{ "metadata": { "name": "", "signature": "sha256:b1e670d4f1834d1a1056ed85a75ab80948233bb9b877d78c59a140f400b1623c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Experimenting with reading in PA observations from Scott Tinis." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import datetime\n", "import pandas as pd\n", "from dateutil import tz" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "def dateParse(s1,s2,s3,s4):\n", " s=s1+s2+s3+s4\n", " unaware =datetime.datetime.strptime(s, '%Y%m%d%H:%M')\n", " aware = unaware.replace(tzinfo=tz.tzutc())\n", " return aware" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 97 }, { "cell_type": "code", "collapsed": false, "input": [ "filename = '/data/nsoontie/MEOPAR/analysis/Nancy/tides/PA_observations/ptatkin_rt.dat'\n", "\n", "obs = pd.read_csv(filename, delimiter=' ',parse_dates=[[0,1,2,3]],header=None,date_parser=dateParse)\n", "obs=obs.rename(columns={'0_1_2_3':'time',4:'wlev'})" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 98 }, { "cell_type": "code", "collapsed": false, "input": [ "print obs" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " time wlev\n", "0 2014-12-02 18:00:00+00:00 3.373\n", "1 2014-12-02 18:01:00+00:00 3.382\n", "2 2014-12-02 18:02:00+00:00 3.389\n", "3 2014-12-02 18:03:00+00:00 3.397\n", "4 2014-12-02 18:04:00+00:00 3.406\n", "5 2014-12-02 18:05:00+00:00 3.413\n", "6 2014-12-02 18:06:00+00:00 3.420\n", "7 2014-12-02 18:07:00+00:00 3.427\n", "8 2014-12-02 18:08:00+00:00 3.435\n", "9 2014-12-02 18:09:00+00:00 3.443\n", "10 2014-12-02 18:10:00+00:00 3.449\n", "11 2014-12-02 18:11:00+00:00 3.458\n", "12 2014-12-02 18:12:00+00:00 3.465\n", "13 2014-12-02 18:13:00+00:00 3.471\n", "14 2014-12-02 18:14:00+00:00 3.480\n", "15 2014-12-02 18:15:00+00:00 3.488\n", "16 2014-12-02 18:16:00+00:00 3.496\n", "17 2014-12-02 18:17:00+00:00 3.502\n", "18 2014-12-02 18:18:00+00:00 3.509\n", "19 2014-12-02 18:19:00+00:00 3.517\n", "20 2014-12-02 18:20:00+00:00 3.525\n", "21 2014-12-02 18:21:00+00:00 3.533\n", "22 2014-12-02 18:22:00+00:00 3.541\n", "23 2014-12-02 18:23:00+00:00 3.548\n", "24 2014-12-02 18:24:00+00:00 3.554\n", "25 2014-12-02 18:25:00+00:00 3.561\n", "26 2014-12-02 18:26:00+00:00 3.568\n", "27 2014-12-02 18:27:00+00:00 3.574\n", "28 2014-12-02 18:28:00+00:00 3.580\n", "29 2014-12-02 18:29:00+00:00 3.587\n", "... ... ...\n", "10004 2014-12-09 16:44:00+00:00 5.381\n", "10005 2014-12-09 16:45:00+00:00 5.366\n", "10006 2014-12-09 16:46:00+00:00 5.349\n", "10007 2014-12-09 16:47:00+00:00 5.365\n", "10008 2014-12-09 16:48:00+00:00 5.348\n", "10009 2014-12-09 16:49:00+00:00 5.333\n", "10010 2014-12-09 16:50:00+00:00 5.343\n", "10011 2014-12-09 16:51:00+00:00 5.349\n", "10012 2014-12-09 16:52:00+00:00 5.337\n", "10013 2014-12-09 16:53:00+00:00 5.322\n", "10014 2014-12-09 16:54:00+00:00 5.327\n", "10015 2014-12-09 16:55:00+00:00 5.347\n", "10016 2014-12-09 16:56:00+00:00 5.337\n", "10017 2014-12-09 16:57:00+00:00 5.298\n", "10018 2014-12-09 16:58:00+00:00 5.287\n", "10019 2014-12-09 16:59:00+00:00 5.340\n", "10020 2014-12-09 17:00:00+00:00 5.300\n", "10021 2014-12-09 17:01:00+00:00 5.251\n", "10022 2014-12-09 17:02:00+00:00 5.286\n", "10023 2014-12-09 17:03:00+00:00 5.313\n", "10024 2014-12-09 17:04:00+00:00 5.293\n", "10025 2014-12-09 17:05:00+00:00 5.278\n", "10026 2014-12-09 17:06:00+00:00 5.284\n", "10027 2014-12-09 17:07:00+00:00 5.254\n", "10028 2014-12-09 17:08:00+00:00 5.253\n", "10029 2014-12-09 17:09:00+00:00 5.303\n", "10030 2014-12-09 17:10:00+00:00 5.254\n", "10031 2014-12-09 17:11:00+00:00 5.231\n", "10032 2014-12-09 17:12:00+00:00 5.243\n", "10033 2014-12-09 17:13:00+00:00 5.254\n", "\n", "[10034 rows x 2 columns]\n" ] } ], "prompt_number": 99 }, { "cell_type": "code", "collapsed": false, "input": [ "import matplotlib.pylab as plt\n", "%matplotlib inline\n", "plt.plot(obs.time,obs.wlev)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 102, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEACAYAAACqOy3+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYVcWZ/7/V3SCI2Oz7jiDghiiKuLUajUuMMaOJMZPE\nmDEZNdtoNjXPBDLPaNaJmWRMMplJJpr8YozJmIyORifYigsugCLQIMja7NANNA0NvdTvj/eWffv2\nWarOqdOn6vJ+nqefvn373nPr3HPO97z1rbfeElJKMAzDMP5RkXcDGIZhmGSwgDMMw3gKCzjDMIyn\nsIAzDMN4Cgs4wzCMp7CAMwzDeIpVARdCDBBCPCqEqBNCrBRCzLG5fYZhGKaTKsvb+yGA/5VSXieE\nqALQz/L2GYZhmALC1kQeIUQ1gKVSyklWNsgwDMNEYtNCmQhglxDil0KIJUKInwshjrW4fYZhGKYI\nmwJeBWAWgAeklLMANAP4msXtMwzDMEXY9MDrAdRLKV8r/P0oSgRcCMGFVxiGYRIgpRSlz1mLwKWU\n2wFsFkJMLTz1HgArAl6n/fONb3zD6PWu/XD7uf3c/vzbUQ7tD8N2FsrnAPxGCNEbwDsAPml5+wzD\nMEwBqwIupXwTwGyb22QYhmGCcXomZk1NTd5NSAW3P1+4/fnC7c8ea3ngWh8mhOzJz2MYhikHhBCQ\nWQ5iMgzDMD0LCzjDMIynsIAzDMN4Cgs4wzCMp7CAMwzDeAoLOMMwjKewgDMMw3gKCzjDMIynsIAz\nDMN4Cgs4wzCMp7CAMwzDeAoLOMMwjKewgDMMw3gKCzjDMIynsIAzDMN4Cgs4wzCMgzz7LNDYGP0a\n22tiMgzDMCl5/XXg4ovp8fr14a/jFXkYhmEcQxStvXPMMcDhw7wiD8MwjPO0tXX9+/Dh8NeygDMM\nwzjE8uX0+9Ofjn8tCzjDMIxDPPww/f7pT+NfywLOMAzjEL16Ab17kw/+wAPRr+VBTIZhGIdQA5hK\nKq++Gnj88eBBTBZwhmEYhygVcHqOs1AYhmGcpr2dft97r97rOQJnGIZxhCVLgDPO6Bp9A+ERuNWZ\nmEKIDQD2A2gH0CqlPMvm9hmGYcqZw4eBceP0X297Kr0EUCOlbLC8XYZhmFikBI49ljI59u/PuzXm\n7NkDnHyy/uuz8MC7hfkMwzA9wRe/CLS0AE1N+j6yS+zYAQwYoP96qx64EGIdgH0gC+VnUsqfl/yf\nPXCGYTJDlISPvslNUAYKPd8DHjiAc6WU24QQQwE8I4RYJaVcaPkzGIZhQpk/n3zkT34y75aYc9FF\nwPvep/96qwIupdxW+L1LCPHfAM4C0EXA582b9+7jmpoa1NTU2GwCw+TCffcBd99NHuagQXm35uhE\nSmDwYKohMnw4Cfjq1cCJJ+bdMn2OHAHOPBOora1FbW1t7OutWShCiGMBVEopm4QQ/QA8DWC+lPLp\notewhcKUHQcPAv360eOvfx34p3/Ktz1HK/X1lIK3fTtZEbNnA7ffDtx0U94t00cIuulMnVr6fPYT\neYYDWCiEeAPAKwAeLxZvhilXfvhDYNo0YOlS4Fe/8s93LWbRIhJAH1mzhqJt5SN//OPAiy/m2yYT\n9u6l36NH67/HmoBLKddLKWcWfk6WUt5na9sM4zIPPUSrp5x2GrB5M7DQ01Gfhx8GzjkHGDnSz5vQ\nO+8AJ5zQ+ffs2TQxxhcee4x+q96cDjyVnmFS0qcP8IlPUOQ3dy6wYEHeLUrGI48An/scPdawX51j\n7dquAn7KKcCqVdELIrjEiBHm72EBZ5gUtLeTZzljBv39la8AL72Ub5uSICW1+447gOuvB558Mu8W\nmbN2LTB5cuff/fqRtfXqq/m1yYSGBvruTWABZ5gUrF8PDB0KHHcc/V1TA7z8sj9Rn6KuDujbF5gw\ngQb+fOxFlEbgAE2MufXWfNpjyr33Ar//vdl7WMAZJgUrV3ZG3wBQXQ1MmUKrivvECy8AF15Ij885\nhwYEd+3Kt00mSEkeeHEEDgCf+QxNq/eB884Dvv99s/ewgDNMCtat6y4ac+ZQFO4Tb7/deSPq3Rs4\n/3y/fPCdO2n19tJp6JdeClRW5tMmU372MzqfTGABZ5gUbNwIjB/f9bmzzwYWL86nPUkptR8uvhj4\n61/za48p69YBkyZ1f37aNBrI9CWr5j3vMXs9CzjDpCBIwGfOBN58M5/2JKVUwM87z6/B2M2bgbFj\nuz8/YABVJ/Qht33MGJqIZAILOJMrHR00Dd3H0p9AsIBPnw5s2EAzNH2go6N7BDtzJnnKTU35tcuE\n+vpgAQdoTGLt2p5tTxKam+lmYwILuEV86aa5xL/+K9UQufFGP7+/IAHv3ZtEo64unzaZsm0bDb6q\nTBqA9mHqVLIffKC+niLYIE44wX0Bb2khAR840Ox9LOCWuPtuoKICePzxvFviD1IC3/kOfWd1dcCz\nz+bdIjOam+ln2LDu/5s2jfLDfSAo/Q6gm9CaNT3fniRs2RI+Bd0HAV++nApZVRgqMgu4BXbuBL71\nLXp89dX5tiUtjzzSc1HX2rXUfb/ySso9/t3veuZzbbFxI5UtLa1BDZCA+xKBl06AUUyd6o+A19dH\nC7jr+5H03HdCwF96Cfj2t/NuRXIeewy44QbqigLAgQP5ticpzzwDfPjD5OG2tGT/ea+8QulqQgBX\nXAE89ZSd7T7xBDBrVva+epB9ojj1VGDZsmw/3xalNUQUvkXgYRaKDx74rFl07ZmSu4C3tQHnngt8\n7Ws0kuwj8+ZRDd8RIyiFzKcCOsVcdhnwpS9RTeWeqOL26qv0fQEUsR45Yp4HW8q2bVQQf+nSzl5R\nVkQJ+IwZfkXgPgu4lHTcR40K/v/kybSPLo+xJK0jn7uAP/ggrUIxc6af/rGUwKFDwLXX0t+zZ/tT\ne6EYFaF86UvAbbdRNJ41b71FFfwAisIvvjj9FO4//Ymi32eeoTKvWRIl4JMmAZs2Aa2t2bbBBuvX\nAxMndn/eFwFvaKDsjT59gv8/cCANyu7c2bPtMmHPHgqcTMldwH/yE+Cuu2gxUl/rLxx/fOcFMHs2\n8NprPfPZL7zQadukZcECmkE4fDjNXvu//7Oz3Sjq6siuUVxySfrJI4sW0Q3owgspjc/W9xNElIAf\ncwx5skl7FM8/D/zN35C9kTXbt1MJ2VKGDKExij17sm9DGnbsoPM2CtdtFC8FfN8+uojPP59mIC1Y\nQNXdfGLpUvKvFD0l4OvX0/c2c6adC+yll6gkKkC2xvLl2RZkamwkgS0eeJo7N33vZeFCmoTSqxdZ\nQlkei6jUNaBzFqApbW3AzTeT+H/ve8nbp4OUJIBBmTRC+BGF79gRX4rV9UwULwW8tpYK5/TpQxfy\nsGH+DPwo3nqLuuyKKVOArVvJVsmS3/+eCvV88IPmBXCCePFFGosAqLs5fny2J/yqVV1XTwHou9ux\ng27sSdi6lVY1UVH9GWdkW1QqLHJVTJxIUbopv/kN3Rgef5yyE5qbk7cxjsZGKrsaZj/4IODbt8dH\n4GkEfM8e4LvfTfZek8/wTsAXLKBus+L000kQfWLJEoqCFVVVVJIz7WBcHI8+Clx3HXDLLXSRpxmg\n2b2bKs+ddFLnc0mjR102buzuu1ZWUhH+pNPQX3iBom+VSztzJrBiRbp2RhHXdZ8wgWZkmvKTn9Cg\n/ujRZGtlOTa0fXt09JpWwBcsyH5Qf+fO4B5EMUlTCVtayEr6yleC00Vt8Ze/dJ1IpUuuAv7881Q/\nWTFjRrYXXBa88073Va+nTaMyo1mxcSMJQ00N3fSkTHfjW76chLN4EsGJJ2Y7ESXMfjj11OT7ogRc\nkaXv2dJCvazS6nfFTJpkLhp79pCtePHF9Pcll9B+ZUVc9JpGwO+6i9p/xhnZptbu3k012aNIei78\n+Mdd/87SIejd2/w9uQm4lHRiFA9iTZ/uz9RdgLq2mzd3nwRxwgnZDj69/jpZT1VVFBVcemm6AeDS\nmtYATeJ4++107YwiLG/3lFOSC/hrr1HEqpg8mY5DFuljKuqLisqmTDHviT3/PI0FqIt51iwaZ8mK\nOP94ypTk58G3vgVcdRUFGbZy/IPYvZui5ChUBG56Lvz858Cdd3Zaoj/9abI2RiEl9T5NC1kBOQr4\nrl00Ul9d3fnc9On+5M4CJA4TJ9J+FDN5crYWSmkN6rSlP1eu7HojBbLfh7AI/LTTkglWR0dnT0Jx\n/PHk72ZRiW7nznjfdexYSiU0EY2XXyYBV5x2GkV9HR3J2hmHbgRuKnz19fT74YeBj30s27RUHQEf\nNIhE0mTA/+BBunnddBONEfzgB9kENYcPUzCWZOGJ3AQ8qH7vCSfQCd8TswBtEDYBYsKEZINXupSu\nPHLRReSTtrUl215dXfcIPE3kpUOYgM+cSRG4qWCtX0/5vqWWRlbZB7t2xXfbq6vJOjC5ES5a1LUX\nMWgQbSeJl65DnAc+aBAJi2kO9f/8D/DRj5Kve+mlwNNPZzeRRncAUE3o0eWNN2iQ+uST6e8ZM7IZ\nFG9qSuZ/AzkKeNDkgd696TnXR70VYTUkkg5e6VIq4GoAJ+lCtEER+KhRlNGRVUnUMAHv358Ea8sW\ns+299VbX6FuRVR2M3bvjRUMIGg/RXZqsvZ16H7Nnd31+6tTsvHydDI4kPvhtt9HsZIAGxw8fzs5W\n1InAAfOb+ZIlNKtXMXcuzRY+csS8jVHs3Jk8FdipCByg4kC+TKkPi8DHj6eeRFbd3qBlvADgV78y\n31ZjI3n5pWJaUdFpAdimrY2817AUvCQDTitXds2iUWQVgetGfatWUcVFHerqKBou7UUoLz8LdCfB\nmAi46glecw39FoIG3BcuTNTEWEwE3OR7XLy4qy993HGkWbYTLe6/P/l7nYrAARIN3wX82GPJe81i\nBltrK0WvpTMA77wzWRdVzYYMGowbO7bTy7TJjh10wYV5fkkivlWrKNotJasIvKFBT8CvvFI/v3fJ\nks6otZgsJ6HoZHCYViV85RX6XXx9z5qVTTqhlHq9IcD8e3zjja4pwgCJ+KJFZm2M45JL6JxPgnMR\neDkIOEAWxNat9j9z0yaKXEtTjq69Nlm0HGSfKLI6FnEzGJMI+OrVwQI+blw2NyHd4kPXXac/o3Xx\n4q6zehVZRuA6PQnT4/Gzn3VPrT3tNBpkts2BA3QthE1EKsbEAz9yhARc+d8K1bu2yYEDNKs6Cc4J\n+Lhx2Q4A2uLQIfKuwpZxGjkyGwEv9b8VJ59M0bSpbbN6dfeLTTFmTDbiF1W7GTCPmqXsnNlZysiR\n2dRDaWzUE/CxY2kAT4fSLrsi6wg8zn4wFfDDh2kAs5is5hXo9CAUJt+jqgXUr1/X5y+/3H6doL17\no+cTRJGLgLe20kU1blz3//VE0ZnmZkrXSsM779DduKoq+P+jRmUjHGE3vupqiqTWrzfbXl4CHheB\nm5wDW7dSBBYUSarjYDsDQveiGzqULKM42ttpBmpQBD5pEh1322Mqhw9Txtfxx0e/Th0P3e9w8eKu\nE6oAOt5799qf0KPrfwPk9R86pFeq4eWXga9+tfvzWXjge/d2Tac2IRcBVzZAkAc6YoTeCZ+UtjbK\nm547N90U5TVrwoUPyM5CCYvAgWR59G+/TR5nEFkJ+Nat4bWbAYqUTASrtKphMX36kG+5e7d5O6No\nbNRbv/DUU2lMJG5x4Lo6Epigm0L//iSytgOCPXtI/OKmiKt8ep3Pb26mc7TUy6+oyGY8Qtf/Bjqz\ngnSukYULu84SV0yb1j0qT8u+fQ5F4EKISiHEUiHE/4S9Zv364CgSoAu7vj67qoS//jXQty9NMEhT\n6W3t2uiBh562UAA6uUx6Fm1tlO4Y5uNnNYgZNwmmXz8SR93PjhJwgOwa07TEOHQFXAgazIvLBX/j\njeDoW5GFD24ifro2ihLH/v27/2/iRPvptbqDyYopU+K/RynpeATZWUOHkuDarNTpmoXyBQArAYR2\nuNatC85AAShaGTw4uzrOf/4z8Hd/R1X8Vq9OPvNzzZpw4QOyi8DDUggB+k5NBh03b6YTMmwAKCv/\n2HbxoTgBV0GBTfbu1V9BfMqUeP932bLgPHbFmDH2zycT+0FXwKOCoizSUhsazFZyHz8+/iby3HMk\n0kHeekUFuQQ2j4UzAi6EGAPgSgD/ASC0Yxbm4yqyzERZtKizXvQNNwB/+EOy7URloADZeOBSUvQQ\n9t3NmAE89JD+9sLWQlQMGUKRpu1VZXQE3GTgLE7AbWcOSEnfi+5FN3p0fEGq11/vPoGnmBEjsrNQ\ndNA9Hs3NwL//e/D/spjj0dBgthTZhAnx40SLFtH0+TDGjLHbo3PJA/8BgC8DiHQvw3LAFVl5r9u2\nUddH5VC/971UxjEJceKXhYWyaxelTIUJx5w51IPR9Y6j7BiAakfoDsKZsHOn3epxQcW4ihkxwu5y\nWocOUSSmk7oGUO32H/0o/P9S0gzM008Pf83IkfZrumQRgT/+ePjY0Lhx2VgoJgKuk4ny/PPA1VeH\n/9+2gKfxwENyKMwRQrwPwE4p5VIhRE3Y6+bNm4eFC8kjGzWqBjUBIwVZdd3V6jlq0ObCC4Hrr6fV\ny+NG4otpaSFRC0shBDoHYzs6upZpTUPUyttA52DX1q3Rr1NE2TEKZQXpbE8HKelGpGOhvPRS/Pb2\n7KHjETUoOmyY3cwBXf9bcd99wKc+Ff7/DRvI948aFxgxwn6JYpNFBHSEr7GRfp9zTvD/J040z5KK\no6HBrIqfzo3orbeib6a2A8wgC6W2tha1tbWx77Um4ADmAni/EOJKAH0AHC+EeFBK+fHiF82bNw8/\n/jFw773hF3FWKXily5/17QucdRZ5XlF33FLWr6doIiyFEOistLhrV/xUZV10KuCpE1RHcNesAT7y\nkejX2B4AbG6mG2jcSL5uxKcmIkVlUgwfbne9VVPP8rLLorvIS5ZED2ACJOBZROBha3qWoqahRwUk\nKt89bIZt0hWKojCNwMeOpePX1BQ80LptW/BM52LGjLFrBQVZKDU1XYPb+fPnB77XmoUipbxbSjlW\nSjkRwA0AFpSKN0DdhZaW6C50VhkcS5Z0v7Oee6751Ng4/1thuyeh4x2b1PGOSiFUjBplV8B17BOA\nvt/16+OzkVasiB78A+g7s2mhmEbgI0fSOEJYKmHYDMzSbdgOakwsFJ1Uxrip8kOHkv20f79+G+Mw\nFfCKCjrnwwaVX3uN7LioXvPo0fYi8JYWOi9MHIBisswDD8xCUf53VMSUhd8HBPuMZ55JF5AJugJu\nOxPFpoB3dMT7+ID9vHwd+wTozEaKu1CWLw8uYlXM8OF298FUwCsraaZs2FJxS5bE2wBZROCm6zDG\nZQZ95zvRpWlVSqVNH9w0CwWIni+xZElnEa4wbFooKrBIarNmIuBSyueklO8P+l9UDrgii8k8hw6R\nmJZ6vmoVeZOZejrCB7gdgW/eTBdvnJUxdKh+OVQddPZBoZNKuHx593oVpdgWP1MBByjSCir3K6Ve\nBD50KHW1bWYEmUavOrbWP/5j9P9tZ5iZpHMqTjwxfNGQ118PLihWjO0IXEdLwujxmZhROeCKLKKN\ndesohajUtx45kkTMZOp2WB3wUmzvh44HrrsY8erV8fYJkI2A69aumDQpetBLSj0BP/54smLiZkPq\nkiRvt0+f4Jm/GzeSZxw1CAtQhDZ4sN1jYXojmj49fCBVTWy59trobdicHGaazqkYMSK49LK6mcYJ\neHGCQloefzxd6ZAeF3CdCHzoUOre2ZyNuWFD+I3j7LM7S2DqoGuh2O6660SvkydThBM3U0zH/wbs\nC7hJ8aFhw6IHH9V3G3dTE8JubyhJBH733cFZS6++SgPpOiue520FzZgRLuBq/kHcsbA5AHjoENlT\nuumcivPOC14BZ+NGCriissuAzvIMKusmDePHxwe0UTgZgVdVUdfOpnBs2EAReBCzZ+v74K2tdAKG\nbasY24NnOgLeqxe1Le6unqeA6w6cCUElD8JQ0beO+Nkcj0gi4CedFLxYsxJwHYYNs3cspDS3H6Lq\niNxyC/2OOxY2x7eSRN8A7ce2bZ0LFSsWLKDeuM75ZGti1YED3Qt/mZCLgMdF4IB9+yFKwGfO1F9I\nd+NGOglLFzIOwnbEtGOHnn+sU7DHxEKxWQjKRMBvuSU6GtKxTxQ2z6ckvuukSfS+0kU+XnstegZm\nMTZvps3NdA6bLKQ7YQIdvzRW1PDh9npCSY4DQFH7+PHdUxq3bgU+9zm9bdgS8DTT6IEcBHzjRr0u\ng20B37gxPLdz5kwqXqMzkLlokX4uq00Bl1LfP54+Pd4HD1rIOIhBgyjSsWVnmQj4+PH0+rC0sxUr\n9AXc5rFIEvlVVNCiBsWBQltb+Co8QdgU8CT7UFlJ50yahRlsJigkjcABugmV1mmvq4uuMFqMrZ6E\ndwJeXU0pYnHYFvD6+vBobtgwapNOvYxVq4Abb9T7TJui0dRE0ZLOdxc3kLl/P0WCOjZQVRUNAu7d\nq93USEwEvLIyel9MInDbAp4k8jvjjK6rmtfVkbWjuy3bAp5kH1SwU4y6wT7wQPz7bR6HpBE4QAsz\nPPFE599SArW14bNIS7E1puKdgOvYJwAdaNsCHjU78ZRTgj3KUt5+O3o1mWIGD6aT20bql0n6XZyA\nq/UjdXNPhwyxZ6OYCDgQPnAmJUXgcTngChcE/Nxzuy7sa+J/A/S9uSDgpXbj0qXUtltvjX//8OF0\nLttYYCNNBP6hD3XtSS9bRhaKSQR+VAq47oirzQi8vZ22FbYKOkACvmxZ/Lb27qUFIXSoqKAT28ZA\nZhIBD0tziiv+VIptATeZPDJjRvAEmE2bqGegK0K2I78kF11NDVUlVDf0l1/W978BNyLws87qnrH1\n5pu09qcOffrQj40eXRrxmzuXxoGOHKG/580ze/9RK+C6EbhNAd+xg0SjdCHgYnQj8Gee0U+DA+wJ\nh4mAV1eTuIVNgc9LwNV0cpMTduRI4P77uz9vYp8AbkTgQ4ZQAPPKK5Tm+ac/Ae97n/77bQp4UuE4\n/XRKBS4ejF28uPvq7VHY8sHTWChq39XkqrVraa0AXWzpU1kLuK0LLs4+AUjA4wZnVORkcrLmIeBA\ntI0StRJ9ELYEXE17rqzUf8/73091OEp7E0uX0nJlutg6Dq2tJL5BecQ6XHklrUDepw+dc7rXA+BG\nBN6rF/nEygqSkhb51e2VAnQe2xLwNOLXty/wgQ8AX/86Xftnn63/XpsReNKbEHCUWCg6Aj59Ot2F\no/xqJfAmAmRTwE2qGsYJeB4RuOnUbYB6ToMGdV8G65VXzPxjW96r8l11coWDuOce+l1VBfziF2bv\ndUHAASrD/Nxz9LiujkTdZDr4kCHd0ymTkFbAlTX3z/9Mv00CJLZQYuhpAe/bl7JUoibAbNgAXHWV\n2WfbOlmTROBBueDNzXTimUR+NgXcxP9WzJrVtdKdlGb50wAd39699VYkjyLtBdevH7W/tVUvC6iY\nQYPsDYqnEfCams4Zsv/wD3RjMbmh2TqfTMdTSpkypbO8gemNvbqajkNzc/LPBzwUcN0MjoEDgYMH\nqdhLWnQEHAifLadYuVI/60ExeHA+Ah6WC758OYl7VC3zUmxbKKaUCvjWrTQwPW6c2XZs9IbSCF9a\nKipIxG1Fr0n34+yz6VguW0aDySqC1cXW+dTYaN6jK+Wqq5L1yoRIH2R2dKQrJQvkIOC69oMQ9uwH\nXQGPm5GpU7q0FFsnq+4sTMW0aXTDKT05X33VLHIF8rVQgO4Cvngx5VSb2hjKRklDngIO2JsZmyYF\nr7IS+OQnaWISALznPWbvt3U+7duXTvzSktZG2b+fAhETS7aUHhdwE2wNdugK+GmnRUfgppkPQH4R\nuNrf0lmjr71m5h0D+UdMs2bRDFg1G1QJuCk2jkXaLm9abPngaW9E99wD/PGPNKnHtJa1rZvQvn3J\nFwO2QVoBDyovbIrTAm7rQNfX61k3UamEra3kj5tkbwD2xM9UwIUALrig68QRwNw7BvKPwEeMoOP3\n7LP098KFlMdrio39cCECd0HAjzmGSsfq1AQqxdb5tH+/3wI+bpzZpLYgnBZwGwdaSsqHjqu3DFCG\nTEND8CSDNWtokLNvX7PPtxH1tbfTBWc6YHP++bTCtmLfPqqkmJcNlFTAAeDv/x74r/+iQaPXXqN9\nM2XwYBZwRdr0tTTYuq5NFyO3TdqlH5ubzVKSgyh7AW9ooPohOjVEKiooCg+a+ZfE/wbs7UN1tblX\ndsEFXQVcTbgwGcAEyDJoakqf/ZBGwG+8EXj0UeC736Wc4yQXro2MoHIR8DQeeFpsXBNJqinaZvTo\ndBF4c3P8ilhxlL2Ab92qF30rSgsOKUwq3xWjIvA0+cemaxcqTj6ZrBc1jpBkABPozH5oaDB/bzFp\nxG/YMMoYmD9fr+ZGEDbOp7w9cBv70NJCGRCmvUlblMNxANLfTH/1K5qNmwanBdyGB75tW3QNlFJm\nzyahKyXJACZAucd9+6ZbiTupgFdWdhZQkhJ45BGqwpYEWz2JNGlfv/89DZol3YdysFBsWHL79qWb\njJSW/v3pJhK3alQUrgh4mqymtOINOC7gNqqvmUbgc+Z0tR0USQUcSC9+e/YkH+x473uB3/6WehV7\n9wKXXppsOzaORVoBVzW1k1IOFoqNm1De4idE+mOxd2++A5hA+gj8nnuAb34zXRucF/CejsCnTKHP\nLE6/O3iQJixMmZKsDWmjpqQROADcfDNVvbv5ZuAznzFP+VK4EIGnpRyyUGzchPIWcCD9sVC9iDxJ\nK+DsgWuwbRuloekiBHDFFV198IULyVqJqmYYhY0IPKmA9+tHEfjHPw584QvJ25B2Hzo68r/oyiF6\ntbUPeUevac+nvI8D0Cm+SafT33+/XgXUKMpewE2LQAEUsX/ve51/P/00cNllyduQNgJPW/PhwguB\nL3/ZfPXuYtKOR+zfTye8aQaMTQYOpHa0tSXfRjlE4HnfSAE7Ap73TUiI9FF43OLjcTgt4DbWY9yx\nw1zAL7+cZv4pnn46uXcM5BuB2yLtPuRtnwA0qFtdTedUEjo68p880q8f3YBKV1Q3wYXotRwsFCDd\nQOY55wCWJrQeAAAdf0lEQVTf/na6z3dawG2sx5hEwK+5hk6OFSvI+96yRX/h2SDy9MBtUQ4CDqTb\nj/37qQ54mtoVaREi/flUDgLuwj4A6SJwG6UAnBZwIH0XJYmFUlFBOcef/zzw4IPA9denu2g5Ai8P\nAc/bPlHYyODIW/xYwO0U48rRkdQjzYFubaUvKYlw3H03zbxcsICWUUsDR+B2Sn/aIM2xcEXA0w5k\n7t2rX9Y5K4YM6WpTmuKCBw6ks1Bs2HHWBFwI0QfAcwCOAdAbwJ+klHel3W4a4di1i072JNHzjBlU\nc2PdOvNymaVwBO5OBJ5mRqlLAp4mIHDBPy4XD3zYsGQReHs7Za8kXZpPYU3ApZQtQoiLpJQHhRBV\nAF4QQpwnpXwhzXbTHOgk9kkxZ56ZzvtWpImYpCwfAXfhgksj4K5029lCcWMfAIrAg1a+iqOpicQ7\n6bwMhVUPXEp5sPCwN4BKACmrZ6Q70KaLIGRFmguuqYnyz9OkANrguOPIkkqa/ZBn9btiBg8ujwjc\nd/ErhzRCILkHbquWuVUBF0JUCCHeALADwLNSypVpt5lWwNNE4LZQF1ySglYuRN9A+unProgfWyhu\niF+5WChJPXBb6ahWBzGllB0AZgohqgH8RQhRI6WsLX7NvHnz3n1cU1ODmpqayG0OHUrpfEnYtcuN\nCLxPH4qiDxygQj4muCLgQOdFp7O6USmuROBp1pR0RcCHDOm6xJwpLoifKu988KBeqedSXOhFAOki\n8KgMlNraWtTW1sZuJ5MsFCnlPiHEEwDOBNClFcUCrkOaIkq7d6df8cIWSvzKQcCTkGf96WIGDkw+\nkceF7A2gPCJwoPN8Ml2cuqWFerN524pA8kHMOAulNLidP39+4OusWShCiCFCiAGFx30BXAogYolg\nPdJmoQwdmrYFdkh60ZWTgLsQvarZvUlwZR/Spta2tKTPfrBB0v1Q4pdXOdxijjuuM6PEBBctlJEA\nfiWEqADdGB6SUv417UbTCrhrEbgprgl40t6QK13eo90DV8LhgvglvSZcOZeArmNDJpUFbQ1i2kwj\nfAvALFvbU6QR8N27/Y/AGxrcEfByyOAYOND/NMI0x8EV+wQoDwEHOgXcxApqbHQwCyULqqtpoOPI\nEfP3lkME7soEGCB59OpCEShFdTV1d5NUJHTlJlRdTQPiSfbBhQFMRRoBd+FcUiRJ69y5006ChfMC\nniZ9rVwicN8F3IUiUIqKCrr4kxRIc0XA1T4k8fJdEr80HrgrNyGANEatO6uLrXPJeQEHknmvra0k\nHC5ccEB5eOBJBdwV4VMkyUSR0p1MGiD5sbDlvdqgXCyUkSPNc8GPOgE3PdAqck07VdUWR3ME7toF\nl2Q/Dh4EevUCjjkmmzaZUg7HolwEPMl+2Cru5oi8RZPkC3IphRAoDw886eBZOUTgru1D0mPhUgQ+\neHC+09BtkVTAbdyEvBDwJLOdXJrEAySvX+GSgKexUFyKmJLsh2sCXg4ReNKbkEv7ACRbbtCWj1+2\nAu5iBG5qoXR0uDMFHeiMXDs6zN7n0j4AySbzlIuAuxS9JrUVXRPwpBH4UeOBDxtmPkjgagRuUtBq\n3z7K3shzIeBiqqposkJTk9n7XBQ/U+FwTTTKJQJPKuCu3IQA8yQLVdXTtKxGEF4IeDlE4MceSwOq\nBw/Gv1bhkn2iSCJ+Lloo5RCBJxE/lyLw4oJWJriWRmgagdssBeCFgCeJwF2axKMwPdB79rgp4KaR\nn4sWSpKbkGv74HsEDiSLwl3bh0GDqE3t7Xqvb2y0E30Dngh4kpq7Lk3iUZierC5No1ckHQB07YJL\nchPyfR8AtyJwoDzsrKoqKg2rOzls8WJg40Y7n+2FgCcp2VguEXg5CLhrEXiS7AfXIvA0GRwuCXiS\nCNy1mxBAGrV9u95r+/cHrrjCzud6IeCDBtFBM6n9UA4ReLkIeDlE4K4JeLlE4KbXRFsbeeYulMMt\nZsgQ/ePxwAPAk0/a+VwvBLyyki4ekwNdDhG4q4OY5SB+R6MHLqWbAm6yH/v3k13hygxrxYAB+hbK\nX1MX2e7EkQS1eNRAps4al1KWTwQ+ZUp27UnCoEHAli1m73EtAi/OZ9cVAtd81wEDSMza2/WLhB06\nRK91pRwAYH5NuFLVspQBA/Qzm+64w6x2eBSO3cfCMRnI3LuXlltyYcmlYo5GD1wVgXKpJ9GrF6Ww\nmeSzuxaBV1aSl7pvn/57XIu+gWQCHrWWZF6Y9OoOHLBnAXkj4CYDma6sRl/K0eiBHzxIo/Su3UxN\nu+6uCThgfixYwLNj+HD9krJNTUehgJtE4K4KeLnkgZumQromfID5frgq4Cb7UA4CXlcHLE290q59\nTAR8zx5743PeCLhJBG5rtQvblIuF4rvwAWbR6+HDNP1ZzRx0BdNehGszGIFkaYQf/GA2bUmDiT7Z\nLPPhlYD7HoGXi4ViMg3dxUwawEzAVR67CwsBF3M0WiiNjcCIEdm1Jykm+mQzQ84bATeph+KqgJtE\n4EeOkH/s2gWnFgXWLcrl2gCmwiR6LYdeBODeJB6gfCw5EwG3mSHnjYCXQwR+7LGUuqZTvEeJhmtR\nX58+QO/etDCwDi5H4LrC4VoKocJUwF08FgMHUs/ApI6Ia/sA6AeYra00iGnrfPJGwMthENNkgWYX\n7ROFiXC4GjGZ7EO5ROAu1tapqqJ0SN1JMK4ei379qFcaF9ioxARbE5G8EfBySCME9D2/chFwVyOm\no1XAXTwWJj64q8dCCD2XwPYEQ28EfMAASoA/ciT+tS4LuK4PXi4C7rJosIC7gYmAu9qjA/RcAtsL\nzXgj4BUVeuInpdsCfrRF4K5ecOXigZsOAJaDgLu4D4CeS2B7oRlvBBzQ66I0NZHYu1atTKEbgbu2\nJFwx5RCBl4OFYpoH7uqxMBVwVwMbXQvlqIzAAb0uyo4dbuaJKnRP1l273JyMBLAH7gqmFoqLM3sB\n/WuitZUGCV1LhVTo6JPtKqnWBFwIMVYI8awQYoUQYrkQ4vO2tq3Q6aJs3+62gOtG4K7OJgXKJwJv\nbNTLZ3dVwAcOJHuno0Pv9a4eC10BdzW1VqGjTy4PYrYC+Acp5UkA5gC4XQgx3eL2te5wrgu47snq\nsoCrcqw6uOqB9+oF9O1LxZHicNUDr6qi9DWdfTh0iHKtbZUxtYnu7F6Xx4UAzy0UKeV2KeUbhccH\nANQBGGVr+4B+BD5ypM1PtcvRFIG3tbnd5dXdD1cjcMBsHwYNcjN61d0HV3sQCq8tlGKEEBMAnA7g\nFZvb1bnDuR6BH00CrqJv11ZPURxNAu6y+Onugw8ReE9bKNZX5BFCHAfgUQBfKETiXZg3b967j2tq\nalBTU6O9bV0LZe5c7U32ODoWipT2041sonvB7d7t9gWnm8XhqoUCHF0C7vI+AHYtlNraWtTW1sa+\nzqqACyF6AfgDgF9LKR8Lek2xgJtytAxi7t9Py165tgiCwiRicjUVEtDLo25vpwlkrtpAumMqLotf\nuXjgqh6KlMFWlQrMdK6J0uB2/vz5ga+zmYUiAPwngJVSyvttbbcYnQh82zZ3J/EAlJ9+5AjQ0hL+\nGpftE6B8InCd/di3j2p1+G4DuZpCCJRPBN6nDwVeYYPKzc20FJ7NuvI2T8tzAfwtgIuEEEsLP5db\n3L5WBL5tGzDK6tCpXXQKWu3c6a59AlAmQ2tr9E0I8CMCjxMOlydUAeUhftXV1Mtpa4t+nesROBBt\no2RxLtnMQnlBSlkhpZwppTy98POUre0DtBbe4cPhwtHaSl+Sy9ErEN/tdbkUAEA3IZ1ur+sXnI4H\n7vJYBFAeAl5RQW2LsxZd3gdFlEvgtID3BEJE193dsYP+X2V9aNYucT646z4+oCfgPkSvcf6xD/ug\nK+Au30x17FHXAwIg2iXIov1eCTgQ3UXZssVt+0QxZEi0FbRtm9u57IC+/eDyBaezDxyB9wzDhsUv\nCrx7t9v7AETr09Kl+gsf6+KdgEfdqTdvBsaO7dn2JCHOy/dFwHWiV9/Fr5wicJfFT2ehk61bgdGj\ne6Y9SYnSpwceAJYts/t5jpsN3YkSv02bgHHjerY9SYjrLvog4DrpkK5Hr7oeuMvHohyyUID4caH2\ndsrHd/lmCpA+rV8f/L9rrgGmTLH7eWUXgfsg4HEJ/1u3ui0agN4agK4LeDl44OWQBw7E78eePZSt\nUlnZc21KQtS1XVtrvxaNdwI+YgQN8gWxaZMfFkpc9OpDBJ5H3QfbqKJcURUJXb8J6ewD4L+Au34c\nFFHXxb599sfovBPw0aNpsDIInyyUMAFva6MT2eU0QiB6H4DOdE9XZzACQO/eNPmiqSn8Na5H4Dr7\ncPgw/fTv33PtMiUuqPFFwKMi8M2b7e9DWQm4LxZKlP2wcydFSq6nQsZFTEr4XKx+V0ycD+6DcMT5\n4C5XIlSMGBGdoeH67GRF2Bid6iGdeKLdz/NOwEeNChbwI0foJHY9cgVINFauDP6fD/YJoBcxuRy5\nKuJ8cNcjcCBewF23T4BoaxRwf3KbQmXTlC6ysXcvldGw3QvyTsBHj6ZBvlLPb/t2uvu5PsgBdE7S\naW7u/r9yEXDXUwgVUeJ36BAFBi5bD8DRIeA+TG4DaKGQ/v27H49Nm4CJE+1/nncC3q8feX6lX9Ab\nb4RbK64hBDB+fLBX5notF0WchfL008DChT3XnqREiZ+yT1y2HoB4AXc9hRCg82nfPiqHEYQvETgQ\nbKNs3JiNveudgAPAmDFAfX3X57ZsAS6+OJ/2JGH48HAB9yECr66mHkTYBXfcccDf/m3PtikJUR64\nD/43EO/j+xCBV1REZ3D4JOBDh3b387NKsPBSwCdNAtau7frchg1+CXjY1GFfygFUVFAKW5hw7N8P\nTLe6Imo2RHngvgi4jo/vckkDRZSN4pOAByVaZBWYeSngM2YAdXVdn1u+HDj55Hzak4QRI+iglrJp\nE9krPhDlg9fXuz/tGdCzUFwnzkLxpVdXLgI+YQJZJsVk1X4vBXz69O4CvmIFcNJJ+bQnCUE2EOBP\nLjsQ3eXdsoX20XWixM8X4YsTcNcX+laECbiUfgn4+PHkCBST1ezqshDwAwcoWspilDcrhg/vbqFI\n6ZeAR+XuvvCC3ZVHsiKqF+HLgLJOBO5DBsfw4cECvn8/ZXf4cD4BZPG+807X5558MpuetZcCPm0a\nsHp1Z67lypWUIO9DCqEiKNpobCRv2eXZi8WERUyHD9NvV1dyLyaq2+5DTRqg/CNwX25AihNO6DpG\npwKE44+3/1leCnj//nTSKp/JN/sECB7o8Mn/BsIvuD17KGKaPLnn22RKlICXSwTuSw51WI/OhzKy\nxYwfT9eyKm+wYAH9zmIfvBRwoOtA5vLl/gn4mDE09b8Yn+wTIFrAp07t+fYkQdWuKJ05B/gTgUel\nER46BBw86H4aIRB+Pm3d6seNVFFVRS7Bpk3095NP0u9evex/lrcCXuyD+xiBDx9Od+iDBzufKxcB\n9yVtDaBVxINmzknpzyCmSucMqkioBv9cn4wElI+AAyTWK1bQ45kzgc9+NpvP8V7A29tpFuYpp+Td\nIjMqKqirVVz8vZwE3PX6IcUE7UdTEx0j16fRAzQzuaoqvDSDD/YJED6I6aOAv/UW8MMf0uMvfhH4\nxS+y+RxvBfykk0i4n3qKRG/ChLxbZM6kScC6dZ1/b9hQHgJeX+9HXXbFyJHdc/J9sU8UYT64LwOY\nAA3eHznStVcK+Cng//ZvXeelfP7z2XyOtwJ+9tnkIX/qU8Ctt+bdmmRMmtQ1Al+92v6SS1kybBiJ\nRul0el8W1lAECbgv9okiSsB9icCFCB7I9FHAVYCpxlauuCKbz/FWwHv1Ar7/fYpYP/zhvFuTjOII\nXEpa8NQnAa+spMk8pVG4b1bQqFEkEsX4koGiCJtO75OFAgT36nwU8LPOIov3X/6F/p4xI5vP8VbA\nASqW9Oqr/iT4lzJlCrBqFT1evZp+DxiQX3uSEDSj1DcBL4cIPKw4mk8WCtBdwKX0z84CgL59aRzl\ny1+mv7Ma1PdawH1n5kzgzTfp8YMP5tuWpIwb173ug28CHhaB+yQaYeMRPlkoQPeBzMZGGqS1vRhw\nT1C8glBWWUAs4DkyZgydrOvWAX/+M3DOOXm3yJzJk7tOGz50iFYf8aVuBRC8ypNvUV9YcTTfLJSW\nFuDxxzv/rq/3zz5RrFsHnH9+/ILTaWABzxEh6ORcuJByRm+/Pe8WmVM6bbi+nm5MFR6dWWPHdp9U\nlVUB/qwYOTI8AvfpRjRuHA3+Kdat82NGbxD9+gHPP5/tZ1i7zIQQvxBC7BBCvGVrm0cDd98N3HQT\nPf7AB3JtSiJKI3BfFpYuZswY8o9bWjqf27DBr+JoQRZKR4dfVfwA4Oqru95wVq/2Z1ZvHtiMk34J\n4HKL2zsqUOI9fbqfPl9pBL5xo18phABl04wd2+nlHz5Mk5F86roHDcQ2NNDKSH365NOmJEyeTOeT\nsh3Wr6dsLSYYawIupVwIoNHW9o4W+vWjkzVslXrXGT2aBprULMCNG/0qyKUozsnftImict+rW/o2\ngAlQOqQQnSmR69f7OUmvp/DIqWRcpKKCrAaVz+6zgK9ZQ4/ffts/33XIEKqbrUr5Av4NYAIk3sUr\n2rzzjn/HoidhAWdSU2yjPP+8nwJeXN2yri67iRdZUVFBvQZVAQ/wbwBTMWIEpdc2NJCAcwQeTlVP\nf+C8efPefVxTU4OampqebgJjGSXg7e0UiftWGRIgwX7kEXq8fDkwd26+7UnChAk0+Kpm8/pooQDA\nmWeSpdjWBpxxhl8evi1qa2tRW1sb+7pcBZwpD6ZMARYvBl56if72afBPcdppwIsv0njEm28Ct92W\nd4vMmTixa20d3yYjKa68kgb3N2wAPvaxvFuTD6XB7fz58wNfZzON8LcAXgIwVQixWQjxSVvbZtzm\n7LOBl1+msgCf+ETerUmGWn3+4YcpD9k3CwXojMAVvlooc+bQOrdHjgDf+EberXEbm1koH5FSjpJS\nHiOlHCul/KWtbTNuc+qpNIHn9tv9nE2quOAC4MYbaTWV447LuzXmTJjQNQLfvNmvpcgUQgB33EGP\nfUtJ7Wl4EJNJTVUVFa9vbQWuuy7v1iTnRz+i3+edl287klKcDQTQYOz06fm1Jw133pntFPRyQcge\n/JaEELInP4/pWdraSMx95p13KIvGx/3Yu5cyUfbv71yXtKHBj+XUmGiEEJBSdjuSHp6mjKv4KHql\n+JxzPGAAlS1dt46KcU2fzuJd7pTBJccwjOK004ClSyny9nEgljGDBZxhyogLLgCefZZKG8yZk3dr\nmKxhD5xhyohly4BLL6UBwBdf9GuJPiYc9sAZ5ijglFOACy8kAT/hhLxbw2QNR+AMwzCOExaBcx44\nwzCMp7CAMwzDeAoLOMMwjKewgDMMw3gKCzjDMIynsIAzDMN4Cgs4wzCMp7CAMwzDeAoLOMMwjKew\ngDMMw3gKCzjDMIynsIAzDMN4Cgs4wzCMp7CAMwzDeAoLOMMwjKewgDMMw3gKCzjDMIynsIAzDMN4\nCgs4wzCMp7CAMwzDeIpVARdCXC6EWCWEWCOE+KrNbTMMwzBdsSbgQohKAD8GcDmAGQA+IoSYnmab\ntbW1FlqWH9z+fOH25wu3P3tsRuBnAVgrpdwgpWwF8DCAa9Js0IcvMApuf75w+/OF2589NgV8NIDN\nRX/XF55jGIZhMsCmgEuL22IYhmFiEFLa0V0hxBwA86SUlxf+vgtAh5Ty20WvYZFnGIZJgJRSlD5n\nU8CrAKwGcAmArQBeBfARKWWdlQ9gGIZhulBla0NSyjYhxGcB/AVAJYD/ZPFmGIbJDmsROMMwDNPD\nSCkjfwC0A1gKYDmANwDcgYLwp/kBcAyA3wFYA2ARgPGF58cDWFz4zBUAvhDy/u8CqAPwJoA/Aqgu\n+t9dhe2uKmn/dgCNAJpCtvk3ADoAzEra/qL/Hw/KxPmRb+0v+sylAB7zsP3jADwNYGXhHBrvS/sB\nXFT03S8FcAjA+z1qvwDwr4XvfSWAH6Y8fy4r2oedAI4AaEGABpm0X+Mc+jaAtwo/H0q7D0XP/zOA\nTTaOgZRSS8Cbih4PBfAMaLAy9r0x270NwAOFxx8G8HDhcS8AvQqP+wHYAGBMwPsvBVBRePwtAN8q\nPJ4ButH0AjCh8GWonsZlAJ4DcDhge/0BPA/gJc0TOLD9Rf//IYDfIFzAnW1/2MnlUftrAVxSeHws\ngL4+tb/oNQMB7AHQx5f2A6gB8AJIyCsK27swRfvXqvMRNNfkJABtKNEg0/bH7MNVoACgonD+vAqg\nf8p9EEX7MAIB11iifdDYyaaSvycC2F14XAm6C70Kugt9uuh1XwWwrLAj9wVs9ykAZxceVwHYFfCa\nIaC72KCYNl4L4NeFx3cB+GrR/9oAzClpf0dA+3eBIodnAZyRpv2F9/8WwCcQIuCOtz9WwF1tP+ji\nWehr+0te82kAD/nU/sL3/yqAPqAA7DUAJ6Zo/1MAmktefwDdNWg7gHWgiPeMwv+S7sOXAHy96HX/\nAeD6lPswp+T1QQJ+P4Ar1THQOXeN88CllOsBVAohhgH4FIC9UsqzQHeWW4QQE4QQVwB4P4CzpJQz\nAXwnYFPvTvyRUrYB2CeEGAQAQogxQohloK7GD6SUDTHNuhnA/xYejwJZF4oOFE0oKrRfFLcfwN+D\n7nzngE68c5K2XwhRAeB7AO6MabOT7S/8r48QYrEQ4mUhhM5sWlfaPxjAVAB7hRB/EEIsEUJ8p3BM\nfGj/oJLX3AAKBOJwpv1SypWg6HUbgC0AnpJSrk7R/np0n68i0VWD+gJYCGB64f0jUmrQmwAuF0L0\nFUIMAdlaY1LuQ+SkRiHELACjpZRqGzLm8wCkz0K5DMApQojrCn8fD2AKKJXwF1LKFgCQUjaabFRK\nWQ/gVCHESADPCSGellKuDXqtEOIeAEeklP8vapNR7QfwNQAbQSdCE4CzE7ZfgLpl/yul3CqE6Ja3\n6Xj7FeOklNuEEBMBLBBCvCWlXOdB+yXonD4fwEzQxfk7ADcB+IUH7S9u10gAJ4OyuqJe51T7hRAX\ngARvNOh6eEYI8Rcp5Qsp2h/FZaCodR3Ix+4FGkeblHQfpJTPCCFmg6yMXQBeBt0IA0l5DFAIMP4F\n1GN/92mdthpH4EKISQDapZQ7C099Vkp5euFnspTyGc0GbAENNqkc8urSSFtKuQ10Z50Z0pabQAfv\noyXbHVv0d0XhueL2y6L2fwU0KNKv8NoTAXwAdBKYtn8PgDkAPiuEWA/q2n1cCHGvJ+1vAN793lW0\nVgvgdI/aXw/gDUk1edoBPAZglkftV3wIwB8L+xCIo+0/B8CTUsqDUspmAE8Wnkva/jHoLp4CnRpU\nBRrY7AdgQOH/9wAYhhQaJKW8t6BplxW2E9iLMNiHLQinP8jbry3oxhwAfy5E5dHEeSzoPoj5NIBv\nFP6+BcB/A6gq/D0VZPq/F8CLKAweARgYsN3bAPyk8PgGdA4gjC5+H8jTmhrw/stBI91DSp5XAwi9\nUfD70DmAoNp/OKL9zwG4PWn7S14T6oG72n7QRXBM4fEQAG8DmOZR+ysLnz+k8PcvAdzqS/uL/r8I\nAYN/rrcfZFs8UzgOvQD8H4CrUrT/HXTXoDaEa9AiAHORToMqAAwuPD4VlIlSkXIfRMlrQseZQB64\n1iCmjoXSVwixtHAw2gA8COAHhf/9B2iUdUnBLtgJ4ANSyr8IIWYCeF0IcQTAEwC+XrLd/wTwkBBi\nDWik/YbC89MBfL8w7V4CuFdK+XZAu35U+IKeKTgVL0spb5NSrhRCPAJKYWorbGOJEKIX6OD3Bvln\nmwH8vPC64vYLUJfpuITtLyWs6+Rq+6cD+JkQogN0It8npVzlS/ullO1CiC8B+Gthm68XPseL9gOA\nEGICyA99LqDdTrdfSvlnIcRFIB9ZgKLxJ1K0/zYATxQ0aAyA6sJ2/66gEf+Erho0GiS2aTSoN4Dn\nC+3aB+CjUsogC0V7H2RBmYUQ3wHwEZCubgbwcynlNwO2rQVP5GEYhvEUXlKNYRjGU1jAGYZhPIUF\nnGEYxlNYwBmGYTyFBZxhGMZTWMAZhmE8hQWcYRjGU1jAGYZhPOX/A5KlgiUuc+s0AAAAAElFTkSu\nQmCC\n", "text": [ "" ] } ], "prompt_number": 102 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }