{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import netCDF4 as nc\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from salishsea_tools import viz_tools,tidetools\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "grid = '/data/nsoontie/MEOPAR/NEMO-forcing/grid/bathy_meter_SalishSea2.nc'\n", "fB = nc.Dataset(grid)\n", "bathy=fB.variables['Bathymetry'][:]\n", "X = fB.variables['nav_lon'][:]\n", "Y=fB.variables['nav_lat'][:]\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "120 774\n" ] } ], "source": [ "lat36 = 50.135820\n", "lon36 = -125.353403\n", "\n", "j36, i36 = tidetools.find_closest_model_point(lon36, lat36, X, Y, bathy)\n", "print i36, j36\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[110, 150, 750, 790]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG1FJREFUeJzt3X2QHdV55/HvT8AQkIQRCMsI5EgyQkbY2JJ5CWvAg1cG\ny16ieLO2pLjiOBhCmSpIxamsjOMCBdf6JSEkdiqwVcHY5T+QQxxB4QRIllRuYju8yJIMcvRiBlDQ\nG7IwEkiybEno2T9uD2qNZvr0fZm5d6Z/n6qp6nvO6XOf6bnzTM/p06cVEZiZ2dg2rtMBmJnZ8HOy\nNzOrACd7M7MKcLI3M6sAJ3szswpwsjczq4DCZC9ptqQ1ua9XJd0s6V2SHpf0jKSHJE3M7XOLpGcl\nbZB01fB/C2ZmlqKy8+wljQO2ApcAfw98JiK+J+l3gRkRcaukOcB9wEXAWcBjwLkRcXhYojczs1Ia\nGcaZD/RFxIvArIj4Xlb+GPCb2fZCYHlEHIyITUAfcHG7gjUzs+Y0kuwXA8uz7f+UtDDb/igwLdue\nCmzJ7bOF+hm+mZl1UKlkL6kHuAb4u6zoWuBGST8EJgAHCnb3egxmZh12fMl2C4BVEbETICI2AlcD\nSDoX+HDWbitHzvIBzs7KjiLJfwDMzJoQEWpmv7LJfglHhnCQdEZE7Mwu2n4euDuregi4T9Kd1Idv\nZgFPtTPgkSRpWUQs63QcRbohRp1S4r+3GcvgXcuGrP6tb92b7OK+h68tbvD5ZBfEago/d91wPMtw\nnO01iuJs+kQ5OYwjaTz1i7MrcsVLJG0E1gNbIuKbABGxDrgfWAc8AtwYXlbTzKzjkmf2EbEPmDyg\n7GvA14Zo/0Xgi22JzszM2sJ30BardTqAEmqdDqCUKb2djqCsWqcDKKnW6QBKqnU6gJJqnQ5guDnZ\nF4iIWqdjSBkNMQLwlt5OR1DKaDmejrO9RkucrSh7gdZsaJelm4z7s32F9T/n5Nbj2NN6F2Zjlc/s\nzcwqwMnezKwCnOzNzCrAyd7MrAJ8gdZaNz/d5L9N+Y/C+rW8s/U4ftZ6F2Zjlc/szcwqwMnezKwC\nnOzNzCrAyd7MrAKc7C1JpxBFX52Oz8zSSj9wvK1vKsVoWM/e6pIJ/R/SffS847XC+gO1U9Kd3JFu\nEv9RvF692WjWSu70mb2ZWQU42ZuZVYCTvZlZBfgOWkN6pXhMfuJpIxSJmQ0XJ3tLS61XPyHdxYEH\nExdgHywRx+Ml2pjZoAqHcSTNlrQm9/WqpN+XdLGklVnZSkkXZe2nS9qfa3/XyHwbZmZWpPDMPiI2\nAnMBJI0DtgIPAN8CPh8R/yRpAfCnwJXZbn0RMXf4QjYzs0Y1coF2PvVE/iKwHXhTVn4q9T8CZmbW\npRoZs18MLM+2Pwt8X9Id1P9gXJprN0PSGuBV6mf/329LpGZm1rRSyV5SD3ANsDQr+jpwc0Q8IOmj\nwL3AB4BtwLSI2CVpHvCgpPMjwo+CthEhfbNwZlHEJ32HrVVS2TP7BcCqiNiZvb44IvofWfEd4B6A\niDgAHMi2V0t6DpgFrB7YoaRluZe1iKg1HL21hxJTK3+jDe+R+v9ue5lO1ifqnywXi9koIakX6G1H\nX2WT/RKODOEA9El6X0T8G/B+4CdZYJOBXRHxuqSZ1BP984N1GBHLmo7azKwCspPgWv9rSbc121cy\n2UsaT/3i7PW54t8D/lrSicD+7DXAFcDtkg4Ch4EbImJ3s8GZmVl7JJN9ROwDJg8o+yFwySBtVwAr\n2hadmZm1hdfGMTOrACd7M7MK8No4RhwufuCHViceXrKlxJs8kajfUKIPzknUv1KmE7NK8pm9mVkF\nONmbmVWAk72ZWQU42ZuZVYAv0FraS4n61CoGAL8DsbT4QnCKtLX4QjGbSvTy3lZCMBu1fGZvZlYB\nTvZmZhXgZG9mVgFO9mZmFeBkb2ZWAZ6NY62bNDJvEzE9MZtn+ojEYTYa+czezKwCnOzNzCrAyd7M\nrAI8Zj/GSbXEXaeQfJ7xP7YlFDPrICd7S9uTqN80EkGYWSsKh3EkzZa0Jvf1qqTfl3SxpJVZ2UpJ\nF+X2uUXSs5I2SLpq+L8FMzNLKTyzj4iNwFwASeOArcADwLeAz0fEP0laAPwpcKWkOcAiYA5wFvCY\npHMj4vAwfg9mZpbQyAXa+UBfRLwIbAfelJWfSv2PAMBCYHlEHIyITUAfcHGbYjUzsyY1Mma/GFie\nbX8W+L6kO6j/wbg0K5/K0U8b3UL9DN/MzDqoVLKX1ANcAyzNir4O3BwRD0j6KHAv8IEhdh90Noik\nZbmXtYiolYnFzKwqJPWSnC5XTtkz+wXAqojYmb2+OCLmZ9vfAe7JtrcC03L7nc2RIZ6jRMSyxkK1\n5lySbnJdov71RP3esrGYWSOyk+Ba/2tJtzXbV9kx+yUcGcIB6JP0vmz7/cBPsu2HgMWSeiTNAGYB\nTzUbnJmZtUfyzF7SeOoXZ6/PFf8e8NeSTgT2Z6+JiHWS7gfWAYeAGyOixE09ZmY2nNSJXCwpIqKl\n55FaOdL+9A/4upOK669M7P9Eoj4TX2vtGbRmVddK7vTaOGZmFeDlEsa6SYmzdoAzE/V9ifrJELf6\nrN2sm/nM3sysApzszcwqwMnezKwCnOzNzCrAyd7MrAI8G2es21WizQ/TTeJhz7YxG818Zm9mVgFO\n9mZmFeBkb2ZWAU72ZmYV4Au0o5w0+MNhzMzynOzHuj8o1yzu9Gwbs7HMwzhmZhXgZG9mVgFO9mZm\nFeBkb2ZWAX4s4SinaxOzcb6xv1Q/ESf552HW5VrJnYWzcSTNBr6dK5oJ3ApcCszOyk4FdkfEXEnT\ngfXAhqzu8Yi4sZnAzMysfQqTfURsBOYCSBoHbAVWRMRX+9tIugPYndutLyLmDkOsZmbWpEbm2c8H\nnouIzf0FkgR8DLiy3YGZmVn7NHKBdjFw34Cyy4EdEfFcrmyGpDWSapIuazlCMzNrWakze0k9wDXA\n0gFVSzj6D8A2YFpE7JI0D3hQ0vkRsWeQPpflXtYiotZI4GZmY52kXqC3LX2VmY0jaSHw6Yj4YK7s\neGALMC8itg2x378CfxgRqweUezZOm6TXxvlBqX4i3uufh1mXayV3lh3GWQIsH1A2H1ifT/SSJks6\nLtueCcwCnm8mMDMza59kspc0nnpiXzGgahHH/gG4Anha0hrg74AbImI31nbvkD60QHr0ffRyIVcz\ngX/sdEhm1sV8U9Uo9A7pQ5fCV/8GzukvW8TbeJivspcPD2jtYRyzsaKV3OlkP4ykWuLgXpLuZO5J\nxxRd2Hc1K/f88zHlF3E1P+TRAaVO9mZjxbDdQWvdafzhXw5ezmvAjgGl5xAxxYncrOK8ENootG/c\niYOXM3i5mZmT/Si04YybWdTztqPKPsavsoFPdSgiM+t2HsYZhfa+6cM8DFy0868Yv+c19nEiG/gU\ne/lAp0Mzsy7lC7TDaLgu0B5lzcAx+mN5zN5sbBiJm6rMzGwU8zDOsDpUXD0xcdYO9acFFDqhbDBm\nVmE+szczqwAnezOzCnCyNzOrACd7M7MKcLI3M6sAz8YZVonDe8zzuwaRmNADp5WMxcyqzGf2ZmYV\n4GRvZlYBTvZmZhXgMfsK0AmJh5IfeibRQ1+i/pVScURc5zV6zDrEyX5YbU3UP5nu4vHEYmmXp/ZP\nv4WZjX2FyV7SbODbuaKZwK3ApcDsrOxUYHdEzM32uQW4FngduDkijn1+npmZjajCZB8RG4H+JD6O\n+qnqioj4an8bSXcAu7PtOcAiYA5wFvCYpHMj4vDwhG9mZmU0coF2PvBcRGzuL5Ak4GPA8qxoIbA8\nIg5GxCbqg70XtylWMzNrUiPJfjFw34Cyy4EdEfFc9noqsCVXv4X6Gb6ZmXVQqQu0knqAa4ClA6qW\ncOwfgIEGnQkiaVnuZS0iamViMTOrCkm9QG87+io7G2cBsCoiduaCOB74CDAv124rMC33+myGmJIS\nEcsainQUivj4sE81lNYXT6ucdl66k8kXFNevSa3ZcEr6PcysYdlJcK3/taTbmu2r7DDOEo6My/eb\nD6yPiG25soeAxZJ6JM0AZgFPNRucmZm1R/LMXtJ46on9+gFVixjwByAi1km6H1hHfQmvG6MTTzQ3\nM7OjqBO5uJUnpNvR2jOMk6hfszrRoOwdtPP9MzdrQSu502vjmJlVgJdLGOUizmv5bFkfSqydM2le\nYTW71rcagpkNM5/Zm5lVgJO9mVkFONmbmVWAk72ZWQX4Au0YJ61Oz61dkLgAa2bDTron8bs6saX+\nnewNHknUp6bq79rfrkjMbJh4GMfMrAKc7M3MKsDJ3sysAjxmbyNGeqbwAlTEBV47x8ak5BpWI8DJ\nfsx7Z7rJ5Yn6d6c6KDGbZ/0z6TZmlTY9UX9aS717GMfMrAKc7M3MKsDJ3sysApzszcwqwMnezKwC\n/FjCMa7U2jgTE7Np/ldi/wklAvmHdJN4Hn8mbEzSuMQDggAisezIeSfBejEsjyWUNFvSmtzXq5Ju\nzupukrRe0o8lfSUrmy5pf679Xc0EZWZm7VU4zz4iNgJzASSNA7YCD0i6Evh14IKIOCjpjNxufREx\nd7gCNjOzxjUyZj+feiLfDHwa+FJEHASIiJ3DEZyZmbVHI8l+MbA8254FXCHpCUk1SRfm2s3IhnBq\nki5rW6RmZta0UsslSOoBrgGW5vabFBG/Juki4H5gJrANmBYRuyTNAx6UdH5E7Bmkz2W5l7WIqDX/\nbVSXdHfiws8lIxOIWYXpohIXYJvy79kXsPOElnoquzbOAmBVbrhmC7ACICJWSjos6fSI+BlwICtf\nLek56v8FrB7YYUQsaylyK+m1dJM9rxTXr02sybGvRBgvbCrRaHqJNmaj0CdLtPnGYOn4/dkXcMIJ\nwJ80HULZYZwlHBnCAXiwPwJJ5wI9EfEzSZMlHZeVz6Se6J9vOjozM2uL5Jm9pPHUL85enyu+F7hX\n0lrqZ/KfyMqvAG6XdBA4DNwQEbvbG7KZmTUqmewjYh8weUDZQeC3B2m7gmx4x8zMuofXszczS5Ce\nLL4Ae2H3T4Rwsh/1DiXqj5kINYjEBdgdid1PLfEWvvhqY9nGRP0ZiXqAkxKzbbY/WTaaQXkhNDOz\nCnCyNzOrACd7M7MKcLI3M6sAX6C1riHtSN5yHjHFa96PIdIPEj/zNyd6SNz9nYm4pPKfGyf7US7i\npsIPsfRIiTU7EksqbD6luL7MbXOTE/Uvp6b8mHXSSa3tXmZd4PMhVg79AB9pfUvr73gYx8ysApzs\nzcwqwMnezKwCPGZvo4pUKxy3jOit/IW4dkk/K+HsRA/z2xbLcJIeKzEWnrpQ3B6tjssXcbIf88rM\nVlhbXK33FtenLr4CHJeof3lKiU5qJdrYqHJ84rP1emL/YUuNA11QXH1iYvdVJd4i1icatLb+jodx\nzMwqwMnezKwCnOzNzCrAyd7MrAKc7M3MKsCzcca8g613kZrxMKFEH6lnrEwr0cfm3hKNrH3Oa63+\n8hJLDKQmYaU+F0+k3yLt7ekmqUNxTqK+zJIi35tYolHzCs/sJc2WtCb39aqkm7O6myStl/RjSV/J\n7XOLpGclbZB01bBGb2ZmpRSe2UfERmAugKRxwFbgAUlXAr8OXBARByWdkbWZAywC5gBnAY9JOjci\nDg/j92BmZgmNjNnPB/oiYjPwaeBLEXEQICL613RbCCyPiIMRsQnoAy5uY7xmZtaERpL9YmB5tj0L\nuELSE5Jqki7MyqcCW3L7bKF+hm9mZh1U6gKtpB7gGmBpbr9JEfFrki4C7gdmDrH7oJf3JC3LvaxF\nRK1MLNaoMutwJz4GqU/J/hJvMStR/1KJPjavLtFoXok2Vk5qqY3EMwj6SiyBkVpeJ9XFL9JvwY9A\n44qmGaSCAH4lUf8/EvUr02/B3kHi2FODvbX69ktlFsUfWtnZOAuAVbnhmi3ACoCIWCnpsKTJ1Mf0\n89fPz87KjhERy5qK2MysKib21r8AXloP3NV0V2WHcZZwZAgH4EHg/QCSzgV6IuJl4CFgsaQeSTOo\nn8891XR0ZmbWFskze0njqV+cvT5XfC9wr6S1wAHgEwARsU7S/cA66jOrb4yIEVuXzszMBpdM9hGx\njwGL2GazcH57iPZfBL7YlujMzKwtvFyCmVkFeLmEMa/Mw0tOLq4+lJgF81yJGTCp2943p7uA08o0\nshGT+HmUmSnzlkT9oNM7csrM4koNJC8p0cc7EvXvStSXybSpB7W8dB5sL9HPEHxmb2ZWAU72ZmYV\n4GRvZlYBTvZmZhXgZG9mVgHqxD1PkiIiNOJvbE2RHkl8SOanO5l0QnH9e0oE8i/pJnEYf67aRPrb\nxM99eqKHS9JvcmGiftC7eXJSa9YA7E3Up9a1AZjwy8LqM6duK6zf/mKJp/PsTUzZ+b/AX4lmc6fP\n7M3MKsDJ3sysApzszcwqwMnezKwCfIHWWiY9lv4QHZ+4iHtmiTcqcat4HPQF2m4hrS7xuUgstXF5\nYv+/LBHI5OKLq6e/5eVkFz3jDhTWn8zPC+sPcVzyPS7hycL6/ZzMd/UxX6A1M7OhOdmbmVWAk72Z\nWQU42ZuZVYDXszezpkh3Jy7AlriD1kaMk721LGJ+cnaA9GxxYtg7K/1Gh7aUiObsEm1sZKSePAIc\nOi/R4KTi6sRMG0gvZVDG7tdOLazfvndqYf2vTn2h5Rjewyq+28L+hcle0mzg27mimcCtwCTgOmBn\nVn5LRDwqaTqwHtiQlT8eETe2EJ+ZmbVBYbKPiI3AXABJ46j/qV4BXAvcGRF3DrJbX0TMbXegZmbW\nvEYu0M6nnsg3A8q+zMxsFGgk2S8GlmfbAdwk6WlJX5eUH9CaIWmNpJqky9oWqZmZNa3UBVpJPcA1\nwNKs6G7g9mz7C8CfA58CtgHTImKXpHnAg5LOj4g9g/S5LPeyFhG1pr4DGyUSF2B3vVKijw3pJr5A\nO4JOSdRPLNFH4gLs9MTuh9LLEJxO8XIImw+k15rfv/fk4ga/6En2kXIqu48p21Z7lm21PgC28ouW\n+i87G2cBsCoidgJExE/7KyTdA/WLxBFxADiQba+W9Bz13/LVAzuMiGUtRW5mNsZN7Z3F1N76idIk\ndvODP/m3pvsqO4yzhCNDOEjKL1v1EWBtVj5Z0nHZ9kzqif75pqMzM7O2SJ7ZSxpP/eLs9bnir0h6\nN/Wx+xeAG7LyK4DbJR0EDgM3RMSx/5uYmdmISib7iNgHTB5Q9okh2q6gPjXTzMy6iO+gtZaVWs++\nzEPJ2yD1kOyIRZ4ybJXkZG8jJLHUwcQSs2j2vDPRoFY2GGuDiI8X/uEs9/CSRH1qEPjldAo78a3F\nDx55te8tyT7YlKg/J91Fyk+ZUlg/KXkwinnVSzOzCnCyNzOrACd7M7MKcLI3M6sAJ3szswrwbBxr\ng9dKtNlfXF08EaFuQqLRdq+L011KrHd0KFGfmoDy/fRb7JlXvEbPVXMeSvbx2On/vbD+8MbxhfX/\n9Svp6Tqvv7U4HR/H68k+ivjM3sysApzszcwqwMnezKwCnOzNzCrAF2hthCQeUlHmORd96xMNdpQN\nxkaLCYn6EssU9PDLwvppbE72cd2UewrrN08pfgDKbiYl32Ny4iEre0r9kgzNZ/ZmZhXgZG9mVgFO\n9mZmFeBkb2ZWAb5Aa0nSnYl1yaePSBxm1rzCZC9pNvDtXNFM4FZgEnAdsDMr/1xEPJLtcwtwLfA6\ncHNE/HO7g7Zuc7BEm5OLq9eUeZ/UsgxnEXGJn0TVNd6ebnJmoj71gLPp6be4gLWF9alZMADn8pPC\n+isTD875Gacn32NHYs2QbUxN9lGkcBgnIjZGxNyImAu8B/g59WfMBnBnf10u0c8BFgFzgA8Cd0ka\ntUNFkno7HUPKaIixrsQiJl1gtBzP0RInPN7pAEp5sfZCp0MYdo0k4vlAX0RsBpR9DbQQWB4RByNi\nE9AHXNxylJ3T2+kASujtdADl/KDTAZTV2+kASurtdADljJZkv6nTIQy7RpL9YmB5th3ATZKelvR1\nSadm5VM5+mGjW4CzWg/TzMxaUeoCraQe4BpgaVZ0N3B7tv0F4M+BTw2xe/qhw2Y26kiPJX63S4zZ\n24hRRDoXS1oIfDoiPjhI3XTguxHxTkmfBYiIL2d1jwK3RcSTA/bxHwAzsyZERFOTEMpOvVzCkSEc\nJJ0ZEduzlx+BNy53PwTcJ+lO6sM3s4Cn2hWsmZk1J5nsJY2nfnH2+lzxVyS9m/oQzQvADQARsU7S\n/cA66s+guTHK/OtgZmbDqtQwjpmZjW5tnwMv6V5JOyStzZV9VNJ/Snpd0rwB7W+R9KykDZKuanc8\n7YhT0nRJ+yWtyb7u6nCcfyZpfTYbaoWkN+Xquul4DhpnFx7PL2Qx/kjSv0ialqsb8ePZSIzddixz\ndX8o6bCk03JlXfPZHCrObjuekpZJ2pKLZ0GurrHjGRFt/QIuB+YCa3NlbwfOBf4VmJcrnwP8CDiB\n+r1wfcC4dsfUhjin59uN5NcQcX6g/zgBXwa+3KXHc6g4u+14Tsxt3wTc08nj2WCMXXUss/JpwKPU\nh3hP68bPZkGcXXU8gduAzwzStuHj2fYz+4j4HrBrQNmGiBjsfuOO3YTVYJwdM0Sc/y8iDmcvnwTO\nzra77XgOFWfHDBHnntzLCfDG/fMdOZ4Nxtgxg8WZuRP43wPKuuqzmRkszo4piLMtN7B2eimD0XQT\n1ozs36iapMs6HUzOtcDD2XY3H898nNBlx1PS/5H0IvBJ4EtZcVcdz1yMv0P9P6V+XXMsVZ+mvSUi\nnhlQ1W3Hcqg4oYuOZ6YtN7B2OtkPphuvGG8DpkV9jaDPUJ9e2tozwtpA0h8DByLivoJmHT+eg8TZ\ndcczIv44It4KfAP4y6KmIxTSsW98JMZvAn+RFXfNsZR0MvA56kMPbxQX7NKRY5mIs2uOZ+ZuYAbw\nbmA79RtYh1J4PDud7LdSHzfrd3ZW1lUi4kBE7Mq2VwPPUb+HoGMkfRL4EPDxXHHXHc/B4uzG45lz\nH3BRtt11xzPzRoxddizfRn38+GlJL1A/XqskTaG7juVQcb65y44nEfHTyAD3cGSopuHj2Ylkn/9L\n/xCwWFKPpBkMcRNWh7wRp6TJko7LtmdSj/P5jgUmfRD4I2BhRPwiV9VVx3OoOLvweOZ/mRdyZMHl\nrjmeQ8XYTccyItZGxJSImBERM6gPLcyLiB100bEsiPOn3XQ8sxjyi0APvIG1seM5DFeUl1P/V+gA\nsJn6WO1vZNv7gZeAR3LtP0f94sIG4OrhuMrdapzAbwI/pv4Ltgr4cIfjfBb4ryyeNcBdXXo8B42z\nC4/nd7Jfoh8Bfw+8uZPHs5EYgf/ZBcfyl1mcvzug/nmyWS5d8tlMxtklxzP/c/8W8AzwNPAgMKXZ\n4+mbqszMKqDTY/ZmZjYCnOzNzCrAyd7MrAKc7M3MKsDJ3sysApzszcwqwMnezKwCnOzNzCrg/wMj\ny8+wsiPUZgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.pcolormesh(bathy)\n", "plt.plot(i36,j36,'ro')\n", "plt.axis([110,150,750,790])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Very close to the land. How does the U/V grid look?" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.404824\n", "--\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFMBJREFUeJzt3X+w5XV93/Hna11W100i2HVSEZlIxc2gku4GEDKCF7NS\ncYqYOpHdqaaaqe2QJmasRbCxcjuTKImMCZOWqZOGdqKyVtPVMaNCEvRGa1XIigLuQmQDhV2QrNXV\niFhWePeP871wPHt/nLN7zp772X0+Zs7s+X6+n+/nvO+Z+33d737OOZ+TqkKS1K5V0y5AknR4DHJJ\napxBLkmNM8glqXEGuSQ1ziCXpMYtGeRJNiS5te/23SS/meSsJLd0bbckObPvmHck+UaSO5NcMPkf\nQZKObRn2feRJVgF7gZcAfwK8p6puTHIh8PaqOj/JacD1wJnAc4C/BF5QVY9PpHpJ0khTK5uBu6vq\nPuBB4Bld+/H0Ah7gYmBbVR2oqnuBu4GzxlSrJGkBq0fouwXY1t2/AvhfSa6m98fgnK79ROBLfcfs\noXdlLkmakKGuyJOsAS4CPto1/THwlqo6GXgrcN0Sh7sGgCRN0LBX5BcCO6pqX7d9VlVt7u7/KfBf\nu/t7gef2HXcST067PCGJ4S5Jh6CqMtg2bJBv5clpFYC7k7ysqv4KeDnwN137J4Drk7yP3pTKqcDN\nwxazkiWZrarZadcxrNbqhfZqbq1emFzNX2LjRC7Ozr7zq8z+J5j99fGPfdrPfmX8gwL7Zv8L+2bf\nP5F8W+wieNkgT7KO3gudb+5r/lfAf07yVOCRbpuq2pnkI8BO4EfAr5XLK0rSRC0b5FX1MLB+oO2v\n6b0NcaH+7wbePZbqJEnL8pOdw5ubdgEjmpt2AYdgbtoFjGhu2gUcgrlpFzCqmcbewPz0mTOO+GMO\n/YGgsT5oUq3NkUta3CTnyCdlUnPkADvZOLE58oWy0ytySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS\n1DiDXJIaZ5BLUuMMcklqnJ/slHT47p7M0tQ/eeK+5Tsdhr9/+vqmcshPdkrSUcogl6TGGeSS1DiD\nXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDVu9VI7k2wAPtzXdArwLuAcYEPXdjywv6o2Jnka8N+A\nF3Zj/0lVXTX2qiVJT1gyyKvqLmAjQJJVwF5ge1VdM98nydXA/m5zS3fc6UnWAjuTXF9V902ieEnS\nMkE+YDOwu6run29IEuB1wPld04PAuiRPAdYBjwLfG1OtkqQFjDJHvgW4fqDtXOChqtoNUFU30gvu\nB4F7gfdW1X4kSRMz1BV5kjXARcDlA7u20hfuSV4PrAWeDTwT+HySm6rqngXGnO3bnKuquZEql6Sj\nXJIZYGbZfsMsY5vkYuDSqnplX9tqYA+wqaoe6NquBf53VX2w2/5j4Iaq+ujAeC5jKx1F1j++d2Lr\nYX9r1XPMis7hLmO7Fdg20LYZ2DUf4p07gZd3D7gOOBvYNXq5kqRhLRvkXSBvBrYP7LqEg8P9/cCa\nJLcDNwPXVdUd4yhUkrQwvyFI0mFzauXI8BuCJOkoZZBLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJek\nxhnkktQ4g1ySGmeQS1LjRvliCUmNu4+fntBH6b8ymWE1FNdakY4hkwtyOJmHPKcnzLVWJOkoZZBL\nUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGrfkR/STbAA+3Nd0CvAu4BxgQ9d2PLC/\nqjZ2x5wOvB/4SeBx4Myq+n9jrluS1FkyyKvqLmA+oFcBe4HtVXXNfJ8kVwP7u/urgQ8Ar6+q25Oc\nAByYUO2SJEZbNGszsLuq7p9vSBLgdcD5XdMFwG1VdTtAVX1nXIVKkhY2yhz5FuD6gbZzgYeqane3\nfSpQSW5IsiPJZeMoUpK0uKGuyJOsAS4CLh/YtZUfD/fjgJcCZwCPADcl2VFVn1lgzNm+zbmqmhu+\nbEk6+iWZAWaW7TfMMrZJLgYurapX9rWtBvYAm6rqga7tEuDCqnpjt/1O4IdVdfXAeC5jK03Bq9g+\nsWVsP8U/85yesMNdxnYrsG2gbTOwaz7EOzcCL06ytgv6lwFfP5SCJUnDWXZqJck6eqH95oFdlzAQ\n7lW1P8n7gFuAAj5ZVZ8eU62SpAUsG+RV9TCwfoH2Ny3S/0PAhw6/NEnSMPxkpyQ1ziCXpMYZ5JLU\nOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGDbX64dgf1NUPpen4XCZ3wp/nOT1ph7v6\noSRphTLIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY1bMsiTbEhya9/tu0l+M8mH\n+9ruSXLrwHEnJ/l+krdNtnxJ0uqldlbVXcBGgCSrgL3A9qq6Zr5PkquB/QOHvg/45HhLlSQtZMkg\nH7AZ2F1V9883JAnwOuD8vrbXAH8LPDyuIiUdnhclr3ouvOUlPwc/WgMXvBbOO2faVWlcRgnyLcD1\nA23nAg9V1W6AJD8BvJ1e6F82lgolHZYXJa86B675I3g+X+u1/dbe3r+G+dFhqCBPsga4CLh8YNdW\nfjzcZ4Hfr6ofdFfr0tTtZf1EVvx7hLWTGJYPZc9Yx3sR8EcDbb/zAPyH7Qb50WLYK/ILgR1VtW++\nIclq4JeATX39zgJem+T3gOOBx5M8UlXXDg6YZLZvc66q5kasXdIQnrZI+10381ecVzNHshaNJskM\nMLNcv2GDfCuwbaBtM7Crqh6Yb6iq8/oKuBL4+4VCvOs7O+RjSzoMP1yk/fvwyBEtRCPrLnDn5re7\nXD3Isu8jT7KOXmhvH9h1CQeHu6QV5hnApQNt/xJ23wd/OI16NH5+Q5COesf6HDnAA8D3gKcCfwc3\n3Ad/eEfVp8b+QJqoxbJzlHetSGrUid0N4L9XXTjNWjR+fkRfkhpnkEtS4wxySWqcQS5JjTPIJalx\nBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuNca0VHvat460R+ya/44B9MYlie/upvT2TceT/4qRM89xq1\nWHZ6RS5JjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY1b9suXk2wAPtzXdArw\nLuAcYEPXdjywv6o2JnkF8B5gDfAocFlVfXasVUuSnrBskFfVXcBGgCSrgL3A9qq6Zr5PkquB/d3m\nPuCfVtU3k7wQuBE4adyFS5J6lg3yAZuB3VV1/3xDkgCvA84HqKqv9vXfCaxNclxVHTjcYiVJBxt1\njnwLcP1A27nAQ1W1e4H+rwV2GOKSNDlDB3mSNcBFwEcHdm3l4HCnm1a5CvjXh1OgJGlpo0ytXEjv\n6nrffEOS1cAvAZv6OyY5CdgOvKGq7llosCSzfZtzVTU3Qi3S0L7MSyYybk6czBLQF/3U4LXSuP3y\nhMfXuCSZAWaW6zdKkG8Ftg20bQZ2VdUDfQ98PPBJ4PKq+uJig1XV7AiPLUnHnO4Cd25+O8mVC/Ub\namolyTp6ob19YNclHBzuvw78I+DKJLd2t/XDlS1JGtVQV+RV9TBwUBhX1ZsWaPtt4LcPvzRJ0jD8\nZKckNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxo36xRKSGpdfYfzL\nNn7gz8Y+ZM9XJjQu8KYF158ai7qOTGzwBRjkOuqdxs6JjPvxH05kWP4s501mYIA3/PTkxtbUOLUi\nSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNW/KTnUk2AB/uazoFeBdwDrCh\nazse2F9VG7tj3gH8KvAY8Jaq+vNxFy1JetKSQV5VdwHzAb0K2Atsr6pr5vskuRrY390/DbgEOA14\nDvCXSV5QVY9PpnxJ0ihTK5uB3VV1/3xDkgCvA7Z1TRcD26rqQFXdC9wNnDWmWiVJCxglyLcA1w+0\nnQs8VFW7u+0TgT19+/fQuzKXJE3IUKsfJlkDXARcPrBrKweH+6AFl8xMMtu3OVdVc8PUIknHiiQz\nwMyy/aqWX5o4ycXApVX1yr621fSuuDdV1QNd2xUAVXVVt30DcGVVfXlgvKqqI7peryTg32X8a5ED\nvHEio/LlF09mXIC/qLdNbOx3cvVE8m2x7Bx2amUrT86Dz9sM7JoP8c4ngC1J1iR5HnAqcPOhFCxJ\nGs6yUytJ1tEL7TcP7LqEgXCvqp1JPgLsBH4E/FoNc8kvSTpkywZ5VT0MrF+g/U2L9H838O7DL02S\nNAw/2SlJjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDVuqGVs\nx/6gLmMraQh389yJBdQaHp3U0JzMQytyGVtJ0gplkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TG\nGeSS1DiDXJIat2SQJ9mQ5Na+23eTvKXb9xtJdiW5I8nvdm1PS7ItyW1Jdia54kj8EJJ0LFu91M6q\nugvYCJBkFbAX+FiS84FXA6dX1YEkz+oO2dIdd3qStcDOJNdX1X0T+wkk6Rg3ytTKZuDuqrofuBR4\nT1UdAKiqfV2fB4F1SZ4CrAMeBb43xnolSQNGCfItwLbu/qnAeUm+lGQuyRkAVXUjveB+ELgXeG9V\n7R9jvZKkAUtOrcxLsga4CLi877gTqursJGcCHwFOSfJ6YC3wbOCZwOeT3FRV9yww5mzf5lxVzR3y\nTyFpuu7OZFYpfP5JExm2FUlmgJnl+g0V5MCFwI6+KZQ9wHaAqrolyeNJ1gO/AHysqh4D9iX5AnAG\ncFCQV9XskI8t6Rj1/Dv2TG7wxyY3ND83nmG6C9y5+e0kVy7Ub9ipla08Oa0C8HHg5d3ALwCOq6pv\nAXf2ta8DzgZ2jVa6JGkUywZ5F8ib6a7AO9fRm0q5nV7A/4uu/f3Amq79ZuC6qrpjvCVLkvr5DUGS\nDt+k5sh/OJFReyY6tTKZfPMbgiTpKGWQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINc\nkhpnkEtS44Zd/VCSNKQvcMYRXfvEIJd02H7m+ZNZ5PTfcO1ExgU4l89PZNzHeMpExl2KUyuS1DiD\nXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktS4JYM8yYYkt/bdvpvkLd2+30iyK8kd\nSX6375jTk3yxa78tyVMn/UNI0rFsyY/oV9VdwEaAJKuAvcDHkpwPvBo4vaoOJHlW12c18AHg9VV1\ne5ITgAOT/AEk6Vg3ytTKZuDuqrofuBR4T1UdAKiqfV2fC4Dbqur2rv07VfX4OAuWJP24UYJ8C7Ct\nu38qcF6SLyWZS3JGX3sluSHJjiSXjbNYSdLBhlr9MMka4CLg8r7jTqiqs5OcCXwEOAU4DngpcAbw\nCHBTkh1V9ZkFxpzt25yrqrlD/SEkTddneflExv0c505kXIAd/PxExv0H/N+xjbVzbh875761bL9h\nl7G9ENjRN4WyB9gOUFW3JHk8yXrgfuBzVfVtgCSfAjYBBwV5Vc0O+diSdEw6beZZnDbzrCe2/+d/\nvGvBfsNOrWzlyWkVgI9D709wkhcAa6rqW8CfAy9OsrZ74fNlwNdHrl6SNLRlr8iTrKP3Queb+5qv\nA65LcjvwKPAr0HtxM8n7gFuAAj5ZVZ8ee9WSpCcsG+RV9TCwfqDtAPCGRfp/CPjQWKqTJC3LT3ZK\nUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkQ0oyM+0aRtFavdBeza3VC23WvGvu76Zdwkh2zu1b\nvtOYGeTDm5l2ASOamXYBh2Bm2gWMaGbaBRyCmWkXMKo7mwvy5ddGGTeDXJIaN+yiWZKOAr945Uuu\nvIq3XjnucS8Z94AaSarqyD9ocuQfVJKOAlWVwbapBLkkaXycI5ekxhnkktS4sQd5kuuSPNStVT7f\n9stJvp7ksSSbBvq/I8k3ktyZ5IJx1zOMIWr++b72VyT56yS3df+evwLr3bTAMScn+X6Stx3Zap94\n/FF/L05P8sUkd3TP9VNXcs1JnpZkW1frziRXrJB635tkV5KvJdme5Bl9+1bqubdgzSvh3Bu15r79\nkz3/qmqsN+BcYCNwe1/bzwIvAD4LbOprPw34Kr3v+vwZ4G5g1bhrGnPN/xj4h939FwJ7VnK9ffv/\nFPgfwNuOdL2H8ByvBr4GvLjbPqGB34s3Atu6+2uBe4CTV0C9r5h/7oCrgKu6+yv53Fus5qmfe6PW\n3Ld/ouff2K/Iq+rzwHcG2u6sqr9ZoPvF9H75D1TVvfR+mc4ad03LGaXmqvpqVX2z29wJrE1y3BEo\ns7+GUZ5jkrwG+Ft69U7FiDVfANxWVbd3/b5TVY8fgTJ/zIg1PwisS/IUYB29b8763uSr/LHaFqr3\nL/qeuy8DJ3X3V/K5t2DNK+Hc6+oY5Xk+IufftOfIT6T3Rc7z9gDPmVIth+K19L6U+sC0C1lMkp8A\n3g7MTrmUUZwKVJIbkuxIctm0C1pOVd1IL7gfBO4F3ltV+6da1MF+FfhUd7+Vc6+/5n4r+dx7ouYj\ndf6txA8ENfF+yCQvpPdfqFdMu5ZlzAK/X1U/SHLQ+09XqOOAlwJnAI8ANyXZUVWfmW5Zi0vyenpT\nKs8Gngl8PslNVXXPdCvrSfJbwKNVdf0S3VbUubdYzSv53Fug5lmOwPk37SDfCzy3b/ukrm1FS3IS\nsB14w0o5UZdwFvDaJL8HHA88nuSRqrp2ynUt5X7gc1X1bYAknwI2ASs2yIFfAD5WVY8B+5J8gd4f\noqn/fiR5I/Aq4Bf7mlf0ubdIzSv63Fuk5iNy/k1jaqX/r9IngC1J1iR5Hr3/Ut88hZqW80TNSY4H\nPglcXlVfnF5JS3qi3qo6r6qeV1XPA/4A+J0VGuL9vxc3Ai9OsjbJauBlwNenU9aS+mu+E3g5QJJ1\nwNnArmkU1S/JK4HLgIur6od9u1bsubdYzSv53Fus5iN2/k3gFd1twAP0Xuy5n9580Wu6+48A3wQ+\n3df/39N7oeVO4J9M4hXdcdYMvBP4PnBr3239Sq134LgrgX+70p/jrv8/B+4AbmfgHQArsWbgqcAH\nu3q/zhTeHbRIvd8A/k/f7+q1ff1X6rm3YM0r4dw7lOe577iJnX9+RF+SGjftd61Ikg6TQS5JjTPI\nJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuP+Pxc7DawzeQoCAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ufil='/data/dlatorne/MEOPAR/SalishSea/nowcast/24jan15/SalishSea_1d_20150124_20150124_grid_U.nc'\n", "fU = nc.Dataset(ufil)\n", "U = fU.variables['vozocrtx']\n", "U=np.ma.masked_values(U[0,0,:,:],0)\n", "\n", "plt.pcolormesh(U)\n", "plt.plot(i36,j36,'ro')\n", "plt.axis([110,125,765,780])\n", "\n", "print U[j36,i36]\n", "print U[j36,i36-1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "U masked at the unstagger point. So this index is no good for tidal currents." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.417577\n", "0.248107\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFPBJREFUeJzt3X+QZWV95/H3ZxxGpyaJo47JqsAuRJiUIAksEkgJDu7I\nCrUEjRWZ2WA2poq1TK2kNhaicQva3YqiUrpYFbcsN2yV0RlWs2PKKn+QiOnVZHXFWZRfAzoIcRiQ\nkOhAJCgjfPePexouPbe77525t28/zPtVdYt7vue5z/l2V5/PHJ7ue26qCklSu1ZNuwFJ0qExyCWp\ncQa5JDXOIJekxhnkktQ4g1ySGrdokCfZmOTGvseDSX4/yWlJbuhqNyR5Wd9r3pHkO0luT3LO5L8E\nSTq8Zdi/I0+yCtgL/CrwMeA9VXVdknOBt1XV2UleAmwDXga8CPgicHxVPT6R7iVJIy2tbAZ2V9X3\ngPuAZ3f19fQCHuACYHtV7a+qu4HdwGlj6lWSNMDqEcZuAbZ3z98O/HWSq+j9Y3BGV38h8LW+19xD\n78pckjQhQ12RJ1kDnA98qiv9CXBJVR0N/EfgmkVe7j0AJGmChr0iPxfYWVUPdNunVdXm7vmfAf+9\ne74XOKrvdUfy5LLLE5IY7pJ0EKoq82vDBvlWnlxWAdid5BVV9b+BVwLf7uqfAbYl+QC9JZXjgK8P\n28xKlmSmqmam3cewWusX2uu5tX5hgj2/b0IXZ7fAzLdg5pfHP/UNHztx/JMCH5p5kN+e+ecTmfuc\n/PXA+pJBnmQdvV90XtxX/vfAHyd5JvBIt01V3Zbkk8BtwE+B3ytvryhJE7VkkFfVw8CGebVv0Psz\nxEHj3w28eyzdSZKW5Ds7hzc77QZGNDvtBg7C7LQbGNHstBs4CLPTbmBUm35h2h2M5pc3PXvpQWM2\n9BuCxnrQpFpbI5e0iAmukU/KpNbI97F+IvNCb418UHZ6RS5JjTPIJalxBrkkNc4gl6TGGeSS1DiD\nXJIaZ5BLUuMMcklqnEEuSY0b5YMlJGmwByc073cmNC+wjd+a2Nwf5O0Teuf64HfQekUuSY0zyCWp\ncQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNW/SdnUk2Atf2lY4FLgfOADZ2tfXAvqo6\nOcmzgP8BnNDN/bGqunLsXUuSnrBokFfVHcDJAElWAXuBHVV19dyYJFcB+7rNLd3rTkqyFrgtybaq\n+t4kmpckjXavlc3AnVW1Z66QJMDrgbO70n3AuiTPANYBjwIPjalXSdIAo6yRbwG2zaudCdxfVXcC\nVNV19IL7PuBu4P1VtQ9J0sQMdUWeZA1wPnDZvF1b6Qv3JBcBa4EXAM8FvpLk+qq6a8CcM32bs1U1\nO1LnkvQ0l2QTsGnJcVUD74o4f7ILgDdX1av7aquBe4BTqurervZh4P9U1ce77T8BvlBVn5o3X1XV\nhG7zKGm5vSuDb696qK64dxKz9nlBWzm0UHYOu7SyFdg+r7YZ2DUX4p3bgVd2B1wHnA7sGr1dSdKw\nlgzyLpA3Azvm7bqQA8P9I8CaJDcDXweuqapbxtGoJGmwJdfIq+phYMOA+hsH1H4CXDSe1iRJw/Cd\nnZLUOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuOGuo3t2A/q\nbWylp5e3T+Y2tgBcaVbMOdTb2EqSViiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnk\nktS41YvtTLIRuLavdCxwOXAGsLGrrQf2VdXJ3WtOAj4C/CzwOPCyqvrJmPuWJHUWDfKqugOYC+hV\nwF5gR1VdPTcmyVXAvu75auBPgYuq6uYkzwH2T6h3SRJLBPk8m4E7q2rPXCFJgNcDZ3elc4Cbqupm\ngKr64bgalSQNNsoa+RZg27zamcD9VXVnt30cUEm+kGRnkkvH0aQkaWFDXZEnWQOcD1w2b9dWnhru\nRwAvB04FHgGuT7Kzqr40YM6Zvs3Zqpodvm1JB+XjE7xLocYuySZg01Ljhl1aORfYWVUP9B1gNfBa\n4JS+cXuAL1fVD7oxn+v2HxDkVTUz5LElrXC7rzxyYnO/eGIzr3zdBe7s3HaSKwaNG3ZpZSuwfV5t\nM7Crqu7tq10HvDTJ2i7oXwHcOuQxJEkHYckr8iTr6IX2xfN2Xci8cK+qfUk+ANwAFPDZqvr8mHqV\nJA2wZJBX1cPAhgH1Ny4w/hPAJw69NUnSMHxnpyQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWqcQS5J\njTPIJalxBrkkNc4gl6TGpWr572qZpKoqy35g6XC3aUK3sT1vIrP2vM2smLNQdnpFLkmNM8glqXEG\nuSQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWqcQS5JjVs0yJNsTHJj3+PBJL+f5Nq+2l1Jbpz3uqOT\n/CjJWyfbviRp9WI7q+oO4GSAJKuAvcCOqrp6bkySq4B98176AeCz421VkjTIokE+z2bgzqraM1dI\nEuD1wNl9tdcA3wUeHleTkg7Nicl5R8Elv/ps+OkqOOeFcNaGaXelcRklyLcA2+bVzgTur6o7AZL8\nDPA2eqF/6Vg6lHRITkzOOwOu/ii8mAd7tXc+0vuvYf70MNQvO5OsAc4HPjVv11aeGu4zwAer6p8A\n71gmrQBHwSUfhRf31/7ox/CX906rI43bsFfk5wI7q+qBuUKS1cBrgVP6xp0GvC7J+4D1wONJHqmq\nD8+fMMlM3+ZsVc2O2LukIfwsPGtQ/RnPBX5jjAe6xNvNjluSTcCmpcYNG+Rbge3zapuBXVX1xL/r\nVXVWXwNXAP84KMS7sTNDHlvSIfhH+PGg+mNHLHcnGlV3gTs7t93l6gGWXFpJso5eaO+Yt+tCDgx3\nSSvMHvjQxbC7v/aHz4NXnbXQK9QaPyFIOgycmJx3NLzltF/k1Y8d0Qvxs04Y80FcWpm4hbLTIJcO\nJx+a0Ee9gUG+DPyoN0l6mjLIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0b5X7k\nUps+MqF3M54+kVl56MQ1k5kY+LmJzaxpMsilw0i+OLl36NclE5taS3BpRZIaZ5BLUuMMcklqnEEu\nSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGrfkOzuTbASu7SsdC1wOnAFs7GrrgX1VdXKSVwHvAdYA\njwKXVtVfjbVrSdITlgzyqroDOBkgySpgL7Cjqq6eG5PkKmBft/kA8G+q6vtJTgCuA44cd+OSpJ5R\n77WyGbizqvbMFZIEeD1wNkBVfbNv/G3A2iRHVNX+Q21WknSgUdfItwDb5tXOBO6vqjsHjH8dsNMQ\nl6TJGTrIk6wBzgc+NW/XVg4Md7pllSuBNx1Kg5KkxY2ytHIuvavrB+YKSVYDrwVO6R+Y5EhgB/CG\nqrpr0GRJZvo2Z6tqdoRepOH9/GSmvf9XJjPvmnrGZCYGXvCZgafjmBwzwbkPT0k2AZuWGjdKkG8F\nts+rbQZ2VdW9fQdeD3wWuKyqvrrQZFU1M8KxJemw013gzs5tJ7li0LihllaSrKMX2jvm7bqQA8P9\nPwC/CFyR5MbusWG4tiVJo0rV5D4xZMGDJlVVWfYD6/D06cl81Nv9vzGJWWFNrZ3MxMAJ3Dqxue/l\nGM/pCVsoO31npyQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS\n1LhRPyFIas/LJzPtL/zmZOblzY9MaGLY+N/umNjc3sZ2erwil6TGGeSS1DiDXJIaZ5BLUuMMcklq\nnEEuSY0zyCWpcQa5JDXOIJekxi36zs4kG4Fr+0rHApcDZwAbu9p6YF9Vndy95h3A7wKPAZdU1V+M\nu2lJ0pMWDfKqugOYC+hVwF5gR1VdPTcmyVXAvu75S4ALgZcALwK+mOT4qnp8Mu1LkkZZWtkM3FlV\ne+YKSQK8HtjelS4AtlfV/qq6G9gNnDamXiVJA4wS5FuAbfNqZwL3V9Wd3fYLgXv69t9D78pckjQh\nQ939MMka4Hzgsnm7tnJguM9XC8w507c5W1Wzw/QiaWW6iY0Dz/VDcdJ/+fa4p3zC/7t8MvM+d4xz\nfa17LGXY29ieC+ysqgfmCklWA68FTukbtxc4qm/7yK52gKqaGfLY0qF5fmUi835yIrNO1OznBl9Y\nHapvnbdx6UEa2endY87VC4wbdmllK0+ug8/ZDOyqqnv7ap8BtiRZk+QY4Djg60MeQ5J0EJa8Ik+y\njl5oXzxv14XMC/equi3JJ4HbgJ8Cv1dVE7kCkCT1LBnkVfUwsGFA/Y0LjH838O5Db02SNAzf2SlJ\njTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDUu07inVZKqmtCt\nRSU9bfz0oUwsoH7p526ZyLy7/+2JE5kXINthUHZ6RS5JjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIa\nZ5BLUuMMcklqnEEuSY1bNMiTbExyY9/jwSSXdPvekmRXkluSvLerPSvJ9iQ3JbktyduX44uQpMPZ\n6sV2VtUdwMkASVYBe4FPJzkb+HXgpKran+T53Uu2dK87Kcla4LYk26rqexP7CiTpMDfK0spmYHdV\n7QHeDLynqvYDVNUD3Zj7gHVJngGsAx4FHhpjv5KkeUYJ8i3A9u75ccBZSb6WZDbJqQBVdR294L4P\nuBt4f1XtG2O/kqR5Fl1amZNkDXA+cFnf655TVacneRnwSeDYJBcBa4EXAM8FvpLk+qq6a8CcM32b\ns1U1e9BfhSQ9Dc3eD7N/t/S4oYIcOBfY2beEcg+wA6CqbkjyeJINwK8Bn66qx4AHkvwNcCpwQJBX\n1cyQx5Z0mFq9fekxB+sDb/qDyUz83vFNtal7zHnX0YPHDbu0spUnl1UA/hx4JUCS44Ejqurvgdv7\n6uuA04FdQ3ctSRrZkkHeBfJmuivwzjX0llJuphfw/66rfwRY09W/DlxTVZO5e7skCRhiaaWqHgY2\nzKvtB94wYOxPgIvG1p0kaUm+s1OSGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINc\nkhpnkEtS44a9+6EkLezi1ETmPXUisz7tGOSSVq4/ntzU33jTZP6V2H3Uiycyb8+HB1ZdWpGkxhnk\nktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYtGuRJNia5se/xYJJLun1vSbIryS1J\n3tv3mpOSfLWr35TkmZP+IiTpcLboW/Sr6g7gZIAkq4C9wKeTnA38OnBSVe1P8vxuzGrgT4GLqurm\nJM8B9k/yC5Ckw90oSyubgd1VtQd4M/CeqtoPUFUPdGPOAW6qqpu7+g+r6vFxNixJeqpRgnwLsL17\nfhxwVpKvJZlNcmpfvZJ8IcnOJJeOs1lJ0oGGuvthkjXA+cBlfa97TlWdnuRlwCeBY4EjgJfTu/nk\nI8D1SXZW1ZcGzDnTtzlbVbMH+0VImq7vffTnJzLv0e/8u4nMC/Cfb3n3ROY978T/Nba5/mH2Fn4w\neysAp/KNBccNexvbc4GdfUso9wA7AKrqhiSPJ9kA7AG+XFU/AEjyOeAU4IAgr6qZIY8tSYel5206\nkedtOhGArezj2nd9d+C4YZdWtvLksgrAnwOvBEhyPLCmqv4e+AvgpUnWdr/4fAVw60F9BZKkoSx5\nRZ5kHb1fdF7cV74GuCbJzcCjwG9D75ebST4A3AAU8Nmq+vzYu5YkPWHJIK+qh4EN82r7gTcsMP4T\nwCfG0p0kaUm+s1OSGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziAfUpJN0+5hFK31C+313Fq/0GbP\ns3877Q5G8w+ztyz7MQ3y4W2adgMj2jTtBg7Cpmk3MKJN027gIGyadgOjai3I5+6NspwMcklqnEEu\nSY1LVS3/QZPlP6gkPQ1UVebXphLkkqTxcWlFkhpnkEtS48Ye5EmuSXJ/d6/yudpvJrk1yWNJTpk3\n/h1JvpPk9iTnjLufYQzR87/sq78qyTeS3NT99+wV2O8pA15zdJIfJXnr8nb7xPFH/bk4KclXk9zS\nfa+fuZJ7TvKsJNu7Xm9L8vYV0u/7k+xK8q0kO5I8u2/fSj33Bva8Es69UXvu2z/Z86+qxvoAzgRO\nBm7uq/0ScDzwV8ApffWXAN+k91mf/wLYDawad09j7vlXgH/WPT8BuGcl99u3/8+A/wm8dbn7PYjv\n8WrgW8BLu+3nNPBz8TvA9u75WuAu4OgV0O+r5r53wJXAld3zlXzuLdTz1M+9UXvu2z/R82/sV+RV\n9RXgh/Nqt1fVtwcMv4DeD//+qrqb3g/TaePuaSmj9FxV36yq73ebtwFrkxyxDG329zDK95gkrwG+\nS6/fqRix53OAm6rq5m7cD6vq8WVo8ylG7Pk+YF2SZwDr6H1y1kOT7/IpvQ3q9y/7vnf/Fziye76S\nz72BPa+Ec6/rY5Tv87Kcf9NeI38hvQ9ynnMP8KIp9XIwXkfvQ6n3T7uRhST5GeBtwMyUWxnFcUAl\n+UKSnUkunXZDS6mq6+gF933A3cD7q2rfVJs60O8Cn+uet3Lu9ffcbyWfe0/0vFzn35If9TYFTfw9\nZJIT6P0v1Kum3csSZoAPVtU/JTng709XqCOAlwOnAo8A1yfZWVVfmm5bC0tyEb0llRcAzwW+kuT6\nqrprup31JHkn8GhVbVtk2Io69xbqeSWfewN6nmEZzr9pB/le4Ki+7SO72oqW5EhgB/CGlXKiLuI0\n4HVJ3gesBx5P8khVfXjKfS1mD/DlqvoBQJLPAacAKzbIgV8DPl1VjwEPJPkbev8QTf3nI8nvAOcB\n/6qvvKLPvQV6XtHn3gI9L8v5N42llf5/lT4DbEmyJskx9P6X+utT6GkpT/ScZD3wWeCyqvrq9Fpa\n1BP9VtVZVXVMVR0D/Ffgj1ZoiPf/XFwHvDTJ2iSrgVcAy38noqX193w78EqAJOuA04Fd02iqX5JX\nA5cCF1TVj/t2rdhzb6GeV/K5t1DPy3b+TeA3utuBe+n9smcPvfWi13TPHwG+D3y+b/wf0vtFy+3A\nv57Eb3TH2TPwn4AfATf2PTas1H7nve4K4A9W+ve4G/9bwC3Azcz7C4CV2DPwTODjXb+3MoW/Dlqg\n3+8Af9v3s/rhvvEr9dwb2PNKOPcO5vvc97qJnX++RV+SGjftv1qRJB0ig1ySGmeQS1LjDHJJapxB\nLkmNM8glqXEGuSQ1ziCXpMb9f0xK0j/kej0XAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "vfil='/data/dlatorne/MEOPAR/SalishSea/nowcast/24jan15/SalishSea_1d_20150124_20150124_grid_V.nc'\n", "fV = nc.Dataset(vfil)\n", "V = fV.variables['vomecrty']\n", "V=np.ma.masked_values(V[0,0,:,:],0)\n", "\n", "plt.pcolormesh(V)\n", "plt.plot(i36,j36,'ro')\n", "plt.axis([110,125,765,780])\n", "\n", "print V[j36,i36]\n", "print V[j36-1,i36]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Adjust i,j until we find a point that works..." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "119 772\n" ] } ], "source": [ "\n", "inew=i36-1\n", "jnew=j36-2\n", "print inew, jnew\n", "\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-0.336431\n", "0.467699\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFQNJREFUeJzt3X+w3XV95/HnK4RATH+AG9cVkakopoMDu0FE7AhcbGSh\nFtF1KsmsdqUzrkO32nFdBFvHXGdapZWxdabrrJ0tnalKqHajY8cfqOgV1/UHjVB+JFBDYSUBMa5G\nK4JEeO8f93vhcHJz7znJOTn3kzwfM3c438/38/2c9z1zv698+Zzz/ZxUFZKkdi2bdAGSpANjkEtS\n4wxySWqcQS5JjTPIJalxBrkkNW7BIE+yJslNPT8/SvL7Sc5IcmPXdmOSF/Yc8/Yk305yR5Lzxv8r\nSNLhLYN+jjzJMmAn8CLgb4D3VNV1SS4A3lZV5yY5GbgGeCHwTOALwPOq6rGxVC9JGmpqZR2wvaq+\nA9wP/HLXfgyzAQ9wEbCpqvZU1T3AduCMEdUqSZrH8iH6rgc2dY+vAP53kquY/cfgxV37ccDXe47Z\nweyVuSRpTAa6Ik+yArgQ+FjX9FfAm6vqBOAtwNULHO4aAJI0RoNekV8AbKmqXd32GVW1rnv8d8D/\n7B7vBJ7Vc9zxPDHt8rgkhrsk7YeqSn/boEG+gSemVQC2Jzmnqr4MvBT4p679k8A1Sd7H7JTKScA3\nBy1mKUsyXVXTk65jUK3VC+3V3Fq9ML6av87asVycnXnHzUz/BUz/3ujHPvlXvzX6QYFd0/+DXdMf\nHEu+7esieNEgT7KK2Tc639DT/J+B/57kKOChbpuq2prko8BW4OfA75bLK0rSWC0a5FX1ILC6r+0f\nmP0Y4nz93w28eyTVSZIW5Z2dg5uZdAFDmpl0AfthZtIFDGlm0gXsh5lJFzCsqcY+wPyUqdMP+nMO\nfEPQSJ80qdbmyCXt2zjnyMdlXHPkAFtZO7Y58vmy0ytySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS\n1DiDXJIaZ5BLUuMMcklqnHd2Sjpw28ezNPUvHrdr8U4H4F+esrqpHPLOTkk6RBnkktQ4g1ySGmeQ\nS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYtX2hnkjXAtT1NJwLvBF4MrOnajgF2V9XaJEcDfw08\nvxv7b6rqypFXLUl63IJBXlV3AmsBkiwDdgKbq+r9c32SXAXs7jbXd8edmmQlsDXJNVX1nXEUL0la\nJMj7rAPuqqp75xqSBHgNcG7XdD+wKskRwCrgEeDHI6pVkjSPYebI1wPX9LWdBTxQVXcBVNV1zAb3\n/cA9wHurajeSpLEZ6Io8yQrgQuDyvl0b6An3JK8FVgLPAJ4KfCXJ9VV19zxjTvdszlTVzFCVS9Ih\nLskUMLVov0GWsU1yEXBpVZ3f07Yc2AGcVlX3dW0fAP5PVX242/4r4LNV9bG+8VzGVjqErH5s59jW\nw/7+smeaFZ0DXcZ2A7Cpr20dsG0uxDt3AC/tnnAVcCawbfhyJUmDWjTIu0BeB2zu23Uxe4f7B4EV\nSW4FvglcXVW3jaJQSdL8/IYgSQfMqZWDw28IkqRDlEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1yS\nGmeQS1LjDHJJapxBLkmNG+aLJSQ17js8fUy30n9rPMNqIK61Ih1GxhfkcAIPeE6PmWutSNIhyiCX\npMYZ5JLUOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNW7BW/STrAGu7Wk6EXgn8GJgTdd2DLC7\nqtZ2x5wKfBD4ReAx4IVV9bMR1y1J6iwY5FV1JzAX0MuAncDmqnr/XJ8kVwG7u8fLgQ8Br62qW5Mc\nC+wZU+2SJIZbNGsdcFdV3TvXkCTAa4Bzu6bzgFuq6laAqvrhqAqVJM1vmDny9cA1fW1nAQ9U1V3d\n9klAJflski1JLhtFkZKkfRvoijzJCuBC4PK+XRt4crgfCbwEOB14CLg+yZaq+uI8Y073bM5U1czg\nZUvSoS/JFDC1aL9BlrFNchFwaVWd39O2HNgBnFZV93VtFwMXVNXru+13AA9X1VV947mMrTQBv8Hm\nsS1j+2n+g+f0mB3oMrYbgE19beuAbXMh3rkOOCXJyi7ozwFu35+CJUmDWXRqJckqZkP7DX27LqYv\n3Ktqd5L3ATcCBXyqqj4zololSfNYNMir6kFg9Tztl+yj/0eAjxx4aZKkQXhnpyQ1ziCXpMYZ5JLU\nOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGDbT64cif1NUPpcm4IeM74c/2nB63A139\nUJK0RBnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYtGORJ1iS5qefnR0l+P8m1\nPW13J7mp77gTkvwkyVvHW74kaflCO6vqTmAtQJJlwE5gc1W9f65PkquA3X2Hvg/41GhLlSTNZ8Eg\n77MOuKuq7p1rSBLgNcC5PW2vBP4ZeHBURUqS9m2YOfL1wDV9bWcBD1TVXQBJfgF4GzA9kuokSYsa\n6Io8yQrgQuDyvl0beHK4TwN/VlU/7a7WpYnbyeqxrPj3ECvHMSwfyY6xjAuw8ctjG1oTNOjUygXA\nlqraNdeQZDnwKuC0nn5nAK9O8qfAMcBjSR6qqg/0D5hkumdzpqpmhqxd0pDedQ5sdAnpZiSZAqYW\n6zdokG8ANvW1rQO2VdV9cw1VdXZPARuBf5kvxLu+0wM+tyQdlroL3Jm57S5X97LoHHmSVcyG9ua+\nXRezd7hLkg6yRa/Iq+pBYPU87Zcscty7DqAuSdKAvLNTkhpnkEtS4wxySWqcQS5JjTPIJalxBrkk\nNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqXKrGslTzwk+aVLmUpg6SK3nLWP7Ir/jwn49jWJ7yih+M\nZdw5P/2lYz33GrWv7PSKXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGrd8\nsQ5J1gDX9jSdCLwTeDGwpms7BthdVWuTvAx4D7ACeAS4rKq+NNKqJUmPWzTIq+pOYC1AkmXATmBz\nVb1/rk+Sq4Dd3eYu4Der6rtJng9cBxw/6sIlSbMWDfI+64C7qureuYYkAV4DnAtQVTf39N8KrExy\nZFXtOdBipUPdDTfDKX/9alb97Gc8eNRRbH/jG3no/PMmXZaWuGGDfD1wTV/bWcADVXXXPP1fDWwx\nxKXF3XAzXPch+Mb3npiJXH/3PXweDHMtaOA3O5OsAC4EPta3awN7hzvdtMqVwBsPpEDpcPG56+CP\nv/fktmvvvpuT/vIvJ1OQmjHMFfkFzF5d75prSLIceBVwWm/HJMcDm4HXVdXd8w2WZLpnc6aqZoao\nRRrYN3jRWMbNcaNdHfecZVPAl/dqf+bP7+df/9IXRvhMvzXCsTROSaaAqcX6DRPkG4BNfW3rgG1V\ndV/PEx8DfAq4vKq+tq/Bqmp6iOeWDnkPrjhq3vaHj17BEQe5Fi0N3QXuzNx2ko3z9RtoaiXJKmZD\ne3PfrovZO9x/D3gOsDHJTd3P6sHKlg5fd7zqzVx83HOe1HbJc57Ow286f0IVqRUDXZFX1YPAXmFc\nVZfM0/ZHwB8deGnS4eUnZ76cTwMvv+EPOfrhR3j46BU8/KbzWfXyF0y6NC1xw35qRdIY/eTMl3PE\nH/yUPcARwKpJF6QmeIu+JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1zjs7\npcNMfpvRLtsI8KG/H/mQs741pnGBS+Zdf2ok6moytsHnYZDrkHcyW8cy7iceHsuw/H3OHs/AAK97\n+vjG1sQ4tSJJjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY1b8M7OJGuAa3ua\nTgTeCbwYWNO1HQPsrqq13TFvB34HeBR4c1V9btRFS5KesGCQV9WdwFxALwN2Apur6v1zfZJcBezu\nHp8MXAycDDwT+EKS51XVY+MpX5I0zNTKOuCuqrp3riFJgNcAm7qmi4BNVbWnqu4BtgNnjKhWSdI8\nhgny9cA1fW1nAQ9U1V3d9nHAjp79O5i9MpckjclAqx8mWQFcCFzet2sDe4d7v3mXzEwy3bM5U1Uz\ng9QiSYeLJFPA1KL9qhZfmjjJRcClVXV+T9tyZq+4T6uq+7q2KwCq6spu+7PAxqr6Rt94VVUHdb1e\nScB/y+jXIgd4/VhG5RunjGdcgM/XW8c29ju4aiz5tq/sHHRqZQNPzIPPWQdsmwvxzieB9UlWJHk2\ncBLwzf0pWJI0mEWnVpKsYja039C362L6wr2qtib5KLAV+DnwuzXIJb8kab8tGuRV9SCwep72S/bR\n/93Auw+8NEnSILyzU5IaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1Lj\nDHJJatxAy9iO/EldxlbSALbzrLEF1AoeGdfQnMADS3IZW0nSEmWQS1LjDHJJapxBLkmNM8glqXEG\nuSQ1ziCXpMYZ5JLUOINckhq3YJAnWZPkpp6fHyV5c7fvTUm2JbktyZ90bUcn2ZTkliRbk1xxMH4J\nSTqcLV9oZ1XdCawFSLIM2Al8PMm5wCuAU6tqT5KndYes7447NclKYGuSa6rqO2P7DSTpMDfM1Mo6\nYHtV3QtcCrynqvYAVNWurs/9wKokRwCrgEeAH4+wXklSn2GCfD2wqXt8EnB2kq8nmUlyOkBVXcds\ncN8P3AO8t6p2j7BeSVKfBadW5iRZAVwIXN5z3LFVdWaSFwIfBU5M8lpgJfAM4KnAV5JcX1V3zzPm\ndM/mTFXN7PdvIWmytmc8qxQ+9/ixDNuKJFPA1GL9Bgpy4AJgS88Uyg5gM0BV3ZjksSSrgV8DPl5V\njwK7knwVOB3YK8iranrA55Z0mHrubTvGN/ij4xuafzuaYboL3Jm57SQb5+s36NTKBp6YVgH4BPDS\nbuDnAUdW1feBO3raVwFnAtuGK12SNIxFg7wL5HV0V+Cdq5mdSrmV2YD/T137B4EVXfs3gaur6rbR\nlixJ6uU3BEk6cOOaI394LKPOGuvUynjyzW8IkqRDlEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1yS\nGmeQS1LjDHJJapxBLkmNG3T1Q0nSgL7K6Qd17RODXNIB+5XnjmeR0//CB8YyLsBZfGUs4z7KEWMZ\ndyFOrUhS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMWDPIka5Lc1PPzoyRv\n7va9Kcm2JLcl+ZOeY05N8rWu/ZYkR437l5Ckw9mCt+hX1Z3AWoAky4CdwMeTnAu8Aji1qvYkeVrX\nZznwIeC1VXVrkmOBPeP8BSTpcDfM1Mo6YHtV3QtcCrynqvYAVNWurs95wC1VdWvX/sOqemyUBUuS\nnmyYIF8PbOoenwScneTrSWaSnN7TXkk+m2RLkstGWawkaW8DrX6YZAVwIXB5z3HHVtWZSV4IfBQ4\nETgSeAlwOvAQcH2SLVX1xXnGnO7ZnKmqmf39JSRN1pd46VjGvYGzxjIuwBZeMJZx/xX/b2RjbZ3Z\nxdaZ7y/ab9BlbC8AtvRMoewANgNU1Y1JHkuyGrgXuKGqfgCQ5NPAacBeQV5V0wM+tyQdlk6eehon\nTz3t8e3/9a475+036NTKBp6YVgH4BMz+E5zkecCKqvo+8DnglCQruzc+zwFuH7p6SdLAFr0iT7KK\n2Tc639DTfDVwdZJbgUeA34bZNzeTvA+4ESjgU1X1mZFXLUl63KJBXlUPAqv72vYAr9tH/48AHxlJ\ndZKkRXlnpyQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWqcQT6gJFOTrmEYrdUL7dXcWr3QZs3bZr43\n6RKGsnVm1+KdRswgH9zUpAsY0tSkC9gPU5MuYEhTky5gP0xNuoBh3dFckC++NsqoGeSS1LhBF82S\ndAj49Y0v2nglb9k46nEvHvWAGkqq6uA/aXLwn1SSDgFVlf62iQS5JGl0nCOXpMYZ5JLUuJEHeZKr\nkzzQrVU+1/ZbSW5P8miS0/r6vz3Jt5PckeS8UdcziAFqfkFP+8uS/EOSW7r/nrsE6z1tnmNOSPKT\nJG89uNU+/vzD/l2cmuRrSW7rXuujlnLNSY5OsqmrdWuSK5ZIve9Nsi3JPybZnOSXe/Yt1XNv3pqX\nwrk3bM09+8d7/lXVSH+As4C1wK09bb8KPA/4EnBaT/vJwM3MftfnrwDbgWWjrmnENf874N90j58P\n7FjK9fbs/zvgb4G3Hux69+M1Xg78I3BKt31sA38Xrwc2dY9XAncDJyyBel8299oBVwJXdo+X8rm3\nr5onfu4NW3PP/rGefyO/Iq+qrwA/7Gu7o6r+aZ7uFzH7x7+nqu5h9o/pjFHXtJhhaq6qm6vqu93m\nVmBlkiMPQpm9NQzzGpPklcA/M1vvRAxZ83nALVV1a9fvh1X12EEo80mGrPl+YFWSI4BVzH5z1o/H\nX+WTapuv3s/3vHbfAI7vHi/lc2/empfCudfVMczrfFDOv0nPkR/H7Bc5z9kBPHNCteyPVzP7pdR7\nJl3IviT5BeBtwPSESxnGSUAl+WySLUkum3RBi6mq65gN7vuBe4D3VtXuiRa1t98BPt09buXc6625\n11I+9x6v+WCdf0vxhqAmPg+Z5PnM/i/UyyZdyyKmgT+rqp8m2evzp0vUkcBLgNOBh4Drk2ypqi9O\ntqx9S/JaZqdUngE8FfhKkuur6u7JVjYryR8Cj1TVNQt0W1Ln3r5qXsrn3jw1T3MQzr9JB/lO4Fk9\n28d3bUtakuOBzcDrlsqJuoAzgFcn+VPgGOCxJA9V1QcmXNdC7gVuqKofACT5NHAasGSDHPg14ONV\n9SiwK8lXmf2HaOJ/H0leD/wG8Os9zUv63NtHzUv63NtHzQfl/JvE1Ervv0qfBNYnWZHk2cz+L/U3\nJ1DTYh6vOckxwKeAy6vqa5MraUGP11tVZ1fVs6vq2cCfA3+8REO89+/iOuCUJCuTLAfOAW6fTFkL\n6q35DuClAElWAWcC2yZRVK8k5wOXARdV1cM9u5bsubevmpfyubevmg/a+TeGd3Q3Afcx+2bPvczO\nF72ye/wQ8F3gMz39/4DZN1ruAP79ON7RHWXNwDuAnwA39fysXqr19h23EfivS/017vr/R+A24Fb6\nPgGwFGsGjgI+3NV7OxP4dNA+6v028H97/lY/0NN/qZ5789a8FM69/Xmde44b2/nnLfqS1LhJf2pF\nknSADHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhr3/wFOlBt6WnVxqAAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ufil='/data/dlatorne/MEOPAR/SalishSea/nowcast/24jan15/SalishSea_1d_20150124_20150124_grid_U.nc'\n", "fU = nc.Dataset(ufil)\n", "U = fU.variables['vozocrtx']\n", "U=np.ma.masked_values(U[0,0,:,:],0)\n", "\n", "plt.pcolormesh(U)\n", "plt.plot(inew,jnew,'ro')\n", "plt.axis([110,125,765,780])\n", "\n", "print U[jnew,inew]\n", "print U[jnew,inew-1]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0286868\n", "0.0204337\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFOlJREFUeJzt3X+w5XV93/Hna1kWmE0jGEyqIg0ksBlFEihStIAXu5Jg\nS9A4gd0G05gZ65iJZBoHwaYj13aiqIyWzEjHaUNnjO5STNeMMyhYMTeYVCtuUX4tKCvEZUFCoouV\nEF3h3T/u98Lh7Ln3nrN7zj33wz4fM3c43/f3cz7f971zv6/98jn3fE+qCklSu9ZMuwFJ0oExyCWp\ncQa5JDXOIJekxhnkktQ4g1ySGrdkkCfZkOS2nq/HkvxektOT3NrVbk3yip7nvCvJN5Pck+TcyX8L\nknRwy7B/R55kDbAb+GfAx4D3VdVNSc4D3llV5yR5KbAFeAXwYuDzwIlV9dREupckjbS0shG4r6q+\nDTwMPK+rH8l8wANcAGytqr1V9QBwH3D6mHqVJA2wdoSxm4Ct3ePLgb9MchXz/xi8squ/CPhyz3Me\nZP7KXJI0IUNdkSdZB5wPfLIr/TFwSVUdC/w74Nolnu49ACRpgoa9Ij8P2F5Vj3bbp1fVxu7xnwL/\nrXu8G3hJz/OO4Zlll6clMdwlaT9UVfprwwb5Zp5ZVgG4L8mrq+ovgNcA3+jqnwa2JPkQ80sqJwBf\nGbaZ1SzJbFXNTruPYbXWL7TXc2v9wgR7/sCELs7uhNmvw+wvjn/qWz920vgnBf5o9jF+c/afTGTu\nc/OXA+vLBnmS9cy/0PmWnvK/BT6S5DDgiW6bqro7yfXA3cCPgd8pb68oSRO1bJBX1ePA0X21rzL/\nZ4iDxr8XeO9YupMkLct3dg5vbtoNjGhu2g3sh7lpNzCiuWk3sB/mpt3AqGZ+ZtodjOYXZ563/KAx\nG/oNQWM9aFKtrZFLWsIE18gnZVJr5Hs4ciLzwvwa+aDs9IpckhpnkEtS4wxySWqcQS5JjTPIJalx\nBrkkNc4gl6TGGeSS1DiDXJIaN8oHS0jSYI9NaN5vTmheYAu/MbG5P8zlE3rn+uB30HpFLkmNM8gl\nqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWqcQS5JjVvynZ1JNgDX9ZSOB94NvBLY0NWOBPZU\n1SlJDgf+O/Cybu6PVdWVY+9akvS0JYO8qu4FTgFIsgbYDWyrqqsXxiS5CtjTbW7qnndykiOAu5Ns\nqapvT6J5SdJo91rZCOysql0LhSQBLgTO6UoPA+uTHAKsB34EfH9MvUqSBhhljXwTsKWvdhbwSFXt\nBKiqm5gP7oeBB4APVtUeJEkTM9QVeZJ1wPnAZX27NtMT7kkuBo4AXgg8H/hikpur6v4Bc872bM5V\n1dxInUvSc1ySGWBm2XFVA++K2D/ZBcDbqupXemprgQeBU6vqoa52DfC/q+rj3fYfAzdW1Sf75quq\nmtBtHiWttPdk8O1VD9QVD01i1h4vbCuHFsvOYZdWNgNb+2obgR0LId65B3hNd8D1wBnAjtHblSQN\na9kg7wJ5I7Ctb9dF7BvuHwXWJbkD+ApwbVXdOY5GJUmDLbtGXlWPA0cPqL95QO2HwMXjaU2SNAzf\n2SlJjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDVuqNvYjv2g\n3sZWem65fDK3sQXgSrNiwYHexlaStEoZ5JLUOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4g\nl6TGrV1qZ5INwHU9peOBdwOvBDZ0tSOBPVV1Sveck4GPAv8IeAp4RVX9cMx9S5I6SwZ5Vd0LLAT0\nGmA3sK2qrl4Yk+QqYE/3eC3wJ8DFVXVHkqOAvRPqXZLEMkHeZyOws6p2LRSSBLgQOKcrnQvcXlV3\nAFTV98bVqCRpsFHWyDcBW/pqZwGPVNXObvsEoJLcmGR7kkvH0aQkaXFDXZEnWQecD1zWt2szzw73\nQ4EzgdOAJ4Cbk2yvqi8MmHO2Z3OuquaGb1vSfvn4BO9SqLFLMgPMLDdu2KWV84DtVfVozwHWAm8A\nTu0Ztwu4paq+2435TLd/nyCvqtkhjy1plbvvymMmNvfPT2zm1a+7wJ1b2E5yxaBxwy6tbAa29tU2\nAjuq6qGe2k3Ay5Mc0QX9q4G7hjyGJGk/LHtFnmQ986H9lr5dF9EX7lW1J8mHgFuBAm6oqs+OqVdJ\n0gDLBnlVPQ4cPaD+5kXGfwL4xIG3Jkkahu/slKTGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWp\ncQa5JDXOIJekxhnkktS4VK38XS2TVFVlxQ8sHexmJnQb29dNZNZ57zQrFiyWnV6RS1LjDHJJapxB\nLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS45YM8iQbktzW8/VYkt9Lcl1P7f4kt/U979gk\nP0jyjsm2L0lau9TOqroXOAUgyRpgN7Ctqq5eGJPkKmBP31M/BNww3lYlSYMsGeR9NgI7q2rXQiFJ\ngAuBc3pqrwe+BTw+riYlSYsbZY18E7Clr3YW8EhV7QRI8hPAO4HZsXQnSVrWUEGeZB1wPvDJvl2b\neXa4zwIfrqq/B7xjmSStgGGXVs4DtlfVowuFJGuBNwCn9ow7HXhjkg8ARwJPJXmiqq7pnzDJbM/m\nXFXNjdi7pFH92gTnvsTbzY5bkhlgZrlxwwb5ZmBrX20jsKOqHlooVNXZPQ1cAfy/QSHejZ0d8tiS\ndFDqLnDnFra7XN3HsksrSdYzH9rb+nZdxL7hLklaYX5CkHQw+aMJfUIQuLSyAvyEIEl6jjLIJalx\nBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcaN8sITUpo9O6G3pZ0xkVr5/0rrJ\nTAz85MRm1jQZ5NJBJJ+f3K1W6pKJTa1luLQiSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1Lj\nDHJJapxBLkmNW/adnUk2ANf1lI4H3g28EtjQ1Y4E9lTVKUleC7wPWAf8CLi0qv58rF1Lkp62bJBX\n1b3AKQBJ1gC7gW1VdfXCmCRXAXu6zUeBf1VV30nyMuAm4JhxNy5JmjfqvVY2AjuratdCIUmAC4Fz\nAKrqaz3j7waOSHJoVe090Gal57pbboEbLt3LoT8s9h4WZn53Df/8Xx4y7ba0yo0a5JuALX21s4BH\nqmrngPFvBLYb4tLybrkFbvoAvP/BhRtbFZd/60kAw1xLGvrFziTrgPOBT/bt2sy+4U63rHIl8NYD\naVA6WHxuK/zhg8+uXbkT/uIjT02nITVjlCvy85i/un50oZBkLfAG4NTegUmOAbYBb6qq+wdNlmS2\nZ3OuquZG6EUa3k9PZtpHfmm88y0W14f8EJ48ZDxX5C/89MDTcUyOm+DcB6ckM8DMcuNGCfLNwNa+\n2kZgR1U91HPgI4EbgMuq6kuLTVZVsyMcW3rOW2z98cnDs6J9aPXoLnDnFraTXDFo3FBLK0nWMx/a\n2/p2XcS+4f67wM8BVyS5rfs6eri2pYPXmcBlfbXLfg7Oeruf/6KlpWpynxiy6EGTqiovM7QyPjWZ\nj3p75NfGP+eXgS/98hoO+YfiycPDWW9fy6vG+ELny7hrbHP1e4jjPKcnbLHs9J96aRU5Azj7xsOm\n3YYa41v0JalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOt+jrue/M\nyUz7M78+mXl52xMTmhg2/Jd7Jza3t7GdHq/IJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklq\nnEEuSY0zyCWpcUu+szPJBuC6ntLxwLuBVwIbutqRwJ6qOqV7zruA3waeBC6pqs+Nu2lJ0jOWDPKq\nuhdYCOg1wG5gW1VdvTAmyVXAnu7xS4GLgJcCLwY+n+TEqnpqMu1LkkZZWtkI7KyqXQuFJAEuBLZ2\npQuArVW1t6oeAO4DTh9Tr5KkAUYJ8k3Alr7aWcAjVbWz234R8GDP/geZvzKXJE3IUHc/TLIOOB+4\nrG/XZvYN9361yJyzPZtzVTU3TC+SVqfb2TDwXD8QJ/+nb4x7yqf933dPZt7nj3GuL3dfyxn2Nrbn\nAdur6tGFQpK1wBuAU3vG7QZe0rN9TFfbR1XNDnls6cC8oDKRea+fyKwTNfeZwRdWB+rrr9uw/CCN\n7Izua8HVi4wbdmllM8+sgy/YCOyoqod6ap8GNiVZl+Q44ATgK0MeQ5K0H5a9Ik+ynvnQfkvfrovo\nC/equjvJ9cDdwI+B36mqiVwBSJLmLRvkVfU4cPSA+psXGf9e4L0H3pokaRi+s1OSGmeQS1LjDHJJ\napxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS4wxySWpcpnFPqyRVNaFbi0p6zvjx9zOx\ngPqFn7xzIvPe969Pmsi8ANkKg7LTK3JJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS\n4wxySWrckkGeZEOS23q+HktySbfv7Ul2JLkzyfu72uFJtia5PcndSS5fiW9Ckg5ma5faWVX3AqcA\nJFkD7AY+leQc4FeBk6tqb5IXdE/Z1D3v5CRHAHcn2VJV357YdyBJB7lRllY2AvdV1S7gbcD7qmov\nQFU92o15GFif5BBgPfAj4Ptj7FeS1GeUIN8EbO0enwCcneTLSeaSnAZQVTcxH9wPAw8AH6yqPWPs\nV5LUZ8mllQVJ1gHnA5f1PO+oqjojySuA64Hjk1wMHAG8EHg+8MUkN1fV/QPmnO3ZnKuquf3+LiTp\nOWjuEZj7m+XHDRXkwHnA9p4llAeBbQBVdWuSp5IcDbwK+FRVPQk8muSvgNOAfYK8qmaHPLakg9Ta\nrcuP2V8feuvvT2bi949vqpnua8F7jh08btillc08s6wC8GfAawCSnAgcWlV/C9zTU18PnAHsGLpr\nSdLIlg3yLpA30l2Bd65lfinlDuYD/t909Y8C67r6V4Brq2oyd2+XJAFDLK1U1ePA0X21vcCbBoz9\nIXDx2LqTJC3Ld3ZKUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJatyw\ndz+UpMW9JTWReU+byKzPOQa5pNXrI5Ob+qtvncy/Eve95OcnMu+8awZWXVqRpMYZ5JLUOINckhpn\nkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGLRnkSTYkua3n67Ekl3T73p5kR5I7k7y/5zknJ/lS\nV789yWGT/iYk6WC25Fv0q+pe4BSAJGuA3cCnkpwD/CpwclXtTfKCbsxa4E+Ai6vqjiRHAXsn+Q1I\n0sFulKWVjcB9VbULeBvwvqraC1BVj3ZjzgVur6o7uvr3quqpcTYsSXq2UYJ8E7C1e3wCcHaSLyeZ\nS3JaT72S3Jhke5JLx9msJGlfQ939MMk64Hzgsp7nHVVVZyR5BXA9cDxwKHAm8zeffAK4Ocn2qvrC\ngDlnezbnqmpuf78JSdP17f/60xOZ99g/+JuJzAvwH+9870Tmfd1J/3Nsc/3d3J18d+4uAE7jq4uO\nG/Y2tucB23uWUB4EtgFU1a1JnkpyNLALuKWqvguQ5DPAqcA+QV5Vs0MeW5IOSj81cxI/NXMSAJvZ\nw3Xv+dbAccMurWzmmWUVgD8DXgOQ5ERgXVX9LfA54OVJjuhe+Hw1cNd+fQeSpKEse0WeZD3zL3S+\npad8LXBtkjuAHwG/CfMvbib5EHArUMANVfXZsXctSXraskFeVY8DR/fV9gJvWmT8J4BPjKU7SdKy\nfGenJDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBPqQkM9PuYRSt9Qvt9dxav9Bmz3N/Pe0ORvN3\nc3eu+DEN8uHNTLuBEc1Mu4H9MDPtBkY0M+0G9sPMtBsYVWtBvnBvlJVkkEtS4wxySWpcqmrlD5qs\n/EEl6TmgqtJfm0qQS5LGx6UVSWqcQS5JjRt7kCe5Nskj3b3KF2q/nuSuJE8mObVv/LuSfDPJPUnO\nHXc/wxii53/aU39tkq8mub377zmrsN9TBzzn2CQ/SPKOle326eOP+ntxcpIvJbmz+1kftpp7TnJ4\nkq1dr3cnuXyV9PvBJDuSfD3JtiTP69m3Ws+9gT2vhnNv1J579k/2/KuqsX4BZwGnAHf01H4BOBH4\nc+DUnvpLga8x/1mfPwvcB6wZd09j7vmXgH/cPX4Z8OBq7rdn/58C/wN4x0r3ux8/47XA14GXd9tH\nNfB78VvA1u7xEcD9wLGroN/XLvzsgCuBK7vHq/ncW6znqZ97o/bcs3+i59/Yr8ir6ovA9/pq91TV\nNwYMv4D5X/69VfUA879Mp4+7p+WM0nNVfa2qvtNt3g0ckeTQFWizt4dRfsYkeT3wLeb7nYoRez4X\nuL2q7ujGfa+qnlqBNp9lxJ4fBtYnOQRYz/wnZ31/8l0+q7dB/f6vnp/d/wGO6R6v5nNvYM+r4dzr\n+hjl57wi59+018hfxPwHOS94EHjxlHrZH29k/kOp9067kcUk+QngncDslFsZxQlAJbkxyfYkl067\noeVU1U3MB/fDwAPAB6tqz1Sb2tdvA5/pHrdy7vX23Gs1n3tP97xS59+yH/U2BU38PWSSlzH/v1Cv\nnXYvy5gFPlxVf59kn78/XaUOBc4ETgOeAG5Osr2qvjDdthaX5GLml1ReCDwf+GKSm6vq/ul2Ni/J\nHwA/qqotSwxbVefeYj2v5nNvQM+zrMD5N+0g3w28pGf7mK62qiU5BtgGvGm1nKhLOB14Y5IPAEcC\nTyV5oqqumXJfS9kF3FJV3wVI8hngVGDVBjnwKuBTVfUk8GiSv2L+H6Kp/34k+S3gdcC/6Cmv6nNv\nkZ5X9bm3SM8rcv5NY2ml91+lTwObkqxLchzz/0v9lSn0tJyne05yJHADcFlVfWl6LS3p6X6r6uyq\nOq6qjgP+M/CHqzTEe38vbgJenuSIJGuBVwMrfyei5fX2fA/wGoAk64EzgB3TaKpXkl8BLgUuqKp/\n6Nm1as+9xXpezefeYj2v2Pk3gVd0twIPMf9izy7m14te3z1+AvgO8Nme8f+e+Rda7gF+eRKv6I6z\nZ+A/AD8Abuv5Onq19tv3vCuA31/tP+Nu/G8AdwJ30PcXAKuxZ+Aw4ONdv3cxhb8OWqTfbwJ/3fO7\nek3P+NV67g3seTWce/vzc+553sTOP9+iL0mNm/ZfrUiSDpBBLkmNM8glqXEGuSQ1ziCXpMYZ5JLU\nOINckhpnkEtS4/4/95nSr6lYN+gAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "vfil='/data/dlatorne/MEOPAR/SalishSea/nowcast/24jan15/SalishSea_1d_20150124_20150124_grid_V.nc'\n", "fV = nc.Dataset(vfil)\n", "V = fV.variables['vomecrty']\n", "V=np.ma.masked_values(V[0,0,:,:],0)\n", "\n", "plt.pcolormesh(V)\n", "plt.plot(inew,jnew,'ro')\n", "plt.axis([110,125,765,780])\n", "\n", "print V[jnew,inew]\n", "print V[jnew-1,inew]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-125.350700378 -125.352050781\n", "50.1259269714 50.1356124878\n", "84.0 54.25\n" ] } ], "source": [ "print X[jnew,inew], X[j36,i36]\n", "print Y[jnew,inew], Y[j36,i36]\n", "print bathy[jnew,inew], bathy[j36,i36]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[110, 125, 765, 780]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFVVJREFUeJzt3X+w3XV95/HnKyaBbHQbHJytCmxFMVULayg/pCsS3EBF\nl6LjLCRT3HXsujt2Kk7XQXS3K9c/tv5iaCmz7jjd0pn+IFY7seMOKm6xt3VdFUyxBAkoKSxJQCYd\niT9okGDe+8f5Xjjc3Nx7TnLOPfeTPB8zZzjfz/dzPt/3vXO/L775nPP9nFQVkqR2LZt0AZKkI2OQ\nS1LjDHJJapxBLkmNM8glqXEGuSQ1bt4gT7I2yZ19jx8keU+Sc5Lc0bXdkeTsvtd8IMl3k9yb5OLx\n/wiSdGzLoJ8jT7IM2A2cC/wR8OGqujXJJcD7qurCJK8EbgbOBl4M/CXw8qo6MJbqJUlDTa1sAO6v\nqoeAR4Cf6drX0At4gMuAzVW1v6oeBO4HzhlRrZKkOSwfou9GYHP3/P3A/0lyHb3/GZzXtb8I+Hrf\na3bRuzKXJI3JQFfkSVYClwKf6Zr+ALiqqk4BfhO4aZ6XuwaAJI3RoFfklwBbq2pPt31OVW3onv85\n8D+757uBk/tedxLPTLs8LYnhLkmHoaoyu23QIN/EM9MqAPcnuaCq/hp4PfCdrv1zwM1Jrqc3pXIa\ncPugxSxlSaaqamrSdQyqtXqhvZpbqxfGV3OybzwXZ/9+FWydgl+cGv3YF45+SABumIJzp8Yz9o1z\nx+aCQZ5kNb03Ot/Z1/wfgP+e5DhgX7dNVd2T5NPAPcBTwK+XyytK0lgtGORV9Thw4qy2b9L7GOJc\n/X8b+O2RVCdJWpB3dg5uetIFDGl60gUchulJFzCk6UkXcBimJ13A0F64ftIVDOfF6xf9kAPfEDTS\ngybV2hy5pEMb6xz5uIxrjvzrC3c5bDdmzvcXvSKXpMYZ5JLUOINckhpnkEtS4wxySWqcQS5JjTPI\nJalxBrkkNc4gl6TGeWenpCOW54/pewd+Yyyj9gzztTpDqg8ylnw7VHZ6RS5JjTPIJalxBrkkNc4g\nl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY2b996mJGuBT/U1nQp8EDgPWNu1rQH2VtW6JMcDfwi8\nqhv7j6rqIyOvWpL0tHmDvKruA9YBJFkG7Aa2VNUNM32SXAfs7TY3dq87I8kq4J4kN1fVQ+MoXpI0\n3GoDG4AdVbVzpiFJgMt55vuoHwFWJ3kOsBp4EvjhiGqVJM1hmDnyjcDNs9rOBx6tqh0AVXUrveB+\nBHgQ+HhV7UWSNDYDXZEnWQlcClwza9cm+sI9yZXAKuCFwPOBryS5raoemGPMqb7N6aqaHqpySTrK\nJVkPrF+w3yDL2Ca5DHhXVb2hr205sAs4s6oe7to+AfzfqvqTbvsPgC9W1WdmjecyttJRJBnTMraX\njGXUp9Xnx7Pc7Lgc6TK2m4DNs9o2ANtnQrxzL/D67oCrgdcA24cvV5I0qAWDvAvkDcCWWbuu4OBw\n/ySwMsk24Hbgpqq6exSFSpLm5jcESTpiTq0sDr8hSJKOUga5JDXOIJekxhnkktQ4g1ySGmeQS1Lj\nDHJJapxBLkmNM8glqXEGuSQ1bpgvlpDUuLHdSq+JMsglHbnfHN/QdX1b66FMglMrktQ4g1ySGmeQ\nS1LjDHJJapxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUuHnv7EyyFvhUX9OpwAeB84C1XdsaYG9Vrete\ncwbwSeB5wAHg7Kr6yYjrliR15g3yqroPmAnoZcBuYEtV3TDTJ8l1wN7u+XLgj4Erq2pbkhOA/WOq\nXZLEcGutbAB2VNXOmYYkAS4HLuyaLgbuqqptAFX12KgKlSTNbZg58o3AzbPazgceraod3fZpQCX5\nYpKtSa4eRZGSpEMb6Io8yUrgUuCaWbs28exwXwG8FjgL2AfclmRrVX15jjGn+janq2p68LIl6eiX\nZD2wfsF+VQsvT5zkMuBdVfWGvrblwC7gzKp6uGu7Arikqt7ebf8W8ERVXTdrvKoql6aUFlneMab1\nyP9w31iGBahaZVZ0DpWdg06tbAI2z2rbAGyfCfHOrcDpSVZ1QX8B8O3DKViSNJgFp1aSrKYX2u+c\ntesKZoV7Ve1Ncj1wB1DALVX1hRHVKkmaw0BTKyM/qFMr0kQ4tdK2I51akSQtUQa5JDXOIJekxhnk\nktQ4g1ySGmeQS1LjDHJJapxBLkmNM8glqXEGuSQ1zlv0pWNIMqZb9PnqeIYFqv6lWdHxFn1JOkoZ\n5JLUOINckhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGzRvkSdYmubPv8YMk70nyqb62B5Lc\nOet1pyT5cZL3jrd8SdLy+XZW1X3AOoAky4DdwJaqumGmT5LrgL2zXno9cMtoS5UkzWXeIJ9lA7Cj\nqnbONCQJcDlwYV/bm4G/Bx4fVZGSjswvJG88Ga66gAt4nOO4l6v4MW+adFkakWGCfCNw86y284FH\nq2oHQJLnAu+jF/pXj6RCSUfkF5I3ngc3/D68DP4agCvYwefBMD9KDBTkSVYClwLXzNq1iWeH+xTw\nO1X1j93VujRxyfSYVvw7dzzDrls10uHOet7F/P6PvvSstj9jB2dzI980yI8Kg16RXwJsrao9Mw1J\nlgNvAc7s63cO8NYkHwPWAAeS7KuqT8weMMlU3+Z0VU0PWbukAaw+8JO52/kh8OiIjvIyqv6ZF28j\nlmQ9sH6hfoMG+SZg86y2DcD2qnp4pqGqXtdXwLXAj+YK8a7v1IDHlnQEHl923NztzN2upaO7wJ2e\n2e5y9SALfo48yWp6ob1l1q4rODjcJS0x977gKq5Y+dJntV3OP+defm1CFWnU/IYgHfWO9TlygOf+\n4BZ+fs+NrP7RD7tPrfwaP+aikR7DqZXxO1R2GuQ66hnkfe4c1Zz4wQzy8fOr3iTpKGWQS1LjDHJJ\napxBLkmNM8glqXEGuSQ1ziCXpMYZ5JLUOINckhpnkEtS44b5YgmpUU+NZ9jnjelW+jXjGbZnxTgH\n14R4RS5JjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY1b8M7OJGuBT/U1nQp8\nEDgPWNu1rQH2VtW6JBcBHwZWAk8CV1fVX420aknS0xYM8qq6D1gHkGQZsBvYUlU3zPRJch2wt9vc\nA/zrqvpeklcBtwInjbpwSVLPsGutbAB2VNXOmYYkAS4HLgSoqm/19b8HWJVkRVXtP9JipaPdqhW3\ncMoTv8fxK3/CE08ex0MHrmLfP3nTpMvSEjdskG8Ebp7Vdj7waFXtmKP/W4Gthri0sFUrbuHcV7+H\na//rM6fShz62g298H8Nc8xr4zc4kK4FLgc/M2rWJg8OdblrlI8B/PJICpWPFKT/7e88KcYBr37eD\nk5fdOKGK1IphrsgvoXd1vWemIcly4C3Amf0dk5wEbAHeVlUPzDVYkqm+zemqmh6iFmkIY1qt+Uej\nHe74FT+Zs33ViidGuBLv80c1kBZBkvXA+oX6DfMXvgnYPKttA7C9qh7uO/Aa4Bbgmqr62qEGq6qp\nIY4tHfWeeOK4Odv3PXm8y4gfo7oL3OmZ7STXztVvoKmVJKvphfaWWbuu4OBw/w3gpcC1Se7sHicO\nVrZ07Hrooav40Ide+qy2D330pex86t0TqkitSFUt/kGTqqos+oF1TEqmx/RHvn7kI65adQsn/4sb\nWbXyCfY9eTw7n3o3+1aN8I3Or4xuqNmq8Jwes0Nlp1/1Ji0h+/a9ie+seBMUvekUp1Q0AG/Rl6TG\nGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxnlnp6SRyApGvxTCU3eNfMhn3D+m\ncb8/pnEPzSDXMWD3mMb9xniG/dq54xkXel8DMw6HXOdUi8GpFUlqnEEuSY0zyCWpcQa5JDXOIJek\nxhnkktQ4g1ySGmeQS1LjDHJJaty8d3YmWQt8qq/pVOCDwHnA2q5tDbC3qtZ1r/kA8A7gp8BVVfWl\nURctSXrGvEFeVfcBMwG9jN69zluq6oaZPkmuA/Z2z18JXAG8Engx8JdJXl5VB8ZTviRpmKmVDcCO\nqto505AkwOXA5q7pMmBzVe2vqgfprUpzzohqlSTNYZgg3wjcPKvtfODRqtrRbb8I2NW3fxe9K3NJ\n0pgMtPphkpXApcA1s3Zt4uBwn23OpS2TTPVtTlfV9CC1SNKx477uMb9Bl7G9BNhaVXtmGpIsB94C\nnNnXbzdwct/2SRxiDdGqmhrw2NIRqfrVTLqGpSLZPvo1wwFOfsVYhuXEM8YzLsCdT41p4H86wrF+\nDvjlvu3/NWevQadWNvHMPPiMDcD2qnq4r+1zwMYkK5O8BDgNuH3AY0iSDsOCV+RJVtML7XfO2nUF\ns8K9qu5J8mngHuAp4NerajxXAJIkADKJnE1SVeU/d6VF1t7UyniGBeDOvx3TwOP8qreLmCs7vbNT\nkhpnkEtS4wxySWqcQS5JjTPIJalxBrkkNc4gl6TGGeSS1DiDXJIaZ5BLUuMMcklq3KDL2Eo6ClS9\noqk1jvLGub/PYCROOHPhPofjse3jGXceXpFLUuMMcklqnEEuSY0zyCWpcQa5JDXOIJekxhnkktQ4\ng1ySGmeQS1Lj5g3yJGuT3Nn3+EGSq7p9706yPcndST7atR2fZHOSu5Lck+T9i/FDSNKxbN5b9Kvq\nPmAdQJJlwG7gs0kuBH4FOKOq9id5QfeSjd3rzkiyCrgnyc1V9dDYfgJJOsYNM7WyAbi/qnYC7wI+\nXFX7AapqT9fnEWB1kucAq4EngR+OsF5J0izDBPlGYHP3/DTgdUm+nmQ6yVkAVXUrveB+BHgQ+HhV\n7R1hvZKkWQZa/TDJSuBS4Jq+151QVa9JcjbwaeDUJFcCq4AXAs8HvpLktqp6YI4xp/o2p6tq+rB/\nCkkTlfzteFYpvGRMKxQ24/buMb9Bl7G9BNjaN4WyC9gCUFV3JDmQ5ETgl4DPVtVPgT1JvgqcBRwU\n5FU1NeCxJR2rvjDGsV8xpnEf2zfCwU7vHjM+MWevQadWNvHMtArAXwCvB0jycmBFVf0DcG9f+2rg\nNcDiL84rSceQBYO8C+QNdFfgnZvoTaVsoxfw/65r/ySwsmu/Hbipqu4ebcmSpH4LTq1U1ePAibPa\n9gNvm6PvT4ArR1adJGlB3tkpSY0zyCWpcQa5JDXOIJekxhnkktQ4g1ySGmeQS1LjDHJJapxBLkmN\nM8glqXEGuSQ1btBlbCVpHqcv3OVwnD+eYQF49bgGHtMa6tvvOuQur8glqXEGuSQ1ziCXpMYZ5JLU\nOINckhpnkEtS4wxySWqcQS5JjTPIJalx8wZ5krVJ7ux7/CDJVd2+dyfZnuTuJB/te80ZSb7Wtd+V\n5Lhx/xCSdCyb9xb9qroPWAeQZBmwG/hskguBXwHOqKr9SV7Q9VkO/DFwZVVtS3ICsH+cP4AkHeuG\nmVrZANxfVTuBdwEfrqr9AFW1p+tzMXBXVW3r2h+rqgOjLFiS9GzDBPlGYHP3/DTgdUm+nmQ6yVl9\n7ZXki0m2Jrl6lMVKkg420OqHSVYClwLX9L3uhKp6TZKzgU8DpwIrgNcCZwH7gNuSbK2qL88x5lTf\n5nRVTR/uDyFp0raNZ9hvjWklQYCXjWncDSMca9c07J7uPV8D7J2726DL2F4CbO2bQtkFbAGoqjuS\nHEhyIrAT+Juq+j5Aks/TW9PxoCCvqqkBjy1Jx6aT1vceAHuAvR+as9ugUyubeGZaBeAvgNcDJHk5\nsLKq/gH4EnB6klXdG58XAN8eunhJ0sAWvCJPsprePxbe2dd8E3BTkm3Ak8C/hd6bm0muB+4ACril\nqr4w8qolSU9bMMir6nHgxFlt+4G3HaL/nwJ/OpLqJEkL8s5OSWqcQS5JjTPIJalxBrkkNc4gl6TG\nGeSS1DiDfEBJ1k+6hmG0Vi+0V3Nr9UKbNfPU9KQrGM6u6UU/pEE+uPWTLmBI6yddwGFYP+kChrR+\n0gUchvWTLmBoP52edAXDmVkbZREZ5JLUuEEXzZJ0VHjjtcn/uHb04547+iE1sFTV4h80WfyDStJR\noKoyu20iQS5JGh3nyCWpcQa5JDVu5EGe5KYkj3Zrlc+0/Zsk307y0yRnzur/gSTfTXJvkotHXc8g\nBqj5F/vaL0ryzSR3df+9cAnWe9D3YyU5JcmPk7x3cat9+vjD/l2ckeRrSe7uftfHLeWakxyfZHNX\n6z1J3r9E6v14ku1J/i7JliQ/07dvqZ57c9a8FM69YWvu2z/e86+qRvoAzgfWAdv62n4eeDnwV8CZ\nfe2vBL5F77s+fw64H1g26ppGXPOrgZ/tnr8K2LWU6+3b/+fAnwHvXex6D+N3vBz4O+D0bvuEBv4u\n3g5s7p6vAh4ATlkC9V4087sDPgJ8pHu+lM+9Q9U88XNv2Jr79o/1/Bv5FXlVfQV4bFbbvVX1nTm6\nX0bvj39/VT1I74/pnFHXtJBhaq6qb1XV97rNe4BVSVYsQpn9NQzzOybJm4G/p1fvRAxZ88XAXVW1\nrev3WFUdWIQyn2XImh8BVid5DrCa3jdn/XD8VT6rtrnq/d99v7tvACd1z5fyuTdnzUvh3OvqGOb3\nvCjn36TnyF9E74ucZ+wCXjyhWg7HW+l9KfX+SRdyKEmeC7wPmJpwKcM4DagkX0yyNcnVky5oIVV1\nK73gfgR4EPh4VR3iO88n5h3A57vnrZx7/TX3W8rn3tM1L9b5txRvCGri85BJXkXvn1AXTbqWBUwB\nv1NV/5jkoM+fLlErgNcCZwH7gNuSbK2qL0+2rENLciW9KZUXAs8HvpLktqp6YLKV9ST5L8CTVXXz\nPN2W1Ll3qJqX8rk3R81TLML5N+kg3w2c3Ld9Ute2pCU5CdgCvG2pnKjzOAd4a5KPAWuAA0n2VdUn\nJlzXfHYCf1NV3wdI8nngTGDJBjnwS8Bnq+qnwJ4kX6X3P6KJ/30keTvwRuBf9TUv6XPvEDUv6XPv\nEDUvyvk3iamV/v8rfQ7YmGRlkpfQ+yf17ROoaSFP15xkDXALcE1VfW1yJc3r6Xqr6nVV9ZKqegnw\nu8B/W6Ih3v93cStwepJVSZYDFwDfnkxZ8+qv+V7g9QBJVgOvAbZPoqh+Sd4AXA1cVlVP9O1asufe\noWpeyufeoWpetPNvDO/obgYepvdmz05680Vv7p7vA74HfKGv/3+m90bLvcAvj+Md3VHWDPwW8GPg\nzr7HiUu13lmvuxb4T0v9d9z1/1XgbmAbsz4BsBRrBo4D/qSr99tM4NNBh6j3u8D/6/tb/URf/6V6\n7s1Z81I49w7n99z3urGdf96iL0mNm/SnViRJR8ggl6TGGeSS1DiDXJIaZ5BLUuMMcklqnEEuSY0z\nyCWpcf8fut8JzFR6gWcAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.pcolormesh(bathy)\n", "plt.plot(i36,j36,'ro')\n", "plt.plot(inew,jnew,'yo')\n", "plt.axis([110,125,765,780])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }