{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Attempt at concatenating netcdf subdomain files." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import netCDF4 as nc\n", "import numpy as np\n", "\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Strategy: For each variable on the horizontal grid, insert the data from each subdomain into the correct position of a larger array. Also, copy all of the other \n", "\n", "First, I need to determine how the subdomains are organized. The subdomains are divided into rows and columns. An example decomposition is:\n", "\n", "| | | | |\n", "|--|--|--|--|\n", "|08|09|10|11|\n", "|04|05|06|07|\n", "|00|01|02|03|\n", "\n", "\n", "For my case, I have figured this layout out \"by eye\" and stored in an array called filenames. Ideally, we would write code to determine the decomposition automatically. This is complicated by the fact that we do not always wish to recombine over the full domain.\n", "\n", "Next, I can determine the x/y start and end indces for each of my sudomains by knowing the dimensions of each subdomain. I will store these in a dictionary with a filename key.\n", "\n", "Next, I will initialize the dimensions and variables of my new file by copying the dimensions and variables of the file in filenames[0,0]. \n", "\n", "Finally, I will loop through each file and each variable and insert the data into the correct positition of my new array. I have written some functions to help with this. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def define_shapes(filenames):\n", " \"\"\"Creates a dictionary object that stores the beginning and ending i, j coordinate for each \n", " subdomain file stored in names.\n", " Names should be orgnaized in a way that corresponds to the shape of the region you are compiling.\n", " The first axis (rows) of names is along y, second axis (columns) is along x\n", " names[0,0] is the bottom left subdomain\n", " names[-1,0] is the top left subdomain\n", " names[0,-1] is the bottom right subdomain\n", " names[-1,-1] is the top right subdomain\n", " \n", " Beginning/ending i = iss/iee, beginning/ending j = jss/jee\n", " \n", " returns: a dictionary of dictionarys. First level keys are the filenames, second level are iss,iee,jss,jee\n", " \"\"\"\n", " \n", " jss = 0\n", " for j in np.arange(filenames.shape[0]):\n", " iss = 0\n", " for i in np.arange(filenames.shape[1]):\n", " name = filenames[j,i]\n", " f = nc.Dataset(name)\n", " x = f.dimensions['x'].__len__()\n", " y = f.dimensions['y'].__len__()\n", " shapes[name] = {}\n", " shapes[name]['iss'] = iss\n", " shapes[name]['iee'] = iss+x\n", " shapes[name]['jss'] = jss\n", " shapes[name]['jee'] = jss+y\n", " iss = iss+x\n", " jss = jss +y\n", " return shapes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check that it works for my case." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "shapes = {}\n", "filenames = np.array([['CODAR_0139.nc', 'CODAR_0140.nc', 'CODAR_0141.nc'],\n", " ['CODAR_0151.nc', 'CODAR_0152.nc', 'CODAR_0153.nc'],\n", " ['CODAR_0163.nc', 'CODAR_0164.nc', 'CODAR_0165.nc']])\n", "\n", "\n", "shapes = define_shapes(filenames)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'CODAR_0139.nc': {'iee': 25, 'iss': 0, 'jee': 22, 'jss': 0},\n", " 'CODAR_0140.nc': {'iee': 58, 'iss': 25, 'jee': 22, 'jss': 0},\n", " 'CODAR_0141.nc': {'iee': 80, 'iss': 58, 'jee': 22, 'jss': 0},\n", " 'CODAR_0151.nc': {'iee': 25, 'iss': 0, 'jee': 55, 'jss': 22},\n", " 'CODAR_0152.nc': {'iee': 58, 'iss': 25, 'jee': 55, 'jss': 22},\n", " 'CODAR_0153.nc': {'iee': 80, 'iss': 58, 'jee': 55, 'jss': 22},\n", " 'CODAR_0163.nc': {'iee': 25, 'iss': 0, 'jee': 80, 'jss': 55},\n", " 'CODAR_0164.nc': {'iee': 58, 'iss': 25, 'jee': 80, 'jss': 55},\n", " 'CODAR_0165.nc': {'iee': 80, 'iss': 58, 'jee': 80, 'jss': 55}}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "shapes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a new netcdf file. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "new = nc.Dataset('CODAR_all.nc', 'w')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Iniitilize dimensions" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def initialize_dimensions(newfile, oldfile):\n", " \"\"\"Initialize new file to have the same dimension names as oldfile\n", " Dimensions that are not associated with the horizontal grid are also given\n", " the same size as oldfile\"\n", " \"\"\"\n", " for dimname in oldfile.dimensions:\n", " dim = oldfile.dimensions[dimname]\n", " if dimname=='x' or dimname=='y':\n", " newdim = newfile.createDimension(dimname) \n", " else: \n", " newdim = newfile.createDimension(dimname, size=dim.__len__())" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "initialize_dimensions(new, nc.Dataset(filenames[0,0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "OrderedDict([('x', (unlimited): name = 'x', size = 0\n", "), ('y', (unlimited): name = 'y', size = 0\n", "), ('deptht', : name = 'deptht', size = 40\n", "), ('depthu', : name = 'depthu', size = 40\n", "), ('depthv', : name = 'depthv', size = 40\n", "), ('time_counter', : name = 'time_counter', size = 960\n", "), ('tbnds', : name = 'tbnds', size = 2\n", ")])\n" ] } ], "source": [ "print(new.dimensions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Initialize variables" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def initialize_variables(newfile, oldfile):\n", " \"\"\"Initialize new file to have the same variables as oldfile\n", " \"\"\"\n", " newvars = {}\n", " for varname in oldfile.variables:\n", " var = oldfile.variables[varname]\n", " dims = var.dimensions\n", " newvar = newfile.createVariable(varname, 'float32', dims)\n", " newvar[:]=var[:]\n", " newvars[varname] = newvar\n", " return newvars" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "newvars=initialize_variables(new, nc.Dataset(filenames[0,0]))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "OrderedDict([('x',\n", " (unlimited): name = 'x', size = 25),\n", " ('y',\n", " (unlimited): name = 'y', size = 22),\n", " ('deptht',\n", " : name = 'deptht', size = 40),\n", " ('depthu',\n", " : name = 'depthu', size = 40),\n", " ('depthv',\n", " : name = 'depthv', size = 40),\n", " ('time_counter',\n", " : name = 'time_counter', size = 960),\n", " ('tbnds',\n", " : name = 'tbnds', size = 2)])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new.dimensions" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "OrderedDict([('nav_lon', \n", " float32 nav_lon(y, x)\n", " unlimited dimensions: y, x\n", " current shape = (22, 25)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('nav_lat', \n", " float32 nav_lat(y, x)\n", " unlimited dimensions: y, x\n", " current shape = (22, 25)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('deptht', \n", " float32 deptht(deptht)\n", " unlimited dimensions: \n", " current shape = (40,)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('depthu', \n", " float32 depthu(depthu)\n", " unlimited dimensions: \n", " current shape = (40,)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('depthv', \n", " float32 depthv(depthv)\n", " unlimited dimensions: \n", " current shape = (40,)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('time_counter', \n", " float32 time_counter(time_counter)\n", " unlimited dimensions: \n", " current shape = (960,)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('time_counter_bnds', \n", " float32 time_counter_bnds(time_counter, tbnds)\n", " unlimited dimensions: \n", " current shape = (960, 2)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('sossheig', \n", " float32 sossheig(time_counter, y, x)\n", " unlimited dimensions: y, x\n", " current shape = (960, 22, 25)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('vosaline', \n", " float32 vosaline(time_counter, deptht, y, x)\n", " unlimited dimensions: y, x\n", " current shape = (960, 40, 22, 25)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('vozocrtx', \n", " float32 vozocrtx(time_counter, depthu, y, x)\n", " unlimited dimensions: y, x\n", " current shape = (960, 40, 22, 25)\n", " filling on, default _FillValue of 9.969209968386869e+36 used),\n", " ('vomecrty', \n", " float32 vomecrty(time_counter, depthv, y, x)\n", " unlimited dimensions: y, x\n", " current shape = (960, 40, 22, 25)\n", " filling on, default _FillValue of 9.969209968386869e+36 used)])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new.variables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Add new data from all files" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def concatentate_variables(filenames, shapes, variables):\n", " \"\"\"Concatentate netcdf variables listed in dictionary variables for all of the\n", " files stored in filenames. shapes is a dictionary object that stores the start and \n", " end index for the subdomain in each file. \"\"\"\n", " for name in filenames.flatten():\n", " for varname in variables.keys():\n", " newvar = newvars[varname]\n", " f = nc.Dataset(name)\n", " oldvar = f.variables[varname]\n", " x1=shapes[name]['iss']\n", " x2=shapes[name]['iee']\n", " y1=shapes[name]['jss']\n", " y2=shapes[name]['jee']\n", " if 'x' in newvar.dimensions:\n", " newvar[...,y1:y2,x1:x2] = oldvar[...,:, :]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "concatentate_variables(filenames, shapes, newvars)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check that it makes sense" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(80, 80)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "newvars['nav_lat'].shape" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(960, 40, 80, 80)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "newvars['vosaline'].shape" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'deptht': \n", " float32 deptht(deptht)\n", " unlimited dimensions: \n", " current shape = (40,)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'depthu': \n", " float32 depthu(depthu)\n", " unlimited dimensions: \n", " current shape = (40,)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'depthv': \n", " float32 depthv(depthv)\n", " unlimited dimensions: \n", " current shape = (40,)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'nav_lat': \n", " float32 nav_lat(y, x)\n", " unlimited dimensions: y, x\n", " current shape = (80, 80)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'nav_lon': \n", " float32 nav_lon(y, x)\n", " unlimited dimensions: y, x\n", " current shape = (80, 80)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'sossheig': \n", " float32 sossheig(time_counter, y, x)\n", " unlimited dimensions: y, x\n", " current shape = (960, 80, 80)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'time_counter': \n", " float32 time_counter(time_counter)\n", " unlimited dimensions: \n", " current shape = (960,)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'time_counter_bnds': \n", " float32 time_counter_bnds(time_counter, tbnds)\n", " unlimited dimensions: \n", " current shape = (960, 2)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'vomecrty': \n", " float32 vomecrty(time_counter, depthv, y, x)\n", " unlimited dimensions: y, x\n", " current shape = (960, 40, 80, 80)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'vosaline': \n", " float32 vosaline(time_counter, deptht, y, x)\n", " unlimited dimensions: y, x\n", " current shape = (960, 40, 80, 80)\n", " filling on, default _FillValue of 9.969209968386869e+36 used,\n", " 'vozocrtx': \n", " float32 vozocrtx(time_counter, depthu, y, x)\n", " unlimited dimensions: y, x\n", " current shape = (960, 40, 80, 80)\n", " filling on, default _FillValue of 9.969209968386869e+36 used}" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "newvars" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX2QXWd9378/7WpXu9JK65WxJIMHqRBRQm2wIWDA1BYx\n4aXESZupC5NkNBmPJ50kNaQ0jZ1pm02mLTgzTMhLM51Swqg0IXEgeOyGFAvH8pCQAQw2MX5BIZEa\nG9Aav0vetVarffrHvcL3fJ9nz+8559679xzp+5nRSM95ec5zzz336Pd8n9+LhRAghBCivWwY9QCE\nEEL0h17kQgjRcvQiF0KIlqMXuRBCtBy9yIUQouXoRS6EEC3HfZGb2U1m9oCZ3W9mf2hmk2Y2Z2YH\nzeywmd1hZrPrMVghhBAxpS9yM9sN4HoAl4UQLgYwBuA9AG4EcDCEsBfAnd22EEKIEeBZ5M8COAVg\n2szGAUwD+A6AawAc6B5zAMCPD22EQgghSil9kYcQngTwYQD/gM4L/OkQwkEAO0IIC93DFgDsGOoo\nhRBCrIknrbwMwPsB7AZwIYAtZvZTvceEToy/4vyFEGJEjDv7XwfgiyGEJwDAzP4UwBsBHDOznSGE\nY2a2C8BjqZPNTC94IYSoQQjBco/1XuQPA/iPZjYF4HkAVwP4MoDnAOwHcHP371vX6uBI9++NGRef\n2lRsbxyj4+mEjanR0znRRRLt+SeB+bnM81PbJjPO6YWvsca4epk/Csy/vKSPQYyT99P3kRw3HTP/\nJWD+rSV9bnbaALCF2lupvY3a24vNMFdsPzHHHQK/Pm+4Yf6Fjh7H+YX9T2O2tH0cM1Gf3jFeewlT\nUZ/3zP85XjF/7ffbi5gu7Oc293GSvoDFxDWW6ZjT9EWfXJ4o7l8Zp/YYTn3wQ9h4042Fbb2snCq2\nV0/Tw/d88RpYoXfY89GwgRWUH8PtFQCfmAd+ej59fmobt09Rm19sOb9D/l2lzrky+x2+ZhffJ4Tw\ndTP7XwDuAbAK4GsA/geAGQC3mNl1AI4CuHbNToQQQgwVz3ZECOE3APwGbX4SHevcJWWJr3lsVQu8\nhmUbtcfQWSkYW2N/jtXvUcd65rZRP3XG6d0/72lI7WeLewMdV/X7SPXJFoxj1R/fVrTu2GoFgFNY\nKWxfRvEcbrOVyu21tlVhpc/z6zKG04U2f47xcdq/4r42IiILfMX5rJ5lDKQtbq+92rM9ZeWzxX2a\n2qlzesm5NXzMT/5axknlKLITwFXxbLNxXLXdP6YJXPWPRj2CPF53VfxybyLbr3rVqIeQxYYrrhj1\nEPK4+KpRj2Ao6EUOoA2/ab3IB8sPteFLB3B+S17kY29pyYv8kqtGPYKhUH2OdLYzCPmm6oLrIPrI\nGWe/fdYZN8sknmySOsaRUlaovThWnGKlFvi8RUNeJIzbtDiHWBrx5JgcKWY95BZvHCueDJI651TF\nc3hx01tkTB3jSS28P9WnJ6WkJJ5eUr+R/f1LJx6yyIUQouU0yiI/Rf8b8mLnQKi6wJeiX0t3EG6T\ng1hArdrnIBaXvYXL1DZukzfh8a1Fi3spcsmLZRRvcdNf7IxvOG9jq9230P2HsapV3+8CbA7saphF\nnXMqX4Pa3kJm6hwPz4V3nZBFLoQQLUcvciGEaDlDl1YWu3/X8RFYoWlOMpLTo+o5g5BeBsEgFlC9\n2WtVWSTnGt7iptcG4shOklZOchvlfuO8UJk6hxcVue1JL6ltsdRSHkGZ7rN4jreg6i+4piQhOmbV\nkWuGIaV4PuA5MkjVPupEdjJReLpz/JCQRS6EEC1HL3IhhGg5QxcOlrp/5yTNOmup4/1RlUH4u3t9\n1vGMYS+VGl4rgUPwp4vaC3ul5Mkgk5XaLIuk/Ls9qSRKRlWrz3J5hqUTT2pJwX7jdULyR0KO73nZ\n8S1GFrkQQrQcvciFEKLlrJu0klrM5W2Rl8p6JIMbxB3I8e6oSh0vFY+q2Q3rpBbw2jn5yCnfuJfN\nkPN6e+H3QOy1wm1PFmGJo9NHuVRSJ8ho0F4qyayNjpdKY6kqjeQc73mt8FfE+5cQ8+lfLbZ/YvAh\n+7LIhRCi5ehFLoQQLWeky9E8K/GKUJwahfSyXvT7TeTIHt7+ql4sqW1VA4QS0goH/BwfKy+RFksp\nRdEu5bUSe7qUyyKe9AL48kudPj0vldi7xpFvEjJKa71U+iUnIKjq/pM1x9InssiFEKLlDP2/3jN1\ncKuUfMsmFbbrLUawQeLtHwbDyLiYQ9Vz6oyT/cS9/ONxXeTIT/w4uM0Wevn+VPZDXpiMfc/L/cpT\nPt+ehR1b1+U+351jBru4mcotniqmPHCoXNy6ZD9cD7yc56ljhoBrkZvZK8zs3p4/z5jZDWY2Z2YH\nzeywmd1hZrNeX0IIIQaP+yIPIXwzhHBpCOFSAK9FJw/WZwDcCOBgCGEvgDu7bSGEEOtM1cnz1QC+\nFUJ4xMyuAXBld/sBAIeQeJmXSSrexbnQRNR3qgPP73MU1JlFDsO/vd9rDCJE38lkCMSLlyyN+FJL\nsZ3y+WbZw/M992SS1DZvcbNWZkLnS/MWN1MLmSylDEVa6Ze2hNPXWUAdAFUXO98D4JPdf+8IISx0\n/70AYMfARiWEECKb7Be5mU0A+FEAf8L7QggBQBjguIQQQmRSZXL9TgBfDSF8r9teMLOdIYRjZrYL\nwGOpk367599vBPCmeuNMwn7lQMK33JNamiC9AP17lIwq1YBXs9DxG1+cTlW4L27zvFB4/wlqpwpL\nsFTiebHwfpZJUud4Xiqe1AJUD9GPzs+QTXjbyqnyPsc3FjVP7/jOQRULS3iZC1Pn5BSj6CXn+a4q\n1f5s3fD7IwCO1jy32s//vXhBVgGA2wDsB3Bz9+9bUyd9oPbQhBDiXGFP988Z7q50dpa0Ymab0Vno\n/NOezR8C8DYzOwzgrd22EEKIdSbLIg8hPAfgfNr2JDov93XD82IBEp4sVSUHvsZ6ZBnMYRCOBMNI\nA1BRSllhaSURrMPSiedRUvV4ICWdlMsivD8nyMjPqOhnJmSqBgDlBPssP58qnLo2rDasns54sPi6\nz1t5pzn1NYeB53XFt+o9g89kWAeF6AshRMvRi1wIIVrO0H02ziw+18m1woUmxtvqYVKHYRSn8PZ7\n+VxS/Xk1OFlK2cwSRcprpTwYh/ezhBFLL/41PGklrrfpe61UrZ+ZLPpQtY8oACjDI6ViANBqzvF8\nzIojpbCXiueRktPHOYQsciGEaDnrZuNm/WfJ+cZpdGyhpxj3cpZ72Q6HcUfq+GNXPX49rsHWN1A5\nu+HiWNE6Ti1Esh959UyF5RZ6ahtb7bHl6y9M9p2ZMNFn1QXSk7RwyRZ5cmHSs57r4FnUXBKN83hz\nFsFUVkHuI8MZokCd30zVa6wTssiFEKLl6EUuhBAtp9GLnVFpt6Ysdo6C9fBn99opd2NncZOzG3o+\n34AvlXgLj167M45q8o0XCt85p2LZtYzMhp5cc3KZrkEySeQj/nx8L1yfbo+c41ka8QoyeMfn4J2T\n+n3w18zr5D/WDL9xRha5EEK0HL3IhRCi5QxdrOCF5SqctUpKjttuVV/1QfTJ+zMq3rt+49PlXiqp\nyvGxNMKSRXlWQa8NxJKFJ6XkeK3066WSuhfcx/IqeeyQdHJyifpgKYVlFCCWMdjFzPPUyJE9PC8W\nr13HR7xOnVvWgLmPT/9qsf0TzZBaZJELIUTL0YtcCCFaztDVi1djHgBwpPt3L1U9WdiLpTEh+6Ng\nPQpJeME+QCSlBCe7oZd1EMjI6NdnO3WNWOYoD9FPEUs+5d41Xo3PZB9ewM9J9lIhKSUVWDMMjxHG\n62MY4fZ1Umnwdfk30RAphZFFLoQQLUcvciGEaDnrJk7UCQg6pxhGMYp+A368zIaJYxY3F20Dr/Zl\nyqMkRxqpsn8Y5MggVfOksNQCxF4qfsAP3c+cnCUnqF3Vo2QQb5FBFJaoVh8jDed84XZDkUUuhBAt\nZ90s8sXENrbSuc3/CU/VGa33Pzv36WVHTJ3ThEXXQZSPq5hbPLVtebK/MPW1tg2aMfqix+lBWabj\nvcVQoLqfuLc4CsSLm76fOKq1U9v6zSoIVF9oHEZpN88nnDJzAgB+uJmLmR65xZdnzexTZvaQmT1o\nZm8wszkzO2hmh83sDjObHfZghRBCxORKK78F4LMhhFcCuATAwwBuBHAwhLAXwJ3dthBCiHXGnZCb\n2TYAbwkh7AeAEMIKgGfM7BoAV3YPOwDgEEpe5nsTfuSPJrZVGlwCLj4RZUxcr2rcTcArmuEtdnpt\nAIG2eb7SXiZDIC/T4KhJyiAV/cQjqWU59qlfJukkKgzBRSBYFmHZhBc2U+fwAt8gFjv7/R2mrsHP\nY1zRb7BjaDA5FvkeAN8zs4+b2dfM7KNmthnAjhDCQveYBQA7hjZKIYQQa5L7f+llAH4hhPAVM/sI\nyPIOIQQzC+nT7+r59250/l8QQgjxAkcAHK19ds6L/FEAj4YQvtJtfwrATQCOmdnOEMIxM9sF4LH0\n6fu6w5wHcHftgabIqeHJU8sp9szgqed61PBMkeMt0y/9+o0nvFbYb5wLR7DcwPICe26k8LxYxsjl\nwWvXIS/7YfEYT2phKSXyCUei6r3npeLVvkylI32OL+r0kUO/v5sczzD+WqumWm2Uj/geFI3cau9K\nV1oJIRwD8IiZ7e1uuhrAAwBuB7C/u20/gFsrXVkIIcRAyP1/898A+AMzmwDwdwB+Bh2b8RYzuw6d\nOcG1QxmhEEKIUrJe5CGErwP4ocSuqwc7nHI4+2HOMSvOJ5ziGTJPt1LnezKItz/V5zAkHC+xPksp\nntSSCKBYmiyXUnKKPDA5x/QLBwB5eME+qWP6LgqBjGyG7IXC7ePUZhkF8IOGBpGJ0IODd1KZNpmq\n3jR8b362ncE/KRSiL4QQLWfdgsv3JHzGOUe5F6LPpAyFqA+nE85pnuV3nmO1D5pBJCryFjudxc2V\nxLpkXH2+mt94Tji+V0me4fD7nD6rXiM1a4gXN8lP3LHAV58rzm4AACfIAn8a1dpshaYWLr3Sbp7l\nm6Lqj5d9wPlZTPXHM0SOLd9J7TefPRY4I4tcCCFajl7kQgjRctZNWjnshOOn8NZYUvt5W5QHncvF\nkUwSSSs5C5PDyNfM09s6+cqr+o07IfknJ+P/9+tIJR6jyC/OeFJLaowsKy0uFqWSxeNF/WD1GdIP\nHk8MhLcdc/Y/Re3+Xehj+PnO8U1nicfLRMhx4ucnruHFhLDMdBYji1wIIVqOXuRCCNFy1k1aSS06\ns+zBsgi3c2Z0VROcLdF0bCPNmKdSEeRVS2F55wPVUwPkqA/cR1W/cWpz0Qgg9syoI0kMmjq+6l6b\nPVK4DcR+4pGUskBSyqPUwdHEQL9F7Ueo/QS1vWcv9TzPUJufA76dLFkcTfT5XWqz1MI/bh7Dy6j9\nA4lrsFdKSn45R5BFLoQQLUcvciGEaDnrJq2kPEw8GcSTVnK8VjwieYdW+adSGdJ46smeAV5AxSCq\nfTMpxYKvw8c4XipcNKIpRSCqyjcs/+QcE7eLN4OzPALA8aeL+kAkpTxEJzyA8v0A8G1qs2eGpzfm\nZPjjQBpu8zX+ltqPp351R6ntpCZ8ii5yz4upu0S5g13U3k3t28/eACBGFrkQQrQcvciFEKLlrJu0\n8upEQJAXJJQjpXhUTfmQVayiXy+V1PH9yi05AUGOV0rkpULtVBGIOtkNq9KvR0lOfU3+bLx/kaSU\n48+ymwWwfGxrcQN7nLCUch+12dMjBQfO8FfC3iHsGZOq2cnbOMiI5Zyn+FeT0oRYSuFkKlGoHnGU\nxnQ0PuRxklvuP+D0efYii1wIIVrOulnkX09Y3/x/tudXPgzcNAAJ63ljVQs8x9r2Qqm91AGp/M0V\nsxvGIfm+Zev5hXuLoXX8yt2835F1nfJ/L8/SyIuZx5eLpvDS47wiiHh9jxcFeT//ABJdVvbx9sqd\n8ZiA2IrnHObR877AGxLQ7CSKuWcL3XNtWExc48mMcZwbyCIXQoiWoxe5EEK0nKFLK58tWdD0FApP\naslZl6xKTjm5iKoh+4PISOeVcQNcP/HIb5ykluWxct9qwPfhZtkjx+/c77OaD/hiNI33F0ijxc2n\nSON4lAo+ALF08v+ozYuKLJskSulFYed8+/hZ4oVJ9iP/XuIafEwkz7CE4S1kArG0MldsRkEkqT5K\nzgcAfMw559wh60VuZkcBPIvOY3MqhPB6M5sD8McAXopu8eUQwjmUOFIIIZpBrrQSAFwVQrg0hPD6\n7rYbARwMIewFcGe3LYQQYp2pIq3wXPIaAFd2/30AwCEkXuZnJmEcaQzE69ie37i3IA/43qmM64CS\n47UyjOT9jCelpLxWKvqNn6ZreHUtU9tGIbXEPuDldUSBhFcK6RxPP1t0IVn9NulORxMDPUJtljH4\nufFqTgLxj4TlGK+YAu/nsHbA91qJ4F9Z6jVCUgiPO/VZe+HPkRzTfmrLj9wjAPi8md1jZtd3t+0I\nIZzxQ1pA/MgJIYRYB3It8jeHEL5rZi8CcNDMHu7dGUIIZhZSJ/5xz4Uu6f4RQgjRyxGkp3l5ZL3I\nQwjf7f79PTP7DIDXA1gws50hhGNmtgvAY6lzr6B2b9Syt07tyR7rFs1UlarZENfaVoZXJAJwA368\nmpw54ffxMdUCgNJ9lks63Pa9VuJMhbztxGpx7r/06HnFEziQhsPvgVg/ZG8Q74HNKfrAkgR7wrCU\nwvJNyjOGnyUWUQMPnH+5iV/yOMkvPF/nz8FqDXvrpKSVb+8utpf+deKgwgnUfjZxDF/I++x3O9fM\nZU/3T71+XWnFzKbNbKb7780AfgTA/QBuwwsi1X4At1a6shBCiIGQY9TuAPAZMztz/B+EEO4ws3sA\n3GJm16Hrfji0UQohhFgT90UeQjgC4DWJ7U8CuNo7/4ZuQNCHE4FBXqYEnm15UkwKViyqerWsG55X\nSsXgnuQ2J0/H6fFqMkkKz4ulXh/luVQ8L5alxJPzNM3tnzhGc3mvnibvB9KZBauQejj5O/O8lTzJ\njeU2IJZbuI8lvn/8q+LgH8TSCUtE3CUfz+NOFch4EbWPkX7D9U1XvKrAQOwbVzXV6WhQiL4QQrSc\ndVsv/ICTexwAPk3H1Bkc/x/bWAvco2q2w5QfOZ/DVg5b5GPVfMLX2laFdJ/lMwPPAueQ/NRiJ/uJ\n4xG6OcfoBC9Hdw5eoETKQORz2DLlcXjpPHN+EFEfPAgypxPZCtz0AzkzSm//TmqzVb+d2g+8pNhe\nSvpnOPxVjXOGjyxyIYRoOXqRCyFEy2mUK3bVYlCDoDE3gBUGTxaps9jJIfi0v6oPeGqbF4KfI8VU\nlVK8ivccfg8kCkM8QQd46d9Si4ZRRj9qswzC8QU8BiCWKLxFQC9kP5X9kGWjaD2PtRZa3EyF2/M2\nLx0ByyRM6vtgl2+WFy+iNr9gvnBZotM/dwbSTGSRCyFEy9GLXAghWk5jlIUUdTxQcvKyDZyqrqU5\ng/K8VDwf8dQ2UjW8bIdeqHzqmEFILbGUUl47lKUWL5NhZyO5WnheKLE6E8MyB/uVex4lKfngfmqz\n77TXJ5fX/GbimO/yBo7wcCI4UmH/7DHCX4EnvbB0lboGj5uzOPJ3ymH/P5ro8xvvLLaP/FrioOYh\ni1wIIVqOXuRCCNFyRiqtcD1PTzppjA7kFZKoE8Xrheh7Xi0pZxBHnlkZK8926IXKp4+pJrWwbJJz\nXa8mJ0srS08ndBFP9mBZKjW1Z7znoo7ux+Nk+YUlCpYTOOI8pzpLpCPRwL1gtcQpkVTiBbTx+SnP\nGO+z8Lj4XqbGfTm1uVhIQ5FFLoQQLUcvciGEaDkjVStG4mHSVPrNrZLyWnHkGC/bYU7RiKpeKTmF\nJTigxysUcYK9VBZpHv504snyvFS8+5/yFqmamTD1nVWFJQv2zPAkCyAOEnqCDvLyueSk22FvGw4A\nojQokZSSulecD+cotTlDpRegBcT34uW/Wmx/q5leLLLIhRCi5YzUCB7GxT232qo5zU8lFrCiPrzF\nzfVY/MxY7AzsR14x22GdEH0/nD5e7PQscM4l/hS1T/DiZmpRzEtUnwrBLzsf8HNu5ywSMnzL2S+c\nFz/ZIuc2W75AvAjIbb5/XDEtlYedt7FFXdWP/EWJksBbKBbAm/F46QtS5/B3+C/JQv9gMyx0WeRC\nCNFy9CIXQoiWM1JpZR/5kR/MKD7hUfUDDSXD4iCqQVWt15D64H1+u3WKRlTNXMhtIJZS2C88CsFf\n5sXNKK1jjFP2rlaNQO9+e1P/1O3msH+Wb/iau6l9nnNNIFp43LCtGOu+ukA6xyE6/75En5xRkfGy\nH55f/OAXXMiaEjBGX+wTLynmBViepSyN/J1yKTgglqI4pcG2xDkNIMsiN7MxM7vXzG7vtufM7KCZ\nHTazO8ws5a4vhBBiHciVVt4H4EEAZ1YcbgRwMISwF8Cd3bYQQogR4E6+zewlAN4F4L8A+LfdzdcA\nuLL77wPoTLb6fpl7HifMqOpxnqIp2kav3uAgGIDHA2c7zPFK8fZX9XThdsprxZNW2Gvl+FOkN/AU\nOvWxPB9u7oPvd+ph9YqBeHUsU2kAeJz/JHFMDxteXJRFLtxRTBH4cnwrOuci0hi2U4WLyR1FmePm\nV1MH7yVPDiD2juF7w5+VpJTtO4vazGzCxWQai4X2zFyx0sR3XnNhoX3iGOkmnFkyBT87XKyiIeRY\n5L8J4JcArPZs2xFCOCNaLQDYMeiBCSGEyKPUrjOzdwN4LIRwr5ldlTomhBDMLOHkeYa7ev69G8Ce\nyoMUQoizmyOIQ1Pz8SbobwJwjZm9C51J3lYz+wSABTPbGUI4Zma7ADy2dhf7sgfzLvJa4eyIdTin\nw/77JFVIoipekYhU9sMlJ5vh06tFaWX1uaIUE33pOUUhGJZWOMAl5ZnEwSMsi5BnxsRLni20L5iL\nf0azeKrQHndSLLIEsZteDi9LSCs76Oe7g6KOZqg45s14O180xsseSfu3zBavsX1DUd5huQeIpRX+\n7BdMFz/H/e++uNB+5miiUChLZuy18r+pvYtkpVSQ0VJO0NAeFI3cuzPOeYFSaSWE8CshhItCCHsA\nvAfAX4QQfhrAbQD2dw/bD+DWSlcVQggxMKoarGcklA8BuMXMrkNnPnDtIAe1FsNY3OT/gKuG8AOo\nHqKfOp63seE1CN/0qEu/lNug+4xzi8crxXHptqI5t3iCLPAVCtWOFoYTyt+4kzz8+agOXvk1UkRW\naXEcM2SFsvUNABdSPbNJciz37u8CLii0JyLH9NjKZ8uWLfIsvNJudG+mp8ut6/MTjukTWC60eea2\nncY9M/HFQvvPd/6LqM/oJ8B++Dwzex21fzfuMi8HfH9kv8hDCHeja++HEJ4EcPWwBiWEECIfhegL\nIUTLafVa4DAGPxAFo04puBz5pcr+AeDlGl9rW3mf5YufQFy6bYn8yk8uxecUYCklJaPwthX6HFEf\nTqY9IP5OWDUiCegJ8ms+ORvLTMeni3LBJMkJjBcLwPJDipTPdikvTWxjBYdD32eL95dlEpaAUvIO\nL4B+E68otO9HcXHzB/FgsYOfTCxCfthZvGSJiGWTfxd3ueX9P19on9j83+KD+kQWuRBCtBy9yIUQ\nouU0WloZVQh+LyspCaNqSH6OB4p3DO+v06eDV9otVZZtGH2ylMIh+6uca4Bh2cTzUKlD6hngYfED\nHBVwKHZy4ljc6QnWJKIMiuUy0pbzi9rAFHmHAMBjFJj9Rbyp0GY55o2hePxffynqEvgqtZ2vbIwe\nYPakmUq4flxMMfZvx+cK7XfbWwrtw+VD6PABklv+OUktnHrgKLXfEXd54nfoOzTq8/2JcfzmfHJ4\nayGLXAghWo5e5EII0XIaLa0MA885JCdAiOWWKPuhd5HUTL9qQFCNPseG4OkSSyfVHqlU9sOozucq\nHeN5mNSB+/SCjFK6n6cFesUrcs4hKWWKpJOJTUVvj/EMWekoVaNYIKmF738UkJX63CxBkLowQcFQ\n0ySdcNGIlDcOPzt1CqG4fMYJr99HMgmH8Ke4nNoPVxlQGlnkQgjRcvQiF0KIltNoaeVtA6jpWaf0\nYi9cRAIAplhKqRoAVCcgqGp7rW09sGcAew4wdQpL1Dmep8wrLHswdbxUPCmlaoAW4Bf/cDxMpmbj\noJeZrcVtp1eL42aZ4/RK8aIXThRztVySqKbwudViNsOxDcVxxdege3d+4ubsLPbBks/sXFES4kyG\nVZ8roGZOmH55ntqbE8dwUBG3j/U/DFnkQgjRchptkTODGCwvZnKfOdkPT5HBF53jhmonOvUWNznk\nOcdipD6N2rygFFvo5e0c2JKqk3GRF+w2TBZvBvuVb8hY1V19nhZQ2bLyukg9jFE5s2InE1uKVufY\neLnVCsQWOM9O+Jw9E0cL7bfgC4U2L2wCwEUbiqXe2G9/dmvRhOS0Cqfn/F/m8eViBktOA8Ah+kzO\ns8eL5OvCX/Mb5aH4mPMvKbY5tfoA1uplkQshRMvRi1wIIVpOq6SVfRmLnXcNoDxcVXhBdCOrBYOI\nEPf8xuNZuSu/jJ0m6WSs2uJniuqLn/Ej6J0zvpE+PLeJlVOJ/rzFTY/UL2e2+CVMkZTi+XjzImOK\niYmiBMGl296AYrw8F6b4DoqV5QHgAir1xtknmTh83g/7n50oFs3wMix62RCBWEp5AtsL7f8TirIS\nh+wPhv9K7cviQx7n+8kuFwvoF1nkQgjRcvQiF0KIljN0aeWjJVLH9SOQQUZCTji9dw6T42XhSSuU\na4Cllap+5jl42RBTsOTA3h4eaWmlUhcx7BOOWDrh9vREefHGHM8MrnDPxRK8Gp/cBoDtiXqYvaTq\nqvaS+g6fjopdFuFni+FxpiS4R3ARXbNY9YE/1y2hmJLxWntt6Rjq8bXEthdTm5+DZ/u+aqlFbmab\nzOxLZnafmT1oZh/sbp8zs4NmdtjM7jAzrpshhBBinSh9kYcQngewL4TwGgCXANhnZlcAuBHAwRDC\nXgB3dttCCCFGgCuthBDOLElPABgD8BSAawBc2d1+AMAhNORlvh7FKDj7IUcsbxxFMdGcjIrUHj+9\nWmjXCfifoY2hAAAW+0lEQVRZD6LApGEUivCg73TD5thTg71UZiaKlSQ4DD3nfrOctZsqGbCUwjIH\nB/fw+UDsIcLjZE+XHDnsQnyn0L4IxaCj72BXoc3yDXupLCU8aXgbe60s4ILSa3wy3Bf1yddlCYjr\nhPLneqn9XNQncHti22BxFzvNbIOZ3YeOj8xdIYQHAOwIIZwR6xYA8jUSQgixbuRY5KsAXmNm2wB8\nzsz20f5gZmsGmd7W8+9XdP8IIYTo5QjiunH5ZIsAIYRnzOzPALwWwIKZ7QwhHDOzXQBFFPRwTe2h\n1eMK8oT5S2p70gtnTkgezxIF3cVxDhByrpnEq9GZoy7UOWedSckLXo6XMb7BDlEAEYBl78mP8qYU\nbZXpmdgDhb1SOBsft1NBLgyf83IKAGIvlqr9Ab5UwlIL51pheQeI62myBPFOu6r0msNhu9MeJXu6\nf85wd6WzPa+V8894pJjZFIC3AbgXHUN7f/ew/QBurXRVIYQQA8OzS3YBOGBmG9B56X8ihHCnmd0L\n4BYzuw6d+cC13gVSNlSZjzkwGD9zttC/WrFPttBT8OKnm+0wZQB5RmadfORVrzEAXGuaBpHyTefF\nN/YpXp6Iy8OVcXpT/Jgvb+IVa55WFZtcUm1mOrZsOeyc/ZjZGp7MCEPfQZPdl+HvaH+5Rc73P3WN\n45gp7YMr2O/BkUJ7Fy1sAsAMigu9bPWH3zpUaNv75kvHIMopfZGHEO5HInlACOFJAFcPa1BCCCHy\nUYi+EEK0nFZlPxwEryVp5evUzlEsouIUPEsfxGKnNxCeIXPI/lrbevDqL3iFJ1LHeHAfLC90tlGo\nOx3D2fa8sP/JRMGGZfL5XiZ/ay5eMc0+4olFQ5ZWzqM2n7OF2nw8EPt982In+zUzLKWk7jcvXjL8\nuXYeeaZ4QMrVgdcRWW6kkmjhP80X2vbrxbYoRxa5EEK0HL3IhRCi5aybtJK6kOdEwV4tw8iW+Grq\n80FqZ3mtUNut6VkjnN6t2Znq0yk+wdJK7FHi1+ysek7sRRFP9Vk68Sqse97YqYINE5vKa0Ty/qkN\n5T7iADCL8uIJsVdLURbhsHYgllLYa4XHwcVCJk8WP0dKTuNtxjeU1ZsnqZ2S8Lznk/enqs+LbGSR\nCyFEy9GLXAghWs5IvVb44p7U8nske/zcEKSWH3S8WlLkyC8uVaUUns7meK1Qm6fQ7NGQU0jCKz7h\nSy/xNaYpAIWlFvayiOuE+o81h/lPbSm2JyfKMwKm6lTyuFn2YGmFg3k4jB1IZDt8tugiMv4cnVDH\nu8k7hvfn9Mnj8pybNjn7RSmyyIUQouXoRS6EEC2nVQFB61E0og4srUS5V3KijLxVfW96y1PZGudM\nnKTgkUnOBRJ7elQNCOLjUwEqLLfwMbGc48k7cXIblk4Ylk5YJmEZpTPO4v3jPlhauSBDWrlwsZhZ\ncJyDb5ygr6znhPvwnkXv2azTp1+rQpQgi1wIIVpOqyzyphCF6PP+qj60qW18Dls4bFmlrCI+xmlP\nP1cs/TYxWZ6FEPDD+P3F0Nii9yxunhms1DDnuOwXX8NbcOXFz84xS3RMsc0W+fnkoJ2qZj/JyQ0p\nOt61yPn25ljkXh/ewnvqOt7ETRZ5X8giF0KIlqMXuRBCtJxWSSsD8deuCIfwA9UzJrLUkqg85k9X\nOXucJ7UA8TScw6CpbVuL7ZltxQW+42Nbokuw3OKF5KcyKDLe4iVn9Mup6u4RZ2UszxqYKtAQZ22k\nDIrO4ud5i/yFAXiW2nyI5+qfI+v5FeeKeH7mOX3ym6eBZQjbhCxyIYRoOXqRCyFEy2mVtMJ+5Byy\nn2IYYfwst7DUwv4MSzTN3Jha5WfZYxB+5LytotQys43C1Odi3+nYU6P46RepYENOiL7na3464cNd\ndn6dghieRJTyf2dvGr4uSy1R0YeEskKlL/N8uMvI8fn23gp1vLA8qn4OUcC1yM3sIjO7y8weMLNv\nmNkN3e1zZnbQzA6b2R1mNjv84QohhGBypJVTAH4xhPAqAJcD+HkzeyWAGwEcDCHsBXBnty2EEGKd\ncaWVEMIxAMe6/z5hZg8BeDGAawBc2T3sAIBDGPLLvI7Xym+T7HHDEKQWjyWaum7Nmd6ylwpnh8vJ\nQMdTdf62+RrUtm3F9sxcXEyBpRSWFzyvlrREUe7twbA8s5RREMPDD/uvXmSDyfHgiQ7xTvEkjZz0\nEB51ipqwYxE/m1SsIrx5vtC2vyq2RZFKi51mthvApQC+BGBHCOFM3NkCgB0DHZkQQogsshc7zWwL\ngE8DeF8I4biZfX9fCCGYWUidd2vPv/9x988oGYaF7pWLYwOGLXQAmPLyj3vt1GInf7vc5sVOdhPn\nEP7FeJFxero8dP04Zirt7xxTvA7nF4+t5eKCqhfi39lWvIEcsu9Vn6+TWoA/x0meAqV+jWzJVl1E\nzIGvMQifbq9PbyG+VW4Yg+AIQLnnq5B1u8xsIzov8U+EEM68mxfMbGcI4ZiZ7QLAedkAAD9ee2hC\nCHGusKf75wx3Vzo7x2vFAHwMwIMhhI/07LoNwP7uv/ejaHwLIYRYJ3Is8jcD+CkAf2Nm93a33QTg\nQwBuMbPr0JkTXDuUEbYQLhd3mNqRjAJgygt79vyHU98kT1/5GJ7OUog++zBPJuSbqenyLIFx2Hp5\nCTUAWHZKuXnkLUxWk2Ny/N9T+drL4M+5wovPAMY9eYyHUdUHPHVO1XzkOQuoXkoJp2RdeOV8dAl7\nKN52rpLjtfKXWNtyv3qwwxFCCFEVhegLIUTLOefWhpvAUmIqeorD+L2Q/DrfHCsU7LXiTXcTIeTT\nL2KvlWoFGZYwFfV5sqK0Ess3RY2C/cpTpKSSsv3pEnXl8gt/DvZaWdxc/NwAsHUzXScVxl+8aJGc\ncHrGk064z5y4CO/Z8krD8bMKIFw5X2jb3fPxQecIssiFEKLl6EUuhBAtZ6TSyjBiG5rIXvJaOZII\nQjpOU805T/ZgcjLQ8bTb85TxpsMAZp6l7Idby6WW444XCxDLFsuONwhLFIMIyffGlBNk5J3DUsvi\nWCwzbd1En51TNXj1NutQtX4sZ2hMneN5YXkh/Sl1jX4j4e3zhbZ9rtg+m5FFLoQQLUcvciGEaDlD\nl1bWWz5pg1yzJyGtHFspbjtFMsZG75tKeQ7wdHWuYh8spSSm0ON0zMzWYobEGVDdT8qtsjSAgCCW\nLNjrJX0O1wHl4hVjpftTXi5+UFG5FwvnewEQe2sMIy9KVSnF86hKbeM+vB8qP+8sKaXov3Rra5FF\nLoQQLWfoFvn1XevzoyPIAw6MJv94HXbSOJ85WWwny8P1kvomOeTeC8Vmi5t9lrmiOxBZ7VMnabFz\nstyPfDHhR87l4dgaXnEs2ZSPN+OVg+Nr8P6c8nE5Jed64ZkIAKyQRT7uZKh0S6bl5A739nsWOpAX\nxt8LW9NsgaesbS+b5zmELHIhhGg5epELIUTLUYh+Q9n2/HyhvTxZbG/MCGGO4OktT5F5+prhRx4V\nn3hutdCemvSyI6YKSxSPYckhXgyt5gOeOscL0WdS/u85GRLLjmc5B4jD9qOQfa8EoOe/XYecBdaq\ni5nemyi1n595SStCCCHail7kQgjRctZNWjmV2Laxzz5Tsze+zofJG+QDLfFiYSaemS+0w/ZiO+ub\n9PzEuY8MP3L2bDHyVZ+cK699mSoswV4rnjcIkxOiz8f4nufVr8E1OuP9Y9SOj18eo5Ftc7IhVi1Q\nMiyqFrhgF3o+P+Fin9zWQ/iF+ULbfnc+edzZgCxyIYRoOXqRCyFEy3En5Gb2+wD+GYDHQggXd7fN\nAfhjAC9Ft15nCOHpsn5+LiFpjCpI6GzAnpgvtMO2+figqlKKVxc0IyCI2zOLRT1mZroYss8yCuAH\nDXmFJ9j7o6pHSg5ecE8KHlcsrcReK5zZcWWyeD/HvSyZXqh8Dl4mwpzQeC8Tp+fFkpJR2GPHu8ZZ\nTI5F/nEA76BtNwI4GELYC+DOblsIIcQIcF/kIYQvAHiKNl8D4ED33wcA/PiAxyWEECKTul4rO0II\nC91/LwDYMaDxDJ2zxYslIqUeeFIKT1e9aXgqIOgJalN+l8ltxTZLK5wNEYjreE6T/MK5VdjbY2wA\nc+p6xSmqZTf0pJbUtpOTRdtrfHMxAMutw5r6xfP3XlX2SGUm5GenqheLNwZRoO/FzhBCABAGMBYh\nhBA1qPv/3IKZ7QwhHDOzXQAeW/vQuwAAP4K78TIAL+/Zwz7f/fqVn9PkLGJ52eLYemOLPVXBnfvY\nVt6e2Va++AnEC6Cc09zLT84h/KnQd486i5kenoXOC5udY2hhd5y+xHHyK+cu+PtJPSdepkK+Fd4i\nY+oY73Z6s8U6byp+FhvNEXT8RupR90V+G4D9AG7u/n3r2ofuAwC8HXfXvJQQQpzt7On+OUO196Ur\nrZjZJwF8EcArzOwRM/sZAB8C8DYzOwzgrd22EEKIEeBa5CGE966x6+qcC9zcsMVEngXy+H65YePN\nZSmxEDnlTWd5+srtnIUyVi0cqYUXP2en4/ADllZy/K2rnJ/TR53Fzqp95HyuqIgGheyHyaK0Yixp\n8HeaWpjkxU4+h3803v7UNi/TJpOTydBbIK3jM99SFNkphBAtRy9yIYRoOSP1zuTZl7xW6rOUqJt4\niqaeU3TDN9bxOfZgT4G58v2zm5fALM4V5RZPgvCyI6bqgvZLyqvFq/NZVWoBfM+W5U1FL6BJT0pJ\nSRZeBoM6KpNX4ILxanbmyCRPFpv23+czTjo7kEUuhBAtRy9yIYRoOQp8Jf4zea38h5Z4sWxfmY+2\nHaNtKzSFnvMy5fH+1BScn6AnnTZJK5aY6s9uLqb2WZ4sz3bIePuBONBmEMUqvOIUHMKfV5yCg4iK\nVzlJ92aCanpaTvbDHC+UMlJvES+zJre9NAA5qQVSKSTOEWSRCyFEy9GLXAghWk6jpJVUXc9e6pQH\nqHrO2eQ5w/4gLK14RSEicnJqcD4WzsLDUkqiYMDmyWJGv9mLyr1Y6uRS8WAZpE7uFU86mXBdOWIi\nqWWMc7EUpZVxL/cK0L+UkuNR4gWfMXzrUmPk2/f3xeZhkkVZ5WOHKgDY2xIplZFFLoQQLadRFnlV\nUhZ8v0W9vFlBm2CLnD/bs2SBbx2GRb5A7RzLjPo8b1Pxk5x8UTEbYiprYC85i59VQ/YHka+crfwJ\nUCbDDHg2EuUr30T5ylOTAN7mfTQvNL4zsCKp1ABlx+eMycmXv5sW1rfSs5l6nB90rPgrGmqxyyIX\nQoiWoxe5EEK0nKFLK/1cwJNJcsq09Zt9kf3Kgeq+5fMZx+ccU8ZfJs5naSVy+aap6RSVbdvIX0Bq\noYxVDa9El5edL3UMXfe8zcU58vK0t3Lmw/KMnwbAF/G8EP2cPv2w/uIN5sITYYz8ylO3yss06PmZ\np6QVTxrx/MrrQNfYSOPeSp8zldZinMbBcuRn6Xf2roZILbLIhRCi5ehFLoQQLWfdvFZy/LO92dUw\nPErq9MlyyyBmhcOAP5v3WTfSqv4FvD91kldbkds8DU9N9TmD4lY6habIs5PkZz5W3a+cJYyTTsB9\nyq+8apg/twdRJ5Q/+zLJVJOpS3gPsOdRkvKEqRr2nxOS753jZFDkHJhc/hSIYy1WyBOGK8zeRu+C\na2pILb+dOOeGin3IIhdCiJajF7kQQrScvqQVM3sHgI+gM6n5nyGEmwcyqi4sBdSRMLgGJ3uxsFxQ\nR2rxEr3165GSIuWlwlxe8bpfpeNPkdTy4sQ57BngTpH5eA4gAtyMidhSbG7dVPTMOP2iuA5oVVj2\nyMmWWDVoKMfzpd+6nytjRVttYowChAAY3U/3gWZysh96fXpqWI5axs+JE+C2MTFu9tTiMH4OomPP\nsE8nfnM/4fwOB6Fv17bIzWwMwO8CeAeAHwTwXjN75QDGtO783agHkMWRUQ8gi0PPjnoEeXz5UFyZ\nqIm0ZZyH7h31CPI4dJYWZO5HWnk9gG+FEI6GEE4B+CMAPzaYYa0vf+8f0gCOjnoAWRzi1aCG8pWW\nvCDbMs5D9416BHmcrS/yfqz6FwN4pKf9KIA39DMYT0phmaQOo5BaBsF1uBvX4+7vt4fhKfNauhdf\np/ZUQgbZwVLJKopT2jrSCgUmuRkTado9O1Z8+Z2ei+flGwFMYzFx8Q5eME9O/hbGy7VSJ3+LBwcI\nLW+K87mM0cPETj/m1XIdA2Aofg9VvVA8D5Scc1haST1b43jh+cn4obKnCxdj4QloakL6R46X2yD+\nq+7HIg8DuL4QQog+sRDqvY/N7HIA8yGEd3TbNwFY7V3wNDO97IUQogYhBMs9tp8X+TiAbwL4YQDf\nAfBlAO8NITxUq0MhhBC1qC3nhhBWzOwXAHwOHUXrY3qJCyHE+lPbIhdCCNEMhhLZaWbvMLOHzexv\nzeyXh3GNOpjZ75vZgpnd37NtzswOmtlhM7vDzGZHOcbumC4ys7vM7AEz+4aZ3dDEsZrZJjP7kpnd\nZ2YPmtkHmzjO7pjGzOxeM7u9wWM8amZ/0x3nlxs8zlkz+5SZPdT93t/QtHGa2Su69/HMn2fM7Iam\njbM71pu6v/X7zewPzWyy6jgH/iJveKDQx9EZVy83AjgYQtgL4M5ue9ScAvCLIYRXAbgcwM9372Gj\nxhpCeB7AvhDCawBcAmCfmV2Bho2zy/sAPIgXvK2aOMYA4KoQwqUhhNd3tzVxnL8F4LMhhFei870/\njIaNM4Twze59vBTAawEsAvgMGjZOM9sN4HoAl4UQLkZHpn4Pqo4zhDDQPwDeCOD/9rRvBHDjoK/T\nx/h2A7i/p/0wgB3df+8E8PCox5gY860Arm7yWAFMA/gKgFc1bZwAXgLg8wD2Abi9qd87OuG722lb\no8aJjrf23ye2N2qcNLYfAfCFJo4TnSwA3wRwHjprlrcDeFvVcQ5DWkkFCqXSdDSFHSGEMyWCFwDs\nGOVgmO7/2JcC+BIaOFYz22Bm93XHc1cI4QE0b5y/CeCX0AlXOkPTxgh0LPLPm9k9ZnZ9d1vTxrkH\nwPfM7ONm9jUz+6iZbUbzxtnLewB8svvvRo0zhPAkgA8D+Ad0vP+eDiEcRMVxDuNF3trV09D5768x\n4zezLQA+DeB9IYRC8HtTxhpCWA0daeUlAP6pme2j/SMdp5m9G8BjIYR70Yk/jBj1GHt4c+hIAe9E\nR057S+/OhoxzHMBlAH4vhHAZOnG8hWl/Q8YJADCzCQA/CuBPeF8TxmlmLwPwfnSUggsBbDGzn+o9\nJmecw3iRfxvART3ti9CxypvKgpntBAAz2wXgsRGPBwBgZhvReYl/IoRwa3dzI8cKACGEZwD8GTp6\nZJPG+SYA15jZEXSssrea2ScaNkYAQAjhu92/v4eOnvt6NG+cjwJ4NITwlW77U+i82I81bJxneCeA\nr3bvKdC8+/k6AF8MITwRQlgB8KfoyNOV7ucwXuT3APgBM9vd/d/wXwG4bQjXGRS3Adjf/fd+dPTo\nkWJmBuBjAB4MIXykZ1ejxmpm559ZTTezKXS0vXvRoHGGEH4lhHBRCGEPOlPsvwgh/HSTxggAZjZt\nZjPdf29GR9e9Hw0bZwjhGIBHzGxvd9PVAB5AR9ttzDh7eC9ekFWAht1PdLTwy81sqvu7vxqdRflq\n93NIAv470RHwvwXgplEuJtC4PomODrWMjo7/M+gsNnwewGEAdwCYbcA4r0BHz70PnRfjveh42zRq\nrAAuBvC17jj/BsAvdbc3apw9470SwG1NHCM62vN93T/fOPO7ado4u2N6NToL219Hx4Lc1tBxbgbw\nOICZnm1NHOe/R+c/w/sBHEAnp1ulcSogSAghWo5KvQkhRMvRi1wIIVqOXuRCCNFy9CIXQoiWoxe5\nEEK0HL3IhRCi5ehFLoQQLUcvciGEaDn/H4WH1sGqdAgUAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.pcolormesh(newvars['vosaline'][10,0,:,:])" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnW2QZkd1339ndzS7esEIQWolQGXJVBYIEUaSARFwNCLC\ngbJR/CUEqqC2KMEnE7BTRZBcRWX9ITE45TJUOfkQG5MNtokFBpUoU7YWoXE5gfAqgZAQAiyVRfCO\niMWb3ndmTz48d9FMP73T3fe17/L/VW3N3Pvc2/dsz52e7tP/c465O0IIIebLnqkNEEII0Q0N5EII\nMXM0kAshxMzRQC6EEDNHA7kQQswcDeRCCDFzkgO5mV1vZnea2R1m9qdmts/MzjOzo2Z2j5ndbGbn\njmGsEEKIZXYdyM3sIuCtwGXufgmwF3g9cB1w1N0PArc0x0IIISYgNSP/EXAcOMvMVoCzgO8C1wBH\nmmuOAL86mIVCCCF2ZdeB3N0fBH4X+DsWA/gP3P0ocMDdN5rLNoADg1ophBDilKRcK88Bfh24CHgm\ncI6ZvXH7Nb6I8VecvxBCTMRK4vNfAD7j7v8AYGYfA14GHDOz8939mJldADwQu9nMNMALIUQL3N1y\nr00N5HcD7zazM4HHgKuBzwMPA4eA9zZfbzylMd9svtmMfBie20p8njpu08YWHP5jOPzGzOvbPCP1\n/4xd8/jOw8N/AYf/Zcc2S+1q0ReHPwuHX9zhmW3uSV0f9CXA4W/B4Yt6fEabe1LXA4cfhMM/k9/G\n8eDzzeD4eKS/l64J2wiufyS8H/h94G3b24hcQ4+ft2njOPAR4F/32Gbq8zZtAByOnNuNXQdyd/+K\nmf0P4IvACeDLwH8DngLcYGbXAvcBryt8rhBCiJ5Izchx998Bfic4/SCL2Xmas5uvbWbkjwXHobU5\nbe7NaGMF2Jd5fdtn7Hac08YZPNmXsTZiM9vS/iv9f8Xu2d6XbZ6Z89xSO2N2h/2ZevfGeC/C60/e\ns3+Xe4LjM4I2zgieuRLp783gnpXgnnDGHraxyeJHvn3hEM46Hw2OU12R86te2sYZzb+zTmFjH3bl\n/ors9nkbFNkJrP381BakWTs4tQV5rD17agvyWHv61BbksXbm1Bbk8bKpDcjkkqkNGAgbsrCEmbl/\ntznoY0ae4VPs3b86hg+3jzZyZuRj+PZr7Is+3r2p+qLnn1no/4a0H73Uhw7pGfkUPvIcf3YtPvJ3\n0e9mZ2e8WWZbzpojtdTM+QUNN7a6ug/GWPrH7hnCzlT/lfZdG7um6ItTuSxK7mnzxyHVnxO48ULX\nC6TdL6Wul1gbZwSfxzYid7QZHId/CGAYN0jKTrlWhBBCDMLgM/Inmo2avZE/O3uDv/RLs/bSmRmU\nb66VbnLlPGOMWf4Qs842G5NdNwnH6IsxNyZL2kjN4Puwq4VAoHTDNJyxQ/mGaelMGMpdFqkN19g9\nsQ3T3Z6pGbkQQohWaCAXQoiZM7hr5fF9qwDsjfhWVlZO7DgOLyl2vcTOdV2a5qgTSvXaY7lr+u6L\nNi6K1CZh2Hd92FXLJm3pM3La7Lph3YM7MuV6ge4bpinXC3TfiGyjhEm5Z/qwsw2akQshxMzRQC6E\nEDNneNXK3pOuleU13dbWznVi6H4pdb1AD8qXMVQVOfr3MbTSc9XUp9wJtej2a9TUt1EetWizq/Jl\nCK36EGH/OQFBoTsmZWcbNCMXQoiZo4FcCCFmzuCulUeaXGN7I/KPfXt3rolD90up6wV6UL5MpTBJ\nXVO6/O3Drqn6oqvaI9V30H9myJw25hocVaqUybCrxqAjmCbsX6oVIYQQGsiFEGLuDK9aoVGtRNa3\nW8EaLrxmyZWyd+fnq1tPLLXZVfkySdBRzj19BC51VXvU0hdDBAT1UD7utOmLMdQ2CVfhFEFHoOyH\nQgghJmL4EP2m7tfeyN+dlXAGvnQcbH4Gn29GhOThrD1sc/XxnVOpKrTqbe7pY6bVdYO1jV1TZCYc\nQp/dRzj9GBvWc9XUZ+R/PyPczAxWSaUzdui+YVrtjNzMnmtmt23790Mze7uZnWdmR83sHjO72czO\n7cEeIYQQhSQHcnf/hrtf6u6XApcDjwAfB64Djrr7QeCW5lgIIcTIlLpWrga+5e73m9k1wJXN+SPA\nOpHB/MnNzkiI/pIrJdioLHS95LS5tS+xwRpq1yOxwfseD9wxXbXqC0N2UuOSObYZ13WTcIy+GEOf\nndNGH5vJXcvHzbUvWhTyWHK9hG6TyIZ1DVka21C62fl64MPN9wfcfaP5fgM40IM9QgghCskeyM1s\nFXgt8JHwM3d3wHu0SwghRCYlrpXXAF9y9+81xxtmdr67HzOzC4AHYjf9l8MPAmCc4PK1s7l87Zxt\nDy9TqaRcL4trOrYZql5iWRtXdne/rGztdL2sBuqEJdcL1KEcGENhkmN333VA51rII3ZP6c+wD+VR\nDX0xgKInpk0P3S9nBv13PPj80cA90zZL4/9p/rWlZCB/A0+6VQBuAg4B722+3hi76S2HLwDi8kMh\nhBBwRfPvJO8vvD/LtWJmZ7PY6PzYttPvAV5lZvcAr2yOhRBCjEzWjNzdHwaeEZx7kMXgviuPciYA\nqyyH05erVnZ3k+S10c31Amn3S5i1cTNMG7CVkbUxOLYhajHOJbz7dAmnryFQbAjl0U9RUZNU6oDQ\n9QLL7pbjQX8/GnN3FaIQfSGEmDkayIUQYuaMlmtlM7L+Srk9QndMnmqlm/Klj6CjUtfL4pqgjTAH\nTPCTWnK95BRPmEPQUZt7+siLUuo+qCVfzhQKkz6URzUGHbW5J+F6gXTRjNg9PBw5twuakQshxMwZ\nMR95i3D6VL7yDB35vmBqVaNWHdKz9tI864t7dh4vzdqnCKevNbw7vKdN+bi+w+lj95wum7Rz3bDu\nYcWTk2tdM3IhhPgpQwO5EELMnMoKS/Tv9ki7Z3a2uS/YYB1Dqx5ts3DDNHS9QHnRjKXUAX1k5ztN\nw7sHcTPlbFjPQavepo3TtZBHzj09BL1rRi6EEDNHA7kQQsycqlUr04TorwSf57iEQv17UBc0S20z\nQJbGjsqXpOsFuqs9YsvKlNqjRq167J4h7Ez1X2nftbFrLmqbGgp5tL2nEM3IhRBi5mggF0KImXMa\nqlamD9FvE8i0HLg0fpbGXoKOxggI6rr8zXlGDYU8ctroQ2HSdyGPPuwaQ20zRiEPKFcetUAzciGE\nmDkayIUQYuYM7lo5WVgiJy9KWu3Rh2qlglwrkTZLA5fCNloV7qgh6KiPgKA+8qKULn/nWgd0iLwo\nY9QBnUptM4SdOcqtQjQjF0KImVPVZmfpJmGszVSIfR1a9f5XEoPke59Aqw49bJiOsRlXSza+uWrq\nu6Z2yGlzLn0R+7kXklt8+Vwz+6iZfd3M7jKzl5rZeWZ21MzuMbObzezc7uYIIYQoJde18n7gk+7+\nfOCFwN3AdcBRdz8I3NIcCyGEGJmka8XMngr8orsfAnD3TeCHZnYNcGVz2RFgnchg3m+Ifo7Ge/cQ\n+9Qm4RRa9X7aHF7vHtW/7w307x216tDDhukYG5NtltCl5c/a2FWDVr3NPWMU8phLX7QgZ0Z+MfA9\nM/ugmX3ZzP7AzM4GDrj7RnPNBnCguzlCCCFKydnsXAEuA97m7l8ws/cRzLzd3c3MYzd/6vBnATCc\n56w9i+esPbujyUIIcXqx/v3Fv7aYe3T8ffICs/OBz7r7xc3xK4DrgZ8DrnL3Y2Z2AXCruz8vuNcP\n+7uA3BD9MpVKnsa7W5vt6oKWq23K+2KINrv3RWnhjr1bkTY3Azu2EsqX4DhZmzR2LrWUbxPqXqrc\nGMJ9MJe+aPOMrm3kKI+m6AvAPgnubpHWoiRdK+5+DLjfzA42p64G7gQ+ARxqzh0Cbsx9qBBCiP7I\n1ZH/W+BPzGwV+DbwZhYu/BvM7FrgPuB1g1gohBBiV7IGcnf/CvDiyEdXp+6dX2GJcpdF17qgOc8d\nIktj1/QFbexaUhXFwv7DQKRQafR4kMqhhqCjNvcMEYZeqpRp0+YUmQmHCAiqtQ5oCxSiL4QQM2fw\nEP1HOAvIC6c/XfKRp2e6y90+jN693+Re48UCJPTv+xIroGADdd/jyyug3rXqC0N2UsOsM0c73XWT\ncIy+GGK1MlXis5xN10I0IxdCiJmjgVwIIWbO4K6V3Tc7y8LpU9n78tqoMx95aXbDYfTufWx2VtC/\nwWbp1lnL717ofklp11eDTa0l1wvUkY1vjI3JHLtTm6xjZIasIf97zj3a7BRCCKGBXAghZk5VhSVK\nl9ChfntxTcodM0Y5uSHanF7vflrFAhSWudsMszZupbM2rtSYjW8qtU1pubM24fQ1FvJoe08hmpEL\nIcTM0UAuhBAzZ2LVyvjL8tJiCqHSI8eOuRSWKA1cahOiX0PhjlZ9U+h6WVwTuP5SqQOC46WsjdC/\n2qNWtc3pWsijTRst0IxcCCFmjgZyIYSYOSOoVlabB9URWFO6LM9TxnTLk5JjRw3BOmPUBYXuyqIp\ngo4g7X5J1SuNJIJczgFTQ16UKdQ2QyhMYq6s0v4bwnXVAs3IhRBi5gw+I3+0yX7YLpx+ej12H7O5\nVHh9rM30rHSMzc5pQvRLZ/Ep/ftksQCFG6bR3OyFudaXUge0CUsPZ6E1hLrXujGZ2mCF9CarNjuF\nEEJoIBdCiJkzWoh+6F5YPLxrOP3weuypluVd3QvQf+GOWmIBisvJZbiESvXuvbx7CdcLdN8wTbpe\nIJ2NL+U+iLkGuqYnmEKrHrtnCDtz+q+QrIHczO4DftSYcNzdX2Jm5wF/BvwsTfFld/9Bd5OEEEKU\nkOtacWDN3S9195c0564Djrr7QeCW5lgIIcTIlLhWLDi+Briy+f4IsE5kMO8Sot9Gg1yawa8GrXo/\nbXYv3BG6F6YrLDF+iH5p4Y7Yz3CQwh0dlS+ttOpj6Mi76rVznlFDIY+cNkbUkTvwKTP7opm9tTl3\nwN03mu83gAPdzRFCCFFK7oz85e7+92b2j4CjZnb39g/d3c3MYzfee/iPAdjDCZ62dglPW3thJ4OF\nEOJ0Y/0eWP9m+/vNPTr+nvoGs/8APAS8lYXf/JiZXQDc6u7PC671l/mngbZh6X0E63QNp+9DVdHG\nRTFFm21cQl0DmYbv33bvyfDv3rLbL6fNwr5J1CaF5SIZxVkacwKCSpUvOYE24TVh4E3pM/qwq4++\nAOwt4O6hO/uUJF0rZnaWmT2l+f5s4JeAO4CbgEPNZYeAG3MfKoQQoj9yXCsHgI+b2cnr/8Tdbzaz\nLwI3mNm1NPLDwawUQghxSpIDubvfC7wocv5B4OrU/bUVlhgiL0rXuqAxO0YpntCHqiK4po7CHXUE\ndVVRuGOCoCPoQfkyhsIkJ5BpiiyNLVCIvhBCzBzlIx9g5tVG/76sQa4g5/YIK4kx8r3POxag31iL\n6Lu3N3j3OmrVIT1rH0Wr3maWX5qeYIjycS3QjFwIIWaOBnIhhJg5oxWWyNHIdg1xXlzT74beWMvy\n9BJ5dw3yGBt644Xo97tBPUY5uZzn1tC/rd69wE+yb2/w7m1FfoZ9Z2nM0WfPpXxcKj1BCzQjF0KI\nmaOBXAghZs5ohSX60SCnl+WlGfym0Kr3syzvQ4NcX13QvDa693ffdUFznltD/w7y7sVqjYb69fDd\nezx492rQqre5J0cTnmpDqhUhhBAayIUQYuYM7loZO0S/VMEwTTBJHSH6/YTT168KGubdW/7VGSZw\nqf6grlbv3r7EuxcoYfY9vuzK6j3oaGHITqaoA9oCzciFEGLmaCAXQoiZM7xq5Ykm18pKZNm4Z/pl\nebu6oKlApukDP2J2dm1ziLwo0wV1jf/utQlc6jtobjbvXqB62Tor8u4limaEBTNWg7woS64XqCNL\nYws0IxdCiJkz/GbnYwsd+VZsRr4ShvEGf2ELZ+yLa8afzXUNr29jRy167DHyvZduEs4nH3l5/3Z9\n106nWIBUrvUwdcBmmDZgKyNrY3Bs4X7/EFkaW6AZuRBCzBwN5EIIMXOGz3740CL74Z5YGO8ZwRJ6\nf7AMLHS9QP8622GWjWNpkOegx073b9fiCcOUk6s1vmCCcnK1vnuFrpfFNYmsjcGv7pLrZbnJ5eIT\nUxWWMLO9ZnabmX2iOT7PzI6a2T1mdrOZndvdFCGEEG3Ida28A7gL8Ob4OuCoux8EbmmOhRBCTIC5\n++4XmD0b+O/AfwT+nbu/1szuBq509w0zOx9Yd/fnRe51vt0sTSKqlfBc6H4JXS97g+tX9y8vmdPK\nl9RxG41sH8vy4dtMa5CH6Ivp+zevv1NqjzYKnm59067NPt697v1bnlmz0nevUKse8SCn3S+Re+yZ\n4O62/EmcnBn57wHvBLZbfMDdN5rvN4ADuQ8UQgjRL7u62c3sV4AH3P02M1uLXePubmannta///Di\n6x6HK66El13Z1lYhhDgtWf/M4l9bdnWtmNl/At7EYvK/H/gZ4GPAi4E1dz9mZhcAt57StXJn037s\nT8ZK8OzQ/VLoeoFl90t4vC9wx5S6Xhbnui0957IsT7kXYvd0/X/002Ydy/Ku7oU2dtTgvslr4zR5\n9xKuF0i7X2LumD1P79G14u6/6e4XuvvFwOuBT7v7m4CbgEPNZYeAG3MfKIQQol9KFYwnp9DvAW4w\ns2uB+4DXnfKOkxrK6Iw8+IOzEly0slNweSI4fiKiA03N2rc2A03y0gx+d+06wOqefsvJtWtjiDan\nLycXt6Pr/6OP2dzw+vcx8r3PJ0R/Ju9eQqsOy3r1lFa9DdkDubv/NfDXzfcPAld3froQQojOKERf\nCCFmzuAh+j9xrcQyfJ0RHC9Vly5zvUDa/ZLWqgdLq4hrZTO4JqVdT4U4Q6U5oXtYlrfJ9953zu0x\nQsj7aHOMfO/jvXvTh+jX8O5Bu1QBRDKk7oZm5EIIMXM0kAshxMwZ3rXy0C5P2h8ch6unUtcLdFa+\n5GnVd3e/hMqXreD6eNbG0h33SpL7D7AsLy2eUEM5uXgb4/dvm3Jy0xTuqM91uLin33cvy469y3bI\ntSKEED9laCAXQoiZM55qJadi9ZLrJDjeFxyHrpdoG+MHHZW6XhZmBQqGPaXFFJbbDMOc6ww66n9Z\nPkVd0JgdNfZv7D2ps3BHHUFdXd+9HLti7pgnfdJ5aEYuhBAzRwO5EELMnOFdK482X7PcIInjlCsm\ndi5UxlQYdARp90u6YEZsWb57vop+6oLWGEwyfl1QiAWT1KfMGMIlNEQg01yDuvoIXGqDZuRCCDFz\nhp+Rn5ykxKSSxbrxxHHsXGoWn7Jh//Badei+YRrL0piatfehQS4vJ1eLBrn/2VypBjm1Gd3Gjlpi\nAUrtaqd/7xZrUWssQBs0IxdCiJmjgVwIIWbOtDry8Fy4wih1vcTOlR6HNhyPPGPJjsD9sr/M9QLD\nZGnsumHaZtnY1b3Qxo4aQsjjbaTaHL94Qj2xAFPo39PvXg2xAG3QjFwIIWaOBnIhhJg542U/DPXc\nsaeXuj1aFavoeJxjx5JSJqFVB9g/fZbGdlr1rsvy5b4oXc5Oo0GuI0S/xrqgfbQxRU3anDbGiLVo\nw64zcjPbb2afM7PbzewuM/vt5vx5ZnbUzO4xs5vN7NzOlgghhGjFrgO5uz8GXOXuLwJeCFxlZq8A\nrgOOuvtB4JbmWAghxAQkXSvu/kjz7SoLJ8L3gWuAK5vzR4B1TjWYn1StZKk/guNkeH2kza7KlzZB\nR13VNwCbqVQBO49PrKzuOH5i//IOfN9ZGvsIOhpiWd6mNuM4wST1heiPURc0p40a+yanjTGC5tqQ\n3Ow0sz1mdjuwAdzq7ncCB9x9o7lkAzjQ2RIhhBCtyJmRnwBeZGZPBf7KzK4KPncz81M2cMvhxVcD\nfm4NnrPW1lYhhDgtuW39R9y+/qPW95v7qcfgpYvN3s0in+FbgDV3P2ZmF7CYqT8vcr3z7qb9HBdF\nVzdI7FzKPTNF0FGszUFcQMHPNnCN7NkXuBeWXC+7Hy/OlSpfcpaipYqGPpblZWqPnCV01/9HH23k\nFCAZo3/LC3eM3zf9tNm9fwFeY+u4eyTRU5yUauUZJxUpZnYm8CrgNuAm4FBz2SHgxtwHCiGE6JeU\na+UC4IiZ7WEx6H/I3W8xs9uAG8zsWuA+4HWnbKFLPvI2m4al2Q9TM/gxtOqxc103bSGpXz+xGWjV\nwxl3OIOPZG3cd2aw8dVRqw79a7z7CCFPbajmtFlDzu2pQvTrLCdXZ3xBG3YdyN39DuCyyPkHgas7\nP10IIURnFKIvhBAzZ96FJYZos005uX0dn5lzzSDpCsrK3MWyNj66tfOelHZ9NdC7h66XhRmpDdP6\nQshz2qyheEIteuwxysmlCneosIQQQohq0EAuhBAzZ3jXSolqpRelRs9t9lEXNKVdBzizsI1R0hVk\nZG0srFe6eTxwL0SzNobumMC90NH1srimhsIS6Tb7Lp4wRhGIvDbHcAntXrgjT/8+fuGONmhGLoQQ\nM0cDuRBCzJzhXSsP7/Kk0nD6XpQahW22CWQaww2S6quc544QdFTqeoFl5ctWELiUSh0QKmH2rQ5f\nF7RdG2ME65TXBe0aTh+3Y/qgrnECmSJBc0v9KdWKEEKIAA3kQggxc4Z3rZwsLJHjBkmpP3LcHqlc\nKTUEHfXhBgkLdeS4gEoLdUwQdATd65UuFczYjNRmTOSAWd3TRzBJfcE6Oe6b0sClmGsllS2yxqCj\nftqM9W+5eqYUzciFEGLmjDcjH0LnHPtDlpqpdg2vz7FjihznOSuHUr17akYfe25XrTp03jBNzdgh\nMmsPZuSbwed5WRtLNcjjb+iNtZJIbxLWV04u3oZC9IUQQoyABnIhhJg5dW12DqHxTrVR6m6AiTYN\nC4/b2JGyYXnVWO6OaaXTH16rntwwTWjVF2YFGfv2lGmQxyieMFVhidI2Uhuuiza66t/rjAVog2bk\nQggxczSQCyHEzDn9VCtd28hZ+nfVuw+i/oi02XexijbpCtq4ror179Nr1aF7vdI2xRP6qQtao8Z7\n/LqgENO/jx8L0IbkjNzMLjSzW83sTjP7mpm9vTl/npkdNbN7zOxmMzu3szVCCCGKyXGtHAd+w91f\nAFwB/JqZPR+4Djjq7geBW5pjIYQQI5N0rbj7MeBY8/1DZvZ14FnANcCVzWVHgHVig/lDuzwpXEmG\nxRXGUK1M4b4Jg5Zy2uhF/dHxeKp0BaWurKUiHcMHHUF35UvoeoFl98s0dUHHV61MFaJfGsg0ROGO\nNhRtdprZRcClwOeAA+6+0Xy0ARzobI0QQohisjc7zewc4M+Bd7j7j82enOW4u5uZR2/8zuHF173A\nWWtw9tqpn146e45tGo6x2TlEiP4QevfS9AM1aNX7sKuNbn9/N6069JDcKzYjL9wwraGcXBs7ptCq\n9xOiX57vPZbK4f71e7l//d6le3PJGsjN7AwWg/iH3P3G5vSGmZ3v7sfM7ALggejNTz+8+BobEIUQ\nQnDh2sVcuHbxT44/+1u3Ft2fo1ox4APAXe7+vm0f3QQcar4/BNwY3iuEEGJ4cmbkLwfeCHzVzG5r\nzl0PvAe4wcyuBe4DXhe9++Q+Si2bhqXuhjG06n200UbvXrxpGHnGGG6PMUrrJbNmJlwvAPvHz9LY\n1fUC/ZeTy2kjld1wCq16uza6txmLHyglR7Xyvzj1zP3qzhYIIYTohEL0hRBi5gwfov9o83Wu6o/Y\nqqer3r3WdAW9qD8KnzFEX/SRvqCVKyulfNl5fGL/7q4X6D9LYx9a9T7cHn2Uk+tauKPWcn1t0Ixc\nCCFmjgZyIYSYOcO7VoZUrYyh/uhj6Z8Kr895bg2BS72oPzLaTLlnagw6amPH5u6uF4ATK6s7jp8I\nXCN79gXuhQqCjhbXDB+iP0Qg0zSBS3KtCCHETz0ayIUQYuYM71o5mf1wruqPPtwgKXdDrI0aA5fa\nZFgcI5ApdMVMEXQUO9eLC2h3JcyJzUD5ErpOguPV/ZG6oD0HHUEtuVaGD2QaInCpDZqRCyHEzBl+\nRn4yJ2Lsj85DwXGNm4ZTab5r1LuPoVVv02Yf5eS6ZorMuWaQdAVlWRuf2Iw8JNxATWjXV/cHs9KV\niB675yyNY+UjHyLfe3guVU6uDZqRCyHEzNFALoQQM2d418puhKUowhVaH5uGqY2xGrTqfbQxht59\nLLvH0L93dc/EipqMkaWx+P+ekbWxsMzd5vHAvRDN2rj7JmuNWvV4G/23mdK/t0EzciGEmDkayIUQ\nYuaM4Fo5mf4w9qhE/bdS1wukl55dK7LHnjuF+mMKvXvsR9hV796HxnsI/XvqOKbC6lqoY4wsjS20\n6qWuF1hWvmwFapnQ9bJ8HITTrw5fF7RdG/232QbNyIUQYuZoIBdCiJmTdK2Y2R8Bvww84O6XNOfO\nA/4M+Fmaep3u/oN4C7u5VlJ+jkLXS6zJKdwgtag/xkhX0Hdd0JznThF0NFWxilLVVQVBR9C9XulS\n2oAwUyTp1AGre8rqgkJ35UvNhSU+CLw6OHcdcNTdDwK3NMdCCCEmIDmQu/vfAN8PTl8DHGm+PwL8\nas92CSGEyKStauWAu280328AB0596Y92edRZCXM6ul6gXPnShxukjfpjDoFLU+Wd6eq6Gi1TYcfj\nIXLwpN6j2HO7Bh1BZ+VLyvUC6ayNm8HneVkbw2yH3eqCLq6ZQWEJd3fi3mohhBAj0HZGvmFm57v7\nMTO7AHjg1Jf+5+brHuClzb+TlM64w52xHDHvBFr1PmbPNerda0lXMEY5uTH072PkOE+9Rzl29LF5\nP4JWvbTMXU7Wxq093crJwXJJudiG6UPrX+Lh9S8t3ZtL24H8JuAQ8N7m642nvvRtHR8lhBCnN+es\nXc45a5f/5Ph7v/WHRfcnXStm9mHgM8Bzzex+M3sz8B7gVWZ2D/DK5lgIIcQE2MLFPVDjZg4nlws5\nIfopt0iO2yTljmmxYZoi3OvpY6Osjwx/U2wajmF3qVa9TYh+aXh9Gzv60KaP0RdtXEJdC3UsHUfG\nqURZu7TrJZ21sbTMXU5hiRzt+bftn+LukV3kOIrsFEKImaOBXAghZs7E2Q9TW+qln8OypKFU4hCu\noUfQqudMXXy+AAAHbElEQVSYNVf1Rw1FNmrJNtmL+qPj8VjpCvpO3TCCVh26K19C1wu0K5pRimbk\nQggxczSQCyHEzDkNXSupa1L+hJwIikI1Tcr1AvNwH8SW/l0Dl6aye4p0BaXuBhhA/RF5xhzSFeS4\nsvZ3CzqCHrI0RpUwZcqXNmhGLoQQM0cDuRBCzJwRXCsnsx/GkoFM4Vrp6npp02ZGENIUWRprdN/E\n2ugauFSLamUI11VptsM+3CBT5J3JcWUlVVgJ1wvA/vGzNMZyvpSiGbkQQsycETc7wz+XsPwnszS8\nfogZeRuteumGaYusjTVkaZxq07Cr3j2cpcaumWtu9tLXuc0KqI/Z8lxK622mNkx3Hp9YWd1x/MT+\nnZkOoXzDtA2akQshxMzRQC6EEDOnMh151/D62DWl7pkptOpt7Eq4XmJNlO7Bni6bhjndXap3ryXN\nQh8ZFru6snJcV3PQqrexI9xA3QyF/xH3S5ilcd/OcnJt0IxcCCFmjgZyIYSYOZW5VobQeHfNfjiG\nVj1mV1e1TazNRBPhcZhwbq7qj6ncIKXh9bUoj0rbzPkVKVUWzbVGarTN3ZUwJzalWhFCiJ96NJAL\nIcTM6eRaMbNXA+9jseD4Q3d/7/JVUxeWGMNl0VUZE7umjyyNLVIFbCdUwjwauSZVr7QG9cdUwTtd\nw+tznjtF0NEUgUw5bpCumSJzrhkkXUF2ac5T0npGbmZ7gd8HXg38E+ANZvb8zhZNwlenNiCD/z21\nAXmcWJ/agjx+vD61BXkcW5/agjz+dn1qC/K4Y31qCwahi2vlJcC33P0+dz8O/E/gX/Vj1tjMYSD/\nzNQG5OHrU1uQx0PrU1uQx8b61Bbkce/61Bbk8bX1qS0YhC6ulWcB9287/g7w0uXL5lBYYpMn7RzC\nDZJSxuQ8d7uNOc/MbXO3z1vUKw2bfSj4bAr1R2y5uwk81qGNIYJ3Yq/zE+zsw1QbfdQFbeO+6bs/\n27hBctwz2/uzTSDTGHlnWtBlRh77FRZCCDEy5t5uPDazK4DD7v7q5vh64MT2DU8z02AvhBAtcPfs\nXdAuA/kK8A3gXwDfBT4PvMHdv96qQSGEEK1o7SN3900zexvwVyy8Ph/QIC6EEOPTekYuhBCiDgaJ\n7DSzV5vZ3Wb2TTN71xDPaIOZ/ZGZbZjZHdvOnWdmR83sHjO72czOndLGxqYLzexWM7vTzL5mZm+v\n0VYz229mnzOz283sLjP77RrtbGzaa2a3mdknKrbxPjP7amPn5yu281wz+6iZfb35ub+0NjvN7LlN\nP57890Mze3ttdja2Xt/8rt9hZn9qZvtK7ex9IK88UOiDLOzaznXAUXc/CNzSHE/NceA33P0FwBXA\nrzV9WJWt7v4YcJW7vwh4IXCVmb2CyuxseAdwF0+qrWq00YE1d7/U3V/SnKvRzvcDn3T357P4ud9N\nZXa6+zeafrwUuBx4BPg4ldlpZhcBbwUuc/dLWLipX0+pne7e6z/gZcBfbju+Driu7+d0sO8i4I5t\nx3cDB5rvzwfuntrGiM03AlfXbCtwFvAF4AW12Qk8G/gUcBXwiVp/7sC9wNODc1XZCTwV+NvI+ars\nDGz7JeBvarQTOI+FaORpLPYsPwG8qtTOIVwrsUChZw3wnL444O4bzfcbwIEpjQlp/mJfCnyOCm01\nsz1mdntjz63ufif12fl7wDuBE9vO1WYjLGbknzKzL5rZW5tztdl5MfA9M/ugmX3ZzP7AzM6mPju3\n83rgw833Vdnp7g8Cvwv8HQv13w/c/SiFdg4xkM9299QXf/6qsd/MzgH+HHiHu/94+2e12OruJ3zh\nWnk28M/N7Krg80ntNLNfAR5w99tYTvEFTG/jNl7uC1fAa1i4035x+4eV2LkCXAb8V3e/DHiYYNlf\niZ0AmNkq8FrgI+FnNdhpZs8Bfp2Fp+CZwDlm9sbt1+TYOcRA/n+BC7cdX8hiVl4rG2Z2PoCZXQA8\nMLE9AJjZGSwG8Q+5+43N6SptBXD3HwJ/wcIfWZOd/wy4xszuZTEre6WZfagyGwFw979vvn6PhT/3\nJdRn53eA77j7F5rjj7IY2I9VZudJXgN8qelTqK8/fwH4jLv/g7tvAh9j4Z4u6s8hBvIvAv/YzC5q\n/hr+G+CmAZ7TFzcBh5rvD7HwR0+KmRnwAeAud3/fto+qstXMnnFyN93MzmTh27uNiux099909wvd\n/WIWS+xPu/ubarIRwMzOMrOnNN+fzcKveweV2enux4D7zexgc+pq4E4Wvt1q7NzGG3jSrQKV9ScL\nX/gVZnZm83t/NYtN+bL+HMiB/xoWDvxvAddPuZkQ2PVhFn6oJ1j48d/MYrPhU8A9wM3AuRXY+QoW\n/tzbWQyMt7FQ21RlK3AJ8OXGzq8C72zOV2XnNnuvBG6q0UYWvufbm39fO/l7U5udjU0/z2Jj+yss\nZpBPrdTOs4H/Bzxl27ka7fz3LP4Y3gEcYZFGq8hOBQQJIcTMUak3IYSYORrIhRBi5mggF0KImaOB\nXAghZo4GciGEmDkayIUQYuZoIBdCiJmjgVwIIWbO/wd5Y7vr4dYNpgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "plt.pcolormesh(newvars['nav_lat'][:])" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnW+MZ2d13z9ndz07a0PtOKS7G7BiF3WBUsA2qSFg8Jgu\nEaTJNq8olkArZPEqFEIl2nWktkOlKoAahahRXzRN0BYlEENgtShp48VhIggtYFiDsTEOFCsQ2Fka\nB5OCWbzr0xe/O3jmzt15/t5/y/cjjX6/e+9zn3v23tlnnnue7znH3B0hhBDzZdfYBgghhChDA7kQ\nQswcDeRCCDFzNJALIcTM0UAuhBAzRwO5EELMnOBAbmZ3mNn9Znafmf2Bme01s6vN7JSZPWRmd5nZ\nVUMYK4QQYjs7DuRmdi3wRuBGd38esBt4LXAMOOXuh4C7m20hhBAjEJqRfxd4HLjczPYAlwPfBI4A\nx5s2x4Ff7s1CIYQQO7LjQO7ujwC/AfwViwH8O+5+Ctjv7utNs3Vgf69WCiGEuCgh18ozgV8FrgV+\nGniKmb1ucxtfxPgrzl8IIUZiT+D4zwKfdPe/ATCzDwE/B5wxswPufsbMDgJnu042Mw3wQgiRgbtb\nbNvQQP4g8G/NbB/wA+Aw8Gnge8BR4J3N54mLd7G6w6X2FW5fXqnP3wbeFNk+ps1lHedsIuZW7G1t\n/3AVrly9+PEuM0NtSo93tfnCKrxo9cnt9r91ObAdc91QHzF2f2AVXr+a30eX3cvnt2zu2ntua5f7\nfrhle2m5dXxp63GAx1b/E1euvnmTWVvPWWLrOaHjS63ji3N2bhNz/POrJ3nB6pGLXnc357edk3bN\n7fcm516cXP08R1Zf0HnNPLt2Ph5rV5t/bF/dtm8ndhzI3f3zZvbfgXuAJ4DPAf8VeCpwp5ndDjwM\nvCbpqkIIIaoRmpHj7u8C3tXa/QiL2XnCJXJmtqEZeE6f7X/yHhZLBXsucrxrdt3eF5iBt1+QupqH\nLnu+1aZ9vOtJhtqUHu9qs6vVLnX2DPVn4F12t+1M/bfv6fAa7rmwdfOyrdu728db27vZur0w84kt\ns9l2m/ZMd/vx1jU7rhFqE3Pc8C3tas/A27PYmDbb3wouNPfzQue/Y6PNZnLuxfY+Q89o6/EcFNkJ\nwIvGNiDM8srYFsTxjJWxLYjjBStjWxDF8spNY5sQxYGVQ2ObEMWzVi5NgZ0GcmAWA/m+lbEtiOOa\nlbEtiOP6lbEtiGIuA/nBmQzkz75EB/Kga6Wcy1qfXcdit7vcIm1Cbfpw37Rou1LaroAus3cH2qQe\nr9FHH9eI8VyFzkl1g3QuTKZut1wpyx2LWq3Fy6VWm72t47t3hV/LS1/tQ6/1MW1S3Tcxdg1j99bt\nmEXGIRaTY9xdqWhGLoQQM2eAGfnFFhG79oWmWjGLjKnn5Mz6A4RmpTELfH1IA0OLgKmLnzl9hO5N\n177SWX/OG9C27a2zpl27ty9QtRczd+9pzRhbM/A+FvRS5XJQf/Yc0yZ1UTZn1p+zyDjEYnLMm0Eq\nmpELIcTM0UAuhBAzZwDXyr7WZ9exDVLdHDnv5TXcNy1COvE+XBQ1dOTJC34d1yjVeHf1Wbq4GfNr\nkqoTD2jEIV0n3seCXqqbBOq7b2LahCI/89wg5fdiCouyOWhGLoQQM0cDuRBCzJyJ6chLk2jFtAnp\nxHtQqcQoNaag8a5xjVI3CJS7fLJcQju7UtoqlbYbZbFvZ5XKFJQZQ7hvYtqUhvAv2qS5hHJ05GPc\nixw0IxdCiJmjgVwIIWbOyAFBpcE7OQFBOTHjgVNKg3li2kxBCRNzjVGCdRLP7+yj5UpJzCUO2/OJ\nl776Q31lxniBNeNnFcyxu8YzzFH9pKIZuRBCzBwN5EIIMXNGVq2kvjPnBAQVBvx0Vc0bwkXRbtNH\nsE7qds7t7iVYp9AGSA74CQX7QD+KktrKjBqv/jmBNVPMsDiE3VF2XVBAkBBC/NgzsRD91KLGMYud\nhdkMh9Bn1+hjCDuHmPXHtCldYIVknXhII74wY/oLelkzxozsfaVFi/MWgoe/F1We4fkBdORm9iwz\nO73p51Eze7OZXW1mp8zsITO7y8yuKrZGCCFEMsGB3N2/7O43uPsNwAuB7wMfBo4Bp9z9EHB3sy2E\nEGJgUl0rh4GvuPvXzewIcEuz/ziwRudgXrPUW40Q/cDiZkgjDuUa75wFvinoyHNC9PsoLJGaUXF5\n+6trqk48pBGHeSzoXUql3mq7bxZtyhaTo+5Fa3Fzz4Untp2TSupi52uB9zXf97v7evN9Hbg0q5oK\nIcTEiR7IzWwJ+CXgA+1j7u6AbztJCCFE76S4Vl4NfNbdv91sr5vZAXc/Y2YHgbPdp72/+bwMuL75\nudjlSwXDXfsSdeI5bpAhlBo5Gu9SlUqO+6aKxruwj4BGHNJ14jHh3X0oM9Jf7cd3g8S0GSKr4Bh2\ndz7DC61neK71e/ADWPsErP3FtlOjSRnIb+NJtwrASeAo8M7m80T3aa9rPruczUIIIVZuXvxs8B/e\nlXZ+lGvFzK5gsdD5oU273wG80sweAl7RbAshhBiYqBm5u38PeFpr3yMsBvcANVUrOe/lAaYQaFOj\nj5yMikG1R2C7a1+VYJ3CPgLBPpAe8DPdeo+hAg313Tcx2ftq34sh3DcxbbKeYSvgp/3raOUR+grR\nF0KIuaOBXAghZs7Mcq3EBARVVqkMEWhTo48adtZwg5S6b7L62Pqu2g72aStUoFylMpXal8O4b9Lt\nLnXPxNXsTFMFDXIvOjIZtgN+tnn6ylOtaEYuhBBzZ+RSb6mC4USNOGyfgY+h+Z7qAmppLvEafWTl\nI0/LJb603BGK3QrBX9pVNmPsbpOq8Z6mHnuqpd5S7a7xDLe9aQQ04rDQiW9m2+KmZuRCCCE0kAsh\nxMwZudRbacX7CKZQsCG0eBfTJvV4V5tifXbHNWpXvI/qY2edeEgjDuk68RplwoZY0Msp9VbbDdLd\nZ/8V70exO6ARhw5XSsvV0vFIktGMXAghZo4GciGEmDkj68gHUKlMQZ89FR15qcY7xn2T2kdURsV5\nVLyfgjIjr0BDmXumRs3OKbhvYq4bKgrR5VrZ5hWSjlwIIUQbDeRCCDFzRg4Iury1HROCv4m2GwXq\nB+v0kalwqICg2sE6fRSW6Ay4arlSWgE97Xqa7YCfULAPlL/a91P7cpzAminU7BzCfZNTszNVpdKZ\nybD9WBUQJIQQoo0GciGEmDkjBwQVBvwMEaxTo2BDTEBQH0qY2sE6OelysjIqlgX8hIJ9Fpcte7WP\ny9NRnuGvfmBN/xkW8+yapt1L51rP6NxWlcqe9q9BO9gHtgf8KCBICCFEmwEXOweoeL/5chdrM1Ud\neWlWxiE03kNUvIdinfhcyoTFLETWXtDLKfU2hXsx2DNM1YnHaMKnsthpZleZ2QfN7Etm9oCZvcjM\nrjazU2b2kJndZWZXlZsjhBAilVjXym8Bf+LuzwGeDzwIHANOufsh4O5mWwghxMAEXStmdiXwMnc/\nCuDu54FHzewIcEvT7DiwRudgvqEVjyn1FmAMjfdUdeRjaLxrFNkIaMQhrBO/VCrej7Ggl2N3jsa7\nNMw/ZyF4lIr3IbdJV5uRQvSvA75tZu8xs8+Z2e+Y2RXAfndfb9qsA/vLzRFCCJFKzGLnHuBG4E3u\n/hkzezetmbe7u5l1rFoBvHNTNy9vfoQQQmyw9jlYO51/vrlfZPzdaGB2APhf7n5ds30zcAfwD4Bb\n3f2MmR0EPubuz26d6/Bos5VR8b79Z2YMjXcfCpMaLooYbXppHyNUvAfYu2/nkPy9S2XFFWLahF7t\ncyrHD6NNH/5ezNbucx12p+rE28e73CQZOnK7Bdy9KwlJJ0HXirufAb5uZoeaXYeB+4GPAEebfUeB\nE7EXFUIIUY9YHfm/BH7fzJaArwJvYLEcd6eZ3Q48DLymFwuFEELsSNRA7u6fB/5Jx6HD4bN3CtFv\nUVoUIqZN6vEqSo0KfY4SrBNxjdSAn0CwD5QH/AyRVTAnsCZHmZHqkphChsWcPgaxOxDsAxkBP+3t\nrnD7kCulK6w/EYXoCyHEzBkwRD+CKWq8x9KRj6LxrnCNwor3i31lOvHxyoSVhYjXKPWWk5irj1Jv\nte/FaBXvU8Prc0q9dWnPE9GMXAghZo4GciGEmDkD5iOPuHoNjXftbIdjVbwvzSVeo4+cfOQBnXhI\nIw7lOvFLpeJ9d5v6dvdRoq5UJ16l1FtLJ95LxfuYTIY57phENCMXQoiZo4FcCCFmzgCulYauYNM5\naLxzrjGFivc1+ojSqqfpxEMacSh/tc+pll766t/Vpv3qPwV1TR8ZFidjd0AnvtTSa1uO5junbFtO\nWH8impELIcTM0UAuhBAzZzjXSo1iCnMJCErNCNi1b5Bgndb2BCreL8yoq8wYosp7jF29KDMKQ/gX\n+4a/F708w9KiEJCuMIlRoIT67HLHJKIZuRBCzBwN5EIIMXP6d61sqFWGyFRYo48hrpGTa6VKsE5r\nu7AoBKQH/IQyGS721VU41MjON0xgTX1FSUjRA/XdN4s2aaqfrGcYUKkkZzLs2leaeyX3nEQ0IxdC\niJnT/4x8ufXZdazWdkybS7XifS/5yHfWiEO6Tnxp1zTLhE1x9lzDrhqpBYawO/gML3Q8w3Ot34OQ\nTjxG8x3SeOdkMsx5M0hEM3IhhJg5GsiFEGLm9O9a2bjCVHTkoQW+mOr0pdXnu1xCvWi8C/sIaMQh\nXSc+1TJhpe6bmDY5pd7GKZk2/GJyalGIxb6t28VFIbr2lYbsx7SpoCOPGsjN7GHguyxuxePufpOZ\nXQ38IfAzNMWX3f075SYJIYRIIda14sCKu9/g7jc1+44Bp9z9EHB3sy2EEGJgUlwr7fyFR4Bbmu/H\ngTW6BvONK/w46chz3CDFGu+OPlP7mEDF+5g2U6zyHtMmR1FS6p6Jq9m5c5tR7sUQFe9jFCapIfs1\n+swgZUb+UTO7x8ze2Ozb7+7rzfd1YH+5OUIIIVKJnZG/1N2/ZWY/BZwyswc3H3R3NzPvPPOx1cXn\n48DSCuxdyTRVCCEuTdYegrW/zD8/aiB39281n982sw8DNwHrZnbA3c+Y2UHgbOfJP7G6+MzJzjdE\nsE6Na5QWhajRR1Zhidbf3uWdw+uXljuCMtptAgE/oVf/rjb9ZOcbPrBmqjU7Q21qPMPUgJ9QsA9U\nUKnk1Ozsqc+VZy5+Nnj7/+joZweCrhUzu9zMntp8vwL4eeA+4CRwtGl2FDiRdmkhhBA1iJmR7wc+\nbGYb7X/f3e8ys3uAO83sdhr5YW9WCiGEuCjBgdzdvwZc37H/EeBw9BViXBRDBOuEjufkRUkOtOno\ns7SPrIyKOwf8hIJ9ID3gJ0dRUp6dr8Krf1aBhvr3ojzD4kTtTi0KAeHAmtTjXW1S+6xRrCIDhegL\nIcTMGS5Efy468j702SGNeEwfVTIqTq/i/RBlwvqY6XbrsdNm9TVKvU3hXmQ9w9Jc4l37SnOJ1+iz\nK9w+Ncw/A83IhRBi5mggF0KImdO/a2VjEW6Iivc1+qiizw5s5xSWyCqyUaYTD2nEoR9dc+0FvSHc\nNzXsytF4D+G+ySn1Vn1xcyoV74foMwPNyIUQYuZoIBdCiJnTv2tlQ40Ro9ToQ+M914r3VQpLlOnE\nQxpxKH+1r1Gzcy5ukGFqdk7D7m3P8FzrGZ7bqlLZk1N8IVUnHuOuKVW+1OgzA83IhRBi5mggF0KI\nmTOvgKAopUbhdkwagNJgnRzXSmomQygO+JlLvcch3Dc5NTvHuBfDuG8i7C4N+KmhBmkfj3HXlIb5\n5/Qp14oQQggN5EIIMXMUEFTDDVLqzsnqY+dgH6ivUplO7cvhXRY5dpdmWIxpk+pWGuxelAb85KhB\nSvOkjNWncq0IIYTof0a+McMdouJ9Th9Z+uzCPqrkI99ZIw6wd9/OIfl7l/qfMfZRemyqFe+HKfVW\nZnfOMwwuBJ/rWExO1YnPteJ9H31moBm5EELMHA3kQggxc/p3rSy3PruO1dru2nepVrwPaMShXCde\no0xY6mJdTJvkV/+Oa8yh4n1OH4PYHdCIQ4ZOPLXEWkybGn2Wulpi2nS5YxKJmpGb2W4zO21mH2m2\nrzazU2b2kJndZWZXlZsihBAih1jXyluAB4CNaeEx4JS7HwLubraFEEKMQNC1YmbPAH4B+I/Av2p2\nHwFuab4fB9a42GA+to58CPdN6vYAFe8X+8p04uPVe6yrKOmyu9Q900fNzrHuRe2K91BBJ57jsuij\nz9KQ/a42MeckEjMj/03gbcBmR9h+d19vvq8D+8tNEUIIkcOOM3Iz+0XgrLufNrOVrjbu7mbWkbGp\n4auri8/LgJ9cgad1diOEED+2rH0T1r6Vf37ItfIS4IiZ/QILB8HfM7P3AutmdsDdz5jZQeDsRXt4\n9uris8tFMURAUGmwTh+FJWIyKi5vfcfbtbf1ah8I9oFwwM9Ua1/WVmbMpWZnXJbGMvdNTs3O5EyG\nUD/UPSbQZq59noeVv7/42eDtpzv62YEdXSvu/mvufo27Xwe8Fvgzd389cBI42jQ7CpxIu6wQQoha\npOrIN1wo7wDuNLPbgYeB11z0jJ105LUr3nftG6PifVYirjSdeEgjDuEZYY1q6aUzwi4dee0FvbmU\nehtiMTnK7tYMfO+51u9Ba3HOcsqw1VhELF3crFHxvo+86RlED+Tu/ufAnzffHwEOl19eCCFEKQrR\nF0KImTNuPvJQWbXQ8Roa70u04v3CjLouiSGqvEP9Bb0apd7GuhejPMPSXOJQ30XR5X4oLcOW4xIK\nHa+x8JuBZuRCCDFzNJALIcTMmXdhiRoa7xrum9Q+lre/S7V14qUV7xf7plcybQxFSQ2740L0y8L8\n8wp3VLgXtSved+2rHbI/1T5rKHgy0IxcCCFmjgZyIYSYOf27VjauMETF+5hzRikssXOwD2x3pSwt\nt5QZrRD8pV31lRn9ZOcbPrBmqjU7+1AFJYfwX+hw36QG/IRcBVBfpTJEGoC++sxx8SSiGbkQQswc\nDeRCCDFz+netbCg6ujL+hdQeUwjWySmIkVgUAtIDfsao9ziE+yamzXblRn03SJ3al8Ora1KLQiz2\nbd0uLgoB9etp1lCD5GQqLA1syukzA83IhRBi5kxbRz6KxjtwPsyi4n1MmylWeY9p097OybDYT6m3\nVizAFBZl+6h4P8TMto9FxJyybKUh+zHndN2/RDQjF0KImaOBXAghZs60dOSjaLwTz4cOd0zLldLS\ngLfLsLU14pCuEw9l54OhSqYNr8eeYlbBrjal7pvuNmk68bZGfJCK9zFtxlhEHCO1QMw5XS6eRDQj\nF0KImaOBXAghZs5wrpUhKt7X6CNLq76zTjykEYd0nXhIuQH1lRk5r/519Nj13SDlqQX6tzvLrkBR\niD19FFOIUX+kKjdylDGlbpGYPmsoeIYO0TezZTP7lJnda2YPmNmvN/uvNrNTZvaQmd1lZleVmyKE\nECKHHQdyd/8BcKu7Xw88H7jVzG4GjgGn3P0QcHezLYQQYgSCrhV3/37zdYmF4+FvgSPALc3+48Aa\nFxvMl1ufmykN1skJMipVykBywE8o2AfmoczIefXPC6zpv2bnGPeil2dYWhSia98QLoqQcqMP901O\nn2MUq8gguNhpZrvM7F5gHfiYu98P7Hf39abJOrC/3BQhhBA5xMzInwCuN7MrgT81s1tbx93MvPts\n4OOrT17p2hW4biXbWCGEuBRZexTWvpt/frRqxd0fNbM/Bl4IrJvZAXc/Y2YHgbMXPfHW1cVnl2ul\n1A0Sk2uleLvjb1Qg4Cc1kyHMQ5kxVGDNEDU7a7tvFvvKVEFZ9yKgUgkG+0B5IM0QfY6lMCnN4hhz\nzg9gZS+s/NSTu97+1x397EBItfK0DUWKme0DXgmcBk4CR5tmR4ETaZcVQghRi9CM/CBw3Mx2sRj0\n3+vud5vZaeBOM7sdeBh4TfAKNSrej5KPfPuf7ZBOvD1D37tUXi09Z0EvNOOb4uy5hl11UgsMb3eU\nTv9c63fr3NbFzW068Rp5vfsISx9jEXGM1AI5fWaw40Du7vcBN3bsfwQ4XH55IYQQpShEXwghZs60\nQvSraLwL+8ioeF9aFCKmTY0yYUO4b1JLvQ1xL6ZS8T7rGZbqxGu4KPooplBjEbF0cbPGIm0ffWag\nGbkQQswcDeRCCDFz+net7BSiX1vzHdPmx6TifUybKVR5j6l9mVxcIaNmZ7vNFCreQwWdeI7CpIY7\noXafXddIdcfUUPCE+qyh4MlAM3IhhJg5GsiFEGLmDKdaiVGYDFFYYpvrZet7za69rdf6fR2v/okB\nPzHh3XNQZlxaNTt3bpPzDFNVP6FgH9ge8FOsUokJSy9VbvTR51xSC9RQ8GSgGbkQQswcDeRCCDFz\npuVaKc2GGNVHWVEISA/4iQkmGUOZEXr1H8MN0t2mfo6YSdgdCPaBDpVKaSBNTDGFGn3WVqkMkc9l\nKn1moBm5EELMnGnpyEuzIUb1sbNOfIiK98OVCStbiMyZ9Zfm5I657hRn/Vl2BTTiUEEn3sfMNqbP\n2mXYaiwi5izS9rGYrBB9IYQQbTSQCyHEzBlusTPGDRIKr9/b2t7X0WehTvxSqXgf02aqdoc13v27\nb/JiAcoWN7tcK9VD3XNe/afQZ417M9bCb6hN1/1LRDNyIYSYORrIhRBi5lyChSXKdOJ7W+H3S7vq\nV0uvUbNzKnrsKda+HMvubc/wQusZnmv9HrResbdpxKF+Nr65hLpfKqkFIto81uWOSSQ4Izeza8zs\nY2Z2v5l90cze3Oy/2sxOmdlDZnaXmV1Vbo4QQohUYlwrjwNvdffnAi8GfsXMngMcA065+yHg7mZb\nCCHEwARdK+5+BjjTfP9/ZvYl4OnAEeCWptlxYI2uwXxDrZJTXzM1GyIUB/yEgn0Wly17ta9R73EM\nZUZMzc5xal8O776Jsru0KATUz8aX477JqaeZ2mfqvzOmzUT7fLy9PbRqxcyuBW4APgXsd/f15tA6\nsL/cHCGEEKlEL3aa2VOAPwLe4u5/Z2Y/OububmbeeeKJ1Sev9PwVeMHKk8dSdeKhBFiQvLg51Yr3\nU1zQi7G7NCd3TJvUxeTZVrzv2lc7ZH8qfabO4LvalKYB6GpTOkPvaNN6UeP8efjEE/AX3SNoFFED\nuZldxmIQf6+7n2h2r5vZAXc/Y2YHgbOdJ9+2uvjsyrUihBCCm3fBzZu235WYfyVGtWLA7wIPuPu7\nNx06CRxtvh8FTrTPFUII0T8xM/KXAq8DvmBmp5t9dwDvAO40s9uBh4HX7HiFGvnIl1vvHsvhMmxL\nrTYhnXjOq/8UK97H2DXXUm+pdue5bwILwRc6YgFSdeJjZOMbIg1AH32OlVqg1H3Ddp34Y602j1XI\nfhijWvkEF5+5Hy43QQghRAkK0RdCiJkzbqm3VJ14QCMO5TrxnFf/0uIKMW1SX/2hvjJjvJJpE7S7\nLT0gQyc+Rja+GM33FELdZ5paoK0Rh+068W068g4zUtGMXAghZo4GciGEmDnjulYqV7yH8oCfqdR7\nrKEoKVZm9FCzc4x7MVbF+0lm+ItxJwxRTKFGGoDawVIV+uzwuG0PAGodl2tFCCGEBnIhhJg7/btW\nllufXcd+tL1zwE8o2Ae2B/yUqlRiXv3r1L6coDIjyu40u2JqX5bma6mRGTI1kyFEqFRycpbUzsZX\nw50wlRwxtd03Gee0g326MhmGVCoV4oE0IxdCiLnT/4w8KR/5zjrxkEYcts/A+6iWXjojHE+PXfY2\n0k9qgWnavXSu9QzPbV3c3NNHXu8hsvGNFeo+hzQAEX2Ecol3lW17LHE7B83IhRBi5mggF0KImdO/\na2VDK95Dxfu2RhzqL+j1kZ2vhh67j1JvU6h4333dAZ5haVGIrn1TzMbXR4GGnFD3KaQByOizqyjE\nTqfD9sXN0HYOmpELIcTM0UAuhBAzZzgd+QAV76G+wmGIKu85dvWhKMnJsDiEKujHpuL9EH32oTDp\nQ8HTRxqADPdYSKUSk8kw57Gnohm5EELMHA3kQggxc4KuFTP7PeCfAWfd/XnNvquBPwR+hqZep7t/\nZ8crLG9/gdi1t6W82LdzSP7epZ1f/SH91T41+CSmzTiBNfUVJVOpNZrqnolS9KQG/MSEd08wG18V\n982lklogwl3zeDsEPxCSHxPcE2ozlGrlPcCrWvuOAafc/RBwd7MthBBiBIIDubt/HPjb1u4jwPHm\n+3HglyvbJYQQIpJc1cp+d19vvq8D+y9+hSbopyN4JzXgpw9FSY6qolSZEVOzcxx1TbpLaBqqoMA1\nL3TYnRrwM5NsfMn1N7v21chZUhqcM1KOmNSAn5jgnlCbSeRacXcHPNhQCCFEL+TOyNfN7IC7nzGz\ng8DZi7b8z/9+8bn7PPaSl2EvffmPDtWueB/TZopV3rvaVFnQG6DU2xD3YhIV78ea2Zb2GTPrL9V0\n5/Q5AY19jYr3NdZ9zwP3NT+55A7kJ4GjwDubzxMXbfnWfwdsV6gIIYRY8LzmZ4P3J54fdK2Y2fuA\nTwLPMrOvm9kbgHcArzSzh4BXNNtCCCFGIDgjd/fbLnLocMwFNmbibY04hHXiUyiZNlTF+7mWeqvt\nvolpEyzccalUvO+jz6mkFigN2Y85p12GLaARh+068dTFzZzFTmU/FEIIoYFcCCHmTu/ZDze04m2F\nCoR14qnFFbrb1M/ONwc3SA27ZmN3y5Wy91zrd6AjFNvGyMZ3qYS6zzS1QEgj3tXF91vbOfU3VbNT\nCCFEEA3kQggxc3p3rWy4VNrBPpAe8DNOvcftdvcRWFNas3OsezGEKig14CcY7APjuCjGqKeZkwag\nDwXPCMFSqUUhID3gJ+fXQqoVIYQQ29BALoQQM2cw10pboQL9BKjUVmYM4bKoYVdM7cuQeyb1eNd1\nw4U7KtyLQMBPMNina99Es/FV7zPmXoxRT7OHQh6pmQwhPXgnJyAo5tczFc3IhRBi5vQ+I9/bhOEv\n7ao/Y+yn9Njws/4advWRK7yG3akh/Is2rcXiC61Zf0AnHtSIwySz8Q3S56WUWiBUhq19vNVHWyMO\n6Zrv9nbSYhAGAAAGVElEQVSNWX4OmpELIcTM0UAuhBAzp//FzkYr3serf1yIfumCX3mptzEq3se0\nmYL7JsruVJ14zqv/CNn4ovocItS9dhqAPvrs0nwn6sRDi445ZoRC+kEh+kIIISLQQC6EEDOnf9cK\nG66VGq/+6RrvKbgsckL0h6jZOcWK91BBJ95D5rzR+qwdkt9HGoAaapsM99gYFe9D2zXcNTloRi6E\nEDNHA7kQQsycIteKmb0KeDewG/hv7v7OdpuNV+np1L4c3n0z1ZqdQ7hvgi6jC9v7rK5SqfG+e6n0\n2UcagBwFT6L7ph3sA+kBPzXENkO4a3LInpGb2W7gt4FXAf8IuM3MnlPBpsE5s/blsU0I8uDa+tgm\nRPG/17r+V0+PtXvGtiCOta+NbUEca4+ObUEcnx7bgJ4oca3cBHzF3R9298eB9wP/vI5Zw7I+g4H8\ny7MZyLfPsKfI2mfHtiCO2Qzk3x3bgjgu1YG8xLXydODrm7a/Abyo3WjjVTonsKZOzc6dCzDs5gKG\nX1RdMxU3iPHEluuOoSiJsXsXT2xpl1oUAmDvua0qlT19FFM432qX+uo/VM6SJ1rtpprPpbKdoWCf\nzjaBSzzW7Hts03abULBOag3PmDZjq1a8wvWFEEIUYu5547GZvRhYdfdXNdt3AE9sXvA0Mw32QgiR\ngbtbbNuSgXwP8GXgnwLfZOF+us3dv5TVoRBCiCyyfeTuft7M3gT8KQv54e9qEBdCiOHJnpELIYSY\nBr1EdprZq8zsQTP7SzP7N31cIwcz+z0zWzez+zbtu9rMTpnZQ2Z2l5ldNaaNjU3XmNnHzOx+M/ui\nmb15iraa2bKZfcrM7jWzB8zs16doZ2PTbjM7bWYfmbCND5vZFxo7Pz1hO68ysw+a2Zea5/6iqdlp\nZs9q7uPGz6Nm9uap2dnYekfzf/0+M/sDM9ubamf1gXzigULvYWHXZo4Bp9z9EHB3sz02jwNvdffn\nAi8GfqW5h5Oy1d1/ANzq7tcDzwduNbObmZidDW8BHuBJtdUUbXRgxd1vcPebmn1TtPO3gD9x9+ew\neO4PMjE73f3LzX28AXghC+Xgh5mYnWZ2LfBG4EZ3fx4LN/VrSbXT3av+AD8H/M9N28eAY7WvU2Df\ntcB9m7YfBPY33w8AD45tY4fNJ4DDU7YVuBz4DPDcqdkJPAP4KHAr8JGpPnfga8BPtvZNyk7gSuD/\ndOyflJ0t234e+PgU7QSuZiEa+QkWa5YfAV6ZamcfrpWuQKGn93CdWux3942wyXVg/5jGtGn+Yt8A\nfIoJ2mpmu8zs3saej7n7/UzPzt8E3sYibGWDqdkIixn5R83sHjN7Y7NvanZeB3zbzN5jZp8zs98x\nsyuYnp2beS3wvub7pOx090eA3wD+ioX67zvufopEO/sYyGe7euqLP3+Tsd/MngL8EfAWd/+7zcem\nYqu7P+EL18ozgJeb2a2t46PaaWa/CJx199NApy53bBs38VJfuAJezcKd9rLNBydi5x7gRuC/uPuN\nwPdovfZPxE4AzGwJ+CXgA+1jU7DTzJ4J/CoLT8FPA08xs9dtbhNjZx8D+V8D12zavobFrHyqrJvZ\nAQAzOwicHdkeAMzsMhaD+Hvd/USze5K2Arj7o8Afs/BHTsnOlwBHzOxrLGZlrzCz907MRgDc/VvN\n57dZ+HNvYnp2fgP4hrt/ptn+IIuB/czE7Nzg1cBnm3sK07ufPwt80t3/xt3PAx9i4Z5Oup99DOT3\nAP/QzK5t/hr+C+BkD9epxUngaPP9KAt/9KiYmQG/Czzg7u/edGhStprZ0zZW081sHwvf3mkmZKe7\n/5q7X+Pu17F4xf4zd3/9lGwEMLPLzeypzfcrWPh172Nidrr7GeDrZnao2XUYuJ+Fb3cydm7iNp50\nq8DE7icLX/iLzWxf8//+MItF+bT72ZMD/9UsHPhfAe4YczGhZdf7WPihfsjCj/8GFosNHwUeAu4C\nrpqAnTez8Ofey2JgPM1CbTMpW4HnAZ9r7PwC8LZm/6Ts3GTvLcDJKdrIwvd8b/PzxY3/N1Ozs7Hp\nBSwWtj/PYgZ55UTtvAL4v8BTN+2bop3/msUfw/uA48BlqXYqIEgIIWaOSr0JIcTM0UAuhBAzRwO5\nEELMHA3kQggxczSQCyHEzNFALoQQM0cDuRBCzBwN5EIIMXP+P6AvYAoOixWaAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.pcolormesh(newvars['nav_lon'][:])" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "new.close()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAJPCAYAAABcoIE1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X+wnFd95/nPVz+ta8kWkrAsGydyIAacdWInDCHYhEuA\nxExS/KjZJcuGXS9DUkyFX8NkMkC2JrpOKsOPrCmSYZed2RjKgRSTVKh4INkEG8admBDIQPxD2AbH\niZWywZItY9mSdaWrK539o/tat8/zPaefe+7zdPftfr+qbun2eZ7nPKeffk73Ud/v+R4LIQgAAAAr\ns27UDQAAAFiLGEQBAAAUYBAFAABQgEEUAABAAQZRAAAABRhEAQAAFMgOoszsEjO7zczuMbNvmtm7\neuVzZvawmd3R+7l2OM0FRos+AfSjT2CaWS5PlJldKOnCEMKdZrZV0jckvV7SGyUdDSF8ZDjNBMYD\nfQLoR5/ANNuQ2xhCOCjpYO/3Y2Z2n6SLe5ut5bYBY4c+AfSjT2Ca1Y6JMrO9kq6S9NVe0TvN7C4z\nu9HMtrfQNmCs0SeAfvQJTJtag6jeV7R/LOndIYRjkj4u6VJJV0p6RNINrbUQGEP0CaAffQLTKBsT\nJUlmtlHSn0r68xDCR53teyV9PoRwRVTOonwYOyGEVf95gT6BSUKfAM5aaX/IxkSZmUm6UdK9yzuG\nme0JITzSe/gGSfu94x9eSUskbcm0Zstmv3xD5pjfWpDmZpwN61fUrN6JMtvOSW+aOyLN7Vxhfalt\nuXanjtkgzT0kzV3SXH0rPma9NHe/NHdZQ+cpabck+0zmuJpW2yfC/x4VxO317iXv3o/LzpHm/ps0\n91PLys6tcZy3z9Zq0dx/leb+12UF5zvHOff54gXVsiPn9Z/gsHbqY3NH9I65s3/tOaJnVY/T9uzj\nVNln5+7VT8/9+DOPj2pbZZ86ZUedCzOvGX177o/0/Lk3PlN2XNU3nbhsXlsG7iNJh+b+s7bPveOZ\nxwvOzbBwZlOlTJIOr7vYLV+uezuvzmr7xPknH6mUnV5Md+TTi+k3gJPz/rU4czrzxvDbvyW959er\n5Znz6ETiui2mD9F8ovy0pBvnpLfOOefJ1Jc6V64NuWP+cE76eacNpzL1pVRv77NSL8U5km6ak65z\n2pB5+cJP1m7VQCX9ITuIknS1pDdLutvM7uiV/ZqkN5nZlZKCpAclvW3FZwbWJvoE0I8+gak1aHbe\nl+XHTf15O80Bxht9AuhHn8A0m+iM5bMbR90CaTb3teaw2nDeqFsgzXp/0kSjZi9tse4fbq9uSXrx\nbOZv4qv03NnBf9ZajZ2zP9Ra3efMvri1utHzkpePugXSVbOjboH0Q7OjboH0I7OjbsGKDQwsL67Y\nLIw6JmpjSWxRSmFMVPJcQ4yJShpiTFSj51lFTFQTQbSlzCy0GRNV0WBMlOKBeMMxUZV9GoyJqsY2\nNRsTFWsyJuqk+mN82oiJGnWfGHlMVKq+YcZEJc+T2dZ0TFTKMGOiVnqMmo+JWml/mOhvogAAANoy\nKLB87CW/bZLKvgVKKb1STX7TMqxvgXLb1mq7x0Xcvvix97y95zSonlRZ/L+9ut9gxWXePs63U8fP\nrX4zEH/D432b431TsxB9KxN/SyNJp50LGJfV2SdVNo7Wr8t9lTF5ct9ENWqx4Au63Dc6qZep5Num\n3HEl3yqdLGxDSkl9uW+ifuH69Lawr0aD2sM3UQAAAAUYRAEAABRgEAUAAFCAQRQAAEABBlEAAAAF\nRjKXaawnUDWdt2jUbSidyTbqnE+l7R73CVWDZtV5z63OjD0vl5R3XFxWJweVVJ0548zEO+nM2Du+\nfnA+JD8/UrURcdlp52ItOk86LiudiVf3fGtlVh96Smb7pWaY5XIqleRoKpm5l2tDatZcSW6pnNx7\n9FszM+3WIL6JAgAAKMAgCgAAoACDKAAAgAIMogAAAAowiAIAACjAIAoAAKBAq9kGxjqVwbCUpAoY\nZ+OcFmHQceNg0ILDdRcSrpMawVvQs3QB4iilQfDSGcxU0xl4iwvHCwnHj+uW+ftUUyPEqQnqpEHo\nHlcnNUJZ2gNvn1KnzyTqWsP/RW58keEm0xjktuXWgi5JcVCymHDJetRNpzHw0qRMqDXczQAAAEaH\nQRQAAEABBlEAAAAFGEQBAAAUYBAFAABQgEEUAABAgVYnhM8nyjeusDznVGZq5sZhpRFo+ioOK1VA\naRqBYShNYzDuKQ4GpTTwnrf3nOL9vOO8acZxagIvnUGNsuPnVv//ddxJZ1Cn7KTT0DplJ50UB14a\ngmpqhMFpELz6/RQH9dIeVNMlDN7H28/bZ607vdhcpz1zetzfABwl6QWkdCqD0pQJK5W71NVsJxMr\n+02UmV1iZreZ2T1m9k0ze1evfIeZ3Wpm95vZLWa2fTjNBUaLPgH0o09gmg36c94pSe8JIfyQpJdI\neruZvVDS+yTdGkK4TNKXeo+BaUCfAPrRJzC1soOoEMLBEMKdvd+PSbpP0sWSXivppt5uN0l6fZuN\nBMYFfQLoR5/ANKsdWG5meyVdJelrknaHEA71Nh2StLvxlgFjjj4B9KNPYNrUGkSZ2VZJn5X07hDC\n0eXbQghBUmihbcDYok8A/egTmEYDpzKY2UZ1O8anQgg394oPmdmFIYSDZrZH0qPesb+97PcX936k\nwll4iZkIG3LPIDV7oWQCR9OTYsZ9EkmTCwMPczbdsvo6D0ud7zRcv1bXJ+a+evb32edIs8+Ldihd\ngNhbSNg7Lp6YVnN23mJUNr+5Outu3pmSc9wpK12AuM4MN39W3+BZdv75Bi9cXH/G3uDFjGstguws\nNryYWly3+pTU6XTU6XT8/VdhNX3i5G99+Jnf17/sam34yasbb1/Wog3pPAXHpBYZztU3rNl5E6CJ\n/mDd/yAkNpqZun/LfjyE8J5l5R/ulX3IzN4naXsI4X3RseHeRL3nJcq3ZD5QU4OlLZnVojem6sut\nMN3kMU3XN8wUB6n2DWsQVZriwBtM9NjHpBDCqt4xV9snwrsHtNe77t5zivc739nHGyDtiB7vrLGP\npMVovyPnba3sc0TVyVdPOGXHtK3v8dHocaosTo1Q97ij6m/rvJN2oc75vAGhV5eX1iEepHn7eCkb\n4nQMC2eq+6QGUUc2XeiWL2dmI+8TW59+rFLn6dTAcMC2hROJN67MMTqReEPJDThOrLBcko4VHJPK\nEyRJJxPlwxpEZd5rnW5/1uuub7ARUgj7GqurpD8M+h7gaklvlnS3md3RK3u/pA9K+iMze6ukA5Le\nuMK2AmsVfQLoR5/A1MoOokIIX1Y6bupVzTcHGG/0CaAffQLTjGVfAAAACjCIAgAAKMAgCgAAoMBI\nFiBOrU24ITNzIJvKYBhS6RKk8U9XkDIOa5mOQ1qEYRq04HCdxYbr1CPVm+nnzeCrTrzT0fP6e22d\n2WySv9hvdSHh6j7edP86qRHqLOLrna904eK6dcX7lS5c7M3ESy7g66Q4QMvWagqBknbnjsnNKvxs\nYjbdv2h21t6w8E0UAABAAQZRAAAABRhEAQAAFGAQBQAAUIBBFAAAQIFW5znl1k4cqdysgrU888sz\nzOdTsn5fk+eRxmPGYU5T16LOrL46a+45s/OePq/6f6vqOnL11p/zZ/H1z/TzFyAePBOuzgw+r6zO\n7Dmv/rqLDXtr4FVm2dVduDhacDg5E28Ny62FNxQbEuvHDmth4qYNa+28XF2pdf2k/Ez3NYhvogAA\nAAowiAIAACjAIAoAAKAAgygAAIACDKIAAAAKMIgCAAAo0Op82d1tVt6zmJlmubHk2aXqm7yZxWWG\nNRt5Wq53/Dy9512nzNvHW4A4TmngpEGY3+ylL+hflfiItjv7DE5nIEnzNdIl1ElVUHdB4DidQOnC\nxbXTEtRYSLjOPlJ1weGRpwMYktLnuW69/wZ+ZkquW7GmF04+0XB9Y4xvogAAAAowiAIAACjAIAoA\nAKAAgygAAIACDKIAAAAKtDoHamOblddwKjHjINuuJmf05eprehHkYS7yu1K5iTHj3O5xUWd2njcT\nzyuLZuPVWWxYqs6882bdlc7O8xbsrTPzrs4MPq8ubwaf34bBswG9GXWeWosZn3HKogWHJ3F23kqf\n0+KpMbgGp4Z0nrW6WG/Ts/3GGN9EAQAAFBg4iDKzT5jZITPbv6xszsweNrM7ej/XtttMYHzQJ4B+\n9AlMqzrfRH1SUnzzB0kfCSFc1fv5i+abBowt+gTQjz6BqTRwEBVCuF3SE84ma745wPijTwD96BOY\nVquJiXqnmd1lZjeaWXUNCGD60CeAfvQJTLTSuUwfl/Qbvd9/U9INkt4a73TDst9/QtJLC08GlOg8\n1P0Zklp9Yu7LZ3+f/T5p9geH0TSgq9PpqNPpDOt0tfrE4oc+8Mzv666+RuuuedlQGgc00R8shDB4\nJ7O9kj4fQrii7jYzCw8n6kuN3HILBm9IbNuYme2aPCY3dEzV5yzU+gxvKvmg43KzdJs8puS5Nt2G\nkhQHuXbnrnfmOLtBCiE08ueF0j4Rfi3aOW6vdw3jRYMl6bzo8U5nn4sGlx3es7WyyyFn6fDHoxMc\ndk7opTg45qY9KEtxEKcc8FIxeGXzUZoFPxVD9bi4XXFqBm+fbjsHp1Bw61pw6joRpWeYr+6Tcnq3\nd+P0M7OR94l1B481cXpJ0pnTiTeAXBqFE4ljcovozifKn84ck6ovd57ctlQagZJjckrS9Lz9+oIT\nlQlhX2N1lfSHoj/nmdmeZQ/fIGl/al9gGtAngH70CUyDgX/OM7PPSHq5pF1m9pCkfZJmzexKdWdf\nPCjpba22Ehgj9AmgH30C02rgICqE8Can+BMttAVYE+gTQD/6BKYVGcsBAAAKMIgCAAAowCAKAACg\nwJpf8/5Uw6tc51ImFElNAx2DhciLXv2m75iSFAcl9Y2ruL3efeGVxcd5s9mdssWozE8TsMUp69/P\nm6LvldVJQxCnIJCkk06agNPRhfDTC1TL4roWnQsa190t27DifWrXdcbZZ9GpK5qan5zCv4Y1+pxS\nqQxyKQ5S79G5Kfwlnzsl6QVK5C5nyaVOpa75heGlMRhnfBMFAABQgEEUAABAAQZRAAAABRhEAQAA\nFGAQBQAAUGCspnqcKpi9kFpkuFhq1kWubU3PhmhS6SzAJmcPjvoarCXetfLK4hkz3qLMzuy84+fG\ni/hWZ8b5s+z69/Nmz9VdEPio+hc99hf2HTw7r85MPG8/b4Fgb8ZefFzdWX119lt0ZovFM/EkafFU\nVObNMsvNPFsLTjiLKm8onHaduhYnMmvKpt7bT2XOU7KYcMl5hqV0oXrwTRQAAEAJBlEAAAAFGEQB\nAAAUYBAFAABQgEEUAABAAQZRAAAABUYy+Tw107OkMYsNL+q4ken45ZqcCpuray2/RnHb6zyXOukL\ntlZ3CU6Kg6Prt/U99tMLeAv7bo4e11v81yuLz+mlQfCOi1MHeKkKvJQDcdqDugsJ19mnbl0LZ/qf\nT53FhiXpzMnoObopDjLT99cCr/3O9Tm7reAcudQDqRQDJzPHlCxanDpPLptD04sWlyz4nrsO4Jso\nAACAEgyiAAAACjCIAgAAKMAgCgAAoACDKAAAgAKtznNKTUbY2OZJUV/Jq9/0HdN0fWttscy4vd5M\nvHixYW8/d7Hh6v+R4llv3oK9dWbseTP4vLq8/aqz7Kr7eDP2Kov41pwZV++4wWV1Fxt2ZxZGs+oW\nnEV3F044L348G89bSLfpGVzDdqzBupqcAZeb0ZfaNp85pnBN5RXLvaemtjmze5/xuutX0ZjJxzdR\nAAAABQYOoszsE2Z2yMz2LyvbYWa3mtn9ZnaLmW1vt5nA+KBPAGfRHzDN6nwT9UlJ10Zl75N0awjh\nMklf6j0GpgV9AjiL/oCpNXAQFUK4XdITUfFrJd3U+/0mSa9vuF3A2KJPAGfRHzDNSmOidocQDvV+\nPyRpd0PtAdYq+gRwFv0BU2HVc6NCCMHMgrfto8t+f0nvBxiWzj91f4Yt1yfmOmd/n90rzf7QcNoE\nSFKn01Gn0xnqOXP9QZL0n+bO/v5js9KLZttuEiCpmf5gIaTv7Wd2Mtsr6fMhhCt6j78laTaEcNDM\n9ki6LYTwguiYcG+ivtTIrTqpefAxJQsGb/GmkS+dJ1HfRmcK+TO8KehLUufKtCFZX276fuqYkvPk\nztX0ManXr+S5DjjO/oMUQmhktdbSPhF+I6oofn3Od052gVN2UfT4+6q7HN5Tnbd8KPpC4FGn8idU\njQE+omdFj719qmVHtW3gfse1pbKPn2Zh8ELCnjjNgrtAcI00C94+boqIM9Xnc/xYf13zx5x3Oyft\nQSWlgTe1PjHdPrzUL1/OzBrpEyX9obdf0F8P/gzqU5LSIXdMyWLCqRQHqRQL0vBSHOS6RSq/UO49\n9Wii/H8ej9QHIexrrK6S/lD657zPSbqu9/t1km4urAeYFPQJ4Cz6A6ZCnRQHn5H0FUnPN7OHzOwt\nkj4o6dVmdr+kn+o9BqYCfQI4i/6AaTbwj2EhhDclNr2q4bYAawJ9AjiL/oBpRsZyAACAAgyiAAAA\nCrS6APHlmnPLH06Ut9qYmkpm+zUuNStkmIvrjnpx4tK6xuH1y4nbF8+K8WZTejNDo7JFZx9v5lg8\nw8xfQLd6XJ3FeOuWVfepvmh1FgmuuyBwXL8/y65aVmfhYrcuZyHhk/PRfvHCwpK/uHA8C2wFs/PW\nDG8B4nFYVDl3XXOz8Ial5PMg1e7c++aYzMIbV3wTBQAAUIBBFAAAQAEGUQAAAAUYRAEAABRgEAUA\nAFCAQRQAAECBcZ8QPtCpzFTYsUhXgLySabrDTPXQtLjt8ePqmsG1Uhyc3Fz9/9C8s7BvnPagTjoD\nr6zu4r9tqpPOoFtWJz1D9bg47YF3rU4uVFMcLDgLCZ85GR17wnlzqpO+wEsHMIkpDkqVvOenPkNK\nFhMuSc2Qa3PT3ezpFZZjIL6JAgAAKMAgCgAAoACDKAAAgAIMogAAAAowiAIAACgwkvlrxxPlM5lj\nRj7RLjfrIrctNbsi94RG/mTXsHG/diULEMf7OGXzm6u9p84CxOMwy65J3vOJn3Od69KtK1q4+Iyz\nz6KzePIp55rGCw7XXUg4nrnm7TPvlK0lTc4ubPJ2Ts3Ak9Lv+bnPgpL3po0F9XkzfJewmHDj+CYK\nAACgAIMoAACAAgyiAAAACjCIAgAAKMAgCgAAoACDKAAAgAIjmRB+mebc8ocT5aU2FDy71ILGuZmm\njU9rxeSK74d4tn2NxYYlaTFegLhwIWFvEV9/Yd/2UiGsdzrQBmd++UL0uM5iw1L1+Xj71El7cPKE\ns0+dxYYl6YT1P/bSEtRJe+Add9IpW0tWugDxOL+n5trmpS+R5KwTvjoliyCj2KpuRzM7IOkpdTNq\nnAohvLiJRgFrFX0C6EefwCRb7Zg+SJoNIXyvicYAE4A+AfSjT2BiNRETZYN3AaYKfQLoR5/ARFrt\nICpI+qKZfd3MfqmJBgFrHH0C6EefwMRa7Z/zrg4hPGJmz5Z0q5l9K4RwexMNA9Yo+gTQjz6BibWq\nQVQI4ZHev4+Z2Z9IerGkZZ3jtmV775V06WpOB6xI58HuzzAN6hNzf35239nnSbM/Ptz2Ybp1Oh11\nOp2hnnPg58Tn587ufNms9PzZYTYPU6yJ/mAhhLIDzWYkrQ8hHDWzcyXdIun6EMItve1BDaYySI32\nNmaGgSUpDjYmZnLn6tqYmroqSeckyr2p7EtS9aXqytVX0jYpvRp67pjUuUqm/ZacZ8Bx9mtSCKG1\n2Iw6fSL8P9FBFwx4LEnfVy166qL+qfWPr99Z2eewqmWPa1ff46PaVtnHK5uP5mHXPa5O2XFnjve8\nZiplx6Oy+LHXTqmavqDu+U4u9F/jBSfFwcl5J8XB09W6dCS67bxp/V7Z0ejx084+XmoESeGX/fLl\nzGzkfUK/U/YZ5BpW+oPUeXLvW6ljctlDqpk+BsulOLju+oIKx1sI+xqrq6Q/rOaW2y3pT8xsqZ4/\nWOoYwJSiTwD96BOYaMWDqBDCg5KubLAtwJpGnwD60Scw6Vj2BQAAoACDKAAAgAIMogAAAAqMZCnH\nU4ny7CK/BRYLFmJMHbOhZJaEMs8pd+VT23LPJ7Utd55cfe2tN9uu3My9cRC3L57Ns9U5xpnxs7A+\nWhxX1VliCzUWJa6zSLHkL0ocW+9MJapbVkedtnvtjBcS9q5LPBNPqs7Gc2fi1VlsWKrOoKszE0+q\nzsars0jxWuMtqjxMqdsxN9Muta3kPTon14bUws1vm7wZeOOMb6IAAAAKMIgCAAAowCAKAACgAIMo\nAACAAgyiAAAACjCIAgAAKDCSFAeXNrgw8amSNAYrP0QbSg7KyC2cnJxNnptlnmpfrt1NpwMoSbNQ\noiQ9xLiIpyzHr4Hzmiw6ZfGiunXSGaTKxlGdlAr+86veAHFdC2cGpzOQqikN3IWFjznpDI5Uiypl\n3j7elPU4fYGXzqDh96ahO+mUlT6n1HGpvDo51XWqz0ot+J5rt5e+RJK2Z465MLPtalIZjAO+iQIA\nACjAIAoAAKAAgygAAIACDKIAAAAKMIgCAAAoMJK5TA8WzMJLyU2GSE3IKJmokV0cObMA6MbEJKON\nuYanFsTMrdua2la6IGbJIsjDmviVu2vX2gLE8WNn1s/JzdX/68SL6pbOxBuH2XrejLo6s+zqPud4\n5uJJZybe/DFn5t2RaD9vRt1hp+xgjTJvseHCRc7XPO+65t5ncgsWxws2L0kt1iul309Ss+kkaXei\nfFfmmNRiwrkFpL1rg7HCN1EAAAAFGEQBAAAUYBAFAABQgEEUAABAAQZRAAAABRhEAQAAFBhJioNU\nioFcGoGSdSVTM2Fzx2RTGRTY6C2uKWlD5sonFyfOTd9PXaDcMeM8pTo38z63ba0tQBxPo3amQS9s\nHry4cJ0Fe9tWN11CvF9pqgLvOZ9UdXHh4wv9K8keO7Kt2qjDTkd5OHp8oLqLHnDKHnLKHo8ee9Pa\nvXs3bpbT9OTU+bXCSxORm9p/ILPtkUR5KvWBlP5A8K71kr2J8hdkjkktJpxLi4CxV/xNlJlda2bf\nMrO/N7P3NtkoYC2iTwD96BOYdEWDKDNbL+ljkq6VdLmkN5nZC5tsWBP+dtQNkPTlM6NugdQZg4Rt\nne+MugXtGoc+8Y1OLqPg6vx957ut1S1Jj3Xuba3uxb/8Smt1S5Ie6rRX9/darLtl49AnajnTGXUL\npH/sjLoFkh4cdQM0Hm1YmdJvol4s6YEQwoEQwilJ/0XS65prVjPGYRD112HULRiTQVS7n8HjYOR9\n4hud3N8sVueBll/Aw20Oov6q5UHUw5326n6ixbrbN/I+UUvojLoF0oOdUbdA+b+TDsuBUTdgxUoH\nURer/y//D/fKgGlFnwD60Scw8UoHUWPw/QowVugTQD/6BCaehbDy+9zMXiJpLoRwbe/x+yWdCSF8\naNk+dCCMnRCCtVEvfQJrFX0COGul/aF0ELVB0rclvVLSd9UNP3pTCOG+FVcGTAD6BNCPPoFpUJRV\nJ4SwaGbvkPQFdbP23EjHwDSjTwD96BOYBkXfRAEAAEy7VpZ9GYcEa2Z2wMzuNrM7zGwo2Q7M7BNm\ndsjM9i8r22Fmt5rZ/WZ2i5ltH0Eb5szs4d61uMPMrm3x/JeY2W1mdo+ZfdPM3tUrH9p1yLRhaNfB\naVOrfaLJ+73N+7jt+7PN+6/N+8rMzjGzr5nZnWZ2r5l9oKl2D6h/YvtEzTZM3efEqD8jeuebnM+J\nEEKjP+p+bfuAuonxN0q6U9ILmz5PjXY8KGnHkM/5MklXSdq/rOzDkv5d7/f3SvrgCNqwT9K/GdI1\nuFDSlb3ft6obE/HCYV6HTBuGdh2i9rTeJ5q839u8j9u+P9u8/9q+ryTN9P7dIOmrkq5pst8k6p/Y\nPlGzHVP3OTHqz4je+Sbmc6KNb6LGKcFaK7NOUkIIt0t6Iip+raSber/fJOn1I2iDNKRrEUI4GEK4\ns/f7MUn3qZsbZmjXIdMGacj3RM+w+kQjz63N+7jt+7PN+6/t+yqEcLz36yZ1BxlPqMF+k6hfmuw+\nUcdUfU6M+jOi14aJ+ZxoYxA1LgnWgqQvmtnXzeyXRnD+JbtDCId6vx+StHtE7Xinmd1lZje2+RXp\ncma2V93/8XxNI7oOy9rw1V7R0K+DhtMn2r7f2379Gn9d2rz/2rivzGydmd3Za99tIYR7mmx3ov5G\n2l6Az4l+4/A5MYr7YM1/TrQxiBqXSPWrQwhXSXqNpLeb2ctG3aDQ/d5wFNfn45IulXSluuuc39D2\nCc1sq6TPSnp3COHo8m3Dug69Nvxxrw3HNILr0DOM13xo93sLr1/jr0ub919b91UI4UwI4UpJz5H0\nk2b2iibb7dQ/21TbS5ozpPMMwudE10jug0n4nGhjEPUdSZcse3yJuv/LGKoQwiO9fx+T9Cfqfn08\nCofM7EJJMrM9kh4ddgNCCI+GHkm/p5avhZltVLdjfCqEcHOveKjXYVkbPr3UhmFfh2Va7xNDuN9b\ne/2afl3avP+GcV+FEJ6U9GeSfqypdifqf9Ek94k6+JzoGsV9MCmfE20Mor4u6QfNbK+ZbZL085I+\n18J5ksxsxsy29X4/V9JPS9qfP6o1n5N0Xe/36yTdnNm3Fb2bcckb1OK1MDOTdKOke0MIH122aWjX\nIdWGYV6HSKt9Ykj3e2uvX5OvS5v3X5v3lZntWvqzgZltkfRqSXc00e5c/UsfWKtpeyE+J/qN9HNi\n2O+NE/U5EdqJen+NupHuD0h6fxvnGHD+S9Wd7XGnpG8Oqw2SPqNuZt4Fdf/e/xZJOyR9UdL9km6R\ntH3IbfiXkn5f0t2S7lL3ptzd4vmvkXSmd+3v6P1cO8zrkGjDa4Z5HZw2tdYnmr7f27yP274/27z/\n2ryvJF0h6e96dd8t6Vd75U1d91T9E9knap5/Kj8n2u6DNdswMZ8TJNsEAAAo0EqyTQAAgEnHIAoA\nAKAAgygAAIACDKIAAAAKMIgCAAAowCAKAACgAIMoAACAAgyiAAAACjCIAgAAKMAgCgAAoACDKAAA\ngAIMogDbk/NXAAAgAElEQVQAAAowiAIAACjAIAoAAKAAgygAAIAC2UGUmZ1jZl8zszvN7F4z+0Cv\nfM7MHjazO3o/1w6nucBo0SeAfvQJTDMLIeR3MJsJIRw3sw2Svizp30p6paSjIYSPDKGNwFihTwD9\n6BOYVgP/nBdCON77dZOk9ZKe6D22thoFjDP6BNCPPoFpNXAQZWbrzOxOSYck3RZCuKe36Z1mdpeZ\n3Whm21ttJTBG6BNAP/oEptXAP+c9s6PZ+ZK+IOl9ku6V9Fhv029K2hNCeGsrLQTGFH0C6EefwLTZ\nUHfHEMKTZvZnkl4UQugslZvZ70n6fLy/mdUbnQFDFEJo7M8L9AlMAvoEcNZK+8Og2Xm7lr6CNbMt\nkl4t6Q4zu3DZbm+QtD/RmJH+7Nu3jzbQhmd+mjDOfaLNa9z260fbR9P2Se8T43CNacPaaUOJQd9E\n7ZF0k5mtU3fA9akQwpfM7PfN7EpJQdKDkt5WdHZg7aFPAP3oE5ha2UFUCGG/pB91yv+31loEjDH6\nBNCPPoFpNtEZy2dnZ0fdBNowRm2YdG1e47ZfP9o+/LrRNQ7XmDaMTxtWqvbsvBVXbBbaqhsoYWYK\nDQbRFpyfPoGxQp8AzirpDxP9TRQAAEBbGEQBAAAUYBAFAABQoHayzRJm17vl92rOLd+SqetUonwx\nc8x8ZttK5S5Urt3npcrPzdSX2nZ+5kSpYzLn0dbMts0F9aWOOSdzTEm7c9fhgsy2cfDfoj+3X9T/\nMDjtP7Sj+oSPaHv0+FmVfY46L/C8ZqJ9tlX2OR7t4+133Lnrj9Wsq9r26mogXrvisrrHHT60s+/x\nme84N9ffV4t0T/T4m84+B52yE05Z/EblvTmddMpi3sIpicVUwl/VqG8M2EudQu/1WHI49WkgSQcS\n5blPg9ynSMrFfvGu3elD9iTK92ZO83n/MxRnhbBvpOfnmygAAIACDKIAAAAKMIgCAAAowCAKAACg\nQKuB5SmXJwLLH0yU5+RCDIclF5aY2nbqdPqYLaltmWOS23LH5BqeChIvOaZE7s7MnScXxD4O4rZH\njxec9p92LoZXNkze+Re1vlJ2UpsGlvnHVV/kOEjdDYB/qhpYfubxKJD8QGUX6S6nLA4kf8TZx+NN\n2IifztPOPg87ZUcGPPbqXmu+5ZQ9kXtnvy+zLRVAnpv+k9pWEMB+OFEuSYcTQef7b8qcB+OOb6IA\nAAAKMIgCAAAowCAKAACgAIMoAACAAtnoVDM7R9Jfqhu6uEnSfw0hvN/Mdkj6Q0nfr26E3RtDCF7I\noyuVsbwkw3hJrtkSufNszGxLZlovafiwnmzuXE0HsabuwNydmQsebznIdtV9Im579Pjk5mog9oIT\nnH06CsaOH6d4QdyD6q57vgXn4tcp8/cZfB2OL1QDgucPO+m7D0SPvUBmL6j7WPTYywxejWP378/4\nfvbe7Lw3i3g/LyC9yaUZCqy6Tzzh1XqosDWpNSIymcSLAstTFz13zPcy27BWZb+JCiGckPSKEMKV\nkn5Y0ivM7BpJ75N0awjhMklf6j0GJh59AuhHn8A0G/jnvBDC8d6vmyStV/f/Da+VtDQv8yZJr2+l\ndcAYok8A/egTmFYDB1Fmts7M7lT3+9XbQgj3SNodQlj6vvWQ8t+VAhOFPgH0o09gWg3M2BdCOCPp\nSjM7X9IXzOwV0fZgZsE/+rZlv++VdGlxQ4GV6uzv/jRtNX1i7j+d/X32x6TZ1zbfPiCl0+mo0+k0\nXu/qPifmlv0+2/sB2tdEf7AQEve1t7PZv1c3ou4XJc2GEA6a2R51/+fxgmjfcGuinosT5bmQvFTw\ndklMZUmW81zweG4kmgpZ3Jk5aNu5fvnG8zMnShyTLC/dljsmFfCda3cqDnRn5pgLMtsuSm+yV0oh\nBMscvWIr7RMhSrYcoufy+I5quusjTkTz0SiiOX4sJTJ6R/sdd+7Q+RrHeW067Lxox5x2PREde0TP\nquzj1R+XPfJd58V+wJlZEGcejx9L0kGnLJ5c4QWW73LKvNj9eOWAE84+XnB7nJz7O84+iTfBOm/t\nZjbyPiE97tTildVREFieei9ufCLP9U1XCEkh7GusrpL+kP1znpntMrPtvd+3SHq1pDskfU7Sdb3d\nrpN088qbC6w99AmgH30C02zQn/P2SLrJzNapO+D6VAjhS2Z2h6Q/MrO3qjd1td1mAmODPgH0o09g\namUHUSGE/ZJ+1Cn/nqRXtdUoYFzRJ4B+9AlMs1aXgk/FK3l/1pfyoS4lcUzDykHX6kVcLvc3+tS2\nkmOkagzHoPJSqYuXS5o5wmSbqxa1byFOtuk8AS9BZlxWJ0FmXXXqOukmAK2+mF5cVhxz5SXW9GK1\njjwVBSU95LzYD1SL9GD0+DFnH68vxNV7MVFeqI2XgDOOgfJSE3txUnuix2OYbLMdpVGoO/xi7zVZ\n4r2ug6RSSx/NHXRdovymRDnWApZ9AQAAKMAgCgAAoACDKAAAgAIMogAAAAq0GhN9YIUnTSWmzCkJ\nOM/JhTM26VTjidzGQCqOORffnLoZSoPHc8eNg+j5Lq7v/3+MH9RdvUheWXWfwQHideqRvED26nFe\ngLgXgB4Hz3uJQo8sVKN95x+OknIecBrqlcUzWbzgbO++id8MvPvOC1iu5kut3udeELl3XFzmtbPR\nVJmj4N2DufsylVBTkiXewXMLzqQCy3MfBl6SVSkfWH5gr1+++K8yB+Wkpmg9lTkm1cCSlNF/mTlm\nevBNFAAAQAEGUQAAAAUYRAEAABRgEAUAAFCg1cDyd2nOLf/dRPn3Cs5REg6HIcu9SKkg8VzweOm2\ncRAFBp/e0EyAuJfVvA6vbq+uOJC8bob0BecFmY96phdY/uRBJ3L34ejxgeoulX0k6ZhTFqsz0cML\nNPYCvevcg97L5d0Kcf1e8Pm4T6YYyLuw1Uz3Z2UCy3cmynMZy1MfFLlM5qnX+GTmmGcnyg9mot4f\nytS3mJpWlZtulUpvX7q0BfgmCgAAoACDKAAAgAIMogAAAApkAzLM7BJJvy/pAklB0n8OIfyumc1J\n+kWdXQ/9/SGEv6h70lSsVM7nEscMKzkmekoSZ5Ykx8zFeeS2tRrlt/o+EaLrd3p9nMSyXqxRdZ/q\nE/djm8rqqibprNYTJ9HsllWTbcYxUEeecoJPHnFeyDje6XB1FzeJZazuPRKHlnihJt75vPrrtMt7\naeqEujWdcXiF2vmcyES05pKLpmKfSpL35t63Thccc2GiPBd7lYrxkqR7nuOXzz+aOajEXzdc32QZ\n9HZyStJ7Qgh3mtlWSd8ws1vV7SgfCSF8pPUWAuOFPgH0o09gamUHUSGEg5IO9n4/Zmb3Sbq4t3nN\nLzYArBR9AuhHn8A0qx0TZWZ7JV0l6au9onea2V1mdqOZ5b6QBCYSfQLoR5/AtKk1iOp9RfvHkt4d\nQjgm6eOSLpV0paRHJN3QWguBMUSfAPrRJzCNBoZYmtlGSZ+V9OkQws2SFEJ4dNn235P0ef/o25b9\nvlfd/lRm0hJnbiwJgM7lPEsFOqbK21ASJN5iss3OV7s/TVtNn9j322d/f/k10o/87OCAbU+dQG8v\nQHxQPamyhShA3Asij/eRpHknaeLxqGz+sPMFxePVolpJM891yuLL4OUb9PpJXOa1yQtkPuqUxUkY\nvUDzIzXKHnH2WUEuxE6no06nU/+Amlb3OTG37PerJV0jaUf6ZLnvs1Lbcsd494wk7ckck+pa3ms4\naFvu/fGSzLbUh+LtP5o56M8z26ZPE/3BQgjpjWYm6SZJj4cQ3rOsfE8I4ZHe7++R9M9CCP9LdGxQ\nwSy8lFsL6ioZp6Rm+5VmRk9t25mpcFuiU2/MDR68TMZS+g1Cyib+TdaXOyaVePeCzDGpbRcVHDNg\nm/2AFEJYVYzGavvEqSf76ztyXv+FPuK823sZveMyb594sCJVBzp16pakx6NpQodVzSj+qHPxv+u8\nkHHZI/+4t7KPvuW8TA9Ej71szt4HVTyAqTuIinkfxHudMq+f1hlEPeaUHYge3+ns481SlJR5a3+G\nmY28T/ij08wg6lmZxuxNlKdmxkmjH0SVSrzuuj13UGoQlRuJ/12t5oxKCPsaq6ukPwwaZ1wt6c2S\n7jazO3plvybpTWZ2pbqzLx6U9LaVNhZYo+gTQD/6BKbWoNl5X5YfN8V3gphK9AmgH30C04yM5QAA\nAAVazu88noaZ5XziMqrn7phUTHRJkHjuPKXbxsDpqH1xVnEvy3idzON1A9LjuuoGlsfHeUHkXrC5\nF5dVyVB+xAlB8IKzY6ns1NWG9fPukTrn82JavBilXJbpnO84Zd+OHrtxMN9LVJiJKxorK5w2lIrX\nlNLXPhcb+uxEeS4YPRUMnmtbqovmYqVysXrVsMSu12SO+VZi44PXZw5CDt9EAQAAFGAQBQAAUIBB\nFAAAQAEGUQAAAAXGKgw3l1BzWA0dqwsySqkgyJKg7twxqQDN0ozlY/4CLq7v/39LnFXcyzLuldUJ\nSPeCv+O6vOP8bOSbo32qdR93AoS9xJ3zR6IyL7DWC6iNL0MuiHdQXTFvBkh8Pi8foZc082mnLA5s\n9tp0yinzEoNW1I2wH1dOYHnp5JHUTJ6SIPGS961c9vFar2UknhSxXCqDf64NP5Yof7Bec1DFN1EA\nAAAFGEQBAAAUYBAFAABQYKwiSJpuTEmiy9QyjMO8UIuJRmQXIC5RJ1ZkJUpiolLbSuOexuqOrjq9\nIY6BKkt+WSeWqk6cVBzr5O0jVWOg5r0kmk7gyZHjTjDKkUrG0SovJi8X67HEi1GK6/Lq8criS+rd\nW17yS+/5xJfByy/ptSF+E/MWKX58jaf09Rb69eLDltTLK9svlVBTSi9O/JzMMakYq9z7T2rB4AOZ\nY3LbUh9WXh9Ykkrs+bzMIr4PkIgzh2+iAAAACjCIAgAAKMAgCgAAoEB2EGVml5jZbWZ2j5l908ze\n1SvfYWa3mtn9ZnaLmeWycAATgz4B9KNPYJoNCsM9Jek9IYQ7zWyrpG+Y2a2S3iLp1hDCh83svZLe\n1/tZlZLwyFz8YW5bk20YC6kgw1R5qVxQZ2pbyTGFweOhJOh0ZVbVJ06vzweS1w8sr3Ocl7izfz8v\naaZXFgeSe0k0j+hZlbJjcWJNqZok0LtHvY4YJ6z0eMHZcRO8oG5PncBy73475JTFAb27nH28sji4\n2UuwmEq6ODyr+5z4WafG72TOlgqOlsoSUKaGdrlkrql78dkhcx7zy3Nty237ZqI8d31S9eU++P6n\nRND5Bwg4lwZ8ExVCOBhCuLP3+zFJ90m6WNJrJd3U2+0mSa9vs5HAuKBPAP3oE5hmtWOizGyvpKsk\nfU3S7hDC0v+3Dkna3XjLgDFHnwD60ScwbWoNonpf0X5W0rtDCEeXbwshBEmZ7zCByUOfAPrRJzCN\nBqYmNLON6naMT4UQbu4VHzKzC0MIB81sj6RH/aNvW/b7XkmXrqqxwEp0vix1/rr5elfTJz44dzZS\n75rZdfofZptvH5DS6XTU6XQar3dVnxPfmDv7+55Z6aLZxtsHeJroD9b9D0Jio5mp+7fsx0MI71lW\n/uFe2YfM7H2StocQ3hcdG6S5VTVuuVsTdQ0ry3nuPOdltqViWM/LVLglka17Sy7IMBXomAvGPT+z\nbUei/ILMMRclyr+v4JjceTLbFnemt208XwohJKI761ltn3gs9Eerxlm+/YDtauRrvJ933HEnq3i8\nn1f346pexEPRX2L+Qc+t7PPA8edVyo4dcKKl48zNuQzLy8UB6EedfZ52yurUXydjudcvTzplB2rU\ntdfZxwssj9vlZNded773pKXTuwdH4pvZyPuE7nI+g76YOWEqoFpKZwW/MnPMixLluYzlF3ovvHTB\nRd6sgrzDh9JvWmf+IfMafj1R/lDmZN49JknfzhxT7dZd/8d4BJaHkMm2vkIl/WHQGORqSW+WdLeZ\n3dEre7+kD0r6IzN7q7pvGW9cYVuBtYo+AfSjT2BqZQdRIYQvKx039armmwOMN/oE0I8+gWlGxnIA\nAIACY77m/WAluSTX/JMeV01e2Cl9kRaLlqj3LThJM+Myb5+TTvBPnRgsN7GmF48Uv7a5pIbLxZ29\n7j1SJ2mm14Y4XMzbx4uler5TFgVbrru4Gsd00e5HKmXP0wP9++i7lX126nHnhJL0q4ny8fLeH67G\n1nzoRzIHvCkTA5OKYypJaLkr/emy80I/+Gp7JtPljI77x+xOH/PQlkuS2+YPVpPbSpL2Jw+RTifK\nc287ezPbwDdRAAAAJRhEAQAAFGAQBQAAUIBBFAAAQIE1E7776kSyzVQSzqlTEmGfOyYVgNh0Gxp2\neszv6DhwvDSQvE49dcq8IPJ5J0VsJUnnmWqSTp2oBqnXCuKu+5rF99exGvtI1Yy3XiCxk8Ry03Oe\n6nu8c0c1gNsLJN7sZuAcfNwlTpbEy6IsiLudpN87kxkm10Zg+c/oC5WyD+ln0gc4t94zUkHiuckL\niW1bd6UDvneu84P500H+6fsiF4x+wXnp5J37f+4Kt/zJA87NvORUovxb6UP06UT5nkyAf/opSfPj\nkaSzKXwTBQAAUIBBFAAAQAEGUQAAAAUYRAEAABQY8zDc1WnyyW0cvMuKnMoEYW9INLwa7ltD08He\nJQHnqO20c9c2m8V8c/S4Ggx+XDOVsqNR9O3xY9V9tOgsfu7dy+eEaB/nplp0nnNcv3dv1+n0XvCx\nU7Zla3+GaS+A2wv09jJTx69h/DpI0mHtrJRt0qXVhkVygclTJxV0XhCMvvmc9ASBbTrqlu9KBvlL\nm7TglnvZ/5fsTJxHkmY2/a1bfsuFr00ek3wrSSQ/lyQ9kSh/UeaYj2W2zWe2rUF8EwUAAFCAQRQA\nAEABBlEAAAAFBkYQmNknJP2spEdDCFf0yuYk/aKkx3q7vT+E8BdtNRIjkIqlKknQ2XQi0BFbTZ+I\nY568GKgSXj116vbirfyYqP64jZPzTmJNTxz/JFVjoLyYKFfcVicGy4tvie8l77I499uTh/sDRU5v\nrx54ZKYaTOLFRMVO14xzi6/7eqehuzIJHodlNX3isHat7GTfn9mWCmPKxURtd+5RSZvW+TFMUjq+\nKRUrJaUTcX5bz08es19+Qk1Julz3+ht+IZPM8oZEgsxcWF3q2uVim/5tetPWf/12t/zYuf9XpsLx\nVeebqE9KujYqC5I+EkK4qvfDAArThD4B9KNPYCoNHESFEG6XH5/v/DcQmHz0CaAffQLTajUxUe80\ns7vM7EYzy31ZCkwL+gTQjz6BiVY6iPq4pEslXSnpEUk3NNYiYG2iTwD96BOYeEVRrSGEZzLMmdnv\nSfq8v+dty37fK9VIHLdS45AtNLUwtpRuX0nizFyCzo3V3H2D5YK3SwLLU9tyccMtBpD/5V9Jf3V7\ne/UvV7dP3DB3Nuj4J2Y36vLZ/u1ewHFp0Lgnrt9L+ugl4JyPgs3PnCy54XpqB5JH4mSb3iXwmhXv\n58V0n3DKDvZXduxgtfJjXlC0F9wet+Gc6o2/ZXs1KHnLef1B6o9qd2Wfr+ilzgmlf+WUdToddTod\nd/+m1e0T/37u7P22a/ZyPXv2cv1EqD7PJX/zlcxJ70yUJxJqSvKTxEralIxS9wP8JWlLJto6FQj+\nKn0xeczrzH9tJen+5JaMX0kEnb8hEXAuSRcmyh/OnCeOjlvm2H9MTCSwTBv+deZcq9BEfyh6Jzaz\nPSGER3oP3yBpv7/nK8paBTTg5T/Z/VnyW/+hvXPV7RO/Mtc/GCHXNIZpdnZWs7Ozzzy+/vrMTK5V\nqtsnXjj3P7bWBiCnif5QJ8XBZyS9XNIuM3tI0j5Js2Z2pbqzLx6U9LYVnxlYo+gTQD/6BKbVwEFU\nCOFNTvEnWmgLsCbQJ4B+9AlMKzKWAwAAFBiHuOw1oSR4PKfxeOqSoO6SgO+SY5rOcp5pw/oxznQu\npQNSl/iB5fWyW5fw6vYylp8+U6MNG2pkJ69rsfA5b2xon7q8zu9kad8UBY1v2To4q7nngPZWyr6r\ni4rqGhe3n3lZpez4seo9+IzcrfGcRHkmKfqmXU+55TOZIPHNiYzlub560pmwIfmrBgzdnxTExr0i\nEwj+6YI2vCSz7VsF9Q0J30QBAAAUYBAFAABQgEEUAABAgTUfE/UKzSW33ZbY1mRIxCAlITqLqYOG\nlVBTajZWaYgJOsc9JmqQ9dknflYce1E3lqr0uMXSGKU6MVEnnFiRE04CxNLXNu7wdZJhSpWEmJuc\nOKbtO6qZvrz4sTjG5/Ri9YSXzDxUKfvhKLXSF878jNPQhDXyX2Qv/ul07n7bk7kRLvHvt3WZNwbv\nNZSkGaXj1lLxTSXxi9tUTbK6JngJapfkkpumnm4uad7Bwc0ZlTXSzQAAAMYLgygAAIACDKIAAAAK\nMIgCAAAosOYDy3OGFUCei3dtsg3JgHNJG5vO+FmSOLMkSDwVnJgLWsy0wQpzOw7LhuhiDEq+WVft\nAPGozEv0Vys41gsYd8q8gN4zp6ObdbFmEHnppYqDXLdWK1q3+WSlbPOW/oSKm86p7uMFkZ88UZ0B\nEh976aYDlX1eqq9Uyh7SJX2PL1lXDT73kqN2XZwoHy8XnffdSlkuAeXpHek3u9S9e/T4tuQx2xMR\nzblJHnE/Xs0xC0UzhsbA36STkUr3pTft+lG//PCqWjMyfBMFAABQgEEUAABAAQZRAAAABQYOoszs\nE2Z2yMz2LyvbYWa3mtn9ZnaLmW1vt5nA+KBPAGfRHzDN6oQjf1LSf5T0+8vK3ifp1hDCh83svb3H\n72uhfatyTSabecqXC44Za7lg3Fw8Y1Gq9YK6UnGYuQDx0QePF/eJOPC0GmhefXJ1s5jXcTrq8vHj\nlA1R0LgXZL14qhrUu2Fjte0LlcBy54Re2anosTdrw8uUHAWSb9leTZnsPZ/4Oa9fV+912DZTrf+5\neqDv8Yv0jco+l6gaNP5dXdT3+AI9WtnnuLbUaleLVvUZsUfVwPJUELYkbclkEn9Uu93ykzN+hnEp\nHVie6xupPrlJ1ftoSWoCwBGlx5d/Gm5Pbvs5e1ly23B8OLMtETwuSYdTQf65aViHMtt+PLOtfQO/\niQoh3C7piaj4tZJu6v1+k6TXN9wuYGzRJ4Cz6A+YZqUxUbtDCEtDw0NSYvgPTA/6BHAW/QFTYdWB\n5SGEICk00BZgItAngLPoD5hkpck2D5nZhSGEg2a2R3L+UC/pdcvii17Q+8l5y6TFIw3RqUTc0cZc\n3sSSUJuSY4aV1FPqS9LZ+Zvuz5DU6hMf/vWzMRPXvHydLn9lO8k366q76nwcD7TeS7bpHVcjAeeZ\nJpMNnlP9rN60tT+Gxot/2rxpoVIWx73UjU3b7cRvXK57+x5f5MQBbXbiaWai+J+derxWG7peXSnp\ndDrqdDorqKNYrf4gSUfnfueZ3y+cvUx7Zi/L3pe5bUf0rBUfk4u/SolflyW5xJlxfNuSo0onAt2Z\nyUD5R6EaVydJb7QfSx4zPH+X2ZZKAptL3vnUKtqS1kR/KB1EfU7SdZI+1Pv3Zm8n/giOUZr9ie7P\nkus/2urpavWJ9+/r73Ir+UgEVmt2dlazs7PPPL7++uvbOlWt/iBJV839XFttALKa6A91Uhx8RtJX\nJD3fzB4ys7dI+qCkV5vZ/ZJ+qvcYmAr0CeAs+gOm2cBvokIIb0pselXDbQHWBPoEcBb9AdOMjOUA\nAAAFSmOisEpx3sDlNiRiizdkXq3ctrHWdGD5cOOyV2z9Yn8D16/PJ9+Uhh9sXsdqAsuLxbn4nHt+\n3bnVgN9N5/QHjc9sqgawblM1QWadQHLvtfGSZu5Ox1U/wwswjuva4gTfpoKc1wov2eWC0skxc7yA\nfcl/TZZ8V3vc8lyQeOreyCU+TT2nR3VB8phDmW3zieSdnw773XIpn6g0JXXvpq61JP2AvS1T4+dX\n3Ia81zRc38rwTRQAAEABBlEAAAAFGEQBAAAUYBAFAABQYK2GI7fmmkTW9K+OQTb1xUx88WIiIe/G\n3CvcdLxySZB4Si6md/zirGvbcPrMio/JrSbfBi9otpK925n94JV5Nmzsr2uh7tOL99tazU4+s80J\nGp/pDxr3ApnrBJZ7QeTecc/VA5WyOIu5d429rNpe/ZPGy9SekwtovkJ+UHUusPzn7GUrOv/42L7C\ncrSBb6IAAAAKMIgCAAAowCAKAACgAIMoAACAAmMVWP7JguDttwwp4PslmfPc1XAbqqGxPZm43VTG\n8lysb5wAetVSweC5IPFUTGkuRjlXX4MJssdFmxnLNzkvgBf0HO93elNiJkPk9JnqfnEG8YVznOd3\nwrmhz4nq2V4Nuo6DyKVqIHndwPI44HmTFir7eEHOz9f9lbI4sNxTJ6Dfy4g97IkHTbvMuV6X6sHk\n/nsygeUziXdPL2h/SfjYl9xye8dc8hhgCd9EAQAAFGAQBQAAUIBBFAAAQIFV/THdzA5IekrdSJRT\nIYQXN9GoteZHMjFR9ya2nWq6ESf84i3phcibV5Jss8ljBm0bgkF9Yn3UvtRq8INUE0EOjqfplvU3\nYIOzz4yz0nsca+LF4XhxJ+vXOc8vim1a2Fo934K3Qv2G/rq2eTFRTmxTNSbqico+z3LipLZEz9k7\n7nn6B6esmmwzbkOduDOp+vosOtd43GOiBvWJf64/qxxz4UNPpit8NHOy8xPluffBc/zi8BtzyUPs\n19PbMF1W2/uCpNkQwveaaAwwAegTQD/6BCZWE3/OswbqACYJfQLoR5/ARFrtICpI+qKZfd3MfqmJ\nBgFrHH0C6EefwMRa7Z/zrg4hPGJmz5Z0q5l9K4Rw+9LGm5ft+ILeDzAsnb/t/gxZtk/8xgfO7vjy\na6QX/OzQ24cp1ul01Ol0hn3abJ/4P+fOBnS+dHaDXjo73jFemBxN9AcLoboSelFFZvskHQsh3NB7\nHD6d2LfxoOqEYSXiLHF/pm2p2OjcW4sThitJ2nFu+pgtOzMV7kiUlxyzO3PMBYnyizLH5LZdkt5k\nV72Z2IsAACAASURBVEghhKH9WcHrE2ce79/n0I7+SNhHnYv1uHPRD2tX3+MjzsrtXllc1yHnfIec\nFyVu11Ftq+xzUpsqZQtORO/Cmf79jh+r3r2nFwcn6dw+Uw0G95Ja7lT/Rd+lw5V9vASc8XF+Ys1v\nV8r26kClLA54dwPLT1YDyzefPFMpi21IJax99uD3djMbeZ8I9zk75oLHc5NHSibSfCtRnoltt1+Z\nKzgR2hDCvsbqKukPxX/OM7MZM9vW+/1cST8taX9pfcBaR58A+tEnMOlW873pbkl/YmZL9fxBCOGW\nRloFrE30CaAffQITrXgQFUJ4UNKVDbYFWNPoE0A/+gQmHRnLAQAACoxkGsTGRHnTAef/byJ4+5fG\nIOD8soIs5yVOZRJiV9eDXyZ1XC6os+SY1LZEBvaB9aWCbMeERe2LM1KXZh6vf1x/mZcle7MWKmVb\noizmXhC5l7H8tNeGKIv5pnOqbTi9WH1rmpnpb4OXWT1up7ffViereRxELlUDyb2A8Uv0UPW4449U\nyjY/HRV497B3z8eXxru/U33l2YnyceMFkcfXa7lc/08dV/IexCRB1MA3UQAAAAUYRAEAABRgEAUA\nAFCAv/quIbk/6xfFk+UqLDmmJL4pFcOQi23KxUvkzjUOovZtOt0ff7R5ffWJe7FN1Viq6sX3y/qP\ni+uR/DipeD/vuDqxW92y/tipDRuc5+eUxfFOXkyUF88V7xcnvpT8ZJsXRIk7vWSbe05WyzZX831W\n72evr9SJd/Lu/Uzc45rgJbUsjXtM9f/cNUqdqxriB1TwTRQAAEABBlEAAAAFGEQBAAAUYBAFAABQ\ngMDyCbdYEgie25YL0EwFfOYCQVPbcsHjuW1PZbaNg6jt257sD4Q+umO+cogX6F0nQNwTH1cnaL3u\ncV47a3H+K+fVHweNb1H1WnnB5pui47zgcy/YfFeUgDMONJekcx89UynT96pFtSZxlAaWr3Xetcnd\nziUTVXL1EUCOVeCbKAAAgAIMogAAAAowiAIAAChQPIgys2vN7Ftm9vdm9t4mGwWsRfQJoB99ApOu\nKLDczNZL+pikV0n6jqT/bmafCyHc12TjVuvbkp4/6kboQUmXruiIyzXnlt+bKJfSGctPLUp/Lelq\nb1smDnhjaltJMPpJqfOYNOutKp8KEi0NLB9R4G3tPhFlZ7Zz+x/P7KgGRs84AdRxEPd6nda9ncd0\n+bKL7AVQxxnEvQBuz5OdO7Vj9opl56/WvRonOn+rc2ZfnN0nfs5eEHmc1VySnujcrYtnn5fdx6sr\nDjZ/1nEntfaTUue/S7P/bFmZdw/GfaPmagGdr0vLLrsffD6m04Nq9wnvOeWuT+6WLcje3rlfmr2s\nmbrKrfxzgjaMh9Jvol4s6YEQwoEQwilJ/0XS65prVjO+PeoGSJIOjLoB+sqoG6DuIGrCjbxP3Ns5\n3Frd3+t8s7W6pe4gqi3f6fxDa3VL3UFUa3Xvb6/uIRh5n6ij8/ejboE0Dp8TtKFM6SDqYkkPLXv8\ncK8MmFb0CaAffQITr3QQFRptBbD20SeAfvQJTDwLYeX3uZm9RNJcCOHa3uP3SzoTQvjQsn3oQBg7\nIQRro176BNYq+gRw1kr7Q+kgaoO6IUevlPRdSX8r6U3jFlgODAt9AuhHn8A0KJrXEUJYNLN3SPqC\nuknzb6RjYJrRJ4B+9AlMg6JvogAAAKZdKxnLxyHBmpkdMLO7zewOM2tv/nT/OT9hZofMbP+ysh1m\ndquZ3W9mt5jZ9hG0Yc7MHu5dizvM7NoWz3+Jmd1mZveY2TfN7F298qFdh0wbhnYdnDa12ieavN/b\nvI/bvj/bvP/avK/M7Bwz+5qZ3Wlm95rZB5pq94D6J7ZP1GzD1H1OjPozone+yfmcCCE0+qPu17YP\nSNoraaOkOyW9sOnz1GjHg5J2DPmcL5N0laT9y8o+LOnf9X5/r6QPjqAN+yT9myFdgwslXdn7fau6\nMREvHOZ1yLRhaNchak/rfaLJ+73N+7jt+7PN+6/t+0rSTO/fDZK+KumaJvtNov6J7RM12zF1nxOj\n/ozonW9iPifa+CZqnBKstTLrJCWEcLukJ6Li10q6qff7TZJeP4I2SEO6FiGEgyGEO3u/H5N0n7q5\nYYZ2HTJtkIZ8T/QMq0808tzavI/bvj/bvP/avq9CCEtp0zepO8h4Qg32m0T90mT3iTqm6nNi1J8R\nvTZMzOdEG4OocUmwFiR90cy+bma/NILzL9kdQjjU+/2QpN0jasc7zewuM7uxza9IlzOzver+j+dr\nGtF1WNaGr/aKhn4dNJw+0fb93vbr1/jr0ub918Z9ZWbrzOzOXvtuCyHc02S7E/U30vYCfE70G4fP\niVHcB2v+c6KNQdS4RKpfHUK4StJrJL3dzF426gaF7veGo7g+H1d3QaIrJT0i6Ya2T2hmWyV9VtK7\nQwh9i5AN6zr02vDHvTYc0wiuQ88wXvOh3e8tvH6Nvy5t3n9t3VchhDMhhCslPUfST5rZK5pst1P/\nbFNtL2nOkM4zCJ8TXSO5Dybhc6KNQdR3JF2y7PEl6v4vY6hCCI/0/n1M0p+o+/XxKBwyswslycz2\nSHp02A0IITwaeiT9nlq+Fma2Ud2O8akQws294qFeh2Vt+PRSG4Z9HZZpvU8M4X5v7fVr+nVp8/4b\nxn0VQnhS0p9J+rGm2p2o/0WT3Cfq4HOiaxT3waR8TrQxiPq6pB80s71mtknSz0v6XAvnSTKzGTPb\n1vv9XEk/LWlUS3l+TtJ1vd+vk3RzZt9W9G7GJW9Qi9fCzEzSjZLuDSF8dNmmoV2HVBuGeR0irfaJ\nId3vrb1+Tb4ubd5/bd5XZrZr6c8GZrZF0qsl3dFEu3P1L31grabthfic6DfSz4lhvzdO1OdEaCfq\n/TXqRro/IOn9bZxjwPkvVXe2x52SvjmsNkj6jLqZeRfU/Xv/WyTtkPRFSfdLukXS9iG34V9K+n1J\nd0u6S92bcneL579G0pnetb+j93PtMK9Dog2vGeZ1cNrUWp9o+n5v8z5u+/5s8/5r876SdIWkv+vV\nfbekX+2VN3XdU/VPZJ+oef6p/Jxouw/WbMPEfE6QbBMAAKBAK8k2AQAAJh2DKAAAgAIMogAAAAow\niAIAACjAIAoAAKAAgygAAIACDKIAAAAKMIgCAAAowCAKAACgAIMoAACAAgyiAAAACjCIAgAAKMAg\nCgAAoACDKAAAgAIMogAAAApkB1FmdomZ3WZm95jZN83sXb3yOTN72Mzu6P1cO5zmAqNFnwD60Scw\nzSyEkN5odqGkC0MId5rZVknfkPR6SW+UdDSE8JHhNBMYD/QJoB99AtNsQ25jCOGgpIO934+Z2X2S\nLu5ttpbbBowd+gTQjz6BaVY7JsrM9kq6StJXe0XvNLO7zOxGM9veQtuAsUafAPrRJzBtag2iel/R\n/rGkd4cQjkn6uKRLJV0p6RFJN7TWQmAM0SeAfvQJTKNsTJQkmdlGSX8q6c9DCB91tu+V9PkQwhVR\neb5iYARCCKv+8wJ9ApOEPgGctdL+MGh2nkm6UdK9yzuGme1ZttsbJO1PNGakP/v27aMNtOGZnyaM\nc59o8xq3/frR9tG0fdL7xDhcY9qwdtpQIhtYLulqSW+WdLeZ3dEr+zVJbzKzKyUFSQ9KelvR2YG1\nhz4B9KNPYGoNmp33ZfnfVv15O80Bxht9AuhHn8A0m+iM5bOzs6NuAm0YozZMujavcduvH20fft3o\nGodrTBvGpw0rNTCwvLhis9BW3UAJM1NoIIh2FeenT2Cs0CeAs0r6w0R/EwUAANAWBlEAAAAFGEQB\nAAAUYBAFAABQgEEUAABAAQZRAAAABRhEAQAAFGAQBQAAUIBBFAAAQAEGUQAAAAUYRAEAABRgEAUA\nAFCAQRQAAECBDW1W/gfW3OLgpwqOWWzs7NIvaa7B2pp3b6J9WzLH7D43vW3LzsSGHZkKz0+UZ86j\nkvOkjpGkCzLbxsHnoz7xff0PwyXVQx7aUX1SD6l/x0POE39cu5yy/ot32LmYj2p3peyotmUfS9JJ\nbaqULWhzpex4dFd6+3hmdLzv8QV6tLLPLh2ulO3U432PL9J3K/s8V/9QKbtCd/c9fsFj/1Rt1D86\nDX3SKTvtlMW8N6y47Oka9Sx5c1jBziP0aedzIvfmnbsGqW25T7rUthPpQ+y9c5kKMUwh7Bvp+fkm\nCgAAoACDKAAAgAIMogAAAAowiAIAACjAIAoAAKAAgygAAIACraY4mCT/dybFwS+PcfqDXGqI+ZPp\nbVtS03szxyS3nZM5JnWe3DTmXH3e9PJx8nj0OEr/YOdVD9m242ilLJ7uP6P5yj5HnRdkkxb6Hm9w\n5t5vieqWpNNaX21YZL1mKmVe/XX2WXTOF7d9vTMPPt6nW9Z/HdbXyjfgqJOCQPLTGdTJt1Knribz\ntoyLutewzrYSqfeMagaNZ4SXz7nl9pd+OSYX30QBAAAUyA6izOwSM7vNzO4xs2+a2bt65TvM7FYz\nu9/MbjGz7cNpLjBa9AmgH30C02zQN1GnJL0nhPBDkl4i6e1m9kJJ75N0awjhMklf6j0GpgF9AuhH\nn8DUyg6iQggHQwh39n4/Juk+SRdLeq2km3q73STp9W02EhgX9AmgH30C06x2TJSZ7ZV0laSvSdod\nQjjU23RIchbbAiYcfQLoR5/AtKk1iDKzrZI+K+ndIYS+qUIhhCBpjax0CTSDPgH0o09gGg1McWBm\nG9XtGJ8KIdzcKz5kZheGEA6a2R4lJoN+dtnvL5R0+WpbOwS5lAAp45D+4PLEee7PnH8+M116PpFi\nYMvWTCNS9eWmZafSIuRSKeTSGCybGd/5p+5P01bTJ+b+8Ozvs8+TZs+PdniqeszM8Wr6gi0z/WkI\nNjsXzEt7cCzab4uzz0ltrpSdrpENxUsdcFxbBu533EmN4KVUiFMVeKkRvDbUSbPgqTzncUgI47Vh\nBWkPOp2OOp1OU615xqr6xM1nf599Qfencbn3k1Q6lWOZY8bhXsCqNdEfsreCmZmkGyXdG0L46LJN\nn5N0naQP9f692Tlc/2JVTQNWZ/b7uz9Lrv/y6utcbZ+Ye83q2wCUmp2d1ezs7DOPr7/++lXXueo+\nQaQURqSJ/jBoPH21pDdLutvM7uiVvV/SByX9kZm9VdIBSW9c8ZmBtYk+AfSjT2BqZQdRIYQvKx03\n9armmwOMN/oE0I8+gWlGxnIAAIACDKIAAAAKMIgCAAAoMFYTNUvSCyDvskyKgwcz204lZoVvOZE5\nWWoace6Y6mz6rtS0Y0nO7Pd6x42DuH3xY2da9WbnOW2b6d/xiJOqwEt7EKc0mNHxyj4L2lQp81IO\nxLz0Auud+fcLWhh4nNeGeL9NUT2p88XHeefznl/chpPnVnbR5nOqZWN/D44b770ml7Yhty2VzSL3\nHpR6vXKvY6K+cMVc8hDbn96GtYtvogAAAAowiAIAACjAIAoAAKAAgygAAIACDKIAAAAKtDo7LzXb\nbmObJ12lVNsmceZg7jnNJ2afnJdbyDM1AyY1A0/KLwyakpsoNlbzTR3x7LtBs/W8YyTNPLt/Vp03\ny26LUxbP2IsX9e2WVWe9efvFvJlxXl3zNRYE9uqqs0+dRYnr1C1VF2I+PlNdTHnz5uqsyOJ7cPAE\nSL/ukj40TryXo3R2Xuo9KHeNUgsNl8yydGZwLgmvnHPL7Ut+OdYGvokCAAAowCAKAACgAIMoAACA\nAgyiAAAACjCIAgAAKMAgCgAAoMBIJoSPc7qAcW5b03KLEz+c2PZUZtrvealUBt4irUtS9ZUsMiqN\nf4qDeKp1/Ni7Hk7ZzPH+qfXbZo5W9jmqbZWyOO3BjGYq+yw4OSlKFyD2FhKuw6srttlNxTA4PYOX\nBsETt/24c62edW7NFAfx/VxnH89K0wGsBV76gdxzyqUeKFkEPXU7lLzP5N5/Eu+P4Z/PJQ+x/y+9\nDeOBb6IAAAAKMIgCAAAowCAKAACgAIMoAACAAgyiAAAACoz7XCaMyHMSs/MeX/TLJelUYtbMxtzs\nvJTcbJrczJ0dBecaprjt8fP0ruGT1aLNUdmWmepiw96ixDPqn0027+xzXNWFdjfVmGXnzcTzFvut\nM/POm2UXzxD09qmzKLF/3OA2uTMNtzo7erOw4te57oy60hl7a4nX/pIZeFLZAsQl169kdh6fthOJ\nb6IAAAAKDBxEmdknzOyQme1fVjZnZg+b2R29n2vbbSYwPugTQD/6BKZVnW+iPikpvvmDpI+EEK7q\n/fxF800DxhZ9AuhHn8BUGjiICiHcLukJZ5M13xxg/NEngH70CUyr1cREvdPM7jKzG81se2MtAtYu\n+gTQjz6BiVY6X+Djkn6j9/tvSrpB0lvjnW5e9vsLej/AsHQOSZ1Hh3a6Wn1i7qtnf599jjR70TCa\nBnR1Oh11Op1hna5en/jC2d9nnyvNPm8YTQOa6Q8WQhi8k9leSZ8PIVxRd5uZBSWmyX8ys/Btk0pm\nrqYWIP7lIbV5LTt+7pxbvuXczEHeFHFJ2fVucwOPzDb7jBRCaOTPC6V9Irwj2jlOyeC1/1Kn7Af6\nHz51aXX6/XfX76mUPardfY8PRY8l6YiqXxjEZd5ivN4ixV5agMVov7oLHsfHeQsJb1N1Ieadejz7\nWJK2O3+J2hXtd4EOVfa59Pg/Vco2/2OlSIoH83UX3Y33O+bs85RTJknvqvXePvo+8SGnslyKAyfl\nxzNSmSpyKVNS58qdp0Qq1Uvm/dE+NddwIyZPCPsaq6ukPxT9Oc/Mlr87v0HS/tS+wDSgTwD96BOY\nBgP/nGdmn5H0ckm7zOwhSfskzZrZlerOvnhQ0ttabSUwRugTQD/6BKbVwEFUCOFNTvEnWmgLsCbQ\nJ4B+9AlMKzKWAwAAFGAQBQAAUGAql0RMzcDD6sw8PeeWh3P8ckn+bCMpPWtvrRu04LA3U6hG2czT\n1UV1Z86br5TFi+96ixT7CxD3TxM76cy682bUeQv7xmXeLLt4Jl63/sFvV3UWEvZ4bahz/uMz1Wu1\n+dzqda9MQKw7O2+tLy5ch3fpc88791I1eb1yC6enzpO7RVOz8HKzlzH2+CYKAACgAIMoAACAAgyi\nAAAACjCIAgAAKMAgCgAAoACDKAAAgAIjSXFQMjt0WFJt+93MAsTvYnHiLHt8LrktXJDelpSbxuxN\nHR8ncbqCeBq1l87AWwg1Sg2xwTlu5rxq+oI4pcFRJ5fEjKpT9OejBYfnnXnmpwvTC3hpCaoJFPwU\nCtXjqqke6vBSKtQ5v5fqQVudFAfxZc4tsJtvRNXgpo+3lbY/t39JioPq+teD60q1IfchVvA6hXfP\nJbfZ7/z/7d1viFzXecfx3xOttJLWltR1gmxcgU3SBBdCFFKMIU6ZtHUqt+Cm9EXxK5GAX7VNIKFV\nDYWsoNC4YGhLaN/UCe4f0hcJNoYWbLl4GkOxXSdS7NhxFbc2OKktpa5jy0jWSqvTFzOrnTlz7p27\nz9xz7/z5fkB45u79c+bec+aevd7neYp/hubwJAoAAMCBSRQAAIADkygAAAAHJlEAAAAOTKIAAAAc\nmEQBAAA4tJJV4J6ClADfIFXAwrGza8nlYX96uaTyKu7e0PGmxGHT7415L6U/0zvR+0QahD2riRQH\ny8PLqqQzkEZTB6RSCVRJE5CywxWXnraU6BxxCoVUqoKNxFdhlZQKqe0uroyutxwvS6yTTM8x7Sk7\ncim7M5X9zJdlIy1OP1JFWZfx7A9TjydRAAAADkyiAAAAHJhEAQAAODCJAgAAcGASBQAA4DANNX9n\n3v0lUYVfJuLQxxuBN+3FWONoq/h9lUg8SXozer86usrKO1dGll3zgXND788nIvHOa8/Isms1vN16\nskTwqCrrpQoQe6X2FUf/paPzUsWFl6P3o58l9fku7xj93XR5OboWqUitVCHcuH+k+vesf4un2u+N\nzqtTWdBoURs87fYcB1ODJ1EAAAAOYydRZvZ1MztjZs8PLFs1sxNmdtrMHjOzA3mbCUwPxgSwhfGA\nRVblSdQ3JB2Jlv2xpBMhhA9L+tf+e2BRMCaALYwHLKyxk6gQwpOS3ooW3yXpwf7rByV9tuZ2AVOL\nMQFsYTxgkXn/JupgCOFM//UZSQdrag8wqxgTwBbGAxbCxH/7H0IIZhbSP31i4PVNkm6e9HBAZd23\ne/+aVjYm1l7aet15v9TZ31SrAKnb7arb7TZ6zPJ7hLT26NbrzgelzoeaaBVQz3jwTqLOmNn1IYQ3\nzOwGSWfTq306ufSvCsL+ifTEValCvFUMhIB3lqTOdVvvj782UYvGqTQm1g5FC+LPmUpxkJoIxgVs\nU0dLTNB+bmV4Zxf2plIcjC5bj+Lvq6Y4qLO4cCxVbDhVBDm1XqxK2oOqRYrXl0dzFazsjgo9p9IZ\npNIexCkOUuNiGxkiOp2OOp3O1ffHjx+vvvH2VLxHSGt3JRaWdRtPl/JsU1YwOHX9pPpTM/BLVlZ1\njAfv/857RNLR/uujkh527geYF4wJYAvjAQuhSoqDb0r6d0kfMbPXzOxzkr4q6Q4zOy3pV/rvgYXA\nmAC2MB6wyMY+YAwh3F3wo1+ruS3ATGBMAFsYD1hkZCwHAABwYBIFAADgkDXorawwb8qlkp/NanRe\n0TmgMHG5SyVFhnfmC/jKL/5ccZRdHI0lpaPz4uigfYl1EpE9y9Hxrt17bmSddHSer5Cwd19VpI6X\n2nMcQZfaLhXVF2+XandcpLi3LFGUeHk4Om8pvu69DUfF0XhlEWOzarsFiD3nwPOdURSBN+5ndfJG\nKaMxPIkCAABwYBIFAADgwCQKAADAgUkUAACAA5MoAAAAByZRAAAADrOaOeCqWY52R7ELqXDvvssl\nF33PNoqxtiJOcRC/T43I1OeN10uFzKeKl64Ovz2w/92RVc7vy5eWQBotSpwq7OvZzySWtT52nSpF\ninvLRj/PxeXh31eXdl9JNWJUHM5fMi5mVupze6vRj16O8fvzpCsoSrPgKZz8TvEm9rW1au1Ba3gS\nBQAA4MAkCgAAwIFJFAAAgAOTKAAAAAcmUQAAAA4zE53XdhReWXFkj/tKChAfozix9r+3VvizN0rO\nz6VZj85LSUUPxSM3VYD4/xLLzka7SUT1HVj52ciy9R3D0Xmpgr3VXTv0biNREDglVTjYs05VVfaV\nis5LRTKuLw9fxL1RQWJJslTEV3x92v4izGG7BYU9l9gT1ei5O5Zdn6J2jwbIYobwJAoAAMCBSRQA\nAIADkygAAAAHJlEAAAAOTKIAAAAcmEQBAAA4zEyKAw9PWoK6UxmgfmVRxBfea6wZPnE4cyo1QSz1\ngeOw8FQR0zcTy+KQ+USKg327R4vxrt8wnPagaoqDKkV7L7oqwKYLEC85Uxyk0hnEy6qmT0h95otR\n2oP13aMpDpZTRaTj/rzdYr2zIPW5y+5Mns9b9znypEwo+m76UfEmr5Skc0llMJHiBCLDPkz6nNpN\nNIkys1fV+/rekHQphHBrHY0CZhVjAhjGmMA8m/RJVJDUCSEUTYqBRcOYAIYxJjC36vibKKthH8A8\nYUwAwxgTmEuTTqKCpMfN7Fkzu6eOBgEzjjEBDGNMYG5N+r/zPhlCeN3MPiDphJm9FEJ4so6GATOK\nMQEMY0xgbk00iQohvN7/70/N7CFJt0q6OjgeHVj3g5I+NMnBatRkMMusB85Mo/MlP9s58Pqp/r8m\njRsT9w5EzN3+Puk390c7SAWAVYnOezuxTiqSK96uyjqSrlseDiu8uDq64Ubi6yS1rIpU9F8ceVc1\nWq5a4eLxkX5Vj5dqe3weLi6PFinetTwaFWlx5NqE9ZW73a663e5kO9mmcWNi7Vtb63Y+JnUOK90v\nN5VFxhV94XoCQD0ReGVf+EX7KylCfmP8/TBgT2rMj3G6IDqv7I/VbpvjiL46xoN7EmVmeyXtCCGc\nM7MVSZ+RdHxwnV+fqGnAZG7r/9v0l5mPV2VM3LszuSnQiE6no06nc/X98ePHi1euQZUxsXY0axOA\nQnWMh0meRB2U9JCZbe7nH0MIj02wP2DWMSaAYYwJzDX3JCqE8IqkwzW2BZhpjAlgGGMC846yLwAA\nAA5MogAAAByYRAEAADjMfAFiT8HgLzhCNu9vMMzzvoJjHau5DWuO/Xm28Xiq5DijpVu3THtKiXNR\nEdJ9cWxxSUjzkLiQcSqEO1UjOF4vtV2iIKxF6x1YeWtknfVE2H6qGG8V57XXtV26kPBwr6hapHiX\nhlMOVE1xUMXGjkQahMS38VK8zFerebql+ry3kHgiPYckX+qBssvt2cZhZ6o4c99qwfILJakZdhac\nh8sl5+dEwXfxHXOc+mA7eBIFAADgwCQKAADAgUkUAACAA5MoAAAAByZRAAAADkyiAAAAHLKmOKiz\n1qonlcG0h7tv1582GFI6zeeurG3T3G5JejN6vxQtOFh1R3Goe6oSfGp0x8tSIeGpkPMo1Hpl5crI\nKgcO/Syx4XhxCoIil6N0CRuJD5jaV5zSIJ0GYfyy1L6rpj2IUz2kUj8kUxwUhewPrVSpCdMrFcZf\n9pk8qQc8XwyebTwZPco+a8n1L7q/7izZ36WCz3Tp7eJt3ilY/i8l96PfqPle9del+/tKrcfaLp5E\nAQAAODCJAgAAcGASBQAA4MAkCgAAwIFJFAAAgEMrcR11HrQsgMIT0VfkyyXRAWXFiYs+qyfwoyza\n0fNZ/2QKCkiWFRou8gl3u73b1edjURu+G72/HIfvSboxtaM4Oq/qoIqjh1JROYk2jETsxYWTJR1Y\nGS0NvbE6PlxpR8Viwxei9TYqRsaNRtlVjc7zFS72urxj9HfaHcvDUZDJyzzr0XmposplX5BlXaro\nXHjOUdk2dUbhlRUdT0Xdbio6RyXtLipAvK/kfK8WtOFc8Sb6dsl37e9MwfdwnXgSBQAA4MAkCgAA\nwIFJFAAAgAOTKAAAAAcmUQAAAA5MogAAABxaCY51RGYWbjMaVL3lWEOhlN70B3UqSn9QZ5oH5jd3\nCQAABjJJREFUrziMf9A0tK9NcbqGFxPnak8iDcFqKiy8irjYayrFQSJ9wch2ieNbYtl1end04erw\n21Qx3irWk7Hx41VJZzDJvqqIiylL0sbS6DfgxahdG0ujhZ93vZc+hrla1oJUkd2iQsKSL/WAr4tt\nvw2etqUKMG8q6+KeLluwvz0lm1xXcC3OlRy/7L5clP6g7F5Qtr+2uZ9EmdkRM3vJzH5kZsfqbBQw\nixgTwDDGBOadaxJlZjskfU3SEUm/KOluM7ulzobV45W2G6CX226ApP9uuwGSnm27AZlNw5joliXm\nm3TfL+XbtyQ93S14nFKD73XL0gJO7pluvt+Tv/NvIdu+c5uGMVFF7r5dqQ3/23YLpG7Z07+GvNB2\nAxy8T6JulfRyCOHVEMIlSf8k6bfqa1ZdXm27AfqvthugaZhKSt9tuwH5tT4muucz7jv7JCrfN/jJ\nzJOo/8g4iXryO7M7idIUjIkqmET12zAFk6gX226Ag3cSdaOk1wbe/1gF1SmABcGYAIYxJjD3vJOo\nmf71CMiAMQEMY0xg7lkI2+/nZnabpLUQwpH++3slXQkh3DewDgMIUyeEkCVoiTGBWcWYALZsdzx4\nJ1FLkv5T0q9K+h9Jz0i6O4Tww23vDJgDjAlgGGMCi8CVJyqEcNnMfl/So+plv3iAgYFFxpgAhjEm\nsAhcT6IAAAAWXZayL9OQYM3MXjWz58zspJk909Axv25mZ8zs+YFlq2Z2wsxOm9ljZnaghTasmdmP\n++fipJkdyXj8Q2b2hJm9YGY/MLMv9Jc3dh5K2tDYeUi0KeuYqLO/5+zHuftnzv6Xs1+Z2W4ze9rM\nTpnZi2b2Z3W1e8z+53ZMVGzDwt0n2r5H9I83P/eJEEKt/9R7bPuypJvUq0ZyStItdR+nQjtekbTa\n8DE/Jenjkp4fWPbnkv6o//qYpK+20IavSPpSQ+fgekmH+6+vUe9vIm5p8jyUtKGx8xC1J/uYqLO/\n5+zHuftnzv6Xu19J2tv/75KkpyTdXue4Kdj/3I6Jiu1YuPtE2/eI/vHm5j6R40nUNCVYa7R8VAjh\nSUlvRYvvkvRg//WDkj7bQhukhs5FCOGNEMKp/ut3Jf1QvdwwjZ2HkjZI7ZQUa2pM1PLZcvbj3P0z\nZ//L3a9CCJvpUnepN8l4SzWOm4L9S/M9JqpYqPtE2/eIfhvm5j6RYxI1LQnWgqTHzexZM7unheNv\nOhhCONN/fUbSwZba8Qdm9n0zeyDnI9JBZnaTer/xPK2WzsNAG57qL2r8PKiZMZG7v+e+frVfl5z9\nL0e/MrP3mdmpfvueCCG8UGe7C/ZfS9sduE8Mm4b7RBv9YObvEzkmUdPyl+qfDCF8XNKdkn7PzD7V\ndoNC77lhG+fnbyTdLOmwpNcl3Z/7gGZ2jaRvS/piCGGo7kZT56Hfhm/12/CuWjgPfU1c88b6e4br\nV/t1ydn/cvWrEMKVEMJhST8v6ZfN7NN1tjux/05dbfc0p6HjjMN9oqeVfjAP94kck6ifSDo08P6Q\ner9lNCqE8Hr/vz+V9JB6j4/bcMbMrpckM7tB0tmmGxBCOBv6JP2tMp8LM9up3sD4+xDCw/3FjZ6H\ngTb8w2Ybmj4PA7KPiQb6e7brV/d1ydn/muhXIYS3Jf2zpE/U1e6C/f/SPI+JKrhP9LTRD+blPpFj\nEvWspF8ws5vMbJek35X0SIbjFDKzvWZ2bf/1iqTPSHq+fKtsHpF0tP/6qKSHS9bNot8ZN/22Mp4L\nMzNJD0h6MYTwFwM/auw8FLWhyfMQyTomGurv2a5fndclZ//L2a/M7P2b/9vAzPZIukPSyTraXbb/\nzRvWJG134j4xrNX7RNPfjXN1nwh5/ur9TvX+0v1lSffmOMaY49+sXrTHKUk/aKoNkr6pXmbedfX+\nf//nJK1KelzSaUmPSTrQcBs+L+nvJD0n6fvqdcqDGY9/u6Qr/XN/sv/vSJPnoaANdzZ5HhJtyjYm\n6u7vOftx7v6Zs//l7FeSPirpe/19PyfpD/vL6zrvRfufyzFR8fgLeZ/IPQYrtmFu7hMk2wQAAHDI\nkmwTAABg3jGJAgAAcGASBQAA4MAkCgAAwIFJFAAAgAOTKAAAAAcmUQAAAA5MogAAABz+H+T/Kds0\nwGc+AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(3,3,figsize=(10,10))\n", "for ax, name in zip(axs.flatten(), filenames[::-1,:].flatten()):\n", " f=nc.Dataset(name)\n", " var = f.variables['vosaline'][10,0,:,:]\n", " ax.pcolormesh(var,vmin=0,vmax=30)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Improvements\n", "\n", "Could attempt to copy over some of the metadeta..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }