{ "cells": [ { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "import cmocean.cm as cm\n", "import matplotlib.pyplot as plt\n", "import xarray as xr\n", "\n", "from salishsea_tools import viz_tools\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "bathy = xr.open_dataset('../../../grid/bathymetry_201702.nc')\n", "jetty = xr.open_dataset('../../../grid/jetty_mask_bathy201702.nc')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "imin, imax = 405, 445\n", "jmin, jmax = 280, 320" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "array([[13.],\n", " [13.]])\n", "Dimensions without coordinates: y, x\n", "Attributes:\n", " units: metres\n", " long_name: sea_floor_depth\n" ] } ], "source": [ "print (bathy.Bathymetry[imin+22:imin+24, jmin+18:jmin+19])" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(15.0, 27.0)" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAHBCAYAAAC10bg7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5hlVXng/+/bDc2lUaEDKDRogRMdg+KtMSZErcZLcMZRJ0QcJxIYHTtBo4DGeMmvQSDP/BAv6CTPYIigmBAjpvHyy5hEot0QogINchUJKg02IBdRuQo29f7+OLusU9V12VVnn3PWrvp+eM5Ttfc5a++3ilP9nnfttdeKzESSJA3HsmEHIEnSUmYiliRpiEzEkiQNkYlYkqQhMhFLkjREJmJJUmtExK4R8exhx9EkE7EkqTVOe+tLH1z1+F2uiohVw46lKTsMOwBJkuqIiN0O/g9P5JS3jPKjHz/wYyCGHVMTrIglSa1w2ltfev+b/8tzWffa5/MP/3YTi6UqtiKWJBVvvBr+1l+9mR13WM7bX/cCbr79J4uiKrYiliQVb7wa3mXnHQE46pUHL5qq2IpYklS07mp43GKqiq2IJUlFm1oNj1ssVbEVsSSpWNNVw+MWS1VsRSxJKtZM1fC4xVAVWxFLkoo0WzU8bjFUxVbEkqQizVUNj2t7VWxFLEkqTp1qeFzbq2IrYklScepWw+PaXBVbEUuSijKfanhcm6tiK2JJUlHmWw2Pa2tVbEUsSSrGQqrhcW2tiq2IJUnFWGg1PG4+VXFE7B8RGyPihoi4PiKOq/aviogLI+Km6useCwqmJitiSVIReqmGx82zKt4GvCszr4yIxwFXRMSFwDHA1zLztIh4L/Be4D0LDmoOVsSSpCL0Wg2Pq1sVZ+YdmXll9f39wA3AauA1wLnVy84FXttTQHMwEUuShi4ilv31P13DW179vJ6PteMOyzn2d9YArJvH+UeA5wKXAk/MzDugk6yBvXsOahYmYklSCWLXnXbsuRoe9x+fsifAyyJic9dj2sQcEbsBG4DjM/O+RgKYB68RS5IWq2sz84TZXhARO9JJwudl5gXV7jsjYp/MvCMi9gHu6meQVsSSpHJkNveYQ0QEcDZwQ2Z+tOupLwNHV98fDXyp8Z+zixWxJGmpOhQ4Crg2Iq6q9r0fOA04PyLeDNwKvK6fQZiIJUlLUmZewsy3OL10UHGYiCVJ5ajRpVzzQA0dp/9MxJKkciy9POxgLUmShsmKWJJUjqa6phvr4u4/K2JJkobIRCxJ0hDZNS1JKkPNiTjqHauZwwyCFbEkSUNkRSxJKkeLKtmmmIglSeVw1LQkSRokK2JJUjmW4MxaJmJJUkGWXia2a1qSpCGyIpYklSFZigWxiViSVJAluAyiXdOSJA2RFbEkqRxLryA2EUuSCuJc05IkaZBMxJIkDZFd05KkQjS5DGJ7+qatiCVJGiIrYklSGZqc0KNFrIglSRoiK2JJUjm8RixJkgbJRCxJ0hDZNS1JKscS7Jo2EUuSyrEE55q2a1qSpCGyIpYklaNFXcpNMRFLksrQ5IQeLcrndk1LkjREVsSSpEIszZLYRCxJKsfSy8N2TUuSNExWxJKkcjihhyRJQ9Se/NkYu6YlSRoiK2JJUkGW3mgtK2JJkobIiliSVI6lVxCbiCVJhUgaHDXdzGEGwa5pSZKGyIpYklQOu6YlSRqiJTihh13TkiQNkYlYkqQhsmtaklSIbLBL2a5pSZJUgxWxJKkMiaOmJUkaKkdNS5KkQTIRS5I0RHZNS5LK4VzTkiRpkEzEkqRyZEOPGiLinIi4KyKu69r3nIj4VkRcFRGbI+IFDf1kMzIRS5KWqk8Dh0/ZdzpwcmY+Bzix2u4rrxFLksoxwNuXMvPiiBiZuht4fPX9E4DbmwloZiZiSVIZypjQ43jgnyPiw3R6jX+zoYhmZNe0JGmxelZ1nXf8sa5Gm2OBEzJzf+AE4Oz+hmhFLEkqSqMl8bWZecI8Gx4NHFd9/3ngkw0FNCMrYklSOZoaNb3wfH478JLq+8OAmxZ8pJqsiCVJS1JEfBYYBfaMiK3AScBbgI9HxA7Az4E63dk9MRFLkgox2PWIM/MNMzz1/IaCqMVELEkqx/BHTQ+c14glSRoiK2JJUjlcj1iSJA2SiViSpCGya1qSVIaEbKhLuUU90yZiSVI5GrtE3MxhBsKuaUmShsiKWJJUhKTJrun21MQmYklSMdqTPptj17QkSUNkRSxJKsZS7Jq2IpYkaYisiCVJxRhrqJBt6jiDYCKWJBUhm1wFsUXsmpYkaYhaURHvufuuObLP7sMOQ7N5rLePsTdt/XFP7e97+Bc9tZc0L/dk5l7NHzaX5GCtViTikX12Z/On1g07DM3mgZ/31Py333leT+2/eu3WntpLmpdb+nXgptJne9KwXdOSJA1VKypiSdLSMNZQl7KjpiVJmqfOXNMNHqwl7JqWJGmIrIglSWXIBqe4bFFJbCKWJBVjCfZM2zUtSdIwWRGr4/6He2r+vLec01P7b99yT0/tJS0OTY2adkIPSZLmqclR0y3Kw3ZNS5I0TFbEkqRCLM25pq2IJUkaor4l4ojYPyI2RsQNEXF9RBzX9dzbI+LGav/p/YpBktQu42sS9/wY9g8yD/3smt4GvCszr4yIxwFXRMSFwBOB1wAHZ+YjEbF3H2OQJLVEAmMNpVATMZCZdwB3VN/fHxE3AKuBtwCnZeYj1XN39SsGSZJKN5BrxBExAjwXuBR4GvCiiLg0Ii6KiEMGEYMkqXBNdUtnu25f6vuo6YjYDdgAHJ+Z90XEDsAewAuBQ4DzI+LAnDLELSLWAesAnvykJ/Q7TElSARw13bCI2JFOEj4vMy+odm8FLsiOy4AxYM+pbTPzrMxck5lr9tp9136GKUnS0PRz1HQAZwM3ZOZHu576InBY9ZqnASsA5zeUJDXXLd2egrivXdOHAkcB10bEVdW+9wPnAOdExHXAo8DRU7ulJUlLU1PLF7oMIpCZlwAxw9Nv7Nd5JUlqE6e4lCQVIYGxhgrZsWYOMxAmYklSMRq7UtmiK57ONS1J0hBZEUuSytDgRBwtKohNxJKkUjS5DGIjhxkIE/Ei8Gcf/krPxzj3kht7av+9O+/rOQZJWopMxJKkInRWX2ruWG3hYC1JkobIiliSVIyluOiDiViSVIzGRk03c5iBsGtakqQhsiKWJBXDrmlJkoYks7m5pluUh+2aliRpmKyIJUnFcD1iSZKGaCnONW3XtCRJQ2RFLEkqRptGOzfFiliSVISkM2q6qcdcIuKciLgrIq6bsv/tEXFjRFwfEaf36cf9JROxJGmp+jRwePeOiFgLvAY4ODMPAj7c7yBMxIvYv+55Bz9Y2Vme8Ot73wbAD1bex7/ueUet9j95ziM8tO82AH685ucAPLTvNn7ynEfqB3EoMFJ9P1p9Han2L4X2JcTQ9vYlxNDEz6AastH/5jxb5sXAvVN2HwuclpmPVK+5q/mfczIT8SK2+uGVfO7J3+cHK+9j4xNv5wcr7+NzT/4+qx9eWav9Tnct50eveLiTfA95lIf23caPXvEwO921vH4QtwGvo/OP1mj19XXV/qXQvoQY2t6+hBia+Bk0t+yMdm7qATwrIjZ3PdbViOJpwIsi4tKIuCgiDunrzwxEGy6Mr3nGvrn5U3V+f0vTn334KzM+N558H9phG7tu24HX3/pUDnzw8du97txLbpy2/XjyHdslWfZw8KSv7sKut28/xu97d943c4AjdP7RWgk8CHwe2DLLD7TY2pcQQ9vblxBDr+0Xlysyc02TB4yI5c9cvce2v33ryxo53uab7+ZNn9z0scw8YY7zjgD/kJnPrLavA74OHAccAnwOODD7mCwdNV2Al735kz21/9p3ZvhYPgo8a2LzoR228akDb4RNdB5zGWWiGw4Y2yW5/TUP1W8/zTFYCRzDgmNoXfsSYmh7+xJi6LW9akkaHDW98ONsBS6oEu9lETEG7Anc3Uxg2zMRL2ab6HxiX+in+F7blxDDsNuXEEPb25cQQ6/t1SZfBA4DNkXE04AVwD39PKHXiBezETr/cHy+2v48E9e5BtG+hBiG3b6EGNrevoQYem2v2hq7RlzjXBHxWeCbwNMjYmtEvBk4Bziw6qL+O+DofnZLgxXx4raaiU/tm6qvn6/2bxlA+xJiGHb7EmJoe/sSYmjiZ1AtYw3lvDrHycw3zPDUG+ucIyKeV+Nlv8jMa2c9joO1hq9v14glqT/6MljroNV7bPvrPziskeNdseVu3nLOxXMO1upFRNwPXA7ELC87IDNHZjtO3yriiNgf+AzwJGAMOCszP971/B8DHwL2ysy+9r9Lktqh/NJwksszc9ZPDhHx9bkO0s9rxNuAd2XmM4AXAm+LiF+rAtsfeDlwax/Pv+gdec/9PPvByZNrjALvnvK6VavgjDNgjz0m7/8H4Pgprz2+2t9k+xJiGHb7EmIotX0JMfTa/t1MDKo+qfo6yvZ/i5rd+KjpZh4DiHeOJFz3NX1LxJl5R2ZeWX1/P3ADnSsqAGcAf0LrPvyU5cZdVrB+672//AdgFDifTj9Jt6OOgoMPht///cn7/wX4CBP/AB1fbf9Lw+1LiGHY7UuIodT2JcTQa/vL6fztjQIfYOa/RS1OEXFoRKysvn9jRHw0Ip5St/1ARk1XN0w/F7g0Il4N3JaZVw/i3IvZ1St34tT9VnE+cDKdP/wjmXxb46pV8MpXwrJlcPjhkz/Jfwx4F51/cC6qvr6r2t9U+xJiGHb7EmIouX0JMfTafhOdv73zq+3p/hZVQ/Mzaw3KmcBDEfFsOkXmLXQuzdbS90QcEbsBG+h8yNwG/ClwYo1268anJbv7pw/1Ocr2unrlTpxJ5xd6Jtv/4R91FEQ1jGDZsu0/yX8MuAR4cfV1agLptX0JMQy7fQkxlN6+hBh6aX8SsBHYq9req9o+Cc3XWGYjjzpzTTdoW3WL02uAj1fjoR5Xt3FfE3FE7EgnCZ+XmRcATwUOAK6OiC3AfsCVEfGkqW0z86zMXJOZa/bafdd+htlqz37wEY4FTqEzU/lo13Pjn+BXrOhsr1ix/Sf544HfAi6uvh7fYPsSYhh2+xJiaEP7EmLopf3JwFompl66u9o+GS0R90fE+4CjgP8bEcuBHes27lsijogAzgZuyMyPAmTmtZm5d2aOVMO5twLPy8wf9SuOxezZDz7C+q33ciSdT97jXWOj1fPdn+DHdX+SH78O9i7gJUx0zR3fUPsSYhh2+xJiKL19CTH02n6Uie5o2P5vUfVlg48Bej3wCPCmKp+tpnNXUC39rIgPpfPp4LCIuKp6/Kc+nm/JefrDj3Lqfqt+2R29ic4/AONLhRx00MQn+HErVnT2A7yMydfBxq+Tvayh9iXEMOz2JcRQevsSYui1/SFMXBP+ANv/LaqepKkR09ncnNV14u4k3w3ATtWue4Av1G3vhB4FcEIPSS3Tlwk9nrHv7tvO+Z+jjRzv27fcw1vPvaSvE3qMi4i3AOuAVZn51Ij4VeATmfnSOu2da1qSVIyWjpp+G51e4Ps6P0PeBOxdt7GJeDE7lO0npR+p9g+ifQkxDLt9CTG0vX0JMTTZfnQB7ZeQxkZNDzYTP5KZj45vRMQOzOMytYl4MbuNySvEjFTbdXuye21fQgzDbl9CDG1vX0IMTbYfXUB7le6iiHg/sEtEvJzOkiD/X93Grr60mG1hYrm2zcAa5reGaq/tS4hh2O1LiKHt7UuIocn2MLGkYt32S0WDXcoDHv30HuB/AtcCfwB8Bag9+MdEvNhtofMPx0voTBm0ZcDtS4hh2O1LiKHt7UuIoZf2o0y+l2klcAyd4dWb5hmHihIRy4BrMvOZwF8t5BgmYuCh67b21P74877RU/tly2ZbQWtuI3vOPIHLw6u3cfcLfs7jLtuR+1/wC/a6d2d2uW37/+233vvAtO1zJMk1dGY5WANxC8SW7eNdPvUmyy5jT0keW5MsuxjG1sDyW4Jlt0x+/Ymvff6M7X+w8j4+9+Tv84I79+ayQ+/i9fs/lQMffPyMry+tfQkxtL39IGNYv2GGGaJH6FTCF1Vfb6Z+Mt5UvfZ1dJLwg1gRT6Nz/28zteygKuLMHIuIqyPiyZm5oIWMTMSL2MOrt3H34T9nr3/qJN+db1s+aXsuOZLkERAbOsk3t3S22ZDTJuPpjD0leeyIZPmGTvKNLZ1tNrBdMp7O+D+er7+184/mAQ8+btJ26e1LiKHt7YuIYYTJ3ck3M7/u5e72xzDRTW0y3k5jY6wG2ze9D3B9RFxG52NWJ4TMV9dp7GCtRezRvR+blHR3uW0H9vqnnXl078fqHWDfiSQMna+xobO/rtyXXyZh6CTf5RuCrHmM23Z5cNI/lgc++Hhef+tTuW2XB+doWUb7EmJoe/siYljN5KS5pdpePcPrZ2u/aQHtVbqTgVfRmW34I12PWpzQg+F3TW+55/6e2t/0o5/11B5m7pqua7au6Tpm65qWBmnGrml168uEHv9xn923nXnMixo53tW3/pjjz/vGoCb0+GBmvmeufTOxIpYkFSFp7YQeL59m3yvrNjYRS1KP3s32CzyMVvu7rVoFZ5yx/cpT3e3Hl06crr3KEhHHRsS1wNMj4pqux810bmWqxUQsST26nMmrLY1W21M7uY86Cg4+ePu1kLvbf2CW9otfNvbfgEZr/S3wX4AvV1/HH8/PzN+rexATsST1aBMTSx+ezMSSiJu6XjO+pvGyZduvhdzdnhnaLxWNdU0PJNb8WWZuycw3APsDh2XmLcCyiDig7nFMxJLUgE3AmcCJ1ddNU57vXtN46nrMJwEbgb2q7b2q7ZNQG0TESXRm13pftWsF8Dd125uIJakBo8CxdO5fOZbJ14zHq+HxNY1XrJhcFZ8MrAXurl5/d7V9cv/DLkvSyvWIgf8KvJrqHuLMvB2YeaalKUzEktSjUSa6k09iopt5tHq+uxoe110Vd7dnmvZLRQJj2cxjwKOmH81O5k+AiFg5n8YmYknq0SFMvqa7qdo+pNo+6KCJanjcihWd/VPbf2Ca9ire+RHxl8DuEfEW4F+Yx7zTTnEpST360DT7NjGRmNfNMR9Rd/vx7uju9ktJU13Kg6yIM/PD1fKH9wFPB07MzAvrtjcRS5KK0c6ppiEzL4yIS6nyakSsysx767Q1EUuS1IOI+AM64/QeBsaAoPNZ4MA67U3EktRvhwK3MXmlpRE6iz782wKOMUqn33q+x2iBxrqmB1sT/zFwUGbes5DGDtaSpH67jc6yhyPV9ki1fdsCjzG6wGOoX74PPLTQxlbEktRvW5hYg3gzsIb5r0XcfQxYlOsZZ3XrUVPHGqD3Ad+orhE/MhFDvqNO40WRiE/76D/21H7H5b11DDz5V3YbavsXP32fntovBmdf9N2ej/HgI7/oqf3d9/+85xjUm1OP6P2Gn16PMeMyilvoJOGXABcx/wQ6yuQbi1cCx7Dohlc3N2p6oJn4L4Gv01noYWy+jRdFIpak4o3QqYQvqr7ezPyS8abq9a+jk4QfZNFVxC22LTPfudDGXiOWpH4bYaIreSMTXcwjCzwGCzxGC7R0PeKNEbEuIvaJiFXjj7qNrYglqd9WM7l63VJtr6Z+Rdt9jE0LPEbxssHRzgPNxP+9+vq+rn3eviRJxZju9qItzC+Bdh9j0wKPob7IzNpLHk6nb13TEbF/RGyMiBsi4vqIOK7a/6GI+G5EXBMRX4iI3fsVgySpPZpc9GHeI6YWICKe18Rr+nmNeBvwrsx8BvBC4G0R8WvAhcAzM/Ng4N+ZXMpL0pLzbrZfaWm02j/VqlVwxhkTSyhOd4zxdYxnOkbJWrYM4qciYo/u68JTH8DZcx2kb4k4M+/IzCur7+8HbgBWZ+ZXM3Nb9bJvAfv1KwZJaoPLmbzs4Wi1Pd2NUEcdBQcfPLGE4nTH+MAcx1BjngBcMcdjzvsiB3KNOCJGgOcCl0556k3A5wYRgySVahMTaxCfCRzL5GUVx61aBa98ZWct48MPh898Bn7yk+2PARPrG089RtEaHO08iII4M0eaOE7fb1+KiN2ADcDxmXlf1/4/pdN9fd4M7dZFxOaI2Hz3Txc8c5gktcImOkn4xOrrpmlec9RRENH5ftmyyVXxSXTujNqr2t6r2j6JdsmG/muTvibiiNiRThI+LzMv6Np/NPAq4Pdyho78zDwrM9dk5pq9dt+1n2FK0tCN0qmET6m+jk55frwaXrGis71iRacqHr9WfDKwFri7ev3d1fbJqHT9HDUddC5S35CZH+3afzjwHuDVmWmpK2nJG2WiK/kkJrqYR7te010Nj+uuiruPwQzHKF2jo6ZbVBT38xrxocBRwLURcVW17/3A/wZ2Ai7s5Gq+lZl/2Mc4JKlohzD5eu6mavuQrn0HHTRRDY9bsaKzf+oxPjDDMdqgpcsgEhGrgafQlVcz8+I6bfuWiDPzEjqLI0/1lX6dU5La6EPT7NvE5AS6bl39Y4x3R089hvojIj4IvB74DvBYtTuB4SZiSZLmq7HRzoMtiF8LPD0zH5nzldNw0QdJaoND2X6Bh5Fq/3zbjy6gvWbzA2DHhTa2IpakNriNidWXtrD9akzzaT/KxJKKddsPSJvWI46IP6dTez8EXBURXwN+WRVn5jvqHMdELEltsIWJpQ8301nTeD7rEXe3h8lJvRBJcz3KA+qZ3lx9vQL48kJDMBFLUltsofNP/0uAi5hfEh1l8r1MK4FjcERXDzLzXICIOC4zP9793PhCR3W0IhHffff9fOITX5/x+fd9/rIBRiOpVOs39D6z8qlHHDLU9rP+DCN0KuGLqq83Uz8Zb2KiO3ol8CAzVsRzdevG1Buam5LJWIu6prscDXx8yr5jptk3rVYkYkla8kaY3J18M/PrXu5ufwwT3dSldU+3aK7piHgD8N+BAyKiu2v68cCP6x7HRCxJbbCayUlzS7W9mnqJtLv9pgW013S+AdwB7Al8pGv//cA1dQ9iIpakNvi3afZtoX4S7W6/aQHtB6S5mbX6LzNvAW4BfiMingS8oDr1jV3L/c7J+4glSUXIhh+DEhFvBi4Dfgf4XeBbEfGmuu1NxJK0CLyb7Rd4GK32d1u1Cs44Y2LVptnas3EjnH56UyEWJyLOiYi7IuK6aZ7744jIiNizxqH+BHhuZh6TmUcDz6ezuFEtJmJJWgQuZ/JqS6PV9tQx2EcdBQcfPHkt4+nas3EjHHkkHNLbKPD5GqtGTvf6qNnF/Wng8Kk7I2J/4OXArTXD3krnuvC4+4Ef1mw7dyKOiD+KiD3mep0kaXg2MbH04clMLIm4qes142saL1s2eS3jqe058cROEj7/fFi7dhDh/1Jmc4+5z5UXA/dO89QZdKrcuj3ctwGXRsQHIuIk4FvA9yLinRHxzrka16mInwRcHhHnR8Th0bcbyCRJvdgEnAmcWH3dNOX57jWNu9cyntqeU0+FY48deBLug2dFxOauxxxrWEFEvBq4LTOvnsd5vg98kYnE/SU6o6kfVz1mNeeo6cz8fyJiPfAK4H8AfxER5wNnZ+b35xGoJKmPRoFjgVOqrxuZSMbj1fD4msYrVnSq4s98Bn7yk8ntWb8ezjyzk4gHmYyz8bmmr83ME+q2iYhdgT+lk+/mc66Tq/YrM/PB+bSFmteIs/MT/ah6bAP2AP4+IhbvVXxJapFRJrqjT2Kim3m0er67Gh7XXRV3t+eUUzrd0kce2blWPCDJ4LqlZ/BU4ADg6ojYAuwHXFndmjSjiPiNiPgOcEO1/eyI+D91T1rnGvE7IuIK4HQ6d6I9KzOPpTMq7Ii6J5Ik9c8hTL4mvKnaHh9qddBBE9XwuBUrOvuna8/atZ1kfHnv04a2RWZem5l7Z+ZIZo7QGYT1vMz80RxNPwb8NtVsWlW39ovrnrfOhB57Ar9T3bjcHfBYRLyq7okkSf3zoWn2bWIisa6b4+rodO0H3jUNjDV0B3Cd40TEZ+l0BuwZEVuBkzLz7IWcLzN/OGUI1WN129a5RnziLM/dUPdEkiTNZZBzTWfmG+Z4fqTm6X4YEb8JZESsAN5B1U1dh/cRS5LUmz8E3kZn5u6twHOq7Vqca1qSloJD6dztuqVr3wid1DHdPNZDkNSeiKPOwQYmM+8Bfm+h7U3EkrQU3MbkZQ9Hura1IBHx58yS8jPzHXWOY9e0JC0FW5hYg3gtRa5FTIOzag1iPWJgM3AFsDPwPOCm6vEcmhysVYK77nuYj3/12mGHIWkJ+D9fu76n9m996UENRbJws3XvnrjxRE5deSrrX7yeU04/ZYBR1TPIUdO9ysxzASLiGGBtZv6i2v4E8NW6x7EilqQlYuPNGzlz85msf/F6ztx8JhtvHtxkHYvcvkyeynK3al8traiIJUm92XjzRo78+yM5/3fPZ+0Ba1k7snbSdikG1KXctNOAb0fE+CeblwAfqNvYiliSloDLb798UtJde8Bazv/d87n89nJmzupMcZmNPQYWd+angF8HvlA9fmO82xogIma9XmFFLElLwJ8c+ifb7Vt7wNqiquE2q6bB/NIMT/81ncFc0+pbRRwR+0fExoi4ISKuj4jjqv2rIuLCiLip+upax5IkoHWjpuuadfngfnZNbwPelZnPAF4IvC0ifg14L/C1zPxV4GvVtiRJreyarmHWYPqWiDPzjsy8svr+fjrzbq4GXgOM952fC7y2XzFIklS6gVwjjogR4LnApcATM/MO6CTriNh7EDFIkso31tBxBlUPR2fJpf0y84ezvOzR2Y7R90QcEbsBG4DjM/O+mLoy9czt1gHrAHZYXq+NJKm9muxSHlQizsyMiC8Cz5/lNS+c7Rh9vX0pInakk4TPy8wLqt13RsQ+1fP7AHdN1zYzz8rMNZm5Zodl3mUlSSrWtyLikIU27ueo6QDOBm7IzI92PfVl4Ojq+6OZebi3JGmJaemo6bXANyPi+xFxTURcGxHX1G3cz67pQ4GjgGsj4qpq3/vpzEByfkS8GbiVztTjkiQ11zU92Ez8yl4a9y0RZ+YlzHzv1Ev7dV5JkgYpM2+JiGcDL6p2/WtmXl23vRdfJUnFGMtmHoMsiKsJq84D9q4efxMRb6/b3ikuJb8TDk8AABI0SURBVEnqzZuBX8/MBwEi4oPAN4E/r9PYRCxJKkIC2dCNR00dp6YAHuvafow5prXsZiKWJBWjqS7lAU9w+Sng0oj4Ap0E/Bo6dw3VYiKWpEWm7sRJMylsnubiZeZHI2IT8FvVrv+Rmd+u274ViXiXHZfzzP1Wzfj8d+/46QCjkbSY3fHTh4Z6/lOPWPC8EACs31DO+sLzlg1+CBj8h4nHGO9dn+dMnY6aliQVIWlu1PTYcEZN74mjpiVJGjhHTUuSFofmRk0PlKOmJUmLQ2OXdgebibtHTQO8FkdNS5I0GFNGTQeLcdS0JGkpaHI94v6XxBHRfTvPlurxy+cy8946xzERS5KKMD5qugkDGjV9BZ2wx68Hj581qu8PrHMQE7EkSQtzVGZeEhE7Z+bPF3oQ7yOWJJWhmtCjiceAJvT4ePX1G70cxIpYklSMlg2a/kVEfArYLyL+93YxZL6jzkFMxJIkLcyrgJcBh9G5XrwgJmJJUjEaGzU9gK7pzLwH+LuIuCEzr57pdRHxvsz8f2d63mvEkiT1YLYkXHndbE9aEUuSitHS9YjnMut0lyZiSVIROvcRN9U13chhmjJrNHZNS5LUX1bEkqT6ImovHNS4lt2+VNfnZ3syBjGyrFcRkbO9L1rwI0hSLacecchQz79+w+V1XnZFZq5p8rwRsXyfJ+y67egXPa2R49364wf4229+72OZeUIjB5xFROxMZ03ig4Cdx/dn5pvqtLdrWpKk3vw18CTgt4GLgP2A++s2NhFLkooxPjtlr48B903/h8xcDzyYmecC/xl4Vt3GXiOWJBUhycZGTY8NNhP/ovr604h4JvAjYKRuYxOxJEm9OSsi9gDWA18GdgNOrNu4b4k4Is6hMw/nXZn5zGrfc4BP0LmYvQ14a2Ze1q8YJEnt0tiEHgMsiDPzk9W3F1FzDeJu/bxG/Gng8Cn7TgdOzszn0Pm0cHofzy9Japls6L9BXiSOiCdGxNkR8Y/V9q9FxJvrtu9bIs7Mi4F7p+4GHl99/wTg9n6dX5KkAfk08M/AvtX2vwPH12086GvExwP/HBEfpvMh4DcHfH5JUqGSdnZNA3tm5vkR8b7OuXNbRDxWt/Ggb186FjghM/cHTgDOnumFEbEuIjZHxOaBRSdJGp7szDXdzGOgkT8YEb9C1R8eES8Efla38aAr4qOB46rvPw98cqYXZuZZwFnQmVmr/6FJkrQg76QzWvqpEfFvwF7A79ZtPOhEfDvwEmATcBhw04DPL0kqWGNdyoMdNX1lRLwEeDqdBR5uzMxfzNHsl/rWNR0RnwW+CTw9IrZWI8jeAnwkIq4G/hewrl/nlyRpECLidcAumXk98FrgcxHxvLrt+1YRZ+YbZnjq+f06pySp3bKhUrap49S0PjM/HxG/RWe+6Q8DZwK/Xqexc01LkoowPmq6kcdgQx8fIf2fgTMz80vAirqNTcSSJPXmtoj4S+BI4CsRsRPzyK8mYklSMZq6fSlrjPqKiHMi4q6IuK5r34ci4rsRcU1EfCEidq8R9pF0JvQ4PDN/CqwC3l33ZzYRS5KK0VjXdL2+6U+z/VTMFwLPzMyD6cyQ9b65Y86HMvOCzLyp2r4jM79a92duxepLO+2wjP1/ZbcZn//enfcNMBpJ6p/1Gy7vqf2pRxzSUCSLX2ZeHBEjU/Z1J9BvMY/7gReqFYlYkrQE1OxSrneoBHjWlNkZz6omi6rrTcDnGgloFiZiSVIRmlwzqTrOtZl5wkLaR8Sf0lmu97yGQpqRiViSpC4RcTTwKuCl2VSJPgsTsSSpGI11TS+wXUQcDrwHeElmPtRIMHMwEUuSitHUqkl18nk1FfMosGdEbAVOojNKeifgwogA+FZm/mEzUU3PRCxJWpJmmIp5xuV5+8VELEkqRsOjplvBRCxJKsL4XNONHKs9ediZtSRJGiYrYklSMZpbvrA9JbEVsSRJQ2RFLEkqQzZ3+9JYM4cZCBOxJKkISeNzTbeCXdOSJA2RFbEkqRiNFbLtKYhNxJKkcjQ1arpFediuaUmShsmKWJJUjMZGTbeoJG5FIt42lvz4gUeGHYYkLXqnHnHInK9Zv+Hyvpw7s8nRzu3JxHZNS5I0RK2oiCVJS8NSXPTBRCxJKoYTekiSpIHqWyKOiHMi4q6IuG7K/rdHxI0RcX1EnN6v80uS2mesoUd76uH+dk1/GvgL4DPjOyJiLfAa4ODMfCQi9u7j+SVJLZLYNd2ozLwYuHfK7mOB0zLzkeo1d/Xr/JIktcGgrxE/DXhRRFwaERdFxNw3rEmSlozOvcQNPIb9g8zDoEdN7wDsAbwQOAQ4PyIOzGn6ECJiHbAOYFkMNEZJkgZm0Il4K3BBlXgvi4gxYE/g7qkvzMyzgLMAdli+rE0fbiRJC5GuRzwIXwQOA4iIpwErgHsGHIMkqVDZ0KNN+lYRR8RngVFgz4jYCpwEnAOcU93S9Chw9HTd0pIkLRV9S8SZ+YYZnnpjv84pSWqvBMYaqs1cfUmSpAVYinNNO8WlJElDZEUsSSrGUlyP2EQsSSrGUuyabkUiXrVyJ4445MAZn//E178zwGgkqVzrN1zeU/tTj3DCw0FrRSKWJC1+CYw11KXc1HEGwUQsSSpDNtil3J487KhpSZKGyYpYklSMpTjXtIlYklSMxkZNN3OYgbBrWpKkIbIiliQVIckGR023hxWxJElD1IqK+O77f/7AJ77+nRuHHccc9qTstZVLjw/Kj7H0+KD8GEuPD5Z4jDUnBHlKP84NS/P2pVYkYuDGzFwz7CBmExGbS46x9Pig/BhLjw/Kj7H0+MAYh20pjpq2a1qSpCFqS0UsSVrsGpxZq0UFcWsS8VnDDqCG0mMsPT4oP8bS44PyYyw9PjDGoUlgrKmu6RZdJI429aNLkhaniFj+uJ133LbmgL0aOd5PH3qEb9/y449l5gmNHLCP2lIRS5KWgCU4aHq4g7Ui4pyIuCsiruvatyoiLoyIm6qve8zQ9vCIuDEivhcR7x1gfB+KiO9GxDUR8YWI2H2Gtlsi4tqIuCoiNvcjvlli/EBE3Fad+6qI+E8ztO3773CWGD/XFd+WiLhqhrZ9/z1GxP4RsTEiboiI6yPiuGp/Ee/FWeIr5r04S4zFvBdnibGI92JE7BwRl0XE1VV8J1f7i3gfDkpmNvZoi6F2TUfEi4EHgM9k5jOrfacD92bmadWbaY/MfM+UdsuBfwdeDmwFLgfekJnfGUB8rwC+npnbIuKDAFPjq163BViTmX29H3GGGD8APJCZH56l3UB+hzPFOOX5jwA/y8xTpnluC33+PUbEPsA+mXllRDwOuAJ4LXAMBbwXZ4lvPwp5L84S45EU8l6cKcbu8wzzvRgRAazMzAciYkfgEuA44Hco4H3Yb1F1TT9vZM9GjvfThx7h6lvvbUXX9FAr4sy8GLh3yu7XAOdW359L5495qhcA38vMH2Tmo8DfVe36Hl9mfjUzt1Wb36Lzj+HQzPA7rGMgv0OYPcbqH58jgc/249x1ZOYdmXll9f39wA3Aagp5L84UX0nvxVl+h3UM6u951hiH/V7MjgeqzR2rR1LI+3BQMpt7tEWJ9xE/MTPvgM4fDrD3NK9ZDfywa3sr9f/om/Qm4B9neC6Br0bEFRGxboAxjfujqsvynBm6skr5Hb4IuDMzb5rh+YH+HiNiBHgucCkFvhenxNetmPfiNDEW916c4fc49PdiRCyvusbvAi7MzCLfh/3SSaANdUubiPsuptk30F97RPwpsA04b4aXHJqZzwNeCbyt6p4dlDOBpwLPAe4APjLNa4b+O6y8gdkrkIH9HiNiN2ADcHxm3le32TT7+vJ7nCm+kt6L08RY3Htxlv/PQ38vZuZjmfkcOr0bL4iI7S7lzKCUv2ctQImJ+M7qWs74NZ27pnnNVmD/ru39gNsHEBsAEXE08Crg93KGi+yZeXv19S7gC3S6jgYiM++s/qDHgL+a4dxD/R0CRMQOdK5/fW6m1wzq91hdk9sAnJeZF1S7i3kvzhBfUe/F6WIs7b04y++xmPdidY6fApuAwynofTgIY9nQY9g/yDyUmIi/DBxdfX808KVpXnM58KsRcUBErAD+W9Wu7yLicOA9wKsz86EZXrOyGgxCRKwEXgFcN91r+xTjPl2b/3WGcw/td9jlZcB3M3PrdE8O6vdYXRs8G7ghMz/a9VQR78WZ4ivpvThLjMW8F2f5/wwFvBcjYq+oRr5HxC7jMVHI+3AwstH/2mLYty99Fvgm8PSI2BoRbwZOA14eETfRGQF4WvXafSPiKwDVAJU/Av6ZzoCL8zPz+gHF9xfA44ALo3Mbwyemxgc8EbgkIq4GLgP+b2b+U9PxzRLj6dG5zeIaYC1wwtQYB/U7nCVG6Pxj8dkprx3G7/FQ4CjgsJh8m00p78WZ4ivpvThTjCW9F2eKEcp4L+4DbKx+V5fTuUb8D5TzPlSfOLOWJGnoImL5yp122Hbw/r/SyPHue/hRrr/tJ624fcmZtSRJxWiqOGxTkVniNWJJkvouepjdsUkmYklSMRobNV2vIP40nZHp3d4LfC0zfxX4WrXdVyZiSdKS1MPsjo3yGrEkqRjN3Xa04ONMmsksIqabyaxRJmJJUhGanCO6Os6zYvJKWWdl5lnNnKE5JmJJ0mJ17QJuX7ozIvapquGZZjJrlNeIpT6LiEOis+jBztUMTddH/TmEpSWlqUUfeiis68xk1igrYqnPMvPyiPgy8GfALsDfZObApjyV2qTmaOc51enirmb9GwX2jIitwEl0Zi47v5oB8Fbgdc1ENDMTsTQYp9CZtvDnwDuGHIskIDPfMMNTLx1kHCZiaTBWAbvRWex9Z+DB4YYjlSidWUtS35wFrKezZvAHhxyLVKRs+NEWVsRSn0XE7wPbMvNvI2I58I2IOCwzvz7s2CQNn4lY6rPM/Azwmer7x4BfH25EUrmWYte0iViSVIb6c0TXOVRreI1YkqQhsiKWJBXDrmlJkoakydHO7UnDdk1LkjRUVsSSpGI01qXcopLYiliSpCGyIpYkFaPh9YhbwUQsSSpCAmMNZdCxFvVN2zUtSdIQWRFLksqQDXYpt6cgNhFLkkqRZEMZtKnjDIJd05IkDZEVsSSpGI6aliRpSBodNd2iTGzXtCRJQ2RFLEkqRosK2caYiCVJxWhu1HR72DUtSdIQWRFLksrQ4IQeberiNhFLkorQ5KjpxpZTHAC7piVJGiIrYklSMZZi17QVsSRJQ2RFLEkqRlPXdtu06IOJWJJUjCW4CqJd05IkDZMVsSSpCEkuyduXTMSSpDIs0Qk97JqWJGmIrIglScVobNR0iypiE7EkqRhtSqBNsWtakqQhsiKWJBUhaXI94vaU1iZiSVIxxhrKn00dZxDsmpYkaYisiCVJxWhsIo4WjfoyEUuSyuCEHpIkadCsiCVJRViqo6atiCVJGiIrYklSMZq67ag99bCJWJJUjFySc03bNS1J0hBZEUuSirEUb18yEUuSipA0uQxiezKxXdOSJA2RFbEkqRhjDR2nPfWwiViSVIpssGu6RanYrmlJkobIiliSVAxHTUuSNCRNjppuUya2a1qSpCEyEUuSijHW4KOOiDghIq6PiOsi4rMRsXODP04tJmJJUjEys6HH3OeKiNXAO4A1mflMYDnw3/r7E27PRCxJWsp2AHaJiB2AXYHbBx2AiViSVIzMZh71zpW3AR8GbgXuAH6WmV/t3083PROxJKkETU2q1e0JEbG567Gu+8mI2AN4DXAAsC+wMiLe2Ic4ZuXtS5KkocvMjIimD7suM7fN8vzLgJsz826AiLgA+E3gb5oOZDZWxJKkUixv8mBzJGHodEm/MCJ2jc6ngJcCNzQZQx0mYklSETKzye7pHWuc71Lg74ErgWvp5MSzGoyhlmjTmo2SpMUtIpYBj/V6nMxsvJ+7X6yIJUnFaKgqnrMaLomJWJJUmp6uFde4NlwUE7EkqSg9VsWtqobBRCxJKtOCquK2VcNgIpYkFWiBVXHrqmEwEUuSyjWvqriN1TCYiCVJhZpnVdzKahhMxJKkstWqittaDYOJWJJUsJpVcWurYTARS5LKN2tV3OZqGEzEkqTCzVEVt7oaBhOxJKkdpq2K214Ng4lYktQCM1TFra+GwUQsSWqPSVXxYqiGwUQsSWqJKVXxoqiGwfWIJUkaKitiSZKGyEQsSdIQmYglSRoiE7EkSUNkIpYkaYhMxJIkDdH/DyUMo/G/yqDXAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 1, figsize=(8, 8))\n", "bathy.Bathymetry[imin:imax, jmin:jmax].plot(ax=ax, cmap='copper', vmax=20, vmin=8);\n", "viz_tools.set_aspect(ax);\n", "#ax.plot([18, 18], [22, 23], 'yo')\n", "for i in range(imin, imax):\n", " for j in range(jmin, jmax):\n", " if jetty.bfr_coef_u[i, j] == 1:\n", " ax.plot(j - jmin + 0.5, i - imin, 'r+')\n", " if jetty.bfr_coef_v[i, j] == 1:\n", " ax.plot(j - jmin, i - imin + 0.5, 'g+')\n", " ax.plot(j - jmin, i - imin, 'y^')\n", " ax.plot(j - jmin, i - imin + 0.5, 'gx')\n", " ax.plot(j - jmin, i - imin - 0.5, 'gx')\n", " ax.plot(j - jmin + 0.5, i - imin, 'rx')\n", " ax.plot(j - jmin - 0.5, i - imin, 'rx')\n", "ax.set_xlim(10, 32)\n", "ax.set_ylim(15, 27)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "Show/Hide data repr\n", "\n", "\n", "\n", "\n", "\n", "Show/Hide attributes\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
xarray.DataArray
'bfr_coef_u'
  • y: 898
  • x: 398
  • nan nan nan nan nan nan nan nan ... nan nan nan nan nan nan nan nan
    array([[nan, nan, nan, ..., nan, nan, nan],\n",
           "       [nan, nan, nan, ..., nan, nan, nan],\n",
           "       [nan, nan, nan, ..., nan, nan, nan],\n",
           "       ...,\n",
           "       [nan, nan, nan, ..., nan, nan, nan],\n",
           "       [nan, nan, nan, ..., nan, nan, nan],\n",
           "       [nan, nan, nan, ..., nan, nan, nan]])
    • units :
      none
      long_name :
      friction_x_binary_mask
    " ], "text/plain": [ "\n", "array([[nan, nan, nan, ..., nan, nan, nan],\n", " [nan, nan, nan, ..., nan, nan, nan],\n", " [nan, nan, nan, ..., nan, nan, nan],\n", " ...,\n", " [nan, nan, nan, ..., nan, nan, nan],\n", " [nan, nan, nan, ..., nan, nan, nan],\n", " [nan, nan, nan, ..., nan, nan, nan]])\n", "Dimensions without coordinates: y, x\n", "Attributes:\n", " units: none\n", " long_name: friction_x_binary_mask" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jetty.bfr_coef_u" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }