{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Ariane is taking a vacation in Deep Bay." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import netCDF4 as nc\n", "import numpy as np\n", "import matplotlib.patches as patches\n", "from salishsea_tools import viz_tools, geo_tools, tidetools\n", "from bathy_helpers import *\n", "import matplotlib.path as mpltPath" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "grid = nc.Dataset('/data/vdo/MEOPAR/NEMO-forcing/grid/bathymetry_201702.nc')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 407 particles were released at various depthts at time=0 in the following domain marked by the black rectangle. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATYAAAKvCAYAAADgPeO/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XGMXeV55/HvM2OPbUwDSetGCcGKUQ1sSAuBUVZoG9Qs\nAtNVt7SlNO6iBEhXXqSURlq1XVCS7ioVf3Sj/YNWSlKXBrGRUwJmk9JGNTiRmnZXgRQ3Lg3YNEAa\nYQqJCwUnYDz2zLN/zHE6mLme+965dzx++H6k0dx75n3u8x6f4TfnzJ3zEpmJJFUydqInIEnDZrBJ\nKsdgk1SOwSapHINNUjkGm6Ry+gq2iDg9IrZHxN6I2BMRF0fE70bEwxGxOyLuj4i3dmPfHhEHu+27\nI+LTo90FSXq16Ofv2CLiDuCvM/O2iJgATgFmMvNA9/XfAN6RmTdExNuBP8/Md45u2pLU24qFBkTE\nacAlwHUAmTkFTB0zbC3gX/pKWhYWDDZgA7AfuD0izgd2AR/OzJci4hbgA8CLwHvn1kTE7m77RzPz\nr4990YjYAmwBWLt27UXnnnvu4vZEx/Wtb3y7vWhsvL0mor1muWq9K2dmur3FzNKcD0TrcRnkOI63\nf78cOPy9f87Mde3Njm/BS9GImAQeAP5dZj4YEbcCBzLzY3PG3Ayszsz/HhGrgFMz87mIuAj4InDe\n0cvW+UxOTuZDDz00jP1RD5tOvba5ZuxHTm1vtKKfn5VzjC/R+1dH2kOHQ8demBxfHjrU3GLm4MHm\nmpxu35dYsbJt/ETbeBjs+2XHs5/clZmTzYULzaWPMfuAfZn5YPd8O3DhMWO2AVcBZOahzHyue7wL\neAI4ezjTlaSFLRhsmfks8FREnNNtuhR4NCI2zhl2JbAXICLWRcR49/gsYCPw5FBnLUnH0e91w43A\ntu4d0SeB64HburCbAb4D3NCNvQT4eEQc7r52Q2Y+P9xpS1JvfQVbZu4Gjr0OvqrH2HuAexY5L0ka\nmHceSCrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgkldN4x7KWg02rr2kvar05XTqJ+d3+OhET\nE+1FAyxDsyTLFk3PtNc0rtQBkFONq3s0joelW7aodUWQmB7g2M8McFxGxEtRSeUYbJLKMdgklWOw\nSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgklWOwSSrHYJNUjsEmqRyXLToZxQA/j8YGWE5o\nkCWIBunT6siR5pKZgwdH3mfmcPu8AHZOf36guhaXjV098h7LiWdsksox2CSVY7BJKsdgk1SOwSap\nHINNUjkGm6RyDDZJ5Rhsksox2CSVY7BJKsdgk1SON8EvA5ev3Nw0PlasHNFMdDJ4vd3QPgiD7WQ0\nwAoasWKAQz0+wAl964og0zPNLfLl0a/UATAzNdVcs3Pm7uaaZSkHOC5Th0cwkcF4KSqpHINNUjkG\nm6RyDDZJ5Rhsksox2CSVY7BJKsdgk1SOwSapHINNUjkGm6RyDDZJ5Rhsksox2CSV47JFy0G0/XyJ\n8fH2HoMsW9S6BBFAZtv4g6+0txhgCaKcnm6uifFx7j98Z3PdstT4PdY8HmCmfamjUfGMTVI5Bpuk\ncgw2SeUYbJLKMdgklWOwSSrHYJNUjsEmqRyDTVI5BpukcvoKtog4PSK2R8TeiNgTERdHxO9GxMMR\nsTsi7o+It84Zf3NEPB4Rj0XEptFNX5Jeq98ztluBHZl5LnA+sAf4RGb+VGZeAPw58DsAEfEOYDNw\nHnAF8MmIGODmRkkazILBFhGnAZcAfwyQmVOZ+UJmHpgzbC1w9O7nK4E7M/NQZn4beBx493CnLUm9\n9bPkwwZgP3B7RJwP7AI+nJkvRcQtwAeAF4H3duPPAB6YU7+v2/YqEbEF2AKwfv36gXeggljZuPLG\nICt1tPaA9pU6AA63rbwxc/Bgc4ucmmquAcqs1LFz5u7mmsvGrm4an0cON/dgbIDVYEakn0vRFcCF\nwKcy813AS8BNAJn5kcw8E9gG/HpL48zcmpmTmTm5bt26xmlLUm/9BNs+YF9mPtg9385s0M21Dbiq\ne/w0cOacr72t2yZJS2LBYMvMZ4GnIuKcbtOlwKMRsXHOsCuBvd3je4HNEbEqIjYAG4GvD3HOknRc\n/f7i5UZgW0RMAE8C1wO3dWE3A3wHuAEgMx+JiLuAR4EjwIcys335UkkaUF/Blpm7gcljNl8139hu\n/C3ALYuYlyQNzDsPJJVjsEkqx2CTVI7BJqkcg01SOQabpHIMNknlGGySyjHYJJUzwFo2OtHilDVL\n0+hI+51wMy8eWHjQHHnoUHOPnPYOvWUpTq5liyTppGKwSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUY\nbJLKMdgklWOwSSrHYJNUjsEmqRxvgh+yTWve3140tnxuHpYqMNiWgVjReBgGWUVhkJU6XnixuSan\nDrcVxBj3T32uuY+WnxhbPheAy2cmkjQkBpukcgw2SeUYbJLKMdgklWOwSSrHYJNUjsEmqRyDTVI5\nBpukcgw2SeUYbJLKMdgklWOwSSrHZYuWgZiYaCtY1TgeyOf+pbmGI0fa+xxpXLZIS2LnzN1N4y8b\nf19zjzzc/v0yKp6xSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgklWOwSSrHYJNUjsEmqRyD\nTVI5BpukclzdY8hi9ar2oomVbeMPvtLeY3q6vWYAYxMT3PfKtiXppdHZOf355prLV24ewUwG4xmb\npHIMNknlGGySyjHYJJVjsEkqx2CTVI7BJqkcg01SOQabpHIMNknl9BVsEXF6RGyPiL0RsSciLo6I\nT3TPH46IL0TE6d3Yt0fEwYjY3X18erS7IEmv1u8Z263Ajsw8Fzgf2APsBN6ZmT8F/ANw85zxT2Tm\nBd3HDUOdsSQtYMFgi4jTgEuAPwbIzKnMfCEz78/Mo/9P+weAt41umpLUv37O2DYA+4HbI+IbEXFb\nRKw9ZswHgb+YW9Ndhn41It4z34tGxJaIeCgiHtq/f/9gs5ekefSzbNEK4ELgxsx8MCJuBW4CPgYQ\nER8BjgBH16p5Blifmc9FxEXAFyPivMw8MPdFM3MrsBVgcnIyh7I3y8HMTHvNysbVo2YG+Oda0b5C\nVaxYwY7n/6i9l3SC9XPGtg/Yl5kPds+3Mxt0RMR1wM8B12RmAmTmocx8rnu8C3gCOHvI85aknhYM\ntsx8FngqIs7pNl0KPBoRVwC/Dfx8Zr58dHxErIuI8e7xWcBG4Mmhz1ySeuj3+uRGYFtETDAbUtcD\nfwOsAnZGBMAD3TuglwAfj4jDwAxwQ2Y+P/SZS1IPfQVbZu4GJo/Z/BM9xt4D3LPIeUnSwLzzQFI5\nBpukcgw2SeUYbJLKMdgklWOwSSrHYJNUjsEmqRyDTVI57Us+6PjGBvhZMXtLWv8mBjhs09PtNVKD\n+w/f2VwT8fkRzMQzNkkFGWySyjHYJJVjsEkqx2CTVI7BJqkcg01SOQabpHIMNknlGGySyjHYJJVj\nsEkqx2CTVI6rexzHptXXNNfEmjUjmImkFgbbsLk8kHTCeSkqqRyDTVI5Bpukcgw2SeUYbJLKMdgk\nlWOwSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLKcXWP47jvlW3NNVf82Jb2RpntNa3G/Bmm1w+/\n2yWVY7BJKsdgk1SOwSapHINNUjkGm6RyDDZJ5Rhsksox2CSVY7BJKsdgk1SOwSapHINNUjkGm6Ry\nXLZo2KZn2mtmGpctGmAJophY2Vwjnaw8Y5NUjsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgklWOwSSrH\nYJNUjsEmqZy+gi0iTo+I7RGxNyL2RMTFEfGJ7vnDEfGFiDh9zvibI+LxiHgsIjaNbvqS9Fr9nrHd\nCuzIzHOB84E9wE7gnZn5U8A/ADcDRMQ7gM3AecAVwCcjYnzYE5ekXha8CT4iTgMuAa4DyMwpYAq4\nf86wB4Bf7h5fCdyZmYeAb0fE48C7ga8Nb9paKle84frmmh0Hbh/BTKT+9bO6xwZgP3B7RJwP7AI+\nnJkvzRnzQeDz3eMzmA26o/Z1214lIrYAWwDWr1/fPvNlKqemmmvi0KG2glUTzT2YaK/JFw+095GW\ngX4uRVcAFwKfysx3AS8BNx39YkR8BDgCbGtpnJlbM3MyMyfXrVvXUipJx9VPsO0D9mXmg93z7cwG\nHRFxHfBzwDWZeXRRsaeBM+fUv63bJklLYsFgy8xngaci4pxu06XAoxFxBfDbwM9n5stzSu4FNkfE\nqojYAGwEvj7keUtST/2uoHsjsC0iJoAngeuBvwFWATsjAuCBzLwhMx+JiLuAR5m9RP1QZk4Pf+qS\nNL++gi0zdwOTx2z+ieOMvwW4ZRHzkqSBeeeBpHIMNknlGGySyjHYJJVjsEkqx2CTVI7BJqkcg01S\nOf3eeSBJx3XZ2NUnego/ZLAN2X0v/e/mmk2nXts0fmxsgBPt1auaS2LN6vY+0jLgpaikcgw2SeUY\nbJLKMdgklWOwSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgkleNN8Bq6TWs/0DR+kIUDpOMx\n2JaB+35wR9P4K95wfXOPGGB1DwZYRWTmwPfb+0hD5qWopHIMNknlGGySyjHYJJVjsEkqx2CTVI7B\nJqkcg01SOQabpHIMNknlGGySyjHYJJVjsEkqx9U9loHLV25uGj+2Zs2IZiLVYLCdhHJmprkmpg63\nN1p7SnufVw6195GGzEtRSeUYbJLKMdgklWOwSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgk\nlWOwSSrHm+CH7LLx9zXXxFiMYCYnj01r3t9cc9/Bz45gJqrCYFsGYny8afxAyxZNrGyvGRvghD7a\nQjoPvtLeQ1qAl6KSyjHYJJVjsEkqx2CTVI7BJqkcg01SOQabpHIMNknlGGySyjHYJJXTV7BFxOkR\nsT0i9kbEnoi4OCKujohHImImIibnjH17RByMiN3dx6dHN31Jeq1+7xW9FdiRmb8cERPAKcALwC8B\nfzjP+Ccy84IhzVGSmiwYbBFxGnAJcB1AZk4BU8wGG9F407MkjVo/l6IbgP3A7RHxjYi4LSLWLlTT\nXYZ+NSLeM9+AiNgSEQ9FxEP79+9vnbck9dTPpegK4ELgxsx8MCJuBW4CPtZj/DPA+sx8LiIuAr4Y\nEedl5oG5gzJzK7AVYHJyMgfeg2VmkLXVYtWqpvGZM+09pttrWNF+WGLN6raCLHPotYz0c8a2D9iX\nmQ92z7czG3TzysxDmflc93gX8ARw9mInKkn9WjDYMvNZ4KmIOKfbdCnwaK/xEbEuIsa7x2cBG4En\nhzBXSepLv++K3ghs694RfRK4PiJ+EfgDYB3wpYjYnZmbmH2j4eMRcRiYAW7IzOdHMHdJmldfwZaZ\nu4HJYzZ/ofs4duw9wD2Ln5okDcY7DySVY7BJKsdgk1SOwSapHINNUjkGm6RyDDZJ5Rhsksox2CSV\n0+8tVerT/YfvbK65fOXmpvGxYmVzj0EMtNLeKWvaekxPD9JFy9BA35eHhz8P8IxNUkEGm6RyDDZJ\n5Rhsksox2CSVY7BJKsdgk1SOwSapHINNUjkGm6RyDDZJ5Rhsksox2CSV4+oeOiltWvP+5pr7Dn52\nBDPRcmSwLQO5FEv3vNReEjHACf2a1e01jWZe/P7Ie6hdjI+3F7lskST1x2CTVI7BJqkcg01SOQab\npHIMNknlGGySyjHYJJVjsEkqx2CTVI7BJqkcg01SOQabpHJc3eMklNPT7Jy5u6nm8on/1N5naqq5\nJlpXKlm9qr3HkSPNNRq9WDlAnLwy/HmAZ2ySCjLYJJVjsEkqx2CTVI7BJqkcg01SOQabpHIMNknl\nGGySyjHYJJVjsEkqx2CTVI7BJqkcg01SOS5btAy0LkE0iPunPtdcc8VpH2xv1LikUK49pblFHHbZ\nomVpfPxEz+CHPGOTVI7BJqkcg01SOQabpHIMNknlGGySyjHYJJVjsEkqx2CTVI7BJqmcvoItIk6P\niO0RsTci9kTExRFxdUQ8EhEzETF5zPibI+LxiHgsIjaNZuqSNL9+7xW9FdiRmb8cERPAKcALwC8B\nfzh3YES8A9gMnAe8FfhyRJydmdPDm7Yk9bZgsEXEacAlwHUAmTkFTDEbbETEsSVXAndm5iHg2xHx\nOPBu4GtDm7U0gEFu6t/x4mdGMBONWj9nbBuA/cDtEXE+sAv4cGa+1GP8GcADc57v67a9SkRsAbYA\nrF+/vmXOWiqZ7TWHppqGx5rV7T1e+8N0Qfn9H7T3UZsBjsuo9PM7thXAhcCnMvNdwEvATYttnJlb\nM3MyMyfXrVu32JeTpB/qJ9j2Afsy88Hu+XZmg66Xp4Ez5zx/W7dNkpbEgsGWmc8CT0XEOd2mS4FH\nj1NyL7A5IlZFxAZgI/D1Rc9UkvrU77uiNwLbundEnwSuj4hfBP4AWAd8KSJ2Z+amzHwkIu5iNvyO\nAB/yHVFJS6mvYMvM3cDkMZu/0H3MN/4W4JbFTU2SBuOdB5LKMdgklWOwSSrHYJNUjsEmqRyDTVI5\nBpukcgw2SeX0e+eBTnKXr9zcXDO2Zs0IZiKNnsGmnnK6/U64GGSpo1aDLHX08sHhz0PLlpeiksox\n2CSVY7BJKsdgk1SOwSapHINNUjkGm6RyDDZJ5Rhsksox2CSVY7BJKsdgk1SON8GfYBFxoqfQ25EB\nal5uHP/dAXosoYjbTvQUTrhcioUNhsxgkzQcRwb5STgaXopKKscztmWk31P+y8aubn7tGB9vrhlk\nock4pa0mf/SN7T0GWFstn3+huQZgx4ufGajuZLesf0XSB8/YJJVjsEkqx2CTVI7BJqkcg01SOQab\npHIMNknlGGySyjHYJJVjsEkqx2CTVI73ii4jg9wDKum1DLbXiUFugmeQG6EnJtrGD3LNEAMUDbL/\nOml5KSqpHINNUjkGm6RyDDZJ5Rhsksox2CSVY7BJKsdgk1SOwSapHINNUjkGm6RyDDZJ5Rhskspx\ndY9lZOfM3X2Nu2z8fSOeSWeQFTHWrG4bP8gKIjnTXjM93V6jNoMcyxHxjE1SOQabpHIMNknlGGyS\nyjHYJJVjsEkqx2CTVI7BJqkcg01SOQabpHL6CraIOD0itkfE3ojYExEXR8SbImJnRHyr+/zGbuzb\nI+JgROzuPj492l2QpFfr94ztVmBHZp4LnA/sAW4CvpKZG4GvdM+PeiIzL+g+bhjqjCVpAQsGW0Sc\nBlwC/DFAZk5l5gvAlcAd3bA7gF8Y1SQlqUU/q3tsAPYDt0fE+cAu4MPAmzPzmW7Ms8Cb59ZExG7g\nReCjmfnXx75oRGwBtgCsX79+8D0o5LKxq/sbGP5qdKlsWvP+pvH3HfzsiGaiFv0E2wrgQuDGzHww\nIm7l1ZedZGZGRHZPnwHWZ+ZzEXER8MWIOC8zDxxTsxXYCjA5OZlotAYIwxhk2aKxxqVrxgYI6ZUr\nB6hpX6ErXzrY3ud1bMeLn2muibh9BDPp73ds+4B9mflg93w7s0H33Yh4y+zk4i3A9wAy81BmPtc9\n3gU8AZw97IlLUi8LBltmPgs8FRHndJsuBR4F7gWu7bZdC/wpQESsi4jx7vFZwEbgySHPW5J66vf8\n/EZgW0RMMBtS1zMbindFxK8B3wF+pRt7CfDxiDgMzAA3ZObzw522JPXWV7Bl5m5gcp4vXTrP2HuA\nexY5L0kamG+vSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgklWOwSSqnfckDnXg5014yPd1e\nc+RIc01Mt81tZnX7t2CsaP95PHbg+801Ljlz8vKMTVI5Bpukcgw2SeUYbJLKMdgklWOwSSrHYJNU\njsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgklePqHtIQbVp9TdP4QVZdAbj/8J0D1b1eGGyvF4MsdfTK\noeaaaFweaOyUVe09ptqXU2Jior3P6ra55cGDzT00Gl6KSirHYJNUjsEmqRyDTVI5Bpukcgw2SeUY\nbJLKMdgklWOwSSrHYJNUjsEmqRyDTVI53gQvnYQ2nXptW8GRARYOOIkZbMvIzpm7T/QUXuXylZub\na/LlthUu4sDLzT1YtbK9ZqK9Jk5Z01gQzT04+Ep7zbgXWgvxX0hSOQabpHIMNknlGGySyjHYJJVj\nsEkqx2CTVI7BJqkcg01SOQabpHIMNknlGGySyjHYJJVjsEkqx2WL1NP9h+9srtm09gNtBQcONPeI\n009rrmHqcHNJfv8HbeMPt695FoMsp7RmdXNNtu7/oeYWy4pnbJLKMdgklWOwSSrHYJNUjsEmqRyD\nTVI5Bpukcgw2SeUYbJLKMdgkldNXsEXE6RGxPSL2RsSeiLg4It4UETsj4lvd5zfOGX9zRDweEY9F\nxKbRTV+SXqvfM7ZbgR2ZeS5wPrAHuAn4SmZuBL7SPSci3gFsBs4DrgA+GRHjw564JPWy4E3wEXEa\ncAlwHUBmTgFTEXEl8DPdsDuAvwT+G3AlcGdmHgK+HRGPA+8GvjbkuUtaAle88T/3PXbHv9w2wpn0\nr5/VPTYA+4HbI+J8YBfwYeDNmflMN+ZZ4M3d4zOAB+bU7+u2vUpEbAG2AKxfv36gyWv5yamptoLp\n6fYmM9leM0CfmVfalrjIAXrEkfZVR2KAPmNr1jTXnMz6uRRdAVwIfCoz3wW8RHfZeVRmJtD03ZaZ\nWzNzMjMn161b11IqScfVT7DtA/Zl5oPd8+3MBt13I+ItAN3n73Vffxo4c07927ptkrQkFgy2zHwW\neCoizuk2XQo8CtwLXNttuxb40+7xvcDmiFgVERuAjcDXhzprSTqOflfQvRHYFhETwJPA9cyG4l0R\n8WvAd4BfAcjMRyLiLmbD7wjwocwc4BcpkjSYvoItM3cDk/N86dIe428BblnEvCRpYN55IKkcg01S\nOQabpHIMNknlGGySyjHYJJVjsEkqx2CTVE6/dx5I0oI2nXrtwoOWgMGmoWpduicHWIJo7FDbckIA\nefhIcw3A/VOf63vsZWNXN7/+QDcbTrUvdTQzQJujYtVEfz1+8NIiugyXl6KSyjHYJJVjsEkqx2CT\nVI7BJqkcg01SOQabpHIMNknlGGySyjHYJJVjsEkqx2CTVI43wS8jEXGip7D02u+Bh5eHPoueIv5k\n6Zr1q/0e+MFqTmIGm6Tjy/5++oydflr7a49oQRAvRSWV4xnbCZZ9/jTU8jfIemyDiPHx9pqJ/tZU\nO2rs1LXNPZYTz9gklWOwSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLKMdgklWOwSSrHYJNUjsEm\nqRxvgpeGZOfM3c01g9w4nzPtCyfE9HRbj8bxALFqVXPNqHjGJqkcg01SOQabpHIMNknlGGySyjHY\nJJVjsEkqx2CTVI7BJqkcg01SOQabpHIMNknlGGySynF1D+kEWqoVQWYOH2kaP3bwleYesXp1c82o\neMYmqRyDTVI5Bpukcgw2SeUYbJLKMdgklWOwSSrHYJNUjsEmqRyDTVI5fd1SFRH/CHwfmAaOZOZk\nRJwPfBo4FfhH4JrMPBARbwf2AI915Q9k5g3DnbYk9dZyr+h7M/Of5zy/DfjNzPxqRHwQ+C3gY93X\nnsjMC4Y1SUlqsZhL0bOBv+oe7wSuWvx0JGnx+g22BL4cEbsiYku37RHgyu7x1cCZc8ZviIjdEfHV\niHjPfC8YEVsi4qGIeGj//v0DTV6S5tPvpehPZ+bTEfHjwM6I2At8EPj9iPgYcC8w1Y19Blifmc9F\nxEXAFyPivMw8MPcFM3MrsBVgcnIyh7EzknrImbbhjcscAeRLLzfXjEpfZ2yZ+XT3+XvAF4B3Z+be\nzLw8My8C/gR4ohtzKDOf6x7v6rafPYrJS9J8Fgy2iFgbET9y9DFwOfDN7uyNiBgDPsrsO6RExLqI\nGO8enwVsBJ4czfQl6bX6OWN7M/B/I+LvgK8DX8rMHcCvRsQ/AHuBfwJu78ZfAjwcEbuB7cANmfn8\n8KcuSfNb8HdsmfkkcP48228Fbp1n+z3APUOZnSQNwDsPJJVjsEkqx2CTVI7BJqkcg01SOQabpHIM\nNknlGGySyjHYJJXTstCkpGVg58zdzTWXjV3dND6np5t75NTUwoOWiGdsksox2CSVY7BJKsdgk1SO\nwSapHINNUjkGm6RyDDZJ5Rhsksox2CSVY7BJKsdgk1SOwSapHINNUjkuWyS9DrQudXTZ+Puae+Th\nI801o+IZm6RyDDZJ5Rhsksox2CSVY7BJKsdgk1SOwSapHINNUjkGm6RyDDZJ5Rhsksox2CSVY7BJ\nKsfVPSS9Vs4MUBPDn8eAPGOTVI7BJqkcg01SOQabpHIMNknlGGySyjHYJJVjsEkqx2CTVI7BJqkc\ng01SOQabpHIMNknlGGySynHZIklDkTN5oqfwQ56xSSrHYJNUjsEmqRyDTVI5Bpukcgw2SeUYbJLK\nMdgklWOwSSrHYJNUTl/BFhH/GBF/HxG7I+Khbtv5EfG1bvufRcQb5oy/OSIej4jHImLTqCYvSfNp\nOWN7b2ZekJmT3fPbgJsy8yeBLwC/BRAR7wA2A+cBVwCfjIjxIc5Zko5rMZeiZwN/1T3eCVzVPb4S\nuDMzD2Xmt4HHgXcvoo8kNel3dY8EvhwR08AfZuZW4BFmQ+yLwNXAmd3YM4AH5tTu67a9SkRsAbZ0\nTw9FxDfbpz80Pwb8s/3tb/9FGGxxj3MW3Xce/QbbT2fm0xHx48DOiNgLfBD4/Yj4GHAvMNXSuAvH\nrQAR8dCcS9wlZ3/72//E9D/6O/th6+tSNDOf7j5/j9nfp707M/dm5uWZeRHwJ8AT3fCn+dezN4C3\nddskaUksGGwRsTYifuToY+By4Jvd2RsRMQZ8FPh0V3IvsDkiVkXEBmAj8PVRTF6S5tPPpeibgS9E\nxNHxn8vMHRHx4Yj4UDfm/wC3A2TmIxFxF/AocAT4UGZOL9Bj60CzHx7729/+hXpH5vJZzleShsE7\nDySVY7BJqiczh/oBfAb4HvDNOduuZvbv3maAyTnb3w4cBHZ3H5/u8ZpvYvaPgL/VfX7jkPpfM6f3\n7u7rF8wpJCSHAAAD1ElEQVTzmv+D2Xd2j477D439PwHsBR5m9l3l0+d87WZm/4j5MWDTiPZ/3v7A\nZcAu4O+7z/++x2uOZP+X8Pj36j/U49+j9+92fXcD9wNvXeJjP2//JTz2vfoP/di/qq6fQS0fwCXA\nhcfs3L9h9g/x/pLXBts3+3jN/8ns7VsANwG/N4z+x9T9JPDEcQ7uby5i/y8HVnSPf+/o/IF3AH8H\nrAI2MPsnM+Mj2P9e/d815xvtncDTS7z/S3X85+0/7OPfo/cb5jz+Dbr/gJfw2Pfqv1THvlf/oR/7\nuR9DvxTNzL8Cnj9m257MfGwRL3slcEf3+A7gF0bQ/1eBOxcxx+P1vz8zj3RPH2D2b/ug/9vPFrv/\n8/bPzG9k5j912x8B1kTEqoX3srfG/e/XSPb/GIs+/j16H5jzdC3/+vf5S3Xs5+2/hMe+1/73q+/9\nn2s5/I5tQ7dqyFcj4j09xrw5M5/pHj/L7J+gDNv7mP1D415ujIiHI+IzEfHGRfT5IPAX3eMzgKfm\nfG3e288Y7v7P7T/XVcDfZuahHnWj2H9Y+uPfa/9Hdvwj4paIeIrZS9/f6TYv2bHv0X+ukR774/Qf\n2bE/0cH2DLA+My8A/ivwubnLH80nZ89Jh/o3KhHxb4GXM7PX/aqfAs4CLmB2zv9rwD4fYfZv+7YN\nUg+L2/9e/SPiPGYv0f5Lj9JR7f+SHv/j7P9Ij39mfiQzz+z6/nrrvOe8zkD7frz+S3Hse/Qf6bE/\nocHWnYY/1z3exezvGc6eZ+h3I+ItAN3n7w15Kps5zk/rzPxuZk5n5gzwRwywWklEXAf8HHBNd4Cg\n/9vPFr3/PfoTEW9j9hfqH8jMJ+arHdX+L+Xx77X/nZEf/842/nUVnCU79j36L9mxn6//qI/9CQ22\niFh3dK22iDiL2duvnpxn6L3Atd3ja4E/HeIcxoBf4Ti/Xzn6D9v5RaBpJZKIuAL4beDnM/PlOV/q\n9/azRe1/r/4RcTrwJWZ/Ofv/jlM/kv1fquN/nH//kR//iNg45+mVzL47C0t37Oftv4THvlf/0R77\nft5haPlg9iffM8BhZn9v8GvdP8g+4BDwXeC+buxVzP7icjfwt8B/nPM6t9G9gwn8KPAVZt/y/TLw\npmH078b/DPDAPK8zt/9nmX1b/OHuH/otjf0fZ/b3Ka95axv4CLM/rR4DfnZE+z9vf2bv8X2JV//J\nw48v1f4v4fE/3r//0I5/j973MBsGDwN/BpyxxMd+3v5LeOx79R/6sZ/74S1Vkso50W8eSNLQGWyS\nyjHYJJVjsEkqx2CTVI7BJqkcg01SOf8fymhk2TAQ3dkAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,1, figsize=(16,12))\n", "ax.pcolormesh(grid.variables['Bathymetry'][:])\n", "ax.set_ylim(590,635)\n", "ax.set_xlim(115,135)\n", "viz_tools.set_aspect(ax)\n", "ax.add_patch(patches.Rectangle((120,598), 13, 10, fill=False, linewidth=3))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "July = nc.Dataset('/results/SalishSea/hindcast/01jul16/SalishSea_1h_20160701_20160701_grid_T.nc')\n", "ssh = July.variables['sossheig']" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\n", "float32 sossheig(time_counter, y, x)\n", " standard_name: sea_surface_height_above_geoid\n", " long_name: sea surface height\n", " units: m\n", " online_operation: average\n", " interval_operation: 40 s\n", " interval_write: 1 h\n", " cell_methods: time: mean (interval: 40 s)\n", " cell_measures: area: area\n", " _FillValue: 1e+20\n", " missing_value: 1e+20\n", " coordinates: time_centered nav_lat nav_lon\n", "unlimited dimensions: time_counter\n", "current shape = (24, 898, 398)\n", "filling on" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ssh" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with nc.Dataset('/home/mdunphy/MEOPAR/NEMO-forcing/grid/coordinates_seagrid_SalishSea201702.nc', 'r') as cnc:\n", " glamf = cnc.variables['glamf'][0,...]; gphif = cnc.variables['gphif'][0,...]\n", " glamt = cnc.variables['glamt'][0,...]; gphit = cnc.variables['gphit'][0,...]\n", "NY, NX = glamt.shape[0], glamt.shape[1]\n", "glamfe, gphife = expandf(glamf, gphif)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "result = nc.Dataset('/ocean/vdo/MEOPAR/ariane-runs/weeklong/ariane_trajectories_qualitative.nc')" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [], "source": [ "latt = result.variables['traj_lat']\n", "lont = result.variables['traj_lon']" ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bathy, lons, lats = tidetools.get_bathy_data(grid)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 loop, best of 3: 2min 46s per loop\n" ] } ], "source": [ "%%timeit\n", "number_of_particles = np.zeros(168)\n", "for n in range(168):\n", " for m in range(407):\n", " if (lont[:].mask[n,m]) == False: \n", " y,x = geo_tools.find_closest_model_point(lont[n,m],latt[n,m],lons, lats, land_mask=bathy.mask)\n", " if (598a[:,1]) & (a[:,1]>598) ]\n", " a = a[ (133>a[:,0]) & (a[:,0]>120) ]\n", " p,q = a.shape\n", " number_of_particles2[l]=p" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 401., 396.])" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def still_inside2(time):\n", " number_of_particles2=np.zeros(time)\n", " for l in range (time):\n", " xarray, yarray = getboxij(glamfe, gphife, lont[l,:], latt[l,:])\n", " a = np.array((xarray, yarray)).T\n", " a = a[ (608>a[:,1]) & (a[:,1]>598) ]\n", " a = a[ (133>a[:,0]) & (a[:,0]>120) ]\n", " p,q = a.shape\n", " number_of_particles2[l]=p\n", " return number_of_particles2\n", "still_inside2(2)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 402., 399.])" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mask = lont[:].mask\n", "def still_inside(time, number):\n", " number_of_particles = np.zeros(time)\n", " for n in range(time):\n", " for m in range(number):\n", " if (mask[n,m]) == False:\n", " y,x = geo_tools.find_closest_model_point(lont[n,m],latt[n,m],lons, lats, land_mask=bathy.mask)\n", " if (598" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig,ax=plt.subplots(1,1,figsize=(8,6))\n", "time = range(168)\n", "ax.plot(time, number_of_particles, 'r-')\n", "ax.plot(time, b, 'b-')\n", "ax.grid('on')\n", "ax.set_title('Number of Particles in Domain', fontsize=16)\n", "ax.set_ylabel('Number of Particles', fontsize=14)\n", "ax.set_xlabel('Time (h)', fontsize=14)\n", "ax.tick_params(labelsize=12)\n", "#plt.savefig('Arianeresult.png', bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "index_deep_particles=[]\n", "for n in range(407):\n", " if result.variables['init_z'][n] > 6:\n", " index_deep_particles.append(n)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "number_of_deep_particles = np.zeros(168)\n", "for n in range(168):\n", " for m in index_deep_particles:\n", " if (lont[:].mask[n,m]) == False: \n", " y,x = geo_tools.find_closest_model_point(lont[n,m],latt[n,m],lons, lats, land_mask=bathy.mask)\n", " if (598" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAGDCAYAAAAh5Mk5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4HNW5x/Hvq94tyZIl25K73I0NLnQXOtwYElooAUJP\nQhLSA6RAQkhIIYFcLoRueieUUBIMEaYZsI1xB3fLvcm25KK25/4xY7OWVVZlvVrt7/M8+2h36ntG\nu/vOnDnnrDnnEBERkc4vLtIBiIiIyMGhpC8iIhIjlPRFRERihJK+iIhIjFDSFxERiRFK+iIiIjFC\nST+GmNkUM/tdhPZtZvaQmZWb2ccRiqHSzPo1s0wfM3NmlhCG/b9vZof6z28ws/tDXC/kZRtZf6KZ\nrW7t+s1sO2zHqwUxFJjZQjNLbmKZf5jZrw5mXOESyvv4YDGzY83s80jHIaFT0o8gM1thZhvNLD1o\n2hVmVhrBsMLlGOBEoMg5N67+TDP7ppnV+V9oO8xstpl9pbU7M7NSM7sieJpzLsM5t6y122wLM5sM\nVDjnPvVj+b1z7opmVqP+spFOsv579oQI7fsEM5tlZjvNbLWZnQvgnNsA/Be4qrF1nXPfcs7d3Mr9\nlprZHjOr8N+bM83suqZOMsIpXO/jUC4K/PfegKBY3nXODWrvWCR8lPQjLx64NtJBtJSZxbdwld7A\nCufcziaW+dA5lwFkAw8Az5hZTgvjMjPriO/rbwGPRjqISDOzfDOzVqw3FHgC+AXQBRgJzAxa5HHg\n6nYJsmHfdc5lAt2BHwPnAa+1piwiEeWc0yNCD2AFcB2wFcj2p10BlPrP+wAOSAhapxS4wn/+TeB9\n4G/ANmAZcJQ/vQzYCFwStO4U4B/Am0AF8A7QO2j+YH/eVuBz4Nx6694NvAbsBE5ooDw9gJf99ZcA\nV/rTLwf2AHVAJfCbBtb9JvBe0Ot0v+xjgBzgX8AmoNx/XlTvmNziH4vdeAmgzt9nJXCnv5wDBvjP\nU4HbgJXAduA9f9p+xxwvwTwArAPWAL8D4v15A/xjuB3YDDzdyP85yY8rOOabgMfq/Z8vAVb52/pF\nI8uu8pet9B9HNrC/VP//VQ4sAH4KrK73f3reP57Lge/X29dzwNP+e2QWMNKf9ygQ8MtSCfysudgb\niO3neO/73wB9W/BZeQK4uYn5CcAugt7P9eZPAX7nP58IrMZL3hv9/+2lTWy7FP8zFzStl7+/r/iv\nk4HbgbX+43Ygud7+fha0v68CpwFf4H1ebgja9jjgQ7zP9DrgTiApaH7w+3gK8H/Aq/7/6yOgfxNl\neRZYj/eenQYM86dfBdQA1f7/9pUG1p3m73unv8zX95at3nfaT4E5/nIPAAXA6358U4GcoOWPAD7w\ny/oZMLG9vl/97R/lvyeL/dcj8T4Xg9tzP9H0iHgAsfzwPyAnAC8EfSG1NOnXApfi1Rj8Du+L9//8\nL6GT/A9ahr/8FP/1eH/+HfiJFi/JlvnbSgAO9T8sQ4PW3Q4cjVdDlNJAeaYBdwEpwCi8pHJcUKzv\nNXEsvhkUSwJe7UcFXtLtCpwFpAGZ/hfXi/WOySpgmL9uIg1/UQd/Wf6fv0xP/9gd5R+T/Y458E/g\nHv/4dAM+Bq725z2Jd+UZ55f5mEbKNgzYWW/aTRyY9O/DS9gjgSpgSBPLJjRxLG8F3gVygWJgHv4X\nsx/rTODXeCcj/fBOFk8O2lcNcLZ/HH+Cd2KQGPyeDdpXk7E3Et8ReCeQW/Cq5S8C0pr5rCwDbgbm\n4iXCx4DcesvMAU5vZP0p7J/0a4Hf+mU8DS+B5zSy7gHvpaD3+x/9578FpvvvkXy8RHZzvf392t/f\nlXifjSfw3s/D8E6k+vrLj/aPUYJ/fBcCP2jkfTzFP47j/OUfB55q4jhe5u9z70nK7IaOURPr79t3\nUNnqJ/3peIm+J95Jziy875MU4G3gRn/Znn7sp+G9L0/0X+c3su9/4Z0cNPT4VxMx3+LvN9V//3w3\nlO/nzvqIeACx/ODLpD8cL6Hm0/Kkvzho3gh/+YKgaVuAUf7zKcFfCEAG3hVxMd5Z+7v14rsn6AM6\nBXikibIU+9vKDJr2B2BKUKzNJf1a/wO82f/iOKA2wV92FFBe75j8tt4y+45T0DSHd3Ueh/clO7KB\nbe875v4XVxWQGjT/fOC//vNHgHsJuoJvJN6jgfX1pt3EgYk8uCbgY+C8JpZtKukvA04Jen0VXyb9\nw4FV9Za/HngoaF/Tg+bF4SXZY4Pfsw0crwZjb+a4JAPn4tUebQXub2LZan/fA/Het88Dj9db5n3g\n4kbWn8L+SX83+3+uNgJHNLLuAe8lf/pTwH3+86XAaUHzTsa7nRW8v701RJn+MTs8aPmZwFcb2f8P\ngH/Wfx8Hlev+oHmnAYuaO/b+stn+trrUP0ZNrBNK0r8w6PXzwN1Br7+Hf8KOV+vzaL3t/5ug2sn2\neOCdaM3ES/hvANae24+2R0e89xlznHPz8M5ir2vF6huCnu/2t1d/WkbQ67Kg/Vbifdn2wLvnfriZ\nbdv7AC4EChtatwE9gK3OuYqgaSvxzuZDNd05l+2cy3POHeGcmwpgZmlmdo+ZrTSzHXhXWNn12hU0\nFVt9eXhXHUubWa433hfGuqBjcg/e1Rx41bUGfGxm883sska2U473Rd+c9UHPd7H//60lerD/8VgZ\n9Lw30KPe//kGvBOcvYLfIwG8qukezeyzxbE756rwrs5n4yX14U0svhvvxOQL/337e7wEFywT76Qx\nFFucc7UtjbmennifH/COT/BxXsn+x2yLc67Of77b/9vg59TMBprZv8xsvf9+/z3ee7YxIR17M4s3\ns1vNbKm/3RX+rKa23Rr1y9XY91Fv4Jx678Vj8NpNtBvnXA3eCc1w4DbnnwnEKiX9juNGvGq/4CS5\nt9FbWtC04CTcGsV7n5hZBl4V8Fq8L/p3/KS795HhnPt20LpNfVjWArlmFpzceuHdB2+rHwOD8K6M\nsvBuT4CXcBuLralYN+Pd7+/fzH7L8K7084KOSZZzbhiAc269c+5K51wPvEZkdwW3bA6yBK+NYUtO\ngBoTyhfWOoL+z3j/h73KgOX1/s+ZzrngBBr8HokDivD+v6Huv0lm1tXMvut33Xwb7/bKJOfcEU2s\nNqfevveLw+/NMADvvnDYmVkxXjX8u/6ktXhJbK9efHnMWupuYBFQ4r/fb2D/93prXQCcgVe72AWv\nloagbR/sZFiGd6Uf/F5Md87d2tDCZva637unocfrje3E/9zdCDwE3BapXhcdhZJ+B+GcW4LXeOr7\nQdM24SXNb/hn6ZfRfKJqzmlmdoyZJeHdI53unCvDq2kYaGYXmVmi/xhrZkNCjL8M7z7mH8wsxcwO\nwWvA91gb4wXvCm43sM3McvE+wM3ZgHe/uqFYA8CDwF/NrId/bI+s/2XgnFsH/AfviyLLzOLMrL+Z\nTQAws3PMrMhfvBzvSzPQwP6q8RowTQilsM3Y5O+jqX7azwDXm1mOH9/3guZ9DFSY2c/NLNUv+3Az\nGxu0zGgzO9NPpD/AO/GZ7s9r9LiGwswux7vCnIDXmK/YOfdz59zCZlZ9CLjUzPqZWRperdi/guaP\nw6tOX9ng2u3Er3WaALyEdyxf82c9CfzS752Qh3f/vrXv/UxgB1BpZoOBbzezfEu2W4V3yy8NrwYh\nWCj/2zb9/+t5DJhsZif778MU88aUKGpoYefcqf6FSEOPUxtax+9dMQWvQeHleCfEreq62Vko6Xcs\nv8VrMBbsSrzWsFvwGvx80MZ9PIGXNLfiXal8A8Cvlj8JryvSWrwqwz/i3XcN1fl4Vw9r8RrA3bi3\nir6NbsdrhLP3Xv8bIaxzB3C2eYMB/b2B+T/Bu8f3Cd6x+CMNfx4uxmvwtgAvsT/Hl9WPY4GPzKwS\nr9fCta7x/tP34DVYaxPn3C78ngp+lWhDV8e/wateXo530vJo0Pp1wFfw2kUsxzum9+Nd+e31El4b\nj3I/5jP9KlLw2mn80t/3T1pRhA/xWtif45x7NajKu0nOuQfx2lB85JetiqATZLxbUf9oRTyhutPM\nKvCS3u1496pP8U8gwWtEOwOvRmIuXuO11g6E9RO8q/IKvAaST7ch7mCP4B27NXjv5+n15j8ADPX/\nty82so2bgIf9Zc5tSzD+hcIZeDUZm/Cu/H9K++al7+PdjvuVX61/Kd7J47HtuI+oYjF+e0PkoDGz\n9/FaDn8a6VgaY2Y34TXU+kakYwmVmXXD6zp5qHNuT6TjEenIIjZ0pkiscc4dHekYOiPn3EYgpNtQ\nIrFO1fsiIiIxQtX7IiIiMUJX+iIiIjFCSV9ERCRGRHVDvry8PNenT5923ebOnTtJT6/fa67zirXy\ngsocK2KtzLFWXojdMi9atGizcy6/NetHddLv06cPM2bMaNdtlpaWMnHixHbdZkcWa+UFlTlWxFqZ\nY628ELtlnjRpUqsHoVL1voiISIxQ0hcREYkRSvoiIiIxQklfREQkRijpi4iIxAglfRERkRihpC8i\nIhIjlPRFRERihJK+iIhIjFDSFxERiRFK+iIiIjFCST/Iq3PWURtwkQ5DREQkLJT0fXNXb+eaJ2Zx\n92dV1NQFIh2OiIhIuwtb0jezYjP7r5ktMLP5ZnatP/0mM1tjZrP9x2lB61xvZkvM7HMzOzlcsTVk\nRFEXbpw8lJkb6vjh07OpVeIXEZFOJpw/rVsL/Ng5N8vMMoGZZvamP+9vzrm/BC9sZkOB84BhQA9g\nqpkNdM7VhTHG/Vx6dF8WfbGEp+esIy8jmZtOH3awdi0iIhJ2YbvSd86tc87N8p9XAAuBnk2scgbw\nlHOuyjm3HFgCjAtXfI05tW8ip40o5I156w/2rkVERMIqnFf6+5hZH+BQ4CPgaOB7ZnYxMAOvNqAc\n74RgetBqq2ngJMHMrgKuAigoKKC0tLRdY62srCS9qpr1O2p47c3/kpZo7br9jqaysrLdj2FHpzLH\nhlgrc6yVF2K3zG0R9qRvZhnA88APnHM7zOxu4GbA+X9vAy4LdXvOuXuBewHGjBnjJk6c2K7xlpaW\nclK/ITz7xQwKB43isF457br9jqa0tJT2PoYdncocG2KtzLFWXojdMrdFWFvvm1kiXsJ/3Dn3AoBz\nboNzrs45FwDu48sq/DVAcdDqRf60g66kWwYASza27YxKRESkIwln630DHgAWOuf+GjS9e9BiXwPm\n+c9fBs4zs2Qz6wuUAB+HK76mFOemkZQQp6QvIiKdSjir948GLgLmmtlsf9oNwPlmNgqven8FcDWA\nc26+mT0DLMBr+X/NwWy5Hyw+zuiXl66kLyIinUrYkr5z7j2goVZwrzWxzi3ALeGKqSVKCjKZXVYe\n6TBERETajUbka0RJtwxWl+9md3VEKhtERETanZJ+IwZ0y8A5WLpJVfwiItI5KOk3Qi34RUSks1HS\nb0TvrukkxBmLN1ZEOhQREZF2oaTfiKSEOHp3TdOVvoiIdBpK+k0o6ZbJYiV9ERHpJJT0m1BSkMHK\nLbuortXP7IqISPRT0m/CgG4Z1AUcyzfvjHQoIiIibaak34SSbpkAfLFBjflERCT6Kek3oX83rwX/\novU7Ih2KiIhImynpNyE5IZ5++el8vl5X+iIiEv2U9JsxuDCLheuU9EVEJPop6TdjUGEma7btpmJP\nTaRDERERaRMl/WYMLlRjPhER6RyU9JsxuHsWgKr4RUQk6inpN6NHlxQyUxLUmE9ERKKekn4zzIzB\nhZnqticiIlFPST8EgwozWbS+AudcpEMRERFpNSX9EAwqzKJiTy3rtu+JdCgiIiKtpqQfgiF+C35V\n8YuISDRT0g/BwH1JX435REQkeinphyArJZGe2aks3lAZ6VBERERaTUk/RD2zU1m7bXekwxAREWk1\nJf0QdctKZmNFVaTDEBERaTUl/RAVZqWwYcceddsTEZGopaQfooKsFHZV11FRVRvpUERERFpFST9E\n3bKSAdi4Q331RUQkOinph6ggKwWADTt0X19ERKKTkn6ICvclfV3pi4hIdFLSD9He6v31SvoiIhKl\nlPRDlJaUQGZKAhtVvS8iIlFKSb8FCvxueyIiItFISb8FCrNSVL0vIiJRS0m/BbplJat6X0REopaS\nfgsUZKWwsWIPgYBG5RMRkeijpN8CBZnJ1NQ5yndVRzoUERGRFlPSb4HCLl5ffd3XFxGRaKSk3wLd\n/AF6dF9fRESikZJ+CxRoVD4REYliSvot0C1To/KJiEj0UtJvgcT4OPIykvSjOyIiEpWU9FuoW2aK\nfl5XRESikpJ+CxVkJbOhQklfRESij5J+CxV2SWH9dlXvi4hI9FHSb6FumSls2VlFTV0g0qGIiIi0\niJJ+CxVkpeAcbK7U1b6IiEQXJf0Wyve77W2u0FC8IiISXZT0WygvIwmATZVqzCciItFFSb+F9l7p\nb6pQ9b6IiEQXJf0WystQ0hcRkeikpN9CKYnxZKUksLlS9/RFRCS6KOm3Ql5msq70RUQk6ijpt0J+\nhpK+iIhEn7AlfTMrNrP/mtkCM5tvZtf603PN7E0zW+z/zQla53ozW2Jmn5vZyeGKra3yM5PZpH76\nIiISZcJ5pV8L/Ng5NxQ4ArjGzIYC1wFvOedKgLf81/jzzgOGAacAd5lZfBjja7V8Ve+LiEgUClvS\nd86tc87N8p9XAAuBnsAZwMP+Yg8DX/WfnwE85Zyrcs4tB5YA48IVX1vkZSRTWVXL7uq6SIciIiIS\nMnPOhX8nZn2AacBwYJVzLtufbkC5cy7bzO4EpjvnHvPnPQC87px7rt62rgKuAigoKBj91FNPtWus\nlZWVZGRkNLnMu6treGBeNX8en0p+WnQ3iwilvJ2NyhwbYq3MsVZeiN0yT548eaZzbkxr1k9o74Dq\nM7MM4HngB865HV6e9zjnnJm16KzDOXcvcC/AmDFj3MSJE9sxWigtLaW5bbrPN/LAvE/oN+xQRvfO\naXLZji6U8nY2KnNsiLUyx1p5IXbL3BZhvUw1s0S8hP+4c+4Ff/IGM+vuz+8ObPSnrwGKg1Yv8qd1\nOPkaoEdERKJQOFvvG/AAsNA599egWS8Dl/jPLwFeCpp+npklm1lfoAT4OFzxtUW3vT+6oxb8IiIS\nRcJZvX80cBEw18xm+9NuAG4FnjGzy4GVwLkAzrn5ZvYMsACv5f81zrkO2VIuNz0JM13pi4hIdAlb\n0nfOvQdYI7OPb2SdW4BbwhVTe0mIjyM3LUl99UVEJKpEd9PzCFJffRERiTZK+q2kpC8iItFGSb+V\n8jKS1ZBPRESiipJ+K+290j8YgxuJiIi0ByX9VsrPSKaqNkBFVW2kQxEREQmJkn4r5WdqgB4REYku\nSvqtlKdR+UREJMoo6bdSvkblExGRKKOk30qq3hcRkWijpN9K2amJJMYb63fsiXQoIiIiIVHSb6W4\nOKNndiqry3dHOhQREZGQKOm3QXFuGqu37op0GCIiIiFR0m+Dopw0ynSlLyIiUUJJvw2Kc1PZurOa\nSg3QIyIiUUBJvw165aYBUKYqfhERiQJK+m1QnKOkLyIi0UNJvw2K917p676+iIhEASX9NshJSyQj\nOUFX+iIiEhWU9NvAzCjKSVXSFxGRqKCk30bFuWmUlSvpi4hIx6ek30a9ctMo27ob51ykQxEREWmS\nkn4bFeeksrumjs2V1ZEORUREpElK+m30ZQt+VfGLiEjHpqTfRhqgR0REooWSfhsVaYAeERGJEkr6\nbZSaFE9eRjJlWzVAj4iIdGxK+u2gV26q7umLiEiHp6TfDopz01il6n0REenglPTbwcCCTFaX72Zz\nZVWkQxEREWlUi5K+mcWZWVa4golWxwzIA+C9xZsjHImIiEjjmk36ZvaEmWWZWTowD1hgZj8Nf2jR\nY0TPLuSmJzHti02RDkVERKRRoVzpD3XO7QC+CrwO9AUuCmtUUSYuzjhmQB7TFm8iENBwvCIi0jGF\nkvQTzSwRL+m/7JyrAZTZ6hk/MJ/NldUsWLcj0qGIiIg0KJSkfw+wAkgHpplZb0CZrZ7xJd59/WmL\nVcUvIiIdU7NJ3zn3d+dcT+fcac6zEph0EGKLKt2yUhjSPUv39UVEpMMKpSFfgZk9YGav+6+HApeE\nPbIoNH5gHjNWlFNZVRvpUERERA4QSvX+FODfQA//9RfAD8IVUDSbMDCf2oBj+tItkQ5FRETkAKEk\n/Tzn3DNAAMA5VwvUhTWqKDWiZxcAlmyqjHAkIiIiBwol6e80s674LfbN7Ahge1ijilKZKYlkpSSw\nplw/viMiIh1PQgjL/Ah4GehvZu8D+cDZYY0qivXMSWPNNiV9ERHpeJpN+s65WWY2ARgEGPC531df\nGtAzO5VVW3dGOgwREZEDNJr0zezMRmYNNDOccy+EKaaoVpSTyodLN+Ocw8wiHY6IiMg+TV3pT25i\nngOU9BtQlJPKzuo6tu+uITstKdLhiIiI7NNo0nfOXXowA+ksemanArC6fLeSvoiIdCihDM7zezPL\nDnqdY2a/C29Y0atnjpf01ZhPREQ6mlC67J3qnNu294Vzrhw4LXwhRbeinDTAu9IXERHpSEJJ+vFm\nlrz3hZmlAslNLB/TctISSU2MV199ERHpcELpp/848JaZPeS/vhR4OHwhRTczo2dOKmu27Wr3bW+s\n2MOU91dwSFEXThnevd23LyIinVso/fT/aGZzgOP9STc75/4d3rCiW8/s1Ha9p7+npo7bpy5mygfL\n2VMTIDstkWNK8slIDuWcTURExBNK9T7Oudedcz/xH0r4zSjKSW236v2q2jq+9dhM/vHOUk4ZVsgd\n541i264aHpu+sl22LyIisaPRpG9m7/l/K8xsR9Cjwsx2HLwQo0/PnFTKd9Wws40/sVtdG+Caxz+l\n9PNN3HrmCG4/71DOGNWTY0vyuP/dZeyu1u8eiYhI6BpN+s65Y/y/mc65rKBHpnMu6+CFGH329tVv\nroq/LuA4++4PePLjVQ3O/+2/5jN14QZuPmMY543rtW/6944rYXNldaPriYiINCSUfvqPhjJNvlS0\nt69+M1X8M1ZsZcbKcm77z+cHXLWv2rKLJz8u4+Ije3PRkX32mzeuby6H983lnmlLqarV1b6IiIQm\nlHv6w4JfmFkCMLq5lczsQTPbaGbzgqbdZGZrzGy2/zgtaN71ZrbEzD43s5NbUoiOZl9f/Wau9F+f\nt574OGNzZTVP1Ltqv/udJcSb8Z2JAxpc99sT+7NhRxVvLtjQPkGLiEin19Q9/evNrAI4JPh+PrAB\neCmEbU8BTmlg+t+cc6P8x2v+voYC5+GdYJwC3GVm8S0sS4eRn5FMUnwcq8sb77YXCDjemLee4wZ3\n867a31nKnhrvqn3ttt08N3M1544torBLSoPrH1uST8/sVJ7+pCwsZRARkc6nqXv6fwC6AI/Uu5/f\n1Tl3fXMbds5NA7aGGMcZwFPOuSrn3HJgCTAuxHU7nLg4o3t2SpPV+7NXb2P9jj2cOryQ7x9fwsaK\nKp6d4SXwe95ZinPwrQn9G10/Ps44Z0wR7y7eTNnW9h8TQEREOp8mq/edcwFgbDvv83tmNsev/s/x\np/UEgi9ZV/vTolZRTiqr6iXja5/6lJ8++xm1dQHemLeexHjj+CEFHNW/K4f1yubGl+cz6Jev8/CH\nKznzsJ77bhM05pwxxZjBszNXh7MoIiLSSZhzrukFzB4G7nTOfdLijZv1Af7lnBvuvy4ANuP9NO/N\nQHfn3GVmdicw3Tn3mL/cA8DrzrnnGtjmVcBVAAUFBaOfeuqplobVpMrKSjIyMtq8nX8urublpTXc\nPimNLsnGlt0BfvyOd+V/RPd4lm4L0D09jh+N8arv11QGeH+N18UvzuCE3glkJzff5OK2GXtYUxng\nLxNSiTNrcZztVd5oojLHhlgrc6yVF2K3zJMnT57pnBvTmvVDGdLtcOBCM1sJ7AQMcM65Q1q6M+fc\nvlZnZnYf8C//5RqgOGjRIn9aQ9u4F7gXYMyYMW7ixIktDaNJpaWltMc2Cwbt4KU73qUyux9nHN6b\nB99bDizgoiN686g/sM5PThvKxLFfdsW7sBX72d11Hd9+fBbWYxgTB3Vr8frtVd5oojLHhlgrc6yV\nF2K3zG0RSuv9k4H+wHHAZOAr/t8WM7PgAeO/Buxt2f8ycJ6ZJZtZX6AE+Lg1++goBhdm0jcvnTfm\nrQfgjXnrGVSQyc1fHc5PTx5Er9w0Thpa2Ob9HD+kgMzkBN5aqFb8IiLStFDG3l8JYGbdgIabkjfA\nzJ4EJgJ5ZrYauBGYaGaj8Kr3VwBX+/uYb2bPAAuAWuAa51xUd0A3M04ZXsi905axeEMFn6zcyrXH\nlwBwzaQBfGdif6wV1fH1JSXEMbh7Jp+vr2jztkREpHNrNumb2enAbUAPYCPQG1hIvf779Tnnzm9g\n8gNNLH8LcEtz8USTU4cXcnfpUn7+/Bycg1ODfhmvPRL+XoMLs3hx9hqcc+26XRER6VxCqd6/GTgC\n+MI51xfv1/amhzWqTmJEzy70zE5l1qpt9MtLZ2BBeBqcDCrMpGJPLWu37wnL9kVEpHMIJenXOOe2\nAHFmFuec+y/QqlaDscbMOHW4d9/+1BGFYbsKH9I9E4DP1+t3kEREpHGhJP1tZpYBTAMeN7M78Frx\nSwjOGl1EXkYyXzs0fMMODCzwkv7CdbqvLyIijQuly94ZwG7gh3i9yroAvw1nUJ3JkO5ZzPjlCWHd\nR2ZKIj2zU9WYT0REmtRk0jezrwIDgLnOuX8DDx+UqKTFhnTPZJGq90VEpAlN/eDOXXhX912Bm83s\nVwctKmmxQYWZLNu0k+raQKRDERGRDqqpK/3xwEjnXJ2ZpQHv4rXklw5ocGEWtQHH0k2VDOmeFelw\nRESkA2qqIV/13gFynHO78IbflQ5qcKHXmE9V/CIi0pimrvQHm9kc/7kB/f3XrR57X8KnT146SfFx\nLFJjPhERaURTSX/IQYtC2iwxPo4B3TJYpG57IiLSiEaT/t4x9yV6DC7M5IOlWyIdhoiIdFChDM4j\nUaJ/twzW79jDruraSIciIiIdkJJ+J1KcmwbA6vLdEY5EREQ6oqb66b/l//3jwQtH2qI4JxWAVVt2\nRTgSEREpkI//AAAgAElEQVTpiJpqyNfdzI4CTjezp6jXZc85NyuskUmL7b3SLytX0hcRkQM1lfR/\nDfwKKAL+Wm+eA44LV1DSOl3Tk0hLiqdsq6r3RUTkQE213n8OeM7MfuWc00h8UcDMKM5J05W+iIg0\nqNlf2XPO3Wxmp+MNywtQ6pz7V3jDktYqzk2lbKuSvoiIHKjZ1vtm9gfgWmCB/7jWzH4f7sCkdYpy\n0ijbugvnXKRDERGRDqbZK33gf4BRzrkAgJk9DHwK3BDOwKR1euWmsbO6jvJdNeSmJ0U6HBER6UBC\n7aefHfS8SzgCkfaxtwX/KlXxi4hIPaFc6f8B+NTM/ovXbW88cF1Yo5JWK871+uqXbd3FqOLsZpYW\nEZFYEkpDvifNrBQY60/6uXNufVijklYrzlFffRERaVgoV/o459YBL4c5FmkH6ckJdE1PUl99ERE5\ngMbe74SKctPUbU9ERA6gpN8JFeekqnpfREQO0GTSN7N4M1t0sIKR9tErN4015bupC6ivvoiIfKnJ\npO+cqwM+N7NeBykeaQfFuWnUBhzrtuu+voiIfCmUhnw5wHwz+xjYuXeic+70sEUlbbKvBf/W3RT5\nz0VEREJJ+r8KexTSrnrtG6BnJ0f27xrhaEREpKMIpZ/+O2bWGyhxzk01szQgPvyhSWsV5aSSnhTP\nwnUVkQ5FREQ6kFB+cOdK4DngHn9ST+DFcAYlbRMXZwztkcW8NdsjHYqIiHQgoXTZuwY4GtgB4Jxb\nDHQLZ1DSdsN6dGHBuh1qwS8iIvuEkvSrnHPVe1+YWQKgTNLBDe/ZhV3VdSzfvLP5hUVEJCaEkvTf\nMbMbgFQzOxF4FnglvGFJWw3vmQXA/LWq4hcREU8oSf86YBMwF7gaeA34ZTiDkrYbkJ9BckKc7uuL\niMg+obTeD5jZw8BHeNX6nzvnVL3fwSXExzG4MJN5a3ZEOhQREekgQmm9/z/AUuDvwJ3AEjM7NdyB\nSdsN69mF+Wu3o3M0ERGB0Kr3bwMmOecmOucmAJOAv4U3LGkPw3t0YceeWlaXazheEREJLelXOOeW\nBL1eBmjUlyiwtzGf7uuLiAg0cU/fzM70n84ws9eAZ/Du6Z8DfHIQYpM2GliQSUKcMW/tdk4d0T3S\n4YiISIQ11ZBvctDzDcAE//kmIDVsEUm7SUmMp6RAjflERMTTaNJ3zl16MAOR8BhcmMlHy7ZEOgwR\nEekAmu2yZ2Z9ge8BfYKX10/rRofi3DRenL2G6toASQmhNOEQEZHOKpSf1n0ReABvFL5AeMOR9lac\nk4pzsHbbbvrkpUc6HBERiaBQkv4e59zfwx6JhEVxbhoAZeW7lPRFRGJcKEn/DjO7EfgPULV3onNu\nVtiiknbTa2/S36q++iIisS6UpD8CuAg4ji+r953/Wjq4gqwUEuONVVt3RToUERGJsFCS/jlAv+Cf\n15XoER9n9MxOpaxcSV9EJNaF0px7HpAd7kAkfIpz01itK30RkZgXypV+NrDIzD5h/3v66rIXJYpz\n03h97rpIhyEiIhEWStK/MexRSFgV56RRvquGyqpaMpJD+ZeLiEhn1GwGcM69czACkfApzvVGTS7b\nuosh3bMiHI2IiERKs/f0zazCzHb4jz1mVmdmGsw9ihTneN321IJfRCS2NZv0nXOZzrks51wW3g/t\nnAXc1dx6ZvagmW00s3lB03LN7E0zW+z/zQmad72ZLTGzz83s5FaWRxrwZV99JX0RkVjWosHYnedF\nIJSkPAU4pd6064C3nHMlwFv+a8xsKHAeMMxf5y4zi29JbNK47LREMpITWF2uAXpERGJZKD+4c2bQ\nyzhgDLCnufWcc9PMrE+9yWcAE/3nDwOlwM/96U8556qA5Wa2BBgHfNjcfqR5ZkZRTqqu9EVEYlwo\nTbknBz2vBVbgJenWKHDO7e07th4o8J/3BKYHLbfan3YAM7sKuAqgoKCA0tLSVobSsMrKynbfZkeQ\nFtjDwtUHlq2zlrcpKnNsiLUyx1p5IXbL3BahtN6/tE17aHy7zsxcK9a7F7gXYMyYMW7ixIntGldp\naSntvc2O4N3KBTzx0SomTJiAme2b3lnL2xSVOTbEWpljrbwQu2Vui0aTvpn9uon1nHPu5lbsb4OZ\ndXfOrTOz7sBGf/oaoDhouSJ/mrST4pxUdtfUsbmymvzM5EiHIyIiEdBUQ76dDTwALse7D98aLwOX\n+M8vAV4Kmn6emSWbWV+gBPi4lfuQBuz9id1VW3c2s6SIiHRWjV7pO+du2/vczDKBa4FLgaeA2xpb\nL2idJ/Ea7eWZ2Wq8kf1uBZ4xs8uBlcC5/r7mm9kzwAK8dgPXOOfqWlkmacBgf1CeeWt2MLp3boSj\nERGRSGjynr6Z5QI/Ai7Ea21/mHOuPJQNO+fOb2TW8Y0sfwtwSyjblpbr0SWFbpnJzC7btq+qRURE\nYktT9/T/DJyJ12huhHOubU0GJaLMjFHF2Xy6KqRzNhER6YSauqf/Y6AH8EtgbdBQvBUahjc6Hdor\nhxVbdlG+szrSoYiISAQ0mvSdc3HOudTgYXj9R6Y/JK9EmVHF2QDMLtsW4UhERCQSWjQMr0S3Q4q6\nEGfwqZK+iEhMUtKPIenJCQwsyNR9fRGRGKWkH2MO7ZXDZ2XbCARaPBiiiIhEOSX9GHNocTY79tSy\nbLMG6RERiTVK+jHm0F5qzCciEquU9GNM//wMMpMTdF9fRCQGKenHmLg447DeOXy4bEukQxERkYNM\nST8GjR+Yz7JNOynbuivSoYiIyEGkpB+DJgzMB2Da4k0RjkRERA4mJf0Y1D8/nZ7ZqUz7QklfRCSW\nKOnHIDNj/MB83l+yhVr11xcRiRlK+jFqwsA8KqtqWbotEOlQRETkIFHSj1FHDcgjPs6Yu7luv+lV\ntXWs2qIGfiIinZGSfozKSknksF7ZzKuX9G96eQHj//xfrnh4BgvW6heURUQ6EyX9GDa+JJ8VOwIs\n94fkXbNtN8/OKGNkcTYfLd/CaX9/l+dnro5wlCIi0l6U9GPYuWOLSU2A61+Yg3OOf5QuxQzuvvAw\n3vvZcYzrk8tNr8xnw449kQ5VRETagZJ+DCvISuG8QUlMX7aV26cu5ukZZZw9uoge2al0SUvkT2cf\nQnVtgF/8cx7OqZW/iEi0U9KPceOLEjiqf1fueGsxdQHHtycM2DevT146Pz5pIFMXbuBfc9ZFMEoR\nEWkPSvoxzsy49cxDSEuK5+zDiujVNW2/+Zcd3ZeRRV246eX5bN1ZHaEoRUSkPSjpC726pjHtZ5O4\n5WvDD5iXEB/HH88+hO27a/jtK/MjEJ2IiLQXJX0BIC8jmYT4ht8Ogwuz+M6kAbw4ey1vL9pwkCMT\nEZH2khDpACQ6XDOpP2/MW8f1L8zlzMPKATh5WCGjirMjHJmIiIRKV/oSkuSEeP589kgCDh54dzn3\nvLOUSx78mI0V6s4nIhItlPQlZCOLs/nkFyfwxS2n8uaPJrC7po4bX9J9fhGRaKGkL63SPz+Da48v\n4fV563l9rrrziYhEAyV9abWrxvdjWI8sfvXSfHZW1UY6HBERaYaSvrRaYnwcv/ifIWyurOLtRRtb\nvZ3yndXcO23pfsP9frB0Mw9/sILtu2vaI1QREUGt96WNDu/blbyMZN6Yt57JI3u0aht/+c/nPP7R\nKm77zxecP64Xi9bvYPqyrQDc9p/PufLYflw1oR/JCfHtGbqISMxR0pc2iY8zTh5WwAuz1rC7uo7U\npJYl5vXb9/DsjNX8zyHdSUuM55EPV5CbnsyvvzKUw3rncOfbS7jtzS/YWV3HdacODk8hRERihJK+\ntNmpw7vz+EereOeLTZwyvLBF6/7jnaUEnOO6UwZTnJvG9acNIS0pnpRE7+Th/kvG8P0nP+WRD1dw\n9fh+5KQnhaEEIiKxQff0pc0O75dLdloib8xrWSv+jRV7ePLjVXzt0J4U53pj/uemJ+1L+HtdM2kA\nu6rrePD95e0Ws4hILFLSlzZLjI/jpKEFvLVwI1W1dSGvd/+7y6mpC3DNpAFNLjeoMJNThhUy5X01\n7BMRaQslfWkXpw7vTkVVLe9+sXnftEDAMXPlVvbUHHgi8MWGCh56fzlfPbQnffLSm93+d48bQEVV\nLY98sKI9wxYRiSm6py/t4qgBXcnLSOK7T87i4iP7MKo4mzvfXsKCdTs4sl9XHvzm2H2N/OoCjp89\nN4eM5AR+cdqQkLY/vGcXjh/cjQfeX86lx/QlI1lvXRGRltKVvrSL5IR4nv/2UZw6vDv3vbuM7zw+\ni53VtVx5bF+mL9/CVY/O2HfF/9D7y5ldto2bTh9G14zkkPfxveNL2LarhsemrwxXMUREOjVdLkm7\n6d01nb99fRTXTOrPsk07mTS4G4nxcZQUZPKz5+Zw3F9KyUpNZNnmnRw/uBunt7Bf/6jibI4tyeP+\nd5dxyZF9Wtw9UEQk1ulKX9rdgG6ZnDSskMR47+117phi/vf8QxlR1IXeXdM4fWQP/nDmCMysxdv+\n/vElbK6s5omPV7V32CIinZ6u9OWgmDyyR6tH7As2tk8uh/fN5Z53lnLh4b0O6N4nIiKN05W+RJ3v\nHVfCxooqXvlsbaRDERGJKkr6EnWOHtCVfnnpPP1JWaRDERGJKkr6EnXMjK+PLWbGynKWbKyMdDgi\nIlFDSV+i0pmHFZEQZzwzQ1f7IiKhUtKXqJSfmcwJQwp4fuZqqmsDkQ5HRCQqKOlL1Pr62GK27Kzm\nxdlr2LBjDzv2aFx+EZGmqMueRK3xA/Pp3iWFnz03B4DEeOPV7x/LwILMCEcmItIx6UpfolZ8nPHA\nJWP5/ddG8LuvDicpPo47314S6bBERDosXelLVBvaI4uhPbIAKCvfxX3TlvGDE0rol58R4chERDoe\nXelLp3HFMf1ISojj//67NNKhiIh0SEr60mnkZyZz/rhevDh7DWVbd0U6HBGRDkdJXzqVq8f3J96M\nu0p1tS8iUl9Ekr6ZrTCzuWY228xm+NNyzexNM1vs/82JRGwS3Qq7pHDu2CKem1nG2m27Ix2OiEiH\nEskr/UnOuVHOuTH+6+uAt5xzJcBb/muRFvvWhP44B/e8o6t9EZFgHal6/wzgYf/5w8BXIxiLRLGi\nnDTOOqyIJz8pY2PFnkiHIyLSYZhz7uDv1Gw5sB2oA+5xzt1rZtucc9n+fAPK976ut+5VwFUABQUF\no5966ql2ja2yspKMjNjp7tVZy7txV4CfT9vNpF4JnNInEQO6phpxZp22zE1RmTu/WCsvxG6ZJ0+e\nPDOolrxFItVP/xjn3Boz6wa8aWaLgmc655yZNXg24py7F7gXYMyYMW7ixIntGlhpaSntvc2OrDOX\nd3rFbF74dA1vr6oFYGj3LH504kDS3YJOW+bGdOb/c2NircyxVl6I3TK3RUSSvnNujf93o5n9ExgH\nbDCz7s65dWbWHdgYidik8/j15KEcOzCPQAB27KlhygcruOKRGRySH8/4CY74OIt0iCIiB9VBv6dv\nZulmlrn3OXASMA94GbjEX+wS4KWDHZt0LtlpSXzt0CLOGl3EpUf3ZeqPJvDTkwcxZ1Mdj364ItLh\niYgcdJG40i8A/undticBeMI594aZfQI8Y2aXAyuBcyMQm3RiifFxfGdif96YuYQ//ftzjh9SQHFu\n2kHbf21dgKkLN1K+qxqAgQWZjO6tnqkicvAc9KTvnFsGjGxg+hbg+IMdj8QWM+Obw5L49YfV3PDP\nuTxy2Tj8E1AAVpfvoqo20OC6cWb0zk0jroW3BeoCjpc/W8MdUxezYsuXIwWmJ8Xz0S9OICNZP4Eh\nIgeHvm0k5nRNjeO6Uwfzq5fm87epi/nRiQNxzvH71xZy37vLm1x3UEEmPzyxhJOHFe53stCUW1/3\ntjukexb3XjSaQ4qyWbhuB5dO+YRX56zl62N7tUexRESapaQvMenCw3szZ/V2/v7WYpIT4qisquW+\nd5dzzugijinJa3CdHXtqeej95XzrsVmM65PLA98cQ2ZKYpP7mbWqnPvfW855Y4v5/ddG7KslKMhK\npqRbBk99UqakLyIHjZK+xKS4OOPWsw6hpi7An//9OQDnj+vFLV8d3mT1/flji3l25mp+9eI8vvnQ\nJzxy2ThqA47Hpq8kzoxvHNFr34lAVW0dP39uDt2zUvjF/wzZb7tmxtfHFvO7Vxfy+foKBhVmhrfA\nIiIo6UsMi48z/nLOSDJTEklOiOOG04Y0e78+IT6O88f1Ijs1ke8++Sln3f0Ba7ftZscebyyAe6Yt\n5eIjepOfmcynq7axeGMlD31zbIM1AmceVsQf31jE05+U8evJQ8NSxo5ozbbdLFi7g/ED80hOiAdg\n8YYKNlVUcdSAhmtZRKR9KOlLTEuIj+Pmrw5v8XqnjujO7QHHj56ZzYSB+fzwxIEEAvDXNz/n728v\n2bfc+eN6MWlwtwa3kZuexEnDCnnh09X8/NRB+xJgsN3VdSTGGwnxHWnE7JZZs203O6tqqa4N8MyM\nMp76uIzqugA9s1O58ti+zFq1jVfmrMU5+MOZIzh/nG53iISLkr5IK00e2YOThhXsl6wfunQc23fV\nUBMIeEP/ZiQ3uY3zx/bi1TnrOPee6fzkpIEcMyBvXwPBBWt3cMH90zl1eHf+cOaIcBYlbJ6buZqf\nPPvZvtcJccY5Y4oYX5LPP6Yt46ZXFpCaGM+3JvRn4bod3PDPuSTGx3H26KIIRi3SeSnpi7RBQ1fn\nXdKabtwX7JiSPP589iHcPnUxFz3wMeP65PKjkwaSk5bENx74iG27anhh1mquO3UwXVJD325HsGHH\nHn7zynzG9M7h0qP7AnBIUZd9YyOcMryQOau30zMnlbyMZPbU1HHlIzP46XOfsWDtDr49sT/5mU2f\nNO2squWSBz+mODeNa48voU9e+r55i8vrePDBj8lJS+T2r48KubeFSGempC8SYeeMKeb0UT14+pMy\n7nx7CefdO53khDi6pCby9/MP5ftPfsrLn63loiN6RzrUkDnn+NWL86iuDfDnc0bSNygZ72VmjCz+\n8je1UhLjufeiMfzmlfk8/OEKnvx4FRcf1Ztvje9PTnoSGyv28OB7KxjSPZMzRvUE4E9vLGLmqnLm\nrd3Oy5+t5ZgBeaQmxrN1ZzUfr9hDWlINu6rrOLp/HueOLW6Xsm2qqOKh95dTUpDB1w5VjYREFyV9\nkQ4gOSGei4/sw7ljinls+kreXrSR354xnP756dxdupSnP1nVYZP+qi27WLR+B8cPKdj3ewbPzVzN\nfxZs4PpTBzeY8BuTmhTPrWcdwtUT+nPH1C+4d9oyHvtwJZMGd2Pqwg3sqQlgBtW1AfrkpfPI9JVc\ncmQfvjOpP3eXLuXDpVtwzmukec7ARG688Dgue+gTbn51ARMG5VOQlbJvX6vLdzF39XYmDe5GSqJX\nY/PFhgrKtu5iwsD8A9pRlO+s5p5py3j4gxXsrqkDoKomwHlqgyBRRElfpANJSYznimP7ccWx/fZN\nO29sMTe+PJ95a7YzvGeXVm+7ti5A+a6aZqvMW2Lppkq+fs90NldWUdItg4uP7M1rc9fz4bItjCrO\n5vJj+rZqu33z0rn9vEO5ZtIAbp+6mH/PX89XDunB1RP68bt/LeRnz88hLyOZHl1S+enJg0hPTuDG\nycP220ZpaSkZyQncetYITr3jXX7xz3n86MSB1AYCPDtjNU99soqaOke3zGSuGt+P2WXbeHXuOpyD\nfnnpfP/4EgYWZOJw/Hv+Bh58bzk7q2s5fWQPvj2xP394bRHX/3MuNXUBRvfOJS4OSrpl6oecpENT\n0hfp4L46qie3vLaQpz8pa1XSrws4Plhby01/fYfV5bu5+xujOXFoQZvjWrF5JxfcNx1w3HzGMKZ8\nsIJfvTSfvIxkfv2VoVxweK829zooKcjk/y48bL9p9108hkunfMz0ZVt55LJxpDczjHG//Ax+eOJA\nbn19EVMXbgC8BoXnji1m0qBu3DdtGb97dSFpSfF8e0J/hnTP4s63l/CDp2fvt51ThxfywxMHMrDA\nG1PhnotGc/nDn/Crl+bvW+aYAXncf8mYfTUHIh2Nkr5IB9clLZHThhfy4qdruPyYvvs1VmtKIOB4\nfd56/jb1C5ZsrGJI9ywGd8/kO4/P5N6LxzBpUMNdCUNRtnUXF9w3neraAE9ddSSDCjO54PDefLZ6\nG4MLM0lLCt9XS2pSPFMuHcfyzTsZ0j0rpHWuHt+PQ4q6sGO3N57C8J5ZFOV4DQpPGNKNBet2UJiV\nsq+3xf+M6M70ZVv2jb/QLz99X7LfKyUxngcuGcsHSzdTXetYvnknf/r3Iq5+dCb3Xjy6wUaeIpGm\npC8SBb53fAnTFm/mgvum8/TVRzb564DOOd5csIG/TV3MwnU7KOmWwTWjkvnxucdQsaeWC+6fztWP\nzmR8SR7wZVV0YrxxxqgenDysEIC3Fm7khU9XU13rABjTJ4eLjujN9t01nH/fdHZW1/HElYfvG00w\nPs44rNfB+dXAlMT4kBM+eI0Gj+rf8MA/ZsawHvvXoMTFWUgDBaUkxnPc4C9rTXLSErnuhbl874lP\nueei0eoxIB2Okr5IFOifn8Gjl4/jgvs+4vz7pnPJkX1oKJ8EnONfc9YxZ/V2+nRN4/avj2LyyB68\nO+0d4uKMLmmJPHb54fzs+TmsKd+937rlu6p5fd56hvXIIiE+js/KtlGQlUzX9GRq6gJMXbiB+6Yt\nIyUxnh27a3j8ysMPSJax7rxxvaisquV3r3q3Y9TITzoaJX2RKDGsRxceu/xwLnnoY255bWGjy/XM\nTuVPZx3CmYf1bPCeek56EvddPOaA6bV1AV6avZb/fXsxtQHHH88awZmHFZHob2PmynL++ubnzF29\nnYcvH8chRdkHbEPgsqP7MnXhBm55dSETB3WjsEtK8yuJHCRK+iJRZERRFz664Xj2+F3GGpKelNDs\nbwg0JCE+jrNGF3FWI6Phje6dw+NXHEFdwKmFehPi4oxbzzyEU+6Yxi9fnMt9F49RNb90GNE7oLdI\njEqMjyMzJbHRR2sSfkso4TevT146Pz5xEFMXbuSVOesOmB8IOK56ZAY/fuYzauoCEYhQYpWSvohI\nGFx6dB9GFnXhppfns3Vn9X7zHp2+kv8s2MDzs1bzo2c+o7YuwJKNlVz/wlzeXLChwe09M6OMv7+1\nmEDAHYzwpZNS9b6ISBgkxMfxp7NH8pX/fZffvjKf2887FPC6O/7xjUVMGJjPUf278ofXF7F4QwVf\nbKgg4ODZGWXcdeFhnOT3ogB4+IMV3PiyNx7A5soqfnP6sDbdMthSWcXLn61lT41XyzCiZxeOHtBV\ntyFigJK+iEiYDCrM5DsTB3DHW4s5vF9XBhVm8tf/fIEBvz9zBD2zU6kNOO767xKuOLYfFx7ei2uf\nms01T8ziD2ceQr/8dGauKOeW1xZy4tACeuWm8cB7y4kz4/RRPQAY0C2DrJTQfoxp265q7p22jCkf\nrGBX9f7tQsb2yeHq8f3JzUjab3peejK9ujbeRVSii5K+iEgYXTNpAG/MW8/1L8zdN+3mM4bRMzt1\n3/zvTOy/7yr74cvGceH90/f7SeJJg/K584JDSYqPoy7gmPLBCqZ8sAKAcX1zefqqI5qMYceeGh54\ndzkPvrecyupavnJID75/3ACKc9OoDTj++eka7nx7MVc8MqPB9U8bUcgPThh4wABFEn2U9EVEwigp\nIY5nv30ks1aWA9AlNZFRxft3dwyuVu+SmsgzVx/JjBXlBJwjKT6OsX1z93WdvHHyUCaP7E7Fnlo+\nXLqFe6YtY/qyrQfsd8r7y7n1jUUEAlAbCBBwcMowbyjhvQMq7XXREb05Z3QRM1aUUxvYv2HhrJXl\nPPj+Cl6bu56kel1AkxPieOTycRx6kAZlkrZT0hcRCbOslEQmtmDY47SkBMYPzG9wnpkxuncuAEf0\n68rzs9Zw538Xc+WAL5dZvKGC37+2iFHF2Yzuk0O8GacML2zytxtSEuM5puTAUQgnDurGpUf35ekZ\nZWzfXbPfvKc/KeNvUxfzyGXjQi6bRJaSvohIlEpJjOfq8f245bWFTOqawkS8H1j62fNzSE+O565v\nHEZeRtt/VTEnPYlvTeh/wPSslET++MYiZpdtO6D2QjomddkTEYliFx7Ri9z0JF5YUs0nK7Zy+9Qv\n+HTVNm6cPKxdEn5TLjqyN11SE7nz7SVh3Y+0HyV9EZEolpaUwJXH9mPBlgDn/OND/vftJRw3uBtn\n+K37wykjOWHfsMML1u4I+/6k7VS9LyIS5a48ti+2dQXDR4wkzmBMn9yD1uf+m0f34f53l/GbV+bz\n8GXjSEkM/SeFSz/fyE+encNJwwr47qQB9PB7NEj46EpfRCTKJcTHMTjXa4h31IA8khIO3ld7l9RE\nfnPGMD5avpVvPzaTqtqGfxeiujbAz5+bwyMfrqCqto73Fm/mqkdnkpwQx7Mzypj451LufHsxzmnE\nwXDSlb6IiLTJmYcVsacmwA3/nMs1j8/iT2ePJDd9/0F+np+1mqdnlMEM+EfpUrbuqqZfXjpPXHkE\nO6tqufX1RfzlP19QU+f44YkDqaqt4/W56+neJYXD+3WNUMk6HyV9ERFpswsO70VtIMCNL8/n2D++\nzWXH9OWq8f3ITEmkpi7AXaVLGFnUhZ+cPIi/vfkFOelJPHzZOHLTk8hNT+J/zz+UtKR47nhrMWVb\ndzF92RbWbt8DwFH9u3Lp0X3JSN4/ZW3cpR8raiklfRERaRcXH9mHI/t15fapi/nft5fw9qKNPHHF\nEby5cANlW3dz41eGcWxJPseWHDgGQVyccetZh1AbcLzw6RpGFWdzy5kjWLqxkn+8s5QrGxgt0IAP\ndnzKtScMpG9e+kEoYfRT0hcRkXZTUpDJ/114GGd/vpGrH5nJRQ9+RMWeWoZ0z+L4IU0PUBQfZ9x2\nzki+PbE/Jd0yMDMmDerGBYf3Yu7q7QT/wKDD8djUWbwxfz2vzFnHH886hLNHF4W5dNFPSV9ERNrd\npKh16VQAAAkaSURBVEHduOvCw/jWYzO9HxW68LCQehTExdkBY/ynJSU0eF+/uiyJ31xwJD98ejY/\nfe4zEuONM0b13Dd/0fod/KN0KWu37dlvPTM4cWgB3ziid4t6G3QGSvoiIhIWJwwt4N6LR/Pe4i2c\nEvRTwe0pPzOZ+y4ew6VTPuZHz3zGZ2XbSU+OZ+mmSl6ft56MpASG9czC+PKEo6Kqht+9upB7py3j\na4f2JCkhjsT4OCaP7NHkbYKyrbt4ftZq6gIOM+P4wd0YGWUjESrpi4hI2Bw3uIDjBheEdR+pSfE8\ncMlYvvXYzP9v7/6DrKrLOI6/PwrouEDKD/kljQsBQTbpDAH+jEZAtJSyGQOd8lepjZGMzVTWTDr+\nZZY6OM2koIxmiNAYydhYKllohqLmgOIPYMWCQVBsUiJUdp/+uN/Fu7AXZL13z+79fl4zO3vPd8/d\nfZ55zt3nnO895x7uevI1ABp69eA7XxjJZaeN4Mgjeu3znJVN27n5kVeZ/3gTAC0Bc5ev49wThjFn\n6ug9d0Fs9fr2//L121fyxju7OESl9W9dvo4pYwdx9dTRjBvad5+/8UFzC4+u3cr04wZ32ucmHIib\nvpmZdXsNh/XgnksnfuT1J43oz5LLT9yzvO3dXdz2lyZ+89TrPPbKmyy+fBIjB/YGYNO/d3L+/KfY\ntbuZh646lbFD+vLurg+4628bmfd4E2fd+jhf+uwQrpoyisYBDTS3BA+u3sKty9fxz7d3sviySV3m\nskM3fTMzy97RfQ7np2eP4/yJw5k5byXnz1/JPZdO5Mn1b/HLxzbw/u5m7v32JMYOKR3R9zm8J7NP\nH8U3TzyWO55oYsETr/GHNVva/M7jhvVlwUXjmdDYr4iU2uWmb2Zmlnzq6D4s/NYkZs77O9NuWQHA\nxMZ+XHv2Z9qdwv/EET35/rQxXHxyI7//x2Z2vr8bgE8PLl2t0FWm9Vu56ZuZmZUZM7jU+G9fsYHz\nxg/npJH9D9i8+zX04pJTGjspwo5z0zczM9vLuKF9mTvzhKLDqDrfcMfMzCwTbvpmZmaZcNM3MzPL\nhJu+mZlZJtz0zczMMuGmb2Zmlgk3fTMzs0y46ZuZmWXCTd/MzCwTbvpmZmaZcNM3MzPLhJu+mZlZ\nJtz0zczMMqGIKDqGDpP0JvB6lX/tAOCtKv/Oriy3fME55yK3nHPLF/LNuSEiBnbkyd266deCpGci\nYnzRcXSW3PIF55yL3HLOLV9wzh3h6X0zM7NMuOmbmZllwk1/X/OKDqCT5ZYvOOdc5JZzbvmCcz5o\nfk/fzMwsEz7SNzMzy4SbfiJpuqRXJK2X9KOi46kFScMlPSZpraQXJV2Vxq+TtFnS8+nrrKJjrSZJ\nGyWtSbk9k8b6SXpE0rr0/aii46wGSWPK6vi8pHckzam3GktaIGmbpBfKxirWVNI16bX9iqQzion6\n46mQ888lvSxptaSlko5M48dK+l9ZvW8rLvKOq5BzxW25u9e5Qr6Ly3LdKOn5NN6hGnt6H5B0KPAq\nMBXYBKwCZkXE2kIDqzJJQ4AhEfGcpD7As8BXgPOAHRHxi0IDrBFJG4HxEfFW2diNwNsRcUPayTsq\nIn5YVIy1kLbrzcBE4GLqqMaSTgN2AL+OiOPSWLs1lTQOWARMAIYCjwKjI6K5oPA7pELO04A/R8Ru\nST8DSDkfCzzYul53VSHn62hnW66HOreX714/vwn4T0Rc39Ea+0i/ZAKwPiKaIuJ94D5gRsExVV1E\nbImI59Ljd4GXgGHFRlWYGcDd6fHdlHZ+6s3pwIaIqPYHWBUuIlYAb+81XKmmM4D7IuK9iHgNWE/p\nNd+ttJdzRDwcEbvT4krgmE4PrIYq1LmSbl/n/eUrSZQO0BZ9nL/hpl8yDPhX2fIm6rwZpr3EE4Cn\n0tDsNEW4oF6mussE8KikZyVdlsYGRcSW9PgNYFAxodXUTNr+g6jnGkPlmuby+r4EeKhsuTFN+/5V\n0qlFBVUj7W3L9V7nU4GtEbGubOyga+ymnyFJvYH7gTkR8Q7wK2AEcDywBbipwPBq4ZSIOB44E7gy\nTaHtEaX3uOrqfS5JvYBzgN+moXqvcRv1WNP9kfQTYDewMA1tAT6ZtvurgXsl9S0qvirLalsuM4u2\nO/EdqrGbfslmYHjZ8jFprO5I6kmp4S+MiN8BRMTWiGiOiBZgPt1sSuxAImJz+r4NWEopv63pHIfW\ncx22FRdhTZwJPBcRW6H+a5xUqmldv74lXQR8Gbgg7eyQpri3p8fPAhuA0YUFWUX72Zbrts6SegDn\nAotbxzpaYzf9klXAKEmN6QhpJrCs4JiqLr0ndCfwUkTcXDY+pGy1rwIv7P3c7kpSQzppEUkNwDRK\n+S0DLkyrXQg8UEyENdPmqKCea1ymUk2XATMlHSapERgFPF1AfFUnaTrwA+CciNhZNj4wnciJpBGU\ncm4qJsrq2s+2XLd1BqYAL0fEptaBjta4R81C7EbSma/fBf4EHAosiIgXCw6rFk4GvgGsab3sA/gx\nMEvS8ZSmQzcClxcTXk0MApaW9nfoAdwbEX+UtApYIulSSndqPK/AGKsq7dxMpW0db6ynGktaBEwG\nBkjaBFwL3EA7NY2IFyUtAdZSmgK/sjud0d2qQs7XAIcBj6RtfGVEXAGcBlwv6QOgBbgiIj7qCXFd\nRoWcJ7e3LddDndvLNyLuZN/zc6CDNfYle2ZmZpnw9L6ZmVkm3PTNzMwy4aZvZmaWCTd9MzOzTLjp\nm5mZZcKX7JkZkvoDy9PiYKAZeDMt74yIkwoJzMyqypfsmVkble5iZmbdn6f3zWy/JO1I3yenG3s8\nIKlJ0g2SLpD0tKQ1kkam9QZKul/SqvR1crEZmFkrN30zOxifA64AxlL6dMfRETEBuAOYndaZC9wS\nEZ8HvpZ+ZmZdgN/TN7ODsar19rWSNgAPp/E1wBfT4ynAuPSxsAB9JfWOiB2dGqmZ7cNN38wOxntl\nj1vKllv48P/JIcCkiNjVmYGZ2YF5et/Mqu1hPpzqJ90cxcy6ADd9M6u27wHjJa2WtJbSOQBm1gX4\nkj0zM7NM+EjfzMwsE276ZmZmmXDTNzMzy4SbvpmZWSbc9M3MzDLhpm9mZpYJN30zM7NMuOmbmZll\n4v+TZFiY6zYEawAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig,ax=plt.subplots(1,1,figsize=(8,6))\n", "time = range(168)\n", "ax.plot(time, number_of_deep_particles)\n", "ax.grid('on')\n", "ax.set_title('Number of Particles (init depth > 6) in Domain at time = x')\n", "ax.set_ylabel('Number of Particles')\n", "ax.set_xlabel('Time')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "index_shallow_particles=[]\n", "for n in range(407):\n", " if result.variables['init_z'][n] < 6:\n", " index_shallow_particles.append(n)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "number_of_shallow_particles = np.zeros(168)\n", "for n in range(168):\n", " for m in index_shallow_particles:\n", " if (lont[:].mask[n,m]) == False: \n", " y,x = geo_tools.find_closest_model_point(lont[n,m],latt[n,m],lons, lats, land_mask=bathy.mask)\n", " if (598" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAGDCAYAAAAh5Mk5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHHWd//HXZ+6ZzJFrMrlPAjHhJiQIqMMpKiF4sbDo\nIh7oLh7s6iroKi6Kx/rTFRdBIyCgQEA8yLIoAjogRwIkIIQQSEjIfd+TY87P74+qCZ3JzKQz093V\n3fV+Ph79mK778+2q6U99v/WtanN3REREJP8VRB2AiIiIZIaSvoiISEwo6YuIiMSEkr6IiEhMKOmL\niIjEhJK+iIhITCjpx4iZ3W5m345o22ZmvzSzbWb2bEQxNJrZ+EPMM9bM3MyK0rD9p8zshPD9V83s\nliSXS3rebpavN7PVvV3+EOtO2+d1GDHUmdmrZlbawzw/M7OvZzKudEnmOM4UM3uHmb0WdRySPCX9\nCJnZm2a20cz6JYz7pJk1RBhWupwOnAOMdPdpnSea2cfMrC38QttpZi+a2fm93ZiZNZjZJxPHuXul\nuy/r7Tr7wsxmALvc/YUwlu+4+ycPsRid5406yYbH7NkRbftsM1tgZrvNbLWZXQTg7huAvwJXdLes\nu3/G3b/Vy+02mNk+M9sVHpvzzezqnk4y0ildx3EylYLw2DsiIZa/uftRqY5F0kdJP3qFwBeiDuJw\nmVnhYS4yBnjT3Xf3MM8z7l4J9AduBe4zswGHGZeZWTYe158BfhV1ENnMzOp6mDYZuBv4GlADHAfM\nT5jlLuDTaQzvs+5eBQwDvghcDDxkZpbGbYqknrvrFdELeBO4GtgK9A/HfRJoCN+PBRwoSlimAfhk\n+P5jwFPAfwPbgWXAqeH4VcBG4LKEZW8HfgY8AuwCHgfGJEyfFE7bCrwGXNRp2ZuBh4DdwNldlGc4\nMCdcfinwqXD8J4B9QBvQCPxnF8t+DHgyYbhfWPapwADgQWATsC18P7LTZ3J9+FnsJUgAbeE2G4Eb\nw/kcOCJ8Xw78EFgB7ACeDMcd8JkTJJhbgXXAGuDbQGE47YjwM9wBbAbu7WY/l4RxJcb8TeDXnfbz\nZcDKcF1f62beleG8jeHr7V1srzzcX9uARcC/A6s77affhp/ncuDznbZ1P3BveIwsAI4Lp/0KaA/L\n0gh8+VCxJ/E/UAy8PzxudvUw393At3qYXgTsIeF47jT9duDb4ft6YDVB8t4Y7tvLe1h3A+H/XMK4\n0eH2zg+HS4EfA2vD14+B0k7b+3LC9i4E3gu8TvD/8tWEdU8DniH4n14H3AiUJExPPI5vB34K/F+4\nv+YBE3ooy2+A9QTH7BPAlHD8FUAL0Bzu2//tYtknwm3vDuf5h46ydfpO+3fgpXC+W4E64I9hfI8C\nAxLmPwV4Oizr34H6VH2/hus/NTwmR4XDxxH8X0xK5XZy6RV5AHF+hf8gZwO/S/hCOtyk3wpcTtBi\n8G2CL96fhl9C54b/aJXh/LeHw+8Mp99AmGgJkuyqcF1FwAnhP8vkhGV3AKcRtBCVdVGeJ4CbgDLg\neIKkcmZCrE/28Fl8LCGWIoLWj10ESXcQ8EGgAqgKv7j+0OkzWQlMCZctpusv6sQvy5+G84wIP7tT\nw8/kgM8c+D3w8/DzGQI8C3w6nHYPQc2zICzz6d2UbQqwu9O4b3Jw0v8FQcI+DmgC3tbDvEU9fJbf\nA/4GDARGAQsJv5jDWOcD3yA4GRlPcLL47oRttQAfCj/HLxGcGBQnHrMJ2+ox9h5iPAb4EUESfIag\nlt6/h/mXAd8CXiZIhL8GBnaa5yXggm6Wv50Dk34rcF1YxvcSJPAB3Sx70LGUcLx/P3x/HTA3PEZq\nCRLZtzpt7xvh9j5F8L9xN8HxPIXgRGpcOP9JBMmwKPx8XwWu6uY4vh3YQnCiUERwwju7h8/x4+E2\nO05SXuzqM+ph+f3bTihb56Q/lyDRjwj37wKC75My4C/AteG8I8LY30twXJ4TDtd2s+0HCU4Ouno9\n2EPM14fbLQ+Pn88m8/2cr6/IA4jzi7eS/tEECbWWw0/6SxKmHRPOX5cwbgtwfPj+9sQvBKCSoEY8\niuCs/W+d4vt5wj/o7cCdPZRlVLiuqoRx3wVuT4j1UEm/NfwH3hx+cRzUmhDOezywrdNncl2nefZ/\nTgnjnKB2XkDwJXtcF+ve/5mHX1xNQHnC9EuAv4bv7wRmkVCD7ybe04D1ncZ9k4MTeWJLwLPAxT3M\n21PSXwaclzB8BW8l/enAyk7zXwP8MmFbcxOmFRAk2XckHrNdfF5dxt5FbGcCzxOcYH4HODLJ/5Xm\ncNtHEhy3vwXu6jTPU8A/dbP87RyY9Pdy4P/VRuCUbpY96FgKx88GfhG+fwN4b8K0dxNczkrcXkcL\nUVX4mU1PmH8+cGE3278K+H3n4zihXLckTHsvsDjJz7R/uK6azp9RD8skk/QvTRj+LXBzwvDnCE/Y\nga8Av+q0/odJaJ1MxYvgRGs+QcL/E2CpXH+uvSLrcStvcfeFZvYgQVP/q4e5+IaE93vD9XUeV5kw\nvCphu41mtpWguXcMMN3MtifMW8SB16FX0b3hwFZ335UwbgVB83yy5rr76Z1HmlkFwSWM8wia+gGq\nzKzQ3duSiK2zwQS1jjcOMd8Ygi+MdQmXbgsStvVlgtrns2a2Dfihu9/WxXq2EXzRH8r6hPd7OHC/\nHY7hHPh5rEh4PwYY3mk/FxK0DHRIPEbaw57/ww+xzWRjH0Jw4vUMQXPuykOst8NeghOT1wHM7DsE\nTcWJqghOGpOxxd1bk4y5OyMIavQQfD6Jn/MKDvzMtiQcq3vDv13+n5rZkQStIFMJWreKOLD/QmdJ\nffZhP5zrgQ8TVDDaw0mDCSodqdK5XN19H40BPhx2cu1QTNApM2XcvcXMbgd+Avybh2cCcZWNHZ7i\n6lqCZr8RCeM6Or1VJIwb2sftjOp4Y2aVBE3Aawm+6B939/4Jr0p3/+eEZXv6Z1kLDDSzxOQ2muA6\neF99ETiKoGZUTXB5AiCxE1Xn2HqKdTPB9f4Jh9juKoKa/uCEz6Ta3acAuPt6d/+Uuw8naJ6+KbFn\nc4KlBH0MR3Qx7XAl84W1joT9TLAfOqwClnfaz1Xu/t6EeRKPkQJgJMH+TXb73XL32QTH8K8I+nqs\nNbNfmNlBJ3udvNRp2wfEEd7NcATBiUTamdkogmb4jpOltQRJrMNo3vrMDtfNwGJgYni8f5UDj/Xe\n+kdgJkHrYg1BKw0J6850MlxFUNNPPBb7ufv3uprZzP4Y3t3T1euP3W0k/L+7Fvgl8MOo7rrIFkr6\nWcLdlxJ0nvp8wrhNBEnzI2ZWaGYf59CJ6lDea2anm1kJQS11rruvIrhedqSZfdTMisPXyWb2tiTj\nX0VQ6/mumZWZ2bEEX+q/7mO8ENTg9gLbzWwgwT/woWwguF7dVaztwG3Aj8xsePjZvr3zl4G7rwP+\nTPBFUW1mBWY2wczeBWBmHzazkeHs2wi+NNvpxN2bCWql70qmsIewKdxGT/dp3wdcY2YDwvg+lzDt\nWWCXmX3FzMrDsh9tZicnzHOSmX0gTKRXEZz4zA2ndfu5Jsvd97n73e5+LkEfgDeBX5pZTy0vvwQu\nN7PxYcvP1QTHbIdpBM3pK7pcOkXMrCLc/w8QfJYPhZPuAf7DzGrNbDDB9fveHvtVwE6g0cwmAf98\niPkPZ71NBJf8KgguryRKZt/2ef8n+DUww8zeHR6HZRY8U2JkVzO7+3vCikhXr/d0tUx4d8XtBB0K\nP0FwQtyrWzfzhZJ+drmOoMNYok8R9IbdQtDh5+nOCx2muwmS5laCmspHAMJm+XMJbkVaS9Bk+H2C\nDj/JuoSg9rCWoAPcte7euQm2N35M0Amn41r/n5JY5gbgQxY8DOgnXUz/EsE1vucIPovv0/X/wz8R\ndHhbRJDY7ye4bQvgZGCemTUS9D7/gnd///TPgY8mEXeP3H0P4Z0KZrbdzE7pYrb/JGheXk5w0vKr\nhOXbgPMJ+kUsJ/hMbyGo+XV4gKCPx7Yw5g+4e0s47bsEyW27mX0pBeVZ5e7Xu/tEgjsAupvvNoI+\nFPPCsjWRcIIMXEpwZ0q63GhmuwiS3o8JrlWfF55AQtCJ9nmCFomXCTqv9fZBWF8iqJXvIuggeW8f\n4k50J8Fnt4bgeJ7bafqtwORw3/6hm3V8E7gjnOeivgQTVhRmErRkbCKo+f87qc1Lnye4pPT1sFn/\ncoKTx3ekcBs5xWJ+eUMkY8zsKYKewy9EHUt3zOybBB21PhJ1LMkysyEEt06e4O77oo5HJJupI59I\nhrj7aVHHkI/cfSOQ1GUokbhT876IiEhMqHlfREQkJlTTFxERiQklfRERkZjI6Y58gwcP9rFjx6Z0\nnbt376Zfv853zeWvuJUXVOa4iFuZ41ZeiG+ZFy9evNnda3uzfE4n/bFjx/L888+ndJ0NDQ3U19en\ndJ3ZLG7lBZU5LuJW5riVF+Jb5jPOOKPXD6FS876IiEhMKOmLiIjEhJK+iIhITCjpi4iIxISSvoiI\nSEwo6YuIiMSEkr6IiEhMKOmLiIjEhJK+iIhITCjpi4iIxISSvoiISEzk9LP3U6mptY2nl25hV5NH\nHYqIiEhaqKYfWrV1D5ff/hzPb2iNOhQREZG0UNIPTaitZOygCl7Y2BZ1KCIiImmhpB8yM85+Wx2v\nbmmjsUm1fRERyT9K+gnOnlxHq8PfXt8UdSgiIiIpp6SfYOqYAfQrhkde3RB1KCIiIimnpJ+gqLCA\n42qL+OvijbS2tUcdjoiISEop6XdywpBCtu1pYcHK7VGHIiIiklJK+p0cPbiQksICHlUTv4iI5Bkl\n/U7Ki4xp4wbytyWbow5FREQkpZT0u3DU0CqWb26kvV1P5xMRkfyhpN+F8bX92NfSztode6MORURE\nJGWU9LswobYSgGWbdkcciYiISOoo6XdhfG0/AJZtaow4EhERkdRR0u9CbWUpVaVFLNusmr6IiOQP\nJf0umBnja/upeV9ERPJK2pK+md1mZhvNbGEX075oZm5mgxPGXWNmS83sNTN7d7riStb42ko174uI\nSF5JZ03/duC8ziPNbBRwLrAyYdxk4GJgSrjMTWZWmMbYDmn84H6s3bGPPc36xT0REckPaUv67v4E\nsLWLSf8NfBlIvAl+JjDb3ZvcfTmwFJiWrtiSMV49+EVEJM8UZXJjZjYTWOPufzezxEkjgLkJw6vD\ncV2t4wrgCoC6ujoaGhpSGmNjYyMNDQ1s3RX84M6DTzzH5mEZ/ZgyqqO8caIyx0Pcyhy38kJ8y9wX\nGctmZlYBfJWgab/X3H0WMAtg6tSpXl9f3/fgEjQ0NFBfX8++lja+8fSfKKsdTX39kSndRjbpKG+c\nqMzxELcyx628EN8y90Umq7ATgHFARy1/JLDAzKYBa4BRCfOODMdFpqy4kOE15WreFxGRvJGxW/bc\n/WV3H+LuY919LEET/onuvh6YA1xsZqVmNg6YCDybqdi6M762H8s2qwe/iIjkh3TesncP8AxwlJmt\nNrNPdDevu78C3AcsAv4EXOnubemKLVkTaitZvmk37vrhHRERyX1pa95390sOMX1sp+HrgevTFU9v\njK/tx+7mNjbsbGJoTVnU4YiIiPSJnsjXgyOGBLftvbpuZ8SRiIiI9J2Sfg+OH9WfogLj2Te7etyA\niIhIblHS70FFSRHHjqxh3rItUYciIiLSZ0r6hzBt3CBeWr2Dvc2R9ysUERHpEyX9Q5g+fiCt7c6C\nlduiDkVERKRPlPQPYeqYARQY+5v4d+5r4ZFFGyKOSkRE5PAp6R9CVVkxU4bXMG950Jnvq797mU/d\n+Twrt+yJODIREZHDo6SfhGnjBvLCqu08umgDD760DoC/r94ecVQiIiKHR0k/CdPHDaS5tZ2r7n2R\nsYMqKCkq4OU1O6IOS0RE5LAo6Sfh5LEDAWhsauW6mUfztmHVvKSavoiI5Bgl/SQM6FfC28cP4oMn\njuSdR9Zy7IgaFq7ZSXu7nskvIiK5I5M/rZvT7v7U9P3vjxlZw6/mrmD5lt1MqK2MMCoREZHkqaaf\nJDPDzAA4dmQNgJr4RUQkpyjp98IRtZWUFxfy0mp15hMRkdyhpN8LRYUFTBlezctK+iIikkOU9Hvp\nmJE1vLJ2J61t7VGHIiIikhQl/V46dmQNe1vaeGPT7qhDERERSYqSfi8dM6I/oM58IiKSO5T0e2n8\n4H4UF5pq+iIikjOU9HupoMCoLitm576WqEMRERFJipJ+H1SXF7NrX2vUYYiIiCRFSb8PqsuK2LlX\nNX0REckNSvp9UKXmfRERySFK+n1QXV6k5n0REckZSvp9UFVarOZ9ERHJGUr6fVBdXqTmfRERyRlK\n+n1QXVbMvpZ2mlv1KF4REcl+Svp9UFVWBMAu1fZFRCQHKOn3QXV5MYA684mISE5Q0u+D6rIg6eu6\nvoiI5AIl/T7oaN7fuVc1fRERyX5pS/pmdpuZbTSzhQnjfmBmi83sJTP7vZn1T5h2jZktNbPXzOzd\n6Yorld5q3ldNX0REsl86a/q3A+d1GvcIcLS7Hwu8DlwDYGaTgYuBKeEyN5lZYRpjS4n9NX0lfRER\nyQFpS/ru/gSwtdO4P7t7R1v4XGBk+H4mMNvdm9x9ObAUmJau2FKlo6av5n0REckFRRFu++PAveH7\nEQQnAR1Wh+MOYmZXAFcA1NXV0dDQkNKgGhsbk15nuzsGvPzaUhraV6Y0jkw5nPLmC5U5HuJW5riV\nF+Jb5r6IJOmb2deAVuCuw13W3WcBswCmTp3q9fX1KY2toaGBw1ln5eMPM7BuBPX1U1IaR6Ycbnnz\ngcocD3Erc9zKC/Etc19kPOmb2ceA84Gz3N3D0WuAUQmzjQzHZb1q/dKeiIjkiIzesmdm5wFfBi5w\n9z0Jk+YAF5tZqZmNAyYCz2Yytt6qLi/WNX0REckJaavpm9k9QD0w2MxWA9cS9NYvBR4xM4C57v4Z\nd3/FzO4DFhE0+1/p7m3pii2Vqsr0ozsiIpIb0pb03f2SLkbf2sP81wPXpyuedKkuK2bN9r1RhyEi\nInJIeiJfH1WXFbFzr2r6IiKS/ZT0+6i6XB35REQkNyjp91F1WRGNTa20t/uhZxYREYmQkn4fVZUV\n4w6NzerBLyIi2U1Jv4+qy4O+kLv2KemLiEh2U9Lvo+qyjufv67q+iIhkNyX9PqpS0hcRkRyhpN9H\nat4XEZFcoaTfR/tr+rptT0REspySfh9VlwU1fTXvi4hItlPS76OOmr6a90VEJNsp6fdRSVEBZcUF\nat4XEZGsp6SfAtVlxarpi4hI1lPSTwE9f19ERHKBkn4KVJUVsXOvavoiIpLdlPRTIGjeV01fRESy\nm5J+ClSVFbFT1/RFRCTLKemnQHV5se7TFxGRrKeknwKVpUU0NqmmLyIi2U1JPwXKiwtpam2nvd2j\nDkVERKRbSvopUF5SCMC+1raIIxEREemekn4KlBcHSX9vs5K+iIhkLyX9FNif9FuU9EVEJHsp6adA\nWUfzvpK+iIhkMSX9FHireb894khERES6p6SfAmreFxGRXKCknwLlJcHHqKQvIiLZTEk/BcrUe19E\nRHKAkn4KVJQUAerIJyIi2U1JPwV0TV9ERHKBkn4K6OE8IiKSC9KW9M3sNjPbaGYLE8YNNLNHzGxJ\n+HdAwrRrzGypmb1mZu9OV1zpUKaOfCIikgPSWdO/HTiv07irgcfcfSLwWDiMmU0GLgamhMvcZGaF\naYwtpUoKCygw1fRFRCS7pS3pu/sTwNZOo2cCd4Tv7wAuTBg/292b3H05sBSYlq7YUs3MKC8uVE1f\nRESyWlGGt1fn7uvC9+uBuvD9CGBuwnyrw3EHMbMrgCsA6urqaGhoSGmAjY2NvVpnIW28sWIVDQ0b\nUxpPuvW2vLlMZY6HuJU5buWF+Ja5LzKd9Pdzdzezw/4BenefBcwCmDp1qtfX16c0roaGBnqzzup5\nf2Hg4IHU1x+f0njSrbflzWUqczzErcxxKy/Et8x9kene+xvMbBhA+LejWrwGGJUw38hwXM5Q876I\niGS7w0r6ZlZgZtV92N4c4LLw/WXAAwnjLzazUjMbB0wEnu3DdjKuvERJX0REstshk76Z3W1m1WbW\nD1gILDKzf09iuXuAZ4CjzGy1mX0C+B5wjpktAc4Oh3H3V4D7gEXAn4Ar3T2nMmh5caF674uISFZL\n5pr+ZHffaWaXAn8kuM1uPvCDnhZy90u6mXRWN/NfD1yfRDxZqbykkG27m6MOQ0REpFvJNO8Xm1kx\nwe11c9y9BTjsDnj5Ttf0RUQk2yWT9H8OvAn0A54wszHAznQGlYuU9EVEJNsdsnnf3X8C/CRh1Aoz\nOyN9IeWmspJC9ja3Rx2GiIhIt5LpyFdnZrea2R/D4cm81QNfQuXFhfppXRERyWrJNO/fDjwMDA+H\nXweuSldAuaq8uJA9za24q7uDiIhkp2SS/mB3vw9oB3D3VkBV2k7KSwppd2huUxO/iIhkp2SS/m4z\nG0TYY9/MTgF2pDWqHFRWHPwo4D5d1xcRkSyVzH36/0bwxLwJZvYUUAt8KK1R5aDyMOnvbWmjhuKI\noxERETlYMr33F5jZu4CjAANeC+/VlwTlJUGjiW7bExGRbNVt0jezD3Qz6Ugzw91/l6aYclJ5cfBR\n6lG8IiKSrXqq6c/oYZoDSvoJykveat4XERHJRt0mfXe/PJOB5LqOa/q6V19ERLJVMg/n+Y6Z9U8Y\nHmBm305vWLlnf0c+Ne+LiEiWSuaWvfe4+/aOAXffBrw3fSHlJnXkExGRbJdM0i80s9KOATMrB0p7\nmD+Wyop1TV9ERLJbMvfp3wU8Zma/DIcvB+5IX0i5Sc37IiKS7ZK5T//7ZvYScFY46lvu/nB6w8o9\n6r0vIiLZLpmaPu7+R+CPaY4lp5UVqaYvIiLZraeH8zzp7qeb2S7C5+53TALc3avTHl0OKSgwSosK\ndMueiIhkrZ7u0z89/FuVuXByW0VJoZr3RUQkayVzn/6vkhknQWc+Ne+LiEi2SuaWvSmJA2ZWBJyU\nnnByW5lq+iIiksW6Tfpmdk14Pf9YM9sZvnYBG4AHMhZhDikvLtQ1fRERyVrdJn13/y5QA9zp7tXh\nq8rdB7n7NZkLMXeUF6umLyIi2avH5n13bwdOzlAsOa+8RNf0RUQkeyVzTX+BmSnxJ6GsuJC9Le1R\nhyEiItKlZB7OMx241MxWALt56z79Y9MaWQ7SNX0REclmyST9d6c9ijxRXlzInubWqMMQERHpUjLP\n3l8BYGZDgLK0R5TDdE1fRESyWTIP57nAzJYAy4HHgTfRc/i7VF5SyD5d0xcRkSyVTEe+bwGnAK+7\n+ziCX9ub25eNmtm/mtkrZrbQzO4xszIzG2hmj5jZkvDvgL5sIwrlxYU0t7XT2qbELyIi2SeZpN/i\n7luAAjMrcPe/AlN7u0EzGwF8Hpjq7kcDhcDFwNXAY+4+EXgsHM4p5cXBL+3ta1XSFxGR7JNM0t9u\nZpXAE8BdZnYDQS/+vigCysNH+lYAa4GZwB3h9DuAC/u4jYwrK9HP64qISPZKJunPBPYA/wr8CXgD\nmNHbDbr7GuD/ASuBdcAOd/8zUOfu68LZ1gN1vd1GVPbX9HXbnoiIZCFz9+4nml0IHAG87O4Pp2SD\nwbX63wL/AGwHfgPcD9zo7v0T5tvm7gdd1zezK4ArAOrq6k6aPXt2KsLar7GxkcrKyl4t++z6Vm56\nsYnrTytnRFUy51PR60t5c5XKHA9xK3PcygvxLfOMGTPmu3uvLrN3e8uemd1E8At7TwPfMrNp7v6t\nXsaZ6GxgubtvCrfzO+BUYIOZDXP3dWY2DNjY1cLuPguYBTB16lSvr69PQUhvaWhooLfrbF+8AV58\nnqOPP5HjRvU/9AJZoC/lzVUqczzErcxxKy/Et8x90dN9+u8EjnP3NjOrAP5G0JO/r1YCp4Tr3Etw\nN8DzBP0ELgO+F/7NuV/yKwub9/WjOyIiko16SvrN7t4G4O57zMxSsUF3n2dm9wMLgFbgBYKaeyVw\nn5l9AlgBXJSK7WVSuZK+iIhksZ6S/iQzeyl8b8CEcLjPz95392uBazuNbiKo9ees8rD3/j713hcR\nkSzUU9J/W8aiyBMdNf3dSvoiIpKFuk36Hc/cl+T1rygBYPue5ogjEREROVhu3FeWI6rLiigpLGBz\no5K+iIhkHyX9FDIzBlWWsKWxKepQREREDtJt0jezx8K/389cOLlvUGUJW3arpi8iItmnp458w8zs\nVOACM5tN0Gt/P3dfkNbIctSgfqVsVk1fRESyUE9J/xvA14GRwI86TXPgzHQFlcsGV5aydGNj1GGI\niIgcpKfe+/cD95vZ11P0+N1YGFxZwubGJtydFD3PSEREJCV6qukD4O7fMrMLCB7LC9Dg7g+mN6zc\nNaiyhKbWdhqbWqkqK446HBERkf0O2XvfzL4LfAFYFL6+YGbfSXdguWpwZSkAW3TbnoiIZJlD1vSB\n9wHHu3s7gJndQfC8/K+mM7BcNagj6e9uYuzgfhFHIyIi8pZk79NP/J3YmnQEki8G9Queyrdpl2r6\nIiKSXZKp6X8XeMHM/kpw2947gavTGlUOq616q6YvIiKSTZLpyHePmTUAJ4ejvuLu69MaVQ4bED5/\nX9f0RUQk2yRT08fd1wFz0hxLXigpKqCmvFgP6BERkayjZ++nweDKEtX0RUQk6yjpp8GgSj2KV0RE\nsk+PSd/MCs1scaaCyRcdT+UTERHJJj0mfXdvA14zs9EZiicvDK4s1S/tiYhI1kmmI98A4BUzexbY\n3THS3S9IW1Q5blC/UrbvaaGlrZ3iQl1BERGR7JBM0v962qPIM4Mqg9v2tu5upq66LOJoREREAsnc\np/+4mY0BJrr7o2ZWARSmP7Tc1fH8/c2NTUr6IiKSNZL5wZ1PAfcDPw9HjQD+kM6gct3gSj2gR0RE\nsk8yF5yvBE4DdgK4+xJgSDqDynWDEmr6IiIi2SKZpN/k7vurrGZWBHj6Qsp9qumLiEg2SibpP25m\nXwXKzewc4DfA/6Y3rNxWWVpESVEBm/WjOyIikkWSSfpXA5uAl4FPAw8B/5HOoHKdmTG4nx7FKyIi\n2SWZ3vvR4YDxAAAdKElEQVTtZnYHMI+gWf81d1fz/iEMrtKjeEVEJLscMumb2fuAnwFvAAaMM7NP\nu/sf0x1cLhtcWcqGnfuiDkNERGS/ZB7O80PgDHdfCmBmE4D/A5T0ezCifznPv7k16jBERET2S+aa\n/q6OhB9aBuxKUzx5Y8ygCnbua2X7Hl3XFxGR7NBtTd/MPhC+fd7MHgLuI7im/2Hgub5s1Mz6A7cA\nR4fr/DjwGnAvMBZ4E7jI3bf1ZTtRGj2wAoCVW/fQv6Ik4mhERER6runPCF9lwAbgXUA9QU/+8j5u\n9wbgT+4+CTgOeJXgLoHH3H0i8Fg4nLPGDOoHwIoteyKOREREJNBtTd/dL0/HBs2sBngn8LFwO81A\ns5nNJDipALgDaAC+ko4YMmHUwOC8aOVWJX0REckOyfTeHwd8jqDZff/8ffhp3XEErQW/NLPjgPnA\nF4A6d18XzrMeqOvl+rNCRUkRtVWlrNiy+9Azi4iIZIAd6pZ7M/s7cCvBw3naO8a7++O92qDZVGAu\ncJq7zzOzGwie6/85d++fMN82dx/QxfJXAFcA1NXVnTR79uzehNGtxsZGKisrU7Ku6+fupbAArp7W\n16sh6ZPK8uYKlTke4lbmuJUX4lvmGTNmzHf3qb1ZPplb9va5+096s/JurAZWu/u8cPh+guv3G8xs\nmLuvM7NhwMauFnb3WcAsgKlTp3p9fX0KQ4OGhgZStc45G15k7rItKVtfOqSyvLlCZY6HuJU5buWF\n+Ja5L5K5Ze8GM7vWzN5uZid2vHq7QXdfD6wys6PCUWcBi4A5wGXhuMuAB3q7jWwxelAF63buo6m1\nLepQREREkqrpHwN8FDiTt5r3PRzurc8Bd5lZCcF9/5cTnIDcZ2afAFYAF/Vh/VlhzKAK3GH1tr1M\nqI1XE5SIiGSfZJL+h4HxiT+v21fu/iLQ1fWIs1K1jWwwemBw297KLXuU9EVEJHLJNO8vBPofci45\nSMcDetSDX0REskEyNf3+wGIzew7Y/7NxfbhlLzYGV5ZQUVLICt2rLyIiWSCZpH9t2qPIU2bG6IEV\nrFLSFxGRLHDIpN/b+/ElMHpgBcs3q3lfRESid8hr+ma2y8x2hq99ZtZmZjszEVw+GDOogpVb99De\n3vNDkERERNItmZp+Vcd7MzNgJnBKOoPKJ6MH9aOptZ2Nu5oYWlMWdTgiIhJjyfTe388DfwDenaZ4\n8s7YQUEPfjXxi4hI1JL5wZ0PJAwWENxfvy9tEeWZiUOChpIlG3fx9gmDIo5GRETiLJne+zMS3rcC\nbxI08UsS6qpLqSkvZvH6XVGHIiIiMZfMNf3LMxFIvjIzjqqr4nUlfRERiVi3Sd/MvtHDcu7u30pD\nPHnpqKFV/OHFNbg7QV9IERGRzOupI9/uLl4AnwC+kua48sqRQ6vYta+VtTvUFUJERKLTbU3f3X/Y\n8d7MqoAvEPwa3mzgh90tJwebNDTozPf6+l2M6F8ecTQiIhJXPd6yZ2YDzezbwEsEJwgnuvtX3H1j\nRqLLE0fWBUlfnflERCRKPV3T/wHwAWAWcIy7N2YsqjxTU17MsJoyXluvBxmKiEh0eqrpfxEYDvwH\nsDbhUby79Bjew3fU0Cpe26DzJhERiU5P1/QP62l90rOj6qp4eukWWtraKS7URysiIpmn7JMhRw2t\normtnTf1OF4REYmIkn6GHBX24H9tgzrziYhINJJ5DK+kwITaSgoLjEcWbaC0qJDBlSWcMHpA1GGJ\niEiMKOlnSFlxIZOGVvHAi2t54MW1mMG8r57FkCr93K6IiGSGkn4G3fXJ6azetpf5K7Zx7ZxXWL1t\nr5K+iIhkjJJ+BvWvKKF/RQkF4fP31+uxvCIikkHqyBeB4f2D2v3a7XsjjkREROJEST8CNeXFlBUX\nqKYvIiIZpaQfATNjeE0565T0RUQkg5T0IzK0pox1O9S8LyIimaOkH5GhNWVq3hcRkYxS0o/I8Jpy\nNuxqoq3dow5FRERiQkk/IkNrymhrdzbtaoo6FBERiQkl/Yjsv21P1/VFRCRDIkv6ZlZoZi+Y2YPh\n8EAze8TMloR/8/rB9EOry4HUPKBn4ZodbN/T3Of1iIhIfouypv8F4NWE4auBx9x9IvBYOJy3htUE\nNf2+3ra3t7mND978NDc8tiQVYYmISB6LJOmb2UjgfcAtCaNnAneE7+8ALsx0XJnUvyJ4QM+6Hp7K\nt3rbHpZu7PmneBes3EZTazsvrtqe6hBFRCTPmHvme4+b2f3Ad4Eq4Evufr6ZbXf3/uF0A7Z1DHda\n9grgCoC6urqTZs+endLYGhsbqaysTOk6u/OVJ/YwprqAfzm+6x/d+cFze1m1y/lRfTlFBdblPL9f\n0swDb7RQXAA3n13R7XzdyWR5s4XKHA9xK3PcygvxLfOMGTPmu/vU3iyf8R/cMbPzgY3uPt/M6rua\nx93dzLo8G3H3WcAsgKlTp3p9fZer6LWGhgZSvc7uTFgyl30tbdTXn3bQtObWdt547GH2tThNgydx\n9rHDulzHz15/BthKSzsMm3QiU4bXHFYMmSxvtlCZ4yFuZY5beSG+Ze6LKJr3TwMuMLM3gdnAmWb2\na2CDmQ0DCP9ujCC2jOrpAT0vr9nOvpZ2Cgx+PXdFl/M0tbbxwsrtnP22IcEyq3ekLVYREcl9GU/6\n7n6Nu49097HAxcBf3P0jwBzgsnC2y4AHMh1bpvX0gJ55y7cCcPlp43hm2RaWbmw8aJ6XVu+gqbWd\nD08dRVVZES+tUdIXEZHuZdN9+t8DzjGzJcDZ4XBe6+kBPfOWbWXikEo+864JFBUY9zy7sot5tgAw\nfdxAjhlRo5q+iIj0KNKk7+4N7n5++H6Lu5/l7hPd/Wx33xplbJnw1m17B/bgb21rZ/6KbUwfP5Da\nqlLeffRQ7p+/mj3NrQfMN2/5ViYNraJ/RQnHjKxh8fqdNLW2ZSx+ERHJLdlU04+dYTXBA3o636u/\naN1OGptamT5uEAAfO3UsO/a2cOkt89i4M5i3pePEYNxAAI4d0Z+WNue19T3f4iciIvGlpB+h7h7Q\nM29Z0MjRkdBPHjuQmy89kcXrdnHBjU9x25PL+cljS9jT3Ma08MTg2JFBr/2X1MQvIiLdUNKPUP+K\nYgZXlvDwwvUkPi9h3vKtjBvcjyHVb92//55jhvHbfz6V4iLjugcX8T9/WUp5cSGnjA9ODEYOKGdA\nRbGu64uISLcyfp++vMXM+OK5R3HN717mdwvW8MGTRtLW7jz35lbOmzL0oPknD6/mL1+sZ8feFgAq\nSgqpKCnav65jRvZXD34REemWavoR+4epozhhdH++89CrrNq6h0/e8Rw79rZwxqQhXc5fXFjA4MpS\nBleW7k/4HY4bWcPrG3bR2NTa5bIiIhJvSvoRKygwvn3h0Wzb08xZP3qcvy3ZzLcvPJrzjj64pn8o\nJ48dSFu7M3/FtjREKiIiuU5JPwtMGV7DZ941geqyYn79yel85JQxvVrPSWMGUFhgPLt8S4ojFBGR\nfKBr+lniy+dN4kvnHkXBYf5gTqJ+pUUcM6Jmf+9/ERGRRKrpZ5G+JPwO08cN5O+rt7OvRQ/pERGR\nAynp55np4wfS0uYsWKnr+iIiciAl/Txz0piBmMGzy9XELyIiB1LSzzM15cVMHlat6/oiInIQJf08\nNG3cQBas3EZza3vUoYiISBZR0s9D08cNoqm1nZdWb486FBERySJK+nlo+riBFBUYf1q4PupQREQk\niyjp56EB/Uo4d0od9y9YrVv3RERkPyX9PPWR6WPYvqeFh15eF3UoIiKSJZT089TbJwxi/OB+3DVv\nZdShiIhIllDSz1Nmxj9OH838Fdt4dd3OqMMREZEsoKSfxz544khKigq4a96KqEMREZEsoKSfxwb0\nK+HC44dz3/OrWb55d9ThiIhIxJT089yXzj2K0sICvvHAQtw96nBERCRCSvp5bkh1GV8890j+tmQz\nD72s+/ZFROJMST8GPnLKGKYMr+a6B19h2+7mqMMREZGIKOnHQFFhAde//xi27W5h5k+f4vUNu6IO\nSUREIqCkHxPHj+rP7E+fwt6WNt7/06d4/PVNUYckIiIZpqQfIyeOHsCcz57GqIEVXDX7BTX1i4jE\njJJ+zAyrKee//+F4du5r5b8eXpzUMgtWbmPO39eq97+ISI5T0o+htw2r5vJTx3LPs6tYur3nH+TZ\nsaeFT93xPJ+/5wWu/u3LNLXqB3xERHKVkn5MXXXOkQytLuOOV5rZ09za7Xw/+PNitu1p5h+mjuLe\n51dx6S/msWlXUwYjFRGRVFHSj6nK0iKumzmF1bva+dDNz7B6256D5vn7qu3cNW8ll506lu9/6Fj+\n55ITWLh2BzNvfJKFa3ZEELWIiPRFUaY3aGajgDuBOsCBWe5+g5kNBO4FxgJvAhe5+7ZMxxcn504Z\nylUnlXLLwj3MvPEpZhw3/IDpTyzZRG1lKf92zpEAzDhuOOMG9+OKO5/nQz97mpsvPYkzJg2JInQR\nEemFKGr6rcAX3X0ycApwpZlNBq4GHnP3icBj4bCk2XG1Rfz+ytMY1r+M3y1YfcBr175WvvuBY6gq\nK94//9Ejanjgs6czvH85P3rk9QgjFxGRw5Xxmr67rwPWhe93mdmrwAhgJlAfznYH0AB8JdPxxdER\nQyp58HPvSHr+2qpSzj9mGDf+dSm79rUccFIgIiLZy6K8DcvMxgJPAEcDK929fzjegG0dw52WuQK4\nAqCuru6k2bNnpzSmxsZGKisrU7rObNbb8i7a0sZ/PbePfzuplGNrM37u2Cdx28egMsdB3MoL8S3z\njBkz5rv71N4sH9m3tZlVAr8FrnL3nUGeD7i7m1mXZyPuPguYBTB16lSvr69PaVwNDQ2kep3ZrLfl\nndbcyo/m/5m9VSOpr5+U+sDSKG77GFTmOIhbeSG+Ze6LSHrvm1kxQcK/y91/F47eYGbDwunDgI1R\nxCbJqSgp4tiRNcxbtiXqUEREJEkZT/ph0/2twKvu/qOESXOAy8L3lwEPZDo2OTzTxg3ipdU72Nus\nB/aIiOSCKGr6pwEfBc40sxfD13uB7wHnmNkS4OxwWLLY9PEDaW13FqzUnZUiIrkgit77TwLWzeSz\nMhmL9M3UMQMoMJi3fCunHTE46nBEROQQ9EQ+6bWqsmKmDNd1fRGRXKGkL30ybdxAXli1nX0tuq4v\nIpLtlPSlT86ZXEdzazu3Prk86lBEROQQlPSlT04ZP4j3HD2Unzy2hFVbD/7RHhERyR5K+tJn35gx\nmcIC49o5rxDlEx5FRKRnSvrSZ8NqyvnXs4/kL4s38siiDVGHIyIi3VDSl5T42GljOaquiv/830Xs\naW6NOhwREemCkr6kRHFhAd9+/9Gs2b6Xnzy2NOpwRESkC0r6kjInjx3Ih08ayS1/W8brG3ZFHY6I\niHSipC8pdfV7JtGvtIhrfveynskvIpJllPQlpQZVlnLdzCksWLmND/3sadZs3xt1SCIiElLSl5Sb\nefwIbr1sKiu37GHmjU+ydKOa+kVEsoGSvqTFmZPq+P2Vp9LY1Mqdz6yIOhwREUFJX9LoiCFVvGNi\nLY8u2qCH9oiIZAElfUmrc95Wx9od+1i0bmfUoYiIxJ6SvqTVGZOGYAaPLtqY8nW3tTuznniDP7yw\nJuXrFhHJR0VRByD5rbaqlBNG9efRVzfwhbMnpmy9u/a1cNXsF3ls8UZKCgs4blR/xg3ul7L1i4jk\nIyV9SbtzJg/l+39azLodexlWU97jvD/882u8msSlgNc3NLJm+16+dO6R/PzxZXzjgYXc+fFpmFmq\nwhYRyTtq3pe0O2fyEAAefbXnJv7F63fyP39ZyusbGlm3Y1+Pr9qqUn718Wl89syJfPHcI/nbks38\n38vrMlEcEZGcpZq+pN2E2krGDqrgpr8u5S+vbqCsuJD/vGAKQ6rLDpjvrrkrKSkq4IErT2NAv5Kk\n1/+RU8bwm/mrue5/F3HmpCFUlOiwFhHpimr6knZmxr/UH0FtVSlbdjfz8Cvruf3pNw+YZ3dTK79/\nYQ3nHzPssBI+QFFhAd84fzIbdzUx58W1KYxcRCS/KOlLRlx08ijmfPZ05nz2dM6cVMd9z6+iubV9\n//Q5f19LY1Mrl54yulfrnzZuIJOGVvHreSv0TAARkW4o6UvGXXrKaDY3NvPnResBcHd+PXcFk4ZW\nceLoAb1ap5lx6fTRLFyzk5dW70hluCIieUNJXzLunRNrGTmgnLvmrgSg4fVNvLJ2J5eeMqZPve8v\nPGEEFSWF3DXvwMf+btrVxL//5u/89bXUPytARCSXKOlLxhUWGJdMG80zy7bwg4cX86k7nmdCbT/e\nf8KIPq23qqyYmccPZ87f17JjbwsAC9fs4IIbn+Q381fz8duf42ePv6HmfxGJLXVzlkhcNHUUP370\ndX761zeoP6qWn1xyApWlfT8cL50+hnueXcUls+bSv6KYBSu3MahfKb/957fzy6fe5Ht/XMzY6gJu\neWMulaVF/Mf7JjNqYEUKSiQikv2U9CUStVWlfPndk9jX0sa/nHEEhQWpeajO0SNquOztY3hl7U6a\nW9s5Z/JQrp0xmcGVpZw4egDHjezPfU+/RlNLOwtWbOZrLQu54/KT9VAfEYkFJX2JzKfeOT4t6/3P\nmUd3Od7M+NQ7xzOxfSX19ady+1PL+eb/LuKhl9fzvmOH7Z+vsamV7z70Km9sakx5bIUFxkdPGct5\nRw9N+bpFRA5F1/Qltj5yyhimDK/mugdfobGpFYCVW/bwwZueZvZzq2hrd9qdlL7WbNvLZ349n/9+\n5HXa29W3QEQySzV9ia2iwgK+feHRfODmp7nwp08xsF8Jr63fBcAdl0/j9ImDU77NfS1t/McfFnLD\nY0t4+JX1VJcX92l9E2or+dr73paS/hDpMH/FNm59chmfP2sik4ZWRx2OSOyppi+xdsLoAVx7/mQG\nV5ZQYHDK+IE8cOVpaUn4AGXFhfzgQ8dy3cwp9K8opsDo9Qvg3udW8sGbnmbV1j1pibcvfvN80KHy\noZfX84GbnubhV9ZHHZJI7GVd9cDMzgNuAAqBW9z9exGHJHnuY6eN42OnjcvY9syMf3r7WP7p7WP7\nvK6/LdnEZ+9+gQtufJKfXnoip05I3cnKc29u5cePvk5TS/uhZ+6kua2dl1bv4NQJg/jGjMl85f6X\n+PSv5nPC6P4U9qLTZEVpEV857yimDK857GVF5C1ZVdM3s0Lgp8B7gMnAJWY2OdqoRLLXOybW8ocr\nT2NQZSkfvfVZfvXMmyl5DsE9z67kH38xl+WbdlNaXHDYr6qyIj535hHc+fFpTBpazb2ffjufOH0c\nFSWFvVrforU7+dDNz/B/L+mXFEX6Ittq+tOApe6+DMDMZgMzgUWRRiWSxcYN7sfv/+VUvjD7Rb7+\nwCvc/ewqyooPPJ/fuWMvNyx6Kqn1Nbe288ranbzzyFr+5+ITqKnoW78DCC5rfP383p+/b9y1j8/8\naj5X3r2Anz9Rk9QtnodT5nwQt/JC7pT5Rxcdz7jB/aIOAwDLpqeTmdmHgPPc/ZPh8EeB6e7+2YR5\nrgCuAKirqztp9uzZKY2hsbGRysrKlK4zm8WtvJC/ZW535/+WtfDa1oOb41vbWikqTP4c/4gBBcwY\nX5yy5yekQku787slLazamdzlhsMtc66LW3khd8r8T1NKGFKRmob1xsZGZsyYMd/dp/Zm+ez/tDpx\n91nALICpU6d6fX19Stff0NBAqteZzeJWXsjvMp95Rtfj86XM55yZ/Lz5UuZkxa28EN8y90VWXdMH\n1gCjEoZHhuNERESkj7It6T8HTDSzcWZWAlwMzIk4JhERkbyQVc377t5qZp8FHia4Ze82d38l4rBE\nRETyQlYlfQB3fwh4KOo4RERE8k22Ne+LiIhImijpi4iIxISSvoiISEwo6YuIiMSEkr6IiEhMKOmL\niIjEhJK+iIhITCjpi4iIxISSvoiISExk1U/rHi4z2wSsSPFqBwObU7zObBa38oLKHBdxK3Pcygvx\nLXM/d6/tzcI5nfTTwcye7+3vFOeiuJUXVOa4iFuZ41ZeUJl7Q837IiIiMaGkLyIiEhNK+gebFXUA\nGRa38oLKHBdxK3Pcygsq82HTNX0REZGYUE1fREQkJpT0Q2Z2npm9ZmZLzezqqONJBzMbZWZ/NbNF\nZvaKmX0hHP9NM1tjZi+Gr/dGHWsqmdmbZvZyWLbnw3EDzewRM1sS/h0QdZypYGZHJezHF81sp5ld\nlW/72MxuM7ONZrYwYVy3+9TMrgn/t18zs3dHE3XfdFPmH5jZYjN7ycx+b2b9w/FjzWxvwv7+WXSR\n9143Ze72WM71/dxNee9NKOubZvZiOL5X+1jN+4CZFQKvA+cAq4HngEvcfVGkgaWYmQ0Dhrn7AjOr\nAuYDFwIXAY3u/v8iDTBNzOxNYKq7b04Y91/AVnf/XniSN8DdvxJVjOkQHtdrgOnA5eTRPjazdwKN\nwJ3ufnQ4rst9amaTgXuAacBw4FHgSHdviyj8XummzOcCf3H3VjP7PkBY5rHAgx3z5apuyvxNujiW\n82E/d1XeTtN/COxw9+t6u49V0w9MA5a6+zJ3bwZmAzMjjinl3H2duy8I3+8CXgVGRBtVZGYCd4Tv\n7yA4+ck3ZwFvuHuqH2AVOXd/AtjaaXR3+3QmMNvdm9x9ObCU4H8+p3RVZnf/s7u3hoNzgZEZDyyN\nutnP3cn5/dxTec3MCCpo9/RlG0r6gRHAqoTh1eR5MgzPEk8A5oWjPhc2Ed6WL03dCRx41Mzmm9kV\n4bg6d18Xvl8P1EUTWlpdzIFfEPm8j6H7fRqX/++PA39MGB4XNvs+bmbviCqoNOnqWM73/fwOYIO7\nL0kYd9j7WEk/hsysEvgtcJW77wRuBsYDxwPrgB9GGF46nO7uxwPvAa4Mm9D28+AaV15d5zKzEuAC\n4DfhqHzfxwfIx33aEzP7GtAK3BWOWgeMDo/7fwPuNrPqqOJLsVgdywku4cCT+F7tYyX9wBpgVMLw\nyHBc3jGzYoKEf5e7/w7A3Te4e5u7twO/IMeaxA7F3deEfzcCvyco34awj0NHX4eN0UWYFu8BFrj7\nBsj/fRzqbp/m9f+3mX0MOB+4NDzZIWzi3hK+nw+8ARwZWZAp1MOxnLf72cyKgA8A93aM6+0+VtIP\nPAdMNLNxYQ3pYmBOxDGlXHhN6FbgVXf/UcL4YQmzvR9Y2HnZXGVm/cJOi5hZP+BcgvLNAS4LZ7sM\neCCaCNPmgFpBPu/jBN3t0znAxWZWambjgInAsxHEl3Jmdh7wZeACd9+TML427MiJmY0nKPOyaKJM\nrR6O5bzdz8DZwGJ3X90xorf7uChtIeaQsOfrZ4GHgULgNnd/JeKw0uE04KPAyx23fQBfBS4xs+MJ\nmkPfBD4dTXhpUQf8PjjfoQi4293/ZGbPAfeZ2ScIfqnxoghjTKnw5OYcDtyP/5VP+9jM7gHqgcFm\nthq4FvgeXexTd3/FzO4DFhE0gV+ZSz26O3RT5muAUuCR8Bif6+6fAd4JXGdmLUA78Bl3T7ZDXNbo\npsz1XR3L+bCfuyqvu9/Kwf1zoJf7WLfsiYiIxISa90VERGJCSV9ERCQmlPRFRERiQklfREQkJpT0\nRUREYkK37IkIZjYIeCwcHAq0AZvC4T3ufmokgYlISumWPRE5QHe/YiYiuU/N+yLSIzNrDP/Whz/s\n8YCZLTOz75nZpWb2rJm9bGYTwvlqzey3ZvZc+Dot2hKISAclfRE5HMcBnwHeRvB0xyPdfRpwC/C5\ncJ4bgP9295OBD4bTRCQL6Jq+iByO5zp+vtbM3gD+HI5/GTgjfH82MDl8LCxAtZlVuntjRiMVkYMo\n6YvI4WhKeN+eMNzOW98nBcAp7r4vk4GJyKGpeV9EUu3PvNXUT/jjKCKSBZT0RSTVPg9MNbOXzGwR\nQR8AEckCumVPREQkJlTTFxERiQklfRERkZhQ0hcREYkJJX0REZGYUNIXERGJCSV9ERGRmFDSFxER\niQklfRERkZj4/3f/CkJqadlSAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig,ax=plt.subplots(1,1,figsize=(8,6))\n", "time = range(168)\n", "ax.plot(time, number_of_shallow_particles)\n", "ax.grid('on')\n", "ax.set_title('Number of Particles (init depth < 6) in Domain at time = x')\n", "ax.set_ylabel('Number of Particles')\n", "ax.set_xlabel('Time')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }