+5wkhiiL73S6EOGuIXpaiKMop54Su4JBSvielLJBSjpJS/m6gCqUoinIa0gE1wDlALPAL4FUhRK4QIgl4M7IsASgGXumxrRN4CvjRoTsVQiQA7wB/BOKAR4AVQojBmW5RURTlFDfUly//e4iPdyZTsR5aKt5D55SMtZTSKaV8SEpZKaUMSSnfBSqA6cC1wC4p5WtSSg/wEDBZCFEY2bZISvkcUN7LrucBTZFtg1LK54GWyD4HwikZ71OUivXQUvEeOsMq1kOa/Eoph9WLP52pWA8tFe+hc7rEWgiRChQAu4DxwLYDz0kpnUBZZHm/u4rcDl02YSDKebrE+1SgYj20VLyHznCLtRq4UlEUZYgJIfTAC8AyKeUewAJ0HbJaF3A0A56vAzKEEDcLIfRCiMXAKMDcz3aKoihnpCFJfoUQFwsh9goh9gshfjIUxzzTCCEqhRA7hBBbhRDFkWUJQoiVQojSyL3qA3gchBBPCSGahRA7eyzrM7ZCiJ9G6vpeIcRFJ6fUp64+4v2QEKIuUr+3CiEu7fHcKRVvIYQGeA7wEb5oGMABxByyagxg729/Uso24Crg+0ATcDGwivBwlP2VJStyId1uIcQuIcT9keWqfg+CI8T7tKnfw4UQwhS5CHRbJNa/jixXdXuAHSHWw7deSykH9QZoCZ++ywMMhE/tjRvs455pN6ASSDpk2SPATyJ//wT4w8ku56l4A84GpgE7+4stMC5Sx43AyEjd157s13Aq3fqI90PAD3tZ95SKN+HuCE8DnwJRPZbfA6zt8TgacAGFh2x/PlDZzzF0QBXhSYj6K086MC3ytxXYF4mpqt+D8//vK96nRf0eTrfIe80S+VsPbADmqLo9pLEetvV6KFp+ZwH7pZTlUkof8DLhVgpl8F0FLIv8vQy4+iSW5ZQlpVwNtB+yuK/YXgW8LKX0SikrgP2E3wPKUeoj3n051eL9D2AscIWU0t1j+VvABCHEdUIIE/BLYLsMd4lACKGJLNeHHwqTEMJwYGMhxNRIl4cY4H+BWinlh/0VRkrZIKXcHPnbTnjYykxU/R4UR4h3X1S8j5MMc0Qe6iM3iarbA+4Ise7LSY/1UCS/mYSH9zmgliO/2ZXjI4GPhBCbhBD3RJalSikbIPyhC6SctNKdfvqKrarvg+e+yBi2T/U4VXnKxFuEx+39JjAFaBRCOCK3W6WULcB1wO+ADmA24YmDDjgbcAPvAdmRvz/q8fyPCc+eVEO4dfGa4yhfLjCVcKuNqt+D7JB4wylev4cjIYRWCLEVaAZWSilV3R4kfcQahmm9Hork99CrkOHIvwiU4zNfSjkNuAT4jhDi7JNdoDOUqu+D4x+EL+KaAjQAf4osP2XiLaWskri9OK4AACAASURBVFIKKaVJSmnpcXsh8vwqKWWhlDJKSrlQSlnZY9vPItv2vC3s8fzNUsrYyO1GKWXzsZRNCGEB3gAekFLajrRqby/tWI6l9BrvU75+D0cyPPTfFGAEMEsIcaQRUFSsT0AfsR629Xookt9aIKvH4xFA/RAc94wipayP3DcTPoU6C2gSQqQDRO6P6QtROaK+Yqvq+yCQUjZFPlxDwBN8dYpMxfsEifDIE28AL0gp34wsVvV7kPQWb1W/B5eUshP4jPDFoKpuD6KesR7O9Xookt+NQL4QYmSkj9pNhGcjUgaIECJaCGE98DdwIbCTcJwXR1ZbDLx9ckp4Wuortu8AN4nwVLYjgXyg6CSU77Ry4Msq4hrC9RtUvE+IEEIAS4HdUso/93hK1e9B0Fe8Vf0eeEKIZCFEXOTvKMIXi+5B1e0B11esh3O91g32AaSUASHEfcCHhEd+eEpKuWuwj3uGSQXeCn+uogNelFJ+IITYSHj61DuBauCGk1jGU5YQ4iVgIZAkhKgFfgU8TC+xlVLuEkK8CpQAAeA7UsrgSSn4KaqPeC8UQkwhfGqsknDfWRXvEzcfuA3YEemvB/Agqn4Plr7ifbOq3wMuHVgmhNASbuh7VUr5rhDiS1TdHmh9xfq54VqvhZRH7mYhhHgKuBxollJOiCxLIDzvfC7hF/Q1KWXHoJZUURRFURRFUU7Q0SS/ZxMegP3ZHsnvI0C7lPJhEZ60Il5K+d/9HSwpKUnm5uaeeKmVM54/KAmEQkTptSe7KIqiKIqiDEObNm1qlVImH7q8324PUsrVkSFZerqK8GlJCI+T9xnQb/Kbm5tLcXFxf6spSr9u/vd6ShpsbPjFBWg1vV04qiiKoijKmUwIUdXb8uO94E2NH6ucMI8/yLJ1lbh9x9bVZ1d9F1+Wt9Hl9rO7oe9RmaSUePyqy5aiKIqiKF8Z9NEehBD3CCGKhRDFLS0tg3045RTy1pY6fvXOLh5dte+Ytnt6bSUGXbjqFlX0PRHY02srmf0/H9Pp8p1QORVFURRFOX0cb/J71OPHSin/LaWcIaWckZx8WLcL5Qy2fEsdAEvXVLC30X5U27TYvbyztZ6bZmaRlRDFhoq2XtcLhiRL11TQ5fbz5ua6ASuzoiiKoiintuNNftX4scoJqet0s6GinTvmjyTGpOMXy3fS38WXtR0u7n62mEAoxJJ5ucwemUhRRTuh0OHbfbqnmbpONxajjpeKqvvdt6IoiqIoZ4Z+k9/ImJtfAmOEELWRsfEeBi4QQpQCF0QeK8pRe3truDV2ybxcvnPuaIoq26lpd/e5fmWrk8v+soayZgd/u2UaeckWZo9MoMPlp7TZcdj6z66vIjXGyE8vLaS02cHmajUSn6IoiqIoR5H8RuaMT5dS6qWUI6SUS6WUbVLKRVLK/Mh93x0vFaWHZruHj3Y18lpxLTNy4slONDM1Ow6A/S19d31Y9mUlLl+At++bzyUTw5PGzB6ZCHBY14fSJjur97Vw86xsrpmaicWo44UN1YPzghRFURRFOaUM+gxvinKA2xfk0sfW0OrwAvDthaMAGJVsAWB/s4PzClMP287jD/Lm5jounpBOXmRdgKyEKNJjTSxbV8mI+CgWFqTgCQS578UtxJv13Do7B7NBx2UT0/nPjgYCwRA67VDM6K0oiqIoynClkl9lyLyzrY5Wh5fHbprC3FGJpFhNAMSZDSRZDOzvpfsCwPs7G+hy+7l5VtZBy4UQPHTleH79zi7ueKaY7AQzKVYjpc12lt0xi2SrEYCz8pN4pbiGXfU2JmfFDe6LVBRFURRlWFPJrzIkpJQsW1fFmFQrV07OQIiDJ6YYlWyhrMXZ67YvbaghN9HM3LzEw567aHwa5xWm8J/tDbyysYYvy9v474sLWZD/1cgicyLbfVneppJfRVEURTnDqeRXGRKbqzsoabDxu2smHJb4AoxKsfCf7Q1IKQ96fk+jjaLKdn56SWGv2wHotRqunprJ1VMzcXgDWIwHV+tkq5HRKRa+LGvjW+eMGtgXpiiKoijKKUV1gFSGxPPrq7EadVw9JbPX50cnW+hy+2l1HDwhxVNrKojSa7lxZlav2x3q0MT3gLl5iWysbMcfDB1bwU8DLl+AJpvnZBdDURRFUYYFlfwqg84XCLGqpIlLJ6YT3UdyOjolfCFbWctX/X5b7F6Wb6nnuumZxJkNJ1SGuaMScfmCbK/tOqH9nEpCIcnrm2o5+5HPmP0/H3PLE+vZUN77pCCKoiiKcqZQya8y6Ioq2rF7A5w/7vCRHA4YlfLViA8HPL++Cl8wxO3zR55wGQ70+11/hiR/Tm+Abz2/iR++to2shCjuX5RPZauTbzxVxMZKNTKhoiiKcuZSya8y6FbtbsKo03DW6KQ+18mINWE2aLuT35p2F8+sq+S8wpTuodBOREK0gcI062mf/AaCIVaWNHHdP9axancTv7h8HG98ax7fu6CAd7+7gMy4KO58ZiO76sMt4K8V1zDttyt5/ONSfIEzr0uIoiiKcuZRya8yqKSUfLynibNGJxFl0Pa5nhAiMuKDA5cvwD3PbSIkJT+/bOyAlWVOXiLFlR2nbZJX2mTnnD9+xt3PFtPu9PHM7bO486yRaDThCwUTog0su2MWUQYtV/9tLfe9uJkfvb6dKL2WP63cx1V/W0tdZ9+z7A2WLpefv326n01VvU9VrSiKoigDSY32oAyq0mYHNe1u7j1ndL/rjk6xsHxrHbN/9zFOX4Cnlsw8aFKLEzUnL5Fn1lWyrbaTmbkJA7bfk01Kyf5mBzc/sQEh4N+3Tee8wpReJ/TISjDz3ncX8NCKElZsq+f8san87daprN7Xyvdf3cr1/1jHs3fMIj/VOmTlf3ljNX/8cC8AecnRPLV4JrlJ0UN2/FNJl9vPqxtrsHv8AJgMWqZkxTFvVN9nVc5Ub22p5Y8f7OWGGVncuWAkMSb9yS6SoijDhJBy6FpaZsyYIYuLiwf9OJWtTr4sb+PaaZkYdX23NiqDxx8MsaG8nX+tLuOL0lY2PLiI1BjTEbfZ3+zgzc21dLh8nDU6mcsmpQ9omTpdPqb+diXfO7+A7y7KP+z5UEjy+uZadjfYGJ1i4YKxqaT0U+aT7efLd/DKxhr8QUmSxcDL98xhdMrRJa5lLQ5yEszdSfLuBhvfeKoIfzDE0sUzmZ4TP5hF73bb0g3Ud7q577zR/Pbd3WgE3D5/JMWV7cwblcRdC0b2OczdcBAKSYRgwMr4xOpyylud/Oaq8eh7/IAJBEMsfrqItfsP77qzZF4uP7mkEJP+zPu8K6m38cy6CpzeIIVpVsamx9Dq8PLgWztIj42irtPNiPgoPvnBQgw6dbJTUc4kQohNUsoZhy0/nZJfu8fPb1aU8OaWOoIhyazcBP7x9WkkWoyDdkwlPP2wXqtBqxGUtTj49YoSNla04/YHsZp03HVWHveff3iyeTJc+tgXxEbpeemeOd3LqttcbKxs57n1VWyt6cSg1eALhsiMi2L5d+Z3zxQ33LQ5vMz+n4+ZnZfAgvxkLp2QTnai+YT2WdPu4ralG2i0eXj0a1O4ZGL4B0goJGl1eLF5AoxMikarGZhEz+MPMvnXH3Hr7Bx+ecU49jc7WPxUEXWdblKsRprtXu47dzQXjk9lX5ODyyelD6sELxiS3PLEeox6LUsXzzgoWe2p1eHFHokdhF83cNhreWtLLd97ZRsAV0/J4La5ubywoYoEs4F2l483N9fxyPWTuGH6CACcviCPrtzH0jUVmPQaJmXGsWR+LpdMSDssGX9sVSkdLh+/vHxcd1eY4cgbCGL3BEjq53PbFwjxs7d28NqmWswGLUkWI9Xtru7nZ49M4JnbZ/HhrkYeeGUry+6YxTkFyUfY4+Boc3h5e2s9lW1OClKtZMZFodUIGrrcVLW5uGJyBmPTY4a8XIpyJugr+T1tuj202L0sebqIvY12Fs/NZXSKhYdW7OKGf37Je/cvGFZfmKeTdqePKx5fgxDwtRlZPPFFOXqthhtnZjEnL5GFY5KHVeznjkrkufVVePxBTHotf/m4lD+v3AeEJ8P489cmc/WUTDZVd3Db0g3c81wxL909Z1i9hgPe3lpPICT55eXjGZM2MN0UshLMvH7vPO54ZiP3vrCZ8wpTMGg1fL6vBXckYYuN0jMzN54R8WbSYk2kx5qYkhVHTuKxd1XYXNWBNxDirPzwaByjUyys+v45dLp9pFpNPPjWDv766X7++ul+INw6/YvLx53w67R5/BRXtlPV5qLR5sHuCaAVgvmjk5iRG4/FqMOo0/Tbmvv02go2VIRHz/jdf3bz0JXjD1tnR20Xtz+zEbcvwPv3n41Ecu3f19Hu8pGdYObrs3O4eXY2H+5s5Kdv7WBOXgLzRiXx55X7WL61HqtRhzcYwhcIsWReLl+b8dWY1xajjl9cPo7zx6aysqSJ1aUtfPuFzVw4LpUHzi9gXEY4qXqtuIZHV4XruUGn4cFLe+9L7/IFaOjyHNVFpoFgiP0tDnyBEBajjsz4qBM+0+YPhvjuS1sobXIc8XO7y+Xn3hc2sS4ycc2954wi1qzH4Q2wt9FOY5eHcwuTiTJouXhCGua3tHy4q7Hf5HdNaSvbajvJSTSTn2JldIqF8hYHH+5qZHZe4lF1l1pf3obN7ccbCLFiWz2f7GkmEJKYDVpcvuBh6z+5poIfXljAiHgzLl+QFKsRjRDsa7ID4a5Ak0fEER99YsM9ns46XT6213ZR0+EiMdrItJw4Uqwn96xdk81DssU4rH9onslOi5bfLdUd3P/yVprtHv7x9emcOyYFgM/2NrPk6Y38/LKx3LUgb8CPe6aTUnL3s8Ws3tdKfqqFXfU2CtOsPLl4BiPiT6wFcrCsKmnirmeL+dMNk9nXbOdfn5dz9ZQMvrVwFPkp1oNaND/Y2cC3nt9MvFnPZZPS+eGFY054vOGBdOljX6DTCt6576wB37c/GOKZtZX836p9RBt1XDg+lTFpMZh0Gooq2tlW20lDVzhpPGBuXiKL5+Vwwbi0o24Z/sMHe3hidTnbfnVhr2NAh0KSt7bUoddpWFPawmubannj3nlMyz72LhnBkOTj3U08vbaSosp2gpGL6wxaDVaTDo8/iLNHchJv1jM5K44pWXFMzoojxWokSq8lJMP76nD5uP3pjcwblcjIpGieXFPBA+fn851zR+P2B/lsbwtbqjt4ZWMN8WYDNo+f/BQL3kCI2g43i+fmUFzVwbqyNrQaQTAkGZcewwt3zSbOrGfZukqCEm6amYVGCPY02pg0Iu6IsQ0EQyxdU8Gjq/bh8YcYnxHDmFQr7+5oYEZOPKOSLTy3vorrpo3g3MJkOpw+Gm0eFs/LJSnayOKni/iitJXZIxN44PwC5o46fEpxCP/ovf2ZjWyr6exeJgRMyozlkonp3DB9xDGfcQuGJN97ZSvvbKvnoSvGsaSPIQ5XljTx8+U7aHP4eOT6SVw7bUS/+773+U0UV3Ww4aeLjpiMPPLBHv7+WVn3Y5Neg8f/1QWyX5sxgl9eMb7XyXT8wRC/XrGL59dXdy9Lshi4Zmom10/PoiDVQl2nmxa7l0BIkmI1Yjbo+PHr2/h0b0u/r6EwzYrVpMOk1/LdRfmn1XULx8vm8bP0iwqe/KL8oPcuwKQRsVw5OYPLJqWTHhs1pOV6f0cD976wmcI0K988J48ki5HUGBMFQ3gthRJ2WnZ7aHf6+OfnZTz5RTlpMSYev2XaYf0Ub1u6gR11Xaz+8bmn5QUPvkAIbyCItcdrc3gDdDh9xJn1WIy6Y+qLuKO2C18wyPScI3+w+gIhHv+klMc/2c8vLx/H7fNz2VzdQWFaTJ8TWQwHNo+fqb9Z2Z34fG3GCB6+dlKfX4hr97fy8sYaPtjZwNxRSTyzZOZh664qacKk1zJ/dOKA9fv0B0MUVbRT3uKgxe7lnDEpB9XtXfVdXPaXNfz6yvEsnpc7IMfsTSAYQiNEn/FxeAPUd7pZWdLEyxurqWl3k5cUzd1n5x1Vn/sr/7oGk07Lq9+a229Z7B4/Fz26GpNeywMXFDAtO47EaCNCQJvTh9cfRAhBdoK5O0H0BoI0dXn5bF8zT62poLLNRWZcFNdMzWT+6CQKUi0kRBsQQuAPhiiu7GBvow2XP0hlq5OtNZ2UNjvo62My2qBl5ffPIcVq5HuvbmPFtnpGxEfRYvfiDYQw6TXMyUvkkesm8WV5G/e/vBWAp5bM4LzC8LjXX5S28MHORi4Yl8rZ+ckD0lLU6fLxxuY6PtzVSHWbiySrgWW3zyLObOCXb+9k+Za6g5KFwjQrV0zO4I8f7uWqKRkUVbTTaPNw/6J8vnte/kFl2lrTyfdf3Updh5sHLx1LRlwUdo+filYnn+9rYXttF2aDltvm5HDjzKyjvmj10ZX7eOzjUv774kLuXdj7NOQHuoUUpll55PpJTBoRd1T7Xr6ljgde2crzd85m+dY64qL0fP/CAsyGwz+rXL4AVW0u9jTa2F7bRUZsFJdMTOP59dU88UU54zNieHrJzO7kXkrJ2v1t/HnlXjZXd3LP2XlcOTmDQEgyPiOmz64wB4RCkh11XRj1Gkw6Lc12L4FQiPwUK0KEr4UormxnY2Skmqo2Jw02D7fMyqYwzcq4jNgh659/NKranDi8ATJio7pbqwPBEFtqOtlU1UGny0+SxUB9p4e9TTYuHp/GrbNzuuvYa8U1fLavhYmZsSREG2ixe2mxe2lz+hiZFM3EzFgabR6KKtr5aFcj3kCISyakcducHHKSomnscrOhop33djSws84GwKzcBK6YksFF41MHvUV4f7Odq/66lqwEM75AiPJWZ/dzV0zO4L8vHsOIeDNSSrbWdNJs9+ILhJiRGz/kSfqZ4JROftscXipanbQ6vGTGmfEFgyzfUs/rm2rxBILcMH0EP798XK/J7c66Li5/fA2XTkzjwnFpFKZbKUix0mDzsKmqg2iDlmijjma7l1BIMiUrjmijjtJmO44erVqHRungsEla7F7quzwkRhsYnWJhalY8seb+k+1Wh5dd9TZ21nVRUm+j3ekj0WLAqNMSCIXISTAzLSeeFKsJk15DMCQpbXbwysYaNld3YPcEuGRCGv/4+vTufR5osQRIjDZw99l5jEm1snxrHa0OL2aDDrNBi9WkY3xGLAWpFipaXazYVs/n+8ItEAvHJHPjjCxSYkxUtzspbXIwMTOW/FQrn+9rYdm6Sqrbw/3V/nLTlGF9QdKhPt3bjM3t7/4gPZqyv7Chip+9tZP7F+Vz65xsBAIpJY+u2sdLRTVAuKXh8knpTMmKZ2Jm7BGHdgN4e2sdj67cR2FaDLNGJlDT4aKuw43TF2BHbRe2SP0TgsgPjK9awn6zooTn1ldS9OD5w+Z0aDAkeX9nA//8vIyddTaSLEaumJzOZRPTmZIVd9joE/ubHVzw6Oc8sKjgqPuEr93fyrdf2EyX29/nOiPio7hsYjpbqjvZWNXe/V6dkhXH3QvyuGh8aq8jYfTF7vFTUm+j0+3HE0mwdRqBViMYlx5DVsJXZzlWlTTxr9VljEmzcs3UEUweEXvQsR5duY9Ei4FvzM096uMPBn8wxK56G8lWI+UtDu54ZiP+oGThmGSeXjITtz/Iz9/ayZtb6pg8IpZvnzuaZruX5Vvq2FTVQbxZz7+/MaPX1sf9zXYe/2Q/K7bVE5IwITOGKyZlcOnE9INidag2h5f3djZy25ycPtdx+4K8WFTNbXNyjunitS63n+m/XYlGIwgEQ4QkZCeY+eP1k5id13vrdm8+3t3Et1/YTJLFyEXj0zDoNKwsaaSsxUmK1chPLy3kmqn9t0SfCKc3wP/7TwmvbKzhwMiAF49P45wxyZQ2OWhzenH7giRaDKRYTUjCyWcgJNFrBckWIykxJpKtRhKjDSRGG4/qu+porNhWz/0vb+ku1/XTR3DttEz+37u7KWkIJ6I6jSAQkpj0GtJjo6hodTJvVCIXT0hjV52NV4prSIg20O78aqp7q0lHnFlPXYe7e9/xZj2XT8rgxplZTMiM7bU85S0O3t3ewDvb6rvHkM9KiCIx2ojN4yfJYmRMqpUxaVYKUq2kWI0kW43H3YDT6fJx3T/W0eny8+53zyLZYmRnvQ1/MMQXpa386/MyAiHJeYUp1He62VVv6972n1+fzsUT0o7ruErfBiX5FUJcDDwGaIEnpZQPH2n9GTNmyAsefIpOlx+HN0BmXBRj02OYkRvP6BQLzTYvtR1u6jrd1He6qWl3samq46BfTgcYdRoum5TOtxeO6vfq9ofe2cUz6yq7H/fV9+pEHTh1eUBOohmTTotOK9BpNegjX5gHWgLKWhw0dHm6189OMJNsNdLu9OELhNBqBLUdLnob+jQj1sSisakkW42MTY/hgh6zp9V2uFhX1kany8ea/W2sjiS0cWY9o5ItuHxBXL4AnS7/QUlEQrSBuxfkodMI/vJJ6UGntA81MTOWH1xYwDkFyadU4nu8pAyfkl2+tf6w5+5dOIqcBDNPrqno/oDVagRj061MyYojNzEapzdIVZuTXfU2ogxakiwGVu1upjDNSrvTR7Pdi0mvITvBjMWoIzcpmovHpzElK46EaMNhydqmqg521Xed9CSqN1JK1pW1sWxdJZ/tbcEXDGE16picFUdGnImMuCj0Wg1//3Q/ep2Gt749v/tCsKMRCIbYWW+jpN5Ghyv8BZkQbcBs0OL2BVm+tY715e2MSbVy/rgUchKjKUyzHvUPnTPR+zsaeHptJY/fMrV7VBYpJcu31vGnj/ZR2xEe/zkvOZrb5uRww4ysXk/999TY5eHd7fWs2N7Q3T1iVHI0Y9NjsBh1JFuNZMRFMTcvcUiGtrvzmY2sK2vj8ZunYjXp+NHr27n77LwjJtu9Ka5s5w8f7GFHXRf+oGROXgJXTs7g6qlDO7qQPxii3enj9U21/PWT/bj9QaL0WpKtRkx6DW0OH22RBFKnEei0An9QHvQddUBmXBRTs+PIS4omK8FMTmI0OYlmUqzGo37PvLu9nvtf3sr0nHiWzMtlU1UHy9ZVEghJkixGHvz/7d17dFz1dejx754Zjd6WZEsWtiRjYWyDwWCwMSQEx7wJcC8lQGLKcklJSkpxG/rILWleNKshNKXcRW9XkmsKXGARwCl5UEJCgEVqHPAbG79lY1uWLFuyLOs10mhe+/5xjsVY1sh6zEOP/VlrlmZ+M2fOb7a3xlu/8zu/c/N5fHZOGZPz/bR3R8jL9uLzCC+tr+OHb+6mtcv5v+jBq2fxN9fPpa07TGcwQllhdu9AQnswTM3RDqYX5zKtKGfQfVNVdh/tYM3eZj6scwaNCnN8HG0LUtPYSWfPqf/XlRb4meHGwfmZR1FuFlleD36fh2yfh8KcLIpys5iU6yPb5yXQE+Ge/1jHzoZ2nv/y4t6risY73NrNCx/U8rONdRTnZfGVq85hfkUR2T4P04pzz/g7ZYYu6cWviHiBGuB6oB7YANytqjsTbbNo0SLN/+K/4Pd6yPN7qW3p6k34/pQWZHNxZRGLqycz56xCSvOzOdzaRSiqXD237JRD/WfSHYpSf6KLrfVtbK1zTmi44pwphKMxAj1Rpk7KJhpTNrkn4MwpL6Ckz/zOvr9nwicNUwr8lBVk09odZvfRdjYdPMHuxg7CkRjRmBKOqfPXd1SJxGJEFaqn5HFhRREXTC9i3vRJFOWe/nk6e5xRwDZ31MnnFabkZ7O4evKg51VuqWuluaOHq+aUnvLlrKocaA7w8bEA1aX5zJzyybJXgZ4IB5oDNLYHqSjJpbo0n611bext6uDTs0qHVKyMF8FwlN9sP0KgJ4qqotA7anvS8c4ettS18uGhVj6sO8HWurbeL9aphdlcWFFEoCfCx8c6uW1BBQ9/7jy8IjR2BCkvzBl3J0e0B8OsrjnGmr3N7DrawZHWbo519qAKl80s4clllzC9OPmH+rpCkX4PaZuhC0Vi/HfNMfcksIJh/QFRezzA27uaWF1zjLqWLjp6IrQEQkRjyr/ceRF3xZ3ElyptXWF6ItHe5Qu7Q1GyfZ5h/85FojFC0dioyLMTgRAdwQiVJbmnfJ5oTPHELcMXiyktXSGOdfTQ1NHDiUCIpo4gW+vb+Ki+9ZSRVaD3D/IZk/MozvOT7/eS6/e5P729RxFf/+gIb+9q5NIZxTz/5ct7i7g9Rzt4e1cj91w+Y8DzJVSVpo4eesKxEa9YM1SqyuHWbvY1dXK805kDX9fSRe3xrt4pJmcqk3KyPGR5PARCEX50j43gjiapKH4/BTyiqje6j78BoKo/SLRN32kPqkpDW5D1B45Te7yLaUU5VBTnUVHi/FU3Gs+wN2YoojGlIximINs3pEPt41koEuN4oGdcFvtm8CLRGI0dPRRk+/r9w9+kXygS43BrN7XHA58UgC1d1LV00d4dpiscpasnSih66lUy8/1eHrzmXO67snrc/b8dDEc53NpNoCdCKOL8wdMTjtEeDNPeHaY9GKGt27l/zXlTueECK3xHk1QsdVYB1MU9rgcu72fH9wP3A8yYMaPvc+7JJ6mdI2VMpng9MqpWiBgN/D6Pndhh8Hk9VKRg1N8Mn9/nobo0/4xH9sLRGF2hKN2hKIGQsybzeP0DJifLO6il/8zYMpLit78hm9OGkVV1JbASQEQ6RGTPCPZpBq8UaM50JyYQi3f6WKzTy+KdPhbr9LJ4p0+mYt3vpP6RFL/1QPxErUrg9LOBTrWnv+Fnk3wistFinT4W7/SxWKeXxTt9LNbpZfFOn9EW65FMQtwAzBaRahHxA8uA15LTLWOMGV9EJFtEnhaRWvco2Ici8rm4568Vkd0i0iUi74rI2XHPfV1EtrvbHRCRr/d575nuNl3ue1yXzs9mjDFjybCLX1WNACuAN4FdwCpV3ZGsjhljzDjjwzlP4rNAEfBtYJVbuJYCP3fbJgMbgVfithXgT4AS4CZghYgsi3v+XHhjTwAAFEJJREFUJeBDYArwTeA/RWTga/kaY8wENaI1WlT1DeCNIWyyciT7M0NisU4vi3f6jMlYq2oAeCSu6XUROQAsxClad6jqzwBE5BGgWUTOU9XdqvrDuO32iMivgCuBl0VkDnApcIOqdgOvishDwB3AT5LQ9TEZ7zHKYp1eFu/0GVWxTusV3owxxjhEpByoBRYADwB+VX0g7vntwHdV9dU+2wmwGfi/qvoTEbkdeFRVz497zb8Dqqp/mYaPYowxY4otPGqMMWkmIlnAi8BzqrobKADa+rysDejv8pWP4Hx3P+s+Hsq2xhgz4WX+0jTGGDOBiIgHeAEI4Zw3AdAJTOrz0klAR59tV+DM/b1KVXuGsq0xxhhHWkZ+ReQmEdkjIvtE5OF07HOiEZGDIrJNRLaIyEa3bbKIvCUie92fJZnu51gkIs+ISJN7GPpkW8LYisg33FzfIyI3ZqbXY1eCeD8iIofd/N4iIjfHPTdm4u1OWXgaKAfuUNWT13ffAVwc97p8YJbbfrLtPuBh4FpVrY972x3AOSISP9J7cfy2A/Snyl0lYpeI7BCRr7ntlt8pMEC8x0V+jyYikiMi60Vkqxvrf3TbLbeTbIBYj968VtWU3gAv8DFwDuAHtgLzUr3fiXYDDgKlfdp+CDzs3n8Y+OdM93Ms3oAlOCcUbT9TbIF5bo5nA9Vu7nsz/RnG0i1BvB8B/q6f146peOOcgLYWKOjTXoYzVeEOIAf4Z2Bt3PP3AEeB8xO871rgcXfb24FWoGwQ/ZkGXOreLwRq3Jhafqfm3z9RvMdFfo+mG84KKQXu/SxgHXCF5XZaYz1q8zodI7+LgX2qul9VQ8DLwG1p2K9x4vyce/854I8y2JcxS1VXAy19mhPF9jbgZVXtUdUDwD6c3wEzSAninciYibe7bu9XcU5wOyoine7tHlU9hlP4fh84gXOp+PilzP4JZ0WIDXHbxa/ksAxY5G77GHCn+54DUtUjqrrZvd+Bs2xlBZbfKTFAvBOxeA+TOjrdh1nuTbHcTroBYp1IxmOdjuK3Amdty5PqGfiX3QyPAr8TkU0icr/bVq6qR8D50gWmZqx340+i2Fq+p84KEfnInRZx8lDlmIm3qtaqqqhqjqoWxN1edJ9/W1XPU9VcVV2qqgfjtq1W1aw+2/153PMH3W1yVXWuqr491P6JyEzgEpxRG8vvFOsTbxjj+T0aiYhXRLYATcBbqmq5nSIJYg2jNK/TUfxKP222vlryXamqlwKfAx4UkSWZ7tAEZfmeGj/GmQO7ADgC/KvbbvFOAhEpAF4FHlLV9oFe2k+bxXuI+om35XcKqGpUVRcAlcBiEblwgJdbrEcgQaxHbV6no/itB6riHlcCDWnY74Siqg3uzybgFziHEBpFZBqA+7Mpcz0cdxLF1vI9BVS10f1yjQFP8ckhMov3CImz7NqrwIuq+nO32fI7RfqLt+V3aqlqK/B7nKsjWm6nUHysR3Nep6P43QDMFpFqEfHjzE17LQ37nTBEJP/kmd7uWeI3ANtx4nyv+7J7gV9lpofjUqLYvgYsE5FsEakGZgPrM9C/ceXkf1au23HyGyzeIxK3+sQuVX0i7inL7xRIFG/L7+QTkTIRKXbv5wLXAbux3E66RLEezXmd8nV+VTUiztqUb+Ks/PCMqp5xCR4zJOXAL5zvVXzAT1X1tyKyAVglIl8GDgF3ZbCPY5aIvAQsBUpFpB74Ls5JRafFVlV3iMgqYCcQAR5U1WhGOj5GJYj3UhFZgHNo7CDOiWMW75G7ElgObHPn6wH8A5bfqZIo3ndbfifdNOA5EfHiDPStUtXXReQDLLeTLVGsXxiteZ3WyxuXlpbqzJkz07Y/k3kxVSIxxe+1iwkaY4wxJn02bdrUrKplfdvPOPIrIlXA88BZQAxYqapPishk4BVgJk5F/wVVPTHQe82cOZONGzcOvfdmzPref+3klQ2H+N3fX8PkfH+mu2OMMcaYCUJEavtrH8xwXAT4W1U9H2fR4gdFZB7O4tDvqOps4B33sTGn2FTbQiAU5ek1+zPdFWOMMcaYMxe/w1gE3RgAwtEYu4524BF47v1aWrtCme6SMcYYYya4IU3EHOQi6H23uV9ENorIxmPHznjBITOO1DR2EIrEeGDpLDp7Ijzzh4OZ7pIxxhhjJrhBF79DWAT9FKq6UlUXqeqisrLT5hybcWxbfRsAdy6s4qrZpbyx7UiGe2SMMcaYiW5Qxe8QF0E3BoBth9sozPZx9uQ8LqkqZv+xTrpDtnKMMcYYYzLnjMXvMBZBNwaA7YfbuLCiCI9HmDe9iJjC7qODPmhgjDHGGJN0gxn5Pbko9zUissW93YyzCPr1IrIXuN59bAwAoUiMXUc6mF9ZBMAF0ycBsPOIFb/GGGOMyZwzrvOrqmsASfD0tcntjhkvaho7CEVjzK9wit/Kklwm5fjY2dCOqvLiukNcd345ZxXlZLinxhhjjJlI7LJbJiXe29sMwEXuyK+IMG/6JHY0tLPuQAvf+uV2HnrlQ9J5hUFjjDHGGCt+TdJ1BMOsXP0xV80u5ewp+b3t86YVsftoOy+uO4QIrN3fwssb6jLYU2OMMcZMNFb8mqR76r0DnOgK879uPO+U9gumTyIYjvH6Rw3cc/kMrjhnMo/+ehdN7cER77O5s4eeiK0kYYwxxpiBWfFrkqolEOLp9/Zzy/xpvSe7nXRBhXPSmyrcvXgGP/j8RXSHozz5zt4R7bOpPcjVj/+e7/961ynt7+5p4vYf/YFXN9UTicZGtA9jjDHGjA9W/JqkenPHUQKhKH9x9azTnptVVoDf5+GiyiIumF5EdWk+f3z5DF7ZUMfB5sCw9/nYb3fTEYzwn5vqaQ+Ge9t/9O4+ttS18rc/28p9z20c9vsbY4wxZvyw4tck1ds7G6manMu8aZNOey7L6+HR2+fzvdsu7G1bcc25ZHk9PPFWzbD2t/nQCX6++TDXnjeVrlCUVzfVA/DxsU42HDzB12+cy1c+U83qmmMc7+wZ3ocyxhhjzLhhxa9Jmq5QhDX7mrn2vHKca6Oc7s6FlSyoKu59PLUwh/s+M5PXtjaw+dAJAN7f18z7+5oHtc/H39zD1MJs/u3uS1hQVcwLa2tRVX62sR6vR7hzYSW3XDQNgA/2Hx/hJzTGGGPMWGfFr0maNXub6YnEuH5e+ZC2e2DpuZRPyubbv9zOptoWvvTsBpY/s57XtjYQjsbYVt/W75zdtu4w6w608IVFVeRn+7j302ez/1iAb/1yO69urufquVOZWpjD/IoiCrJ9vP+xFb/GGGPMRHfGi1wYcybBcBSPCO/saqIwx8fi6slD2r4g28d3br2AB3+6mbufWkd5UTbTinJ56OUP+Va2j/ZghL+5fg5/de3sU7b7w75mojFl6dwyAG6ZP533appZtbGOcFT54mVVAPi8Hi6vnswHVvwaY4wxE54Vv2bIVJXucJQ8v4+27jA3P/kexwM9xBRumFdOlnfoBxRunn8WS+aUseFACyuXL+LsKXn80693EYrEqD0e4Ok1B/jTK2dSmJPVu83v9zjF9slpFH6fhye+uIBv3nI+2xvaWTK7tPe1n5o1hXd2N9HQ2s304lwaWru548fv8+jn53P13KkjD4oxxhhjxgQrfs2QtHWFeeDFTWyrb2Plnyxi1cY6GtuDfOGyKvY2drD8irOH9b4iwsrlCznRFWJaUS4Aj94+H4CP6lv5n//+B15YW8tfLD0XcArw/645xlWzS/H1KbanFGTz2Tllp7R9epZTCH/w8XHuWFjJi+tqOdIW5Adv7GLJ7DK8nkRX8DbGGGPMeGLFrxm0upYuvvTseupauikvymb50+uIxJS/vm4OX7tu9pnf4Axysry9hW+8iyqL+eycMlau3s+Hh1qJRGP8j4un09jec1qRm8h5ZxVSkpfFb7Yf5daLp/HKhjqmFmZT09jJ6x81cMv8adQ0dnK0vZviPD+XVBUnPGnPGGOMMWOXqGradrZo0SLduNHWWx2LDjQHuOeptQRCUVYuX8ic8kK++sImEHjxK5cPa6rDUGyta+XeZ9dTVpBNSyDE8UAIgLXfuJazinIG9R7/9s5ennirhqvnlvHunmP8vz+9jMd+s7v3vY51fLIU2oKqYr596zwWnl2S/A9jjDHGmJQTkU2quqhvu438mtNEY8qvthzmaHuQwpwsPm5yRkdjCi/92RXMm+6s4bvqzz+FqqZlhPTiqmK2fOcGAFq7Qvzgjd2EY7FBF74AK64+l611rbyzu4mZU/JYMtsZNb7/hU0smV3GrRdNY8aUPHY0tPPjd/fxZ89v5M2HllBWmJ2Sz2SMMcaY9BvRyK+I3AQ8CXiB/1DVxwZ6/UQe+Y3FFI87rzQaU1oCIUrysk6brzoUR9uCrD/YQl6Wl0+fO4U8/yd/y8QXpeFojGA4SkyhvTvM0fYgR9qCNLR2s7OhnYPHA/i9Horz/Myams+avc3saGjvfa88v5eFZ5fwnVvnMbu8cNj9HQ3ausOs+Olmll02o3f93/7sbezglv+zxplusXyhTYEwxhhjxphEI7/DLn5FxAvUANcD9cAG4G5V3Zlom2QWv3UtXTS0dvceAj8RCBGOxogpxFSJKXx1yTmU5Pt7t3lhbS3HO3voDkcJhqKEojFys3wUZHtRnMJwf3OA8kk5PH7XxUnp50l3/eR9tta3kef30hmMEIkpfq+HypJcfF4hpvDaiit7C1hV5X+/vZfWLufz1bV00dgepCg3i2yfl4bW7t7D9QB+r4cZU/IoycuioTVIQ1s3WV4PXhG6w9GE/ZpelMOsqQVEosrxQA8HmgNMyc/mm7ecz3Xnl9PWHaa0wD+iIn2semr1fr7/xi4ev+ti7lxYmenuGGOMMWYIUjHtYTGwT1X3uzt4GbgNSFj8JtP3Xt/JWzsbT2kTAY8IHnFWD1h2WdUpxe9Tq/dzqKWLbJ+HnCwvfp+Hrp4IgVAUj0C+30d1WT5zUzC6+flLK7l0RgldoSiTcn2UFWRztL2HQy0BVJ1+C5+MLooIz645gMcjTM73U1mSy9zyQtqDYYLhGBdWFDGrLJ/F1ZPpCEZYXXOM2uNdtHSFWDSzhKqSCsKxGNGoUpSbRa7fC8Ck3CzOmpTDWUU5lE/KoSg365R+RqIxJ4buKPXJ7Sai+z5TzabaExTm2OwgY4wxZrwYycjvncBNqvoV9/Fy4HJVXdHndfcD9wPMmDFjYW1t7ch67NpS10pnMMLkfD9TCvyU5Pnx+wYenQyGo/i9nt7CbrSLxtSW4DLGGGOMGYZUjPz2V5WdVkmr6kpgpduJDhHZM4J9msErBZoz3YkJxOKdPhbr9LJ4p4/FOr0s3umTqVj3e/GBkRS/9UBV3ONKoOEM2+zprwI3ySciGy3W6WPxTh+LdXpZvNPHYp1eFu/0GW2xHslZTBuA2SJSLSJ+YBnwWnK6ZYwxxhhjTPINe+RXVSMisgJ4E2eps2dUdUfSemaMMcYYY0ySjeg0dlV9A3hjCJusHMn+zJBYrNPL4p0+Fuv0sninj8U6vSze6TOqYp3WyxsbY4wxxhiTSRPvygXGGGOMMWbCsuLXGGOMMcZMGGkpfkXkJhHZIyL7ROThdOxzohGRgyKyTUS2iMhGt22yiLwlInvdnyWZ7udYJCLPiEiTiGyPa0sYWxH5hpvre0Tkxsz0euxKEO9HROSwm99bROTmuOcs3sMkIlUi8q6I7BKRHSLyNbfd8jsFBoi35XeSiUiOiKwXka1urP/RbbfcTrIBYj1q8zrlc35FxAvUANfjrA28AbhbVdNyGeSJQkQOAotUtTmu7YdAi6o+5v7RUaKqf5+pPo5VIrIE6ASeV9UL3bZ+Yysi84CXcC7/PR14G5ijqtEMdX/MSRDvR4BOVX28z2st3iMgItOAaaq6WUQKgU3AHwFfwvI76QaI9xew/E4qEREgX1U7RSQLWAN8Dfg8lttJNUCsb2KU5nU6Rn4XA/tUdb+qhoCXgdvSsF/jxPk59/5zOF+yZohUdTXQ0qc5UWxvA15W1R5VPQDsw/kdMIOUIN6JWLxHQFWPqOpm934HsAuowPI7JQaIdyIW72FSR6f7MMu9KZbbSTdArBPJeKzTUfxWAHVxj+sZ+JfdDI8CvxORTSJyv9tWrqpHwPnSBaZmrHfjT6LYWr6nzgoR+cidFnHyUKXFO0lEZCZwCbAOy++U6xNvsPxOOhHxisgWoAl4S1Utt1MkQaxhlOZ1Oopf6afN1ldLvitV9VLgc8CD7qFjk36W76nxY2AWsAA4Avyr227xTgIRKQBeBR5S1faBXtpPm8V7iPqJt+V3CqhqVFUXAJXAYhG5cICXW6xHIEGsR21ep6P4rQeq4h5XAg1p2O+EoqoN7s8m4Bc4hxAa3TlmJ+eaNWWuh+NOothavqeAqja6X64x4Ck+OURm8R4hd47eq8CLqvpzt9nyO0X6i7fld2qpaivwe5w5qJbbKRQf69Gc1+kofjcAs0WkWkT8wDLgtTTsd8IQkXz35AlEJB+4AdiOE+d73ZfdC/wqMz0clxLF9jVgmYhki0g1MBtYn4H+jSsn/7Ny3Y6T32DxHhH3RJWngV2q+kTcU5bfKZAo3pbfySciZSJS7N7PBa4DdmO5nXSJYj2a83pElzceDFWNiMgK4E3ACzyjqjtSvd8Jphz4hfO9ig/4qar+VkQ2AKtE5MvAIeCuDPZxzBKRl4ClQKmI1APfBR6jn9iq6g4RWQXsBCLAg3a28NAkiPdSEVmAc2jsIPBVsHgnwZXAcmCbO18P4B+w/E6VRPG+2/I76aYBz7krTnmAVar6uoh8gOV2siWK9QujNa/t8sbGGGOMMWbCsCu8GWOMMcaYCcOKX2OMMcYYM2FY8WuMMcYYYyYMK36NMcYYY8yEYcWvMcYYY4yZMKz4NcYYY4wxE4YVv8YYY4wxZsL4/4F0TfmD7seIAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 864x504 with 9 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "i=0\n", "fig,ax=plt.subplots(9,1,figsize=(12,7))\n", "fig.subplots_adjust(hspace=.6)\n", "for yr in (2012, 2013, 2014, 2015, 2016, 2017,2018,2019,2020):\n", " ax[i].plot(df4['YearDay'],df4[yr])\n", " ax[i].set_title(str(yr))\n", " ax[i].set_xlim(0,366)\n", " i+=1\n", "fig.savefig('bloomTiming.png')" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "df4.to_csv ('bloomTiming.csv', index = False, header=True,na_rep=np.nan)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python (py38)", "language": "python", "name": "py38" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1" } }, "nbformat": 4, "nbformat_minor": 2 }