{ "metadata": { "name": "", "signature": "sha256:59105c67ef8a09118c8a953b0790ef4ce3e8ceaa033ebb5b0e1232bec4fb44a1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Notebook to look at one day of Data from Kao-Shen... \n", "* check wind" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import netCDF4 as NC\n", "import numpy as np\n", "from salishsea_tools import tidetools" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "date = 'Sep 10, 2014'\n", "time = 0\n", "resultsloc = '/data/dlatorne/MEOPAR/SalishSea/results/gem-res-10sep14/'\n", "name = 'SalishSea_1h_20140910_20140910_grid_'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "filename = resultsloc+name+'V.nc'\n", "fU = NC.Dataset(resultsloc+name+'U.nc')\n", "fV = NC.Dataset(filename,'r')\n", "print fV.variables['v_wind_stress']\n", "windU = fU.variables['u_wind_stress'][:]\n", "windV = fV.variables['v_wind_stress'][:]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "float32 v_wind_stress(time_counter, y, x)\n", " units: N/m2\n", " standard_name: Wind Stress along j-axis\n", " _FillValue: 9.96921e+36\n", " long_name: Wind Stress along j-axis\n", " online_operation: ave(X)\n", " interval_operation: 10.0\n", " interval_write: 3600.0\n", " coordinates: time_counter nav_lat nav_lon\n", "unlimited dimensions: time_counter\n", "current shape = (24, 898, 398)\n", "filling on\n" ] } ], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "#grid\n", "bathy, X, Y = tidetools.get_SS_bathy_data()\n", "#Latitude: 49.1059. Longitude: -123.3033.\n", "i,j = tidetools.find_closest_model_point(-123.3033,49.1059,X,Y,bathy)\n", "print X[i,j],Y[i,j]\n", "print tidetools.find_closest_model_point(-123-18/60.,49+29./60,X,Y,bathy)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-123.307228088 49.1056976318\n", "(501, 340)\n" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "print i,j" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "428 292\n" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "fig, ax = plt.subplots(1,1,figsize=(5,5))\n", "ax.plot(windU[:,i,j],windV[:,i,j])\n", "ax.set_xlim((-0.3,0.05))\n", "ax.set_ylim((-0.2,0.15))\n", "k=14\n", "ax.plot(windU[k,i,j],windV[k,i,j],'o')\n", "print windU[k,i,j],windV[k,i,j]\n", "raw = np.arctan2(windV[k,i,j],windU[k,i,j])*180./(np.pi)\n", "print raw,360-raw+90-29\n", "print np.sqrt(np.sqrt(windU[:,i,j]**2+windV[:,i,j]**2)/2.)*3.6" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-0.250865 0.0972174\n", "158.817225147 262.182774853\n", "[ 0.23229708 0.27938715 0.29106802 0.28930068 0.28722027 0.27554178\n", " 0.19501147 0.22295611 0.28819403 0.3458221 0.39657277 0.48651183\n", " 0.78410727 1.18766797 1.32038009 1.34503174 1.21021926 1.08382142\n", " 0.96192819 0.80306321 0.67555678 0.53652459 0.42451215 0.3287825 ]\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAAE4CAYAAAANT6vuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH/RJREFUeJzt3Xl4FFW+xvFvQ1iEURBFQNQJ+zaouCCOOsRxQ5GA1wFF\n57ohggui4ygu1yGuqFfUcQDFEQVnBhxXJKKyCI1cRQEFBBQEBS+gLBdFkd2k7h+/igkhCd2nqtOV\n5P08Tz/ppU7VoYE359Q5dQpEREREREREREREREREREREREQqvG7AMmAFMKSEz9sCc4CdwC3FPlsN\nfAosAOamrooiItFTHVgJZAI1gIVAu2LbNAROAO5n3wBdBTRIbRVFRFKjWsDynbEAXQ3sAV4Eehbb\nZhMw3/+8JLGAdRARSYugAdoUWFPk9Vr/vUR5wHQsYPsHrIuISLnKCFjeC1j+FOBbrJs/DTuXOjvg\nPkVEykXQFug64Mgir4/EWqGJ+tb/uQl4HTslsJeuXbt6WFDroYceeoT5WEhAQQN0PtAKG0SqCVwE\nTCpl2+LnOusAB/rP6wJnA4uLF5o1axae50X2MXTo0LTXQfWrmvWLct0qQv2AYwLmX+Au/M/ADcAU\nbER+DPA5MMD/fDTQGJgHHATkA4OB9sBhwGtF6vEvYGrA+oiIlJugAQrwtv8oanSR5+vZu5tf4Cfg\n2BCOLyKSFkG78FVeVlZWuqtQJtUvmCjXL8p1g+jXLwwVYQ6m55+vEBEJTSwWg4AZqBaoiIgjBaiI\niCMFqIiIIwWoiIgjBaiIiCMFqIiIIwWoiIgjBaiIiCMFqIiIIwWoiIgjBaiIiCMFqIiIIwWoiIgj\nBaiIiCMFqIiIIwWoiIgjBaiIiCMFqIiIIwWoiIgjBaiIiCMFqIiIIwWoiIgjBaiIiCMFqIiIIwWo\niIgjBaiIiCMFqIiIIwWoiIgjBaiIiKMwArQbsAxYAQwp4fO2wBxgJ3BLkmVFRCIrFrB8dWA5cCaw\nDpgH9AU+L7JNQ+DXQC/ge2B4EmUBPM/zAlZTRGRvsVgMAmZg0BZoZ2AlsBrYA7wI9Cy2zSZgvv95\nsmVFRCIraIA2BdYUeb3Wfy/VZUVE0i4jYPkgfesK2y+fPG0yT45/kl3eLmrFanHjJTfS/azu6a6W\niJSzoAG6DjiyyOsjsZZkqGVzcnJ+eZ6VlUVWVlYydQzV5GmTGTxyMF92+vKX974cac8VoiLRFY/H\nicfjoe4z6CBSBjYQdAbwDTCXkgeCAHKArRQOIiVaNlKDSOdceQ5TM6fu+/7X5/DOc++koUYi4iKM\nQaSgLdCfgRuAKdio+hgsAAf4n48GGmMj7AcB+cBgoD3wUyllI2fLFnj3XZgyBeJzdkHmvtts3bWz\n3OslIukVtAVaHsq9BZqXB/PnW2BOmQKLF8Mpp8A558DLH5zDBx32bYFmPH8Od1/1DjfdBAcdVK7V\nFREHUZjGVCldeCF06QKrV0NODmzcCG+/DTfdBHf2v5EWC1rstX2LT1ow6p5BrFgBLVvCf/83bN+e\nlqqLSDlSC7QE334LQ4fCxIlw551w3XVQs2bh55OnTeZvE/7Gzvyd1K5Wm0F9B/0ygLR0qZX94AMr\n278/1KpVrtUXkQSE0QJVgJZhyRK47Tb44gt46CFrmcYS/MY+/hjuvtsC9S9/gcsvh4ygZ5xFJDQK\n0HIybRr8+c9Qty4MHw4nn5x42fffh//6L1i3Du65By66CKrpxIlI2ilAy1FeHvzjHxaGp5wCw4ZB\n8+aJlfU8G8W/6y47N3rffdCzZ+KtWREJnwaRylH16nDFFbB8OfzmN3DiiXDLLfDdd/svG4vBmWfC\nhx/Cgw/aOdLOnW2EPwK/G0TEkQI0SXXrFp7b/OknaNsWHn8cdu3af9lYDHr0gAUL4NZbYfBg6NoV\nZs9Ofb1FJHwKUEeNG8Po0TBzJkyfDu3bwyuvJNairFYN+vSxQaqrroLLLrM5pvPmpb7eIhKeinAW\nLhLnQPdn+nQbaKpTJ/mBpt27YcwYeOABOzVw773QsWPq6ioiOgcaKWeeaVOXBgyw1mWfPvDll/sv\nBzbH9NprYcUKOO0029cll9hrEYkuBWiIqle3+Z7Ll8Mxx8BJJ8Gf/pTYQBPAAQfY9itXQocO1ort\n1w++/jq19RYRNwrQFKhTx6YsLV0KO3bYQNNjjyU20ARw4IFWfsUKaNIEjjsOBg2yK6REJDoUoCnU\nqBE89RTE4zBjBrRrBy+9lPjUpYMPhvvvh88/hxo1rFV6222weXNKqy0iCVKAloP27eHNN+HZZ+2S\n0N/+1q6VT9Rhh1kLdvFi2LoVWre2uaQ//JC6OovI/ilAy9Hvf2/L5F13HVx8MfTunfhAE0DTptai\nnTfPzou2amWBvG1b6uosIqVTgJazatXgP/8Tli2DTp1soOnmmxMfaAK7hHTsWJg1Cz75xJbQ++tf\nYafWdBYpVwrQNKlTx5a7W7rUBpfatEluoAkKz6m+/bbNQ23dGp54Ar7/PnX1FpFCCtA0a9QIRo2C\n996zwaZkB5oAjj0WcnPh5Zdh7lxrofbvb5eMikjq6EqkiJk5065oqlkTHn3UVn5K1vr1dmXT00/D\nEUfA9dfDH/4AtWuHX1+RikrL2VVS+fkwfrx18Tt3toGili2T38/PP9vo/6hRsGiRXXc/YABkZoZe\nZZEKR5dyVlLVqsEf/2hXNB1/vN2f6eabk5//mZEBvXrB1Kl2imDnTttfjx7wzjsW1CLiTgEaYQcc\nAHfcAZ99ZguOtGljVyht2pT8vtq0sWX3/vd/bTHnO+6wQafhw5ObASAihRSgFcBhh8HIkTb/87vv\nLAxvvtluE5KsunXh6qtt+tM//wkLF9qg05VX2hxVEUmcArQCadbMJtIvWWKLM3fsCAMHwqpVye8r\nFrNTA//4h11z37atDTR17gzjxtk1/CJSNg0iVWCbNtkE+qefhu7drVvetq37/vLybE7pyJHWGr3i\nCgvoFi1Cq7JIZGgQqYpr2NAWG1m50s5n/u53tg7pwoVu+6teHc4/30L0ww/tvS5d4LzzbDQ/Ly+8\nuotUBmqBViI//QTPPGPzR48/3gacunQJts8dO+Df/7ZW6f/9n7VIr7rKwlukIlMLVPbyq1/Zgsxf\nfWWtxosvttXtZ850v/vnAQdYV37ePLtCatkyW8TkssuslarfbVKVqQVaie3ZA//6l91KuWFDa5Ge\ne27w+9Fv3gzPP28DWvXq2ZVOffva9f0iFYWuRJKE5OXZHUMfeMAm1991F1xwgU3YDyI/3ybpjxwJ\nc+ZYq3TgQDsfKxJ1ClBJSn6+DQY98IAtzHznndbNz8gIvu/Vq202wHPP2eIm119vMwPC2LdIKkQl\nQLsBTwDVgWeBh0vY5kngXGA7cAVQsE7QauBHIA/YA3QuoawCNGSeZ8vfPfAArFkDQ4bYzfBq1Qq+\n7507rbU7cqRN9B840G6M16hR8H2LhCkKg0jVgRFYiLYH+gLtim1zHtASaAVcAzxV5DMPyAI6UXJ4\nSgrEYnDWWbZ83rhx8PrrhYsyb98ebN+1a9t1/HPmwMSJNqDVpo3dpvn99zXoJJVL0ADtDKzEWpJ7\ngBeBnsW2yQbG+c8/AuoDRdsjFeE0QqV16qk273PiRFvhvnlzW/3pxx+D7/u44+w+UKtW2RVOV15p\n3fvRo23KlUhFFzRAmwJrirxe67+X6DYeMB2YD/QPWBcJ4Pjj4bXXrGu/eLFdfTR0aDh3AD34YLjp\nJpsC9eijthLUUUfBjTfaHUdFKqqgAZpoh6y0VuapWPf9XOB64LSA9ZGAfvMbm/o0Z46dw2zVym6l\nvH598H1Xq2anDl5/3dYnPeggOP10OOMMePVVm3YlUpFUD1i+HtZl/6f/ujvwA/B+kW26At8DS/zX\nd2KDStuArf5727FufUNgTrFj5ADE43Hi8TgAmVoROOUaNIDsbJvfOWuWDQatWWMBW69e8P3Xq2d3\nKb3xRpus/7e/QU6Ode1bt4YDDwx+DJGi4vE4Y8eO/SVLZs2aBXBPOuuUAXwJZAI1gYWUPIj0lv+8\nC+BfZU0doOC/SV0sdM8u4RiepN+333rerbd63sEHe96VV3re8uXhH2PRIs8bMMDz6tf3vD59PC8e\n97z8/PCPI+J5nkfiPehSBe3C/wzcAEwBPgP+DXwODPAfYOH5FTbYNBq4zn+/MTAbC92PgDeBqQHr\nIynSuDE88ogtXHLUUXavposvhk8/De8YRx9tc0lXr7bBrYEDbcm+UaPCGdQSCVtFGAH3f1lIlGzd\napdyPv44nHiiXd100knhHsPzbKrVqFHw7rt2OuHaa+00gkhQUZgHKlXUgQfa4NJXX8HZZ0Pv3sEX\nLikuFrNBppdftpkBDRvasbp2tYVNdu8O5zgirtQClVDs3m2j98OGwaGHWov0vPOCL1xS3J49Nmd1\n1Ci76d7VV8M119jtm0WSEZVLOVNNAVqBFCxc8uCDFp533gkXXmiLNYdt6VI7jTB+vLVUr7vORvbD\nDm2pnBSgElmeV7hwyZYtcPvtcOmlUKNG+MfautVukDdyJPz8swXpZZdB/frhH0sqDwWoRJ7nwYwZ\nFqRffWXnTa+6yq6ZT8WxZs+27v2UKXZ7k+uug2OOCf9YUvFpEEkiLxazK41mzIAJE+y6++bN7ZLO\nsK+Hj8XsvlAvvmiXiB5xhC2pd+qp1s3ftSvc44moBSrlbtEiO0c6cybccAMMGmTXy6fCzz9Dbq51\n75cssaX1BgywuaxStakFKhXSMcfYjepmz7aVmlq2tHOkGzaEf6yMDFt9f/p0m1O6bRt06gS9etlq\n+vn54R9Tqg61QCXtvv7arnKaMMEGmm69NbUtxG3brEs/cqStf3rttXbjvFS1giWa1AKVSuHXv7Yw\nW7rUFhbp1Mm62itWpOZ4detC//6wYAGMHQsff2znZfv1g08+Sc0xpXJSC1Qi57vv4MknLVRPPtm6\n2+efD4cdlrpjbtwIY8bYtfhNmtjofZ8+qZktINGgaUxSqW3dCm+8YY9p06BDB+jZ0x5t2qTmmHl5\nMHmyTYX65BNbRX/gQGjWLDXHk/RRgEqVsWuXjdpPmmSPunUtSLOzrZWaiiudVqywFum4cdCli7VK\nu3ULfjtoiQYFqFRJnmetwzfesDD95hub79mzp614X7duuMfbvt1mDYwcaacXrr3WLgY45JBwjyPl\nSwEqgq0fmptrgTp3rq3WlJ0NPXrYOqZh8TyYN8+696+/bi3fHj3soXmlFY8CVKSYLVvsaqdJk+zm\ndW3aFHb127cPb6GRH3+0y0Vzc+Gtt6Bp08LQPuEEdfMrAgWoSBl274b33ivs6teoYSHXs6etqJ+R\nEc5x8vLsJny5uXacLVvslEKPHrZGatinFCQcClCRBHmeXUI6aZIF6tdf23ql2dlwzjnh3sRu5UoL\n09xcmD8fTjvNjnP++dZSlWhQgIo4WrOmsMX4wQfWIu3Z01qNYYbcli12KiE3135mZhaeNz3uOK1d\nmk4KUJEQFJzPfOMNO5/ZokVhV79jx/BCbs8eeP/9wtbptm3WKs3OtoWgDzggnONIYhSgIiHbswf+\n538KJ/CDXQnVt6/dPC/MFuPy5YVhumCBrarfo4eFapizB6RkClCRFPI8uz7/lVdsoZO8PAvSvn1t\nRD9Mmzfb7IHcXFslqlUrC9PsbLvds7r64VOAipSTgsn7EybYgs2HHmpBevHFthhKmHbvtqX+Clqn\ne/YUnjc9/XSoVSvc41VVClCRNMjPt4AbPx5efRXatbMw7d3bbr0cJs+z1fULBryWLLEV/rOzbRZB\nKhdYqewUoCJptnu3dbnHj7cBqJNPhksusfOmYU6NKrBpkx0nN9cWiW7fvrB12qFDtLr6u3bBunW2\nEEuU6lVAASoSIdu2WStxwgSYNcvml15yCZx7bmq63bt22XEKuvqxWOF509/9DmrWDP+YJfE8C8pP\nP9378eWXdhHB8cfb8oSpWkHLlQJUJKI2b7bu/YQJNoH/ggusm3/66alZOcrzrHs/aZKF6fLltrBK\njx7W1U/Vwifff2+/JD7+GI491ga8Ona0n+3a2Z91xAi7K2u/fnD//am5tbULBahIBbBuna3mNH68\nPe/Tx0Knc+fUdW03bLB1TXNz7Y6oRx9tN9O79NLwjrl0qZ2q6NHDbslS2qWxO3bYmqpTpthA3OGH\nh3P8oBSgIhXMF19Yq3T8eJsWNWiQLY2XivOlBXbutBAdMsRahU8/DQ0aBNvnwoV265XRo+Gaa0rf\n7qOP4PLLbdsRI6K1BGAYAVoReCKVTX6+582Z43m9e3veIYd43pAhnrd2bWqPuWOH5w0e7HlHHul5\nM2YE29d333le9+6eV6+e5116qedNnux5u3cXfr5zp+fdcYfnNWrkeS+9FOxYqQIEbplp0S2RNIjF\nbJX7l16yNUZ37LBzh5ddZudMU6F2bXjiCXjmGfjjH+1W0rt3u+3r4IPhzTftXGuXLnaO89VX7dzv\nqFF2nf/SpfZn6d073D9HlIQRoN2AZcAKYEgp2zzpf74I6JRkWZFKrVkz+OtfbdS6fXsb9DnrLFt8\nJBVnr7p1sy740qU27Wr5cvd9NWpkXfhbb7XzvM2b2xzZ4cNh4kT7XEpXHVgJZAI1gIVAu2LbnAe8\n5T8/CfgwibKgLrxUMbt2ed64cZ7XsaPndejgec89Z13isOXne96oUZ536KGe98wz9jpZGzd63tFH\ne96pp3res8963pYt4dczVYhAF74zFoKrgT3Ai0DPYttkA+P85x8B9YHGCZYVqXJq1izsyj/+uLXs\nmjWDBx+0ezKFJRaz+zu99551u//jP2z0PlEbN9oqUj162D769YN69cKrX0UQNECbAmuKvF7rv5fI\nNocnUFakyorFCrvyU6bYXUJbtoQbbrDufljatYMPP7SJ7u3aweDBsHZt2WUKwrNXL7jvvmheaVQe\ngt7UINEmcKCvNycn55fnWVlZZGVlBdmdSIXTsSM8/7zdgXTECDjpJLt53i23wG9/G3z/tWrBQw9Z\neD72mM0bvfBCm/rUsuXe227YYOH5hz9ATk7FCc94PE48Hg91n0H/6F2AHGwwCOAOIB94uMg2TwNx\nrIsONmjUFWiWQFnQPFCRffz0E4wda138ww6zIL3ggvCuctq82Qa2Ro60CfItW9qjVSubx9qnDwwd\nGs6x0iUKE+kzgOXAGcA3wFygL/B5kW3OA27wf3YBnvB/JlIWFKAipcrLs9Hu4cOtZfjnP9vE/LCu\nvfc8+PZbu8/TypV2GiEz065qquiiEKAA52KhWB0YAwwDCr7e0f7PEVhLcxtwJfBJGWWLU4CKJOCD\nD2w+5qefWtf76qtt7qeULCoBmmoKUJEkzJ8P995rP2+7zeZp1qmT7lpFTxgBqiuRRCqZE06wVZkm\nT7bpRS1awKOP2nJ7Ei4FqEgl1akTvPaaTYGaO9euEnroIdi6Nd01qzwUoCKV3NFH2zX3M2bY+dHm\nzW1dzh9+SHfNKj4FqEgV0aGDLaM3e7Ytq9eiBdxzjy2KLG4UoCJVTNu28MILMGcOrF5t8zvvvtvm\nfkpyNAovUsV99RUMG2at0+rVbe5nfv7eP4u/B7Bqlc0Jrag0jUlEQrN9u92DPhaDatX2/lnaexWZ\nAlRExJHmgYqIpJECVETEkQJURMSRAlRExJECVETEkQJURMSRAlRExJECVETEkQJURMSRAlRExJEC\nVETEkQJURMSRAlRExJECVETEkQJURMSRAlRExJECVETEkQJURMSRAlRExJECVETEkQJURMSRAlRE\nxJECVETEUZAAbQBMA74ApgL1S9muG7AMWAEMKfJ+DrAWWOA/ugWoi4hIuQsSoLdjAdoaeNd/XVx1\nYAQWju2BvkA7/zMPeAzo5D/eCVAXEZFyFyRAs4Fx/vNxQK8StukMrARWA3uAF4GeRT6PBTi+iEha\nBQnQRsAG//kG/3VxTYE1RV6v9d8rMAhYBIyh9FMAIiKRlLGfz6cBjUt4/65irz3/UVxJ7xV4CrjX\nf34fMBzoV9KGOTk5vzzPysoiKyurjN2KiOwrHo8Tj8dD3WeQLvQyIAtYDzQBZgJti23TBRssKhgg\nugPIBx4utl0mkAt0LOE4nueVlcMiIsmLxWIQ8DRikC78JOBy//nlwMQStpkPtMICsiZwkV8OLHQL\nXAAsDlAXEZFyFyR9GwAvAUdhg0R9gC3A4cDfge7+ducCT2Aj8mOAYf77LwDHYt38VcAACs+pFqUW\nqIiELowWaEUYBVeAikjo0t2FFxGp0hSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKO\nFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSg\nIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo6CBGgD\nYBrwBTAVqF/Kds8BG4DFjuVFRCIpSIDejgVga+Bd/3VJnge6BSgvIhJJsQBllwFdsdZlYyAOtC1l\n20wgF+joUN7zPC9ANUVE9hWLxSBYBgZqgTbCwg//Z6NyLi8iklYZ+/l8GtY6LO6uYq89/+EqaHkR\nkXK3vwA9q4zPCrre64EmwMYkj51w+ZycnF+eZ2VlkZWVleShRKSqi8fjxOPxUPcZpP//CLAZeBgb\nAKpP6QNBmex7DjTR8joHKiKhC+McaJDCDYCXgKOA1UAfYAtwOPB3oLu/3QRssOgQrJX5F2xkvrTy\nxSlARSR06Q7Q8qIAFZHQpXsUXkSkSlOAiog4UoCKiDhSgIqIOFKAiog4UoCKiDhSgIqIOFKAiog4\nUoCKiDhSgIqIOFKAiog4UoCKiDhSgIqIOFKAiog4UoCKiDhSgIqIOFKAiog4UoCKiDhSgIqIOFKA\niog4UoCKiDhSgIqIOFKAiog4UoCKiDhSgIqIOFKAiog4UoCKiDhSgIqIOFKAiog4UoCKiDhSgIqI\nOAoSoA2AacAXwFSgfinbPQdsABYXez8HWAss8B/dAtRFRKTcBQnQ27EAbQ28678uyfOUHI4e8BjQ\nyX+8E6AuIiLlLkiAZgPj/OfjgF6lbDcb+L6Uz2IBji8iklZBArQR1jXH/9nIYR+DgEXAGEo/BSAi\nEkn7C9Bp2LnL4o/sYtt5/iMZTwHNgGOBb4HhSZYXEUmrjP18flYZn20AGgPrgSbAxiSPXXT7Z4Hc\n0jbMycn55XlWVhZZWVlJHkpEqrp4PE48Hg91n0HOQT4CbAYexgaQ6lP6QFImFpAdi7zXBGt5AtwM\nnAhcUkJZz/OSbdyKiJQtFotBwHGYIIUbAC8BRwGrgT7AFuBw4O9Ad3+7CUBX4BCs1fkXbGT+Baz7\n7gGrgAEUnlMtSgEqIqFLd4CWFwWoiIQujADVlUgiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKO\nFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSg\nIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIijhSgIiKOFKAiIo4UoCIi\njhSgIiKOFKAiIo6CBGgDYBrwBTAVqF/CNkcCM4GlwBLgxiTLi4hEVpAAvR0LwNbAu/7r4vYANwMd\ngC7A9UDbJMpHXjweT3cVyqT6BRPl+kW5bhD9+oUhSIBmA+P85+OAXiVssx5Y6D//CfgcaJpE+ciL\n+j8S1S+YKNcvynWD6NcvDEECtBGwwX++wX9dlkygE/CRY3kRkUjJ2M/n04DGJbx/V7HXnv8oza+A\nV4DBWEu0uP2VFxGpVJZRGK5N/NclqQFMAW5yLL+QwoDVQw899AjrsZI0egQY4j+/HXiohG1iwAvA\n447lRUQqpQbAdPadhnQ4MNl/fiqQj7UiF/iPbvspLyIiIiKSeolMqq+NjeAvBD4DhiVZPtX1K+ui\ngRxgLfu2wqNQtyh8dwDPYbMxFhd7P4fUfXdh1C8q3183bBxhBYWnxiB1319pxyvqSf/zRdgMnGTK\nprN+q4FPse9rborqF6pHgNv850Mo/XxoHf9nBvAhcEqS5VNZv8bAsf7zXwHLKbxoYCjwp5DrFFbd\novDdAZyG/SMuHlCp/O4geP2i8P1VxwZEMrFB24VAO/+zVHx/ZR2vwHnAW/7zk7D/r4mWTWf9AFZh\nv7gqjGUUzgNtTOkj8gXqAPOA9o7lU10/gInAGf7zocAtIdepQNC6Rem7y6TkAE3VdwfB6xeF7+9k\n4J0ir2+n8Mq+VHx/ZR2vwNPARUVeF8y6SaRsuupX8D2vAg5J5EBRWUwk0Un11bDfJhuwLulnSZZP\ndf0KZLL3RQMAg7CuwhjC7eZF/YKGMPafqu8OgtcvCt9fU2BNkddrKbziD8L//vZ3vLK2OTyBsums\nH9gUp+nAfKB/WQfa30T6MIUxKT8f64rWw+aWZgHxJMqnun5Q8kUDTwH3+s/vA4YD/SJSt2TKp7p+\nJQn63UFq6xdG+aD1K+uYYXx/yRyvqFjA47gKWr9TgW+AhtjfzTJgdkkblmeAnlXGZxuwf0DrsUn1\nG/ezrx+wqVLHYwGabPlU1a8G8CrwT6ybXKDo9s8CuRGqW1S+u9IE/e4gtfWLwve3DhsoLHAk1qKC\ncL6/ZI5X2jZH+NvUSKBsuuq3zn/+jf9zE/A60JlSAjQqXfhJwOX+88vZ+z94gUMp7H4cgP2jK1io\nJJHyqa5fDOsifQY8UeyzJkWeX8C+59HSWbcofHdlSeV3B8HrF4Xvbz7QCjs9UxM7tzfJ/ywV319Z\nxyswCbjMf94F2IL9MkikbDrrVwc40H+/LnA24f+bC10ik/KPBj7BQvNT4NYEypdn/cq6aOAFv86L\nsP8AYZ4ni/oFDYnUD2AC9pt/F3Zu6kr//VR+d2HULyrf37nY7IqVwB1F3k/V91fS8Qb4jwIj/M8X\nAcclUNcwudavOfb/ZCE25S9V9RMRERERERERERERERERERERERERERERqXj+HzwbCED/V3EkAAAA\nAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "# 1400 UTC = 0600 PST = 0700 PDT\n", "# during this time Sandheads winds are direction 27 which is from the West\n", "print 0.002*1.2*(10/3.6)**2\n", "#dir=np.array([17,16,18,15,12,12,9,9,11,9,13,10,23,7,26,27,29,28,30,28])\n", "#mag = np.array([13,15,15,12,13,11,10,15,13,9,8,10,7,5,6,4,6,9,11,10])/3.6\n", "dir=np.array([36,34,36,33,35,31,35,33,4,5])\n", "mag = np.array([14,11,13,2,11,6,9,10,43,44])/3.6\n", "stress = 0.002*1.2*mag**2\n", "vs = stress*np.cos((dir*10+29)/180.*np.pi)\n", "us = stress*np.sin((dir*10+29)/180.*np.pi)\n", "fig, ax = plt.subplots(1,1,figsize=(5,5))\n", "ax.plot(-us,-vs)\n", "ax.plot(0.,0.,'o')\n", "ax.plot(windU[:,i,j],windV[:,i,j])\n", "ax.set_xlim((-0.5,0.05))\n", "ax.set_ylim((-0.4,0.15))\n", "print dir*10-29" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0.0185185185185\n", "[331 311 331 301 321 281 321 301 11 21]" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAUAAAAEzCAYAAABAJtrFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHTpJREFUeJzt3XmcU9Xdx/HPAFLFjaJUVh21glARlMUNIaiAsuNMsaLU\nYmup9bHoYxUoWsZWi0ttrQqlRemDVRSdKDDFBURiFRVBVmWn0gIKSGVfB3KfP34JMwyzJJM95/t+\nvfJKMrlJzmXgy7n3nPO7ICIiIiIiIiIiIiIiIiIiIiKS8XJS3YCw1q1be4sXL051M0Qk+7wH+Mp7\noUZy21GxxYsX43leVtxGjRqV8jZoP7Qv6X5L1n4AnSvKnbQJQBGRZFMAioizFIAJ4PP5Ut2EuMiW\n/QDtSzpKh/1Im0EQwAsdr4uIxE1OTg5UkHXqAYqIsxSAIuIsBaCIOEsBKCLOUgCKiLMUgCLiLAWg\niDhLASgizlIAioizFIAi4iwFoIg4SwEoIs5SAIqIsxSAIuIsBaCIOCseAXgtsAJYDQwr5/XzgY+A\n/cA9cfg+EZG4qBXj+2sCzwDXABuBecA0YHmpbf4L3An0i/G7RETiKtYeYAdgDbAOKAZeBvqW2eZr\nYH7odRGRtBFrADYG1pd6viH0MxGRtBfrIXBcL+JRUFBw5LHP50uLi6aISGYJBAIEAoGIto31okiX\nAgXYQAjACCAIPFrOtqOA3cATFXyWLorkgmAQFi2Ct9+22+7dMHIk9OsHOel0jS7JFom8KNJ84Dwg\nF6gN3IANgpTbjhi/SzLV/v3wwgswaBA0bAgDB8KmTXDffTBqFPz2t9C+Pbz1Fug/QUmieITSdcCT\n2Ijwc8BoYEjotb8ADbDR4VOw3uEuoCXWGyxNPcBs9dFH0KULnHUW+P1wwQVHvx4Mwmuvwa9/Daed\nBg8/DJ06paatknUq6wGmU69MAZjN/vMfO9SdNQsKCuDWW6FWmVPQhw/DpEn2+rnnwkMPQYcOqWit\nZBEFoKSPTz+Fe+6BrVvh8cfh2muPPfdXXAx/+5sdGl98sd1feGFq2isZTwEo6cXz4B//gHvvhaZN\nLQjbtDl2u/37Ydw4eOQR8PngwQehefOkN1cyWyIHQUSil5MDvXvD0qVw/fXWCxw8GDZsOHq744+H\nu+6CNWugdWvo2NEOndetS0mzJfsoACV1jjsObr8dVq2CRo0s5B54AHbtOnq7k06CESNg9Wpo0gTa\ntoU77oAvv0xNuyVrKAAl9U45xUZ+Fy6Ef/8bmjWDv/wFDh06eru6deE3v4EVK6BOHWjVCn75Szuf\nKFINCkBJH2eeCc8/D9Onw8sv28DH9OnHzg2sX9/OGy5dCvv22XnBBx6A7dtT027JWApAST8XXwzv\nvguPPWY9vGuusd5hWY0awZgxNrK8cSOcdx787ne2ukQkAgpASU85OdCrl/Xy8vPhuuvglltg/fpj\nt83NhQkT4IMPbPvvfheefNJGkUUqoQCU9FarVslASZMmNl1m5EjYufPYbZs3h5deghkzYPZsC8KH\nHoLNm5PfbskICkDJDOGBkkWLbLpM8+Y2R7DsQAnYucOpU+384X/+A+efDzfeaD1EzTWVUjQRWjLT\nggV2fvCrr2xApGfPiqvJbN8OEyfC2LHwrW/Bz38ON99s02sk62kliGQnz4M33rAVJaedBvffD926\nVRyEnmeDK2PGQCAAN91kh9ctWya12ZJcCkDJbocOweTJNgJ8wgkWhH36QI1KzvCsXw9//Ss8+yy0\naGG9wr59bXK2ZBUFoLghGIQpU+xc4YEDNlgyYADUrFnxew4ehNdft17h2rXw05/CbbfZFBvJCgpA\ncYvnWXHVhx+2EeDhw60Ya+3alb9v6VI7T/jyy9C1q/UKO3dWpeoMpwAUN3ke/POfNhVm5UoYNsyK\nKZxwQuXv27kT/v536xXm5FgQDhpkI9GScRSAInPnWo9w3jyrR/izn1U9Cux58N57FoSzZsEPfmBh\nWLaitaQ1lcMSueQSmDbNDo3nzYNzzrHCCtu2VfyenByrQ/jqq/DZZ3DGGdC9u5XrnzzZzh9KRlMP\nUNy0cqUVWp02zQY+7r4bvvOdqt9XXGyTrMeOheXLbcDkpz+1VSqSltQDFCmreXMru//pp7Bjh60W\nueuuY4uylnXccbY2+d137bB42zZbeXL99fZc/4lnFAWguC0313pzn31m02UuvBCGDIF//avq97Zs\nCU8/bTUMu3WzAG3RAv70J5XmyhAKQBGweX9PPGFFF+rXt6vRDRoEy5ZV/d6TT7ZBlSVLYPx4+Phj\nOPtsOzRetCjxbZdqUwCKlHb66TZtZu1a68116QJ5ebb2uCo5OXDllVaRZvlyK/DauzdccQW8+KJN\nzpa0okEQkcrs2WO9ut//3krwjxxpF2eK1KFDdgW8MWOsh/jjH9sh9llnJa7NchQNgohU14kn2rm9\ntWuhf38rytqpE7z9dmQDHrVqQb9+MHOmTcret88qXvfta58RDCZ+H6RC6gGKROPQIVsqN3q0XZjp\nV7+yMKus8EJZe/bYYfKYMVa+//bb4Uc/gnr1EtZsl2kliEi8lS28MGIE3HCD9fgi5Xk2YDJ2rB0m\nX3+9rTRp2zZx7XaQAlAkUTzPDmUfftiKsw4bBj/8oRVejcaWLXZdk3HjbMXJHXdYJZvjj09Mux2i\nABRJhvfftyD8/HOrVn3bbXaYHI3Dh63I69ixMH8+DB5sU2zOOScxbXaABkFEkuHKK22t8euvWxGF\ns8+2Iq1ffRX5Z9SsaVNn3nwTPvrIDrU7dLCS/9OnW0BK3KgHKJIon39u1yuZOhWaNbMq1X37wve+\nF12Nwb17rfjCmDHwzTfWI7z1VpuzKFXSIbBIKh08aIfHU6farWZNC8I+fazXGM3AySef2OHxlCn2\nGT//ufUQVbS1QgpAkXTheTYheupUq0TzxRd20fe+fa3UVqRFV7dutWIOf/6z1TXs29cOndu1i25K\njgMUgCLpasMGKCqyQJwzx5bN9eljt0hKbAWDdq6wqMgCdds2O1/Yuzdcc41N5HacAlAkE+zcaVNq\npk2zkeDcXOvZ9e1rVWoiOcxdu9bCsKjICr926mRh2KsXNG6c8F1IRwpAkUxTXGw9wvB5w2CwpGfY\nuXNkl+/cvt1GpYuK7D4318Kwd29bjufIeUMFoEgm8zwbUQ6fN1y1yoJw4EC4+urIBlEOHbJADfcO\nd++2XmGfPnDVVVVfKCqDKQBFssmXX9p1SiZNgnXr4PvftzC87LLIe3UrV5aE4cKFVvYrfKjcoEFC\nm59sCkCRbLVmjRVnmDTJ5gveeKPdWrWKPAy/+cYmXhcV2TnI886zMOzTJ/Jzj9XleQk/FFcAimS7\n8PSaSZMsEE8+uSQMo1lGF56zGO4dFheXnDfs0iX6Nc6l7d5tq1mWLLHb0qVWHuzhh21id4Km7ygA\nRVwSDMKHH1rJrVdfhXPPtSAcMCC6w1vPs8rW4TBcutTOOfbvb4fcNWtG/lmrV1tdxMaN4fLLrWfZ\nqpWNfPfubechX3gh+n2NQGUBGA/XAiuA1cCwCrZ5KvT6YuCiCrbxRCTODh70vDff9LxBgzzv1FM9\nr3dvzwsEPC8YjP6zvv7a8yZO9Lwrr/S8jh0974svInvfli2eB553002ed/jw0T/Pz/e8Fi08b/78\n6NsTISBhPauawBogFzgOWAS0KLNND+CN0ONLgI8r+KyE/QGIiOd5e/Z43rhxntesmee1bet5kyZZ\nQEbr8GHPe/xxz6tf3/NefLHq7YNBz3viCc+74ALPa9rU8+bO9bw//9nzGjTwvF/+0vP27Yu+DVGg\nkgCMtVt4GTAK6wUCDA/dP1Jqm3HAbGBy6PkKoDOwuZwAjLE5IlKlYNAKsD7xhI0iDx0KP/lJ5Mvw\nwhYutEPhtm2tUMOpp1a+/ZIlMGAAh9at48MGdZncsiFrzvgOvxj4C3p27Vnt3alKIsthNQbWl3q+\nIfSzqraJYI2PiCREjRo2wvvee+D324qRs8+2Gobr11f9/rCLLrILy59yCrRpYxeLr8i8edC1K59f\n1YkOVzWk8+DNjL1kETNyZzB0zFCmz5we+35VQ6wBGGmXrWz6qqsnkg7atbPBkgULrGfYurX16j79\nNLL316lj1WmeesoKwHbuDDNmHH3BqE8+sfmFzz7L/+77NwsvWXfUR6y9aC1Pv/R0/PYpClHU4SnX\nRqBpqedNsR5eZds0Cf3sGAUFBUce+3w+fD5fjM0TkYicdRb84Q8wapRdBrRfP/jud+Gee6BHj6qn\nqPTubVVtXn4Z7r7bprw0b25TcF5/HZ57Dnr14oD/iXLfvj+4P267EggECAQCEW0b6znAWsBK4Grg\nS+AT4EZgealtegD/E7q/FHgydF+WzgGKpIviYnjlFTtPePAgPPAA5OdHNvUlGLSiDGvW2PSXiy6y\nuodA98HdmZE745i3dP93d96a8Fa89wJI/DzA67BQqwk8B4wGhoRe+0vo/hlsoGQPMBhYUM7nKABF\n0o3nWSGFBx+EHTvg/vujv/pdKdNnTmfw6KF83XntkZ+d8+m5PHXnnxI2EKKJ0CISG8+Dd96xINyy\nxYJw4MCog3DXLmh67nQO1X2aOnX38/XG43l13J3k907NKLACUEQi53kQCFgQbthgF4YfNCiy8lzY\n5qNH23Lj1avhscfg3nsT22QFoIjE33vvwW9/a+f7RoywCtS25sNuwWDJff36fLG7Pm3a2Oo3sDGW\nVasSX5ZQASgiiTNnjhU0WLbMRotzcuwWflyjBgwdyoB3f8bUqTamArBxIzRqlPjmKQBFJKXefx9u\nusnGUXbutGmBRUXJ+W5dGF1EUiYYhLvusnGT4mJbOLJggZ0LTDUFoIgk1PPPQ+3aNk6yb59VvgKr\nfnXgQGrbpkNgEUmYHTugbl1o396WAwNceqldzrh16+Rcl0mHwCKSNMXFthx4yBALP7Bi0gMH2qWO\nd++2Gq3pcFE6BaCIxOzAAauwNXiwFZ0eNcoOe8Gu2TR2rC0TvvlmmD/fKvanAwWgiFTL3r3w2ms2\nutugATz+uC37XbwYPvrIBj/AqvI3aGAjwaNHx3ZZkXiLtRqMiDhk1y67rpHfb4e5HTpAXp7VTCh7\nuZG2ba1G6qBB8MgjcOKJqWlzZdLgKPwIDYKIpKHt2+167H6/rYK74gorDNOnD5x++rHbHzhg017e\neAMmTLDrKKVSZYMg6gGKyDG2boUpUyz0PvzQBjG+/32YOLFkYKMitWvbMrclS6qukp9q6gGKCABf\nfWW1S/1+KwjdrZv19Hr0gJNOSnXrqk9L4USkXOvXW+D5/fDZZ9Czp4Ve9+5wwgmpbl18KABF5Ih/\n/csCr7DQCrn06WOhd/XV6TVCGy8KQBHHrVhREnpffgn9+9vorc8XcSm/jKUAFHGM58HSpSWht2MH\nXH+9hV7HjpFd2iNbKABFHOB5NngRDr1Dhyzw8vLgkkuqvrBbtlIAimSpYBA+/rhkIKN2bTufl5cH\nF1+cHuttU03zAEWyyOHDtqzM77elaN/+toVeURFccIFCLxoKQJEMUFwMs2db6E2ZAo0bW+i9+65d\nf1yqRwEokqYOHICZMy30iopsdUV+vhUaOOecVLcuO6RTZ1nnAMV5e/fadcj9fltL26qVhV7//tC0\naapbl5k0CCKSxnbtsrArLLQKK+3bW+j163dshRWJngJQJM1s326HtYWFkVVYkepTAIqkga1bYepU\nC71whZW8POjdu+oKK1J9CkCRFNm0ySqsFBZaKfju3S30evRIn7Lw2U4BKJJE69fb/LzCwpIKK3l5\nFn516qS6de5RAGYRz7PZ/y6t5cwE4Qorfj+sWWPn8vLy4JprsrPCSiZRAGaRUaPs2gr33Zfqlki4\nworfDxs3ulVhJZMoALPImjV2YenFi201gCSP59khbWGhhd62bSXFBlyrsJJJFIBZ5v777ZBr0qRU\ntyT7la6w4vfDwYMWePn5bldYySQKwCyzZw+0bAnPPw+dO6e6NdknGIS5c0t6erVrl4SeKqxkHgVg\nFioshAcfhIULoZZWdMfs8GH44AP7cy1dYSUvTxVWMp0CMAt5nl21q1cvGDo01a3JTMXFtgqjsLCk\nwkr4nN7556e6dRIvCsAstXw5dOpkJ+bPOCPVrckMBw7AO+9Y6IUrrIRDTxVWspMCMIvde68tsfrb\n31LdkvS1dy+8/baFXrjCSl6eXSNDFVaynwIwi+3cCS1a2D/uyy5LdWvSR7jCit9v4de+vYVe//6q\nsOIaBWCWe/FF+MMf4JNP3J6LFq6w4vdbpeSOHS30+vZVhRWXKQCznOfZucCbb4YhQ1LdmuQKV1jx\n+20U96qrVGFFjqYAdMDixTYqvGwZnHZaqluTWOEKK34/zJunCitSuUQFYD1gMnAWsA4YAGwvZ7sJ\nQE9gC9Cqks9TAMbozjttase4caluSfyFK6z4/XbB7x49bJ6eKqxIVRIVgI8BW0P3w4BvA8PL2e5K\nYDfwPArAhNq+3eavTZ8ObdumujWxK11hZfVqq7CSn68KKxKdRAXgCqAzsBloAASAiqaP5gJFKAAT\nbsIEGD8e5szJzHWqK1eWLEHbuNGui5GfrworUn2JCsBtWK8v/DnflHpeVi4KwKQIBm06zO23w49+\nlOrWVC1cYcXvt+Dbts3m5+Xnq8KKxEdlAVjVKtKZWO+urJFlnnuhm6RYjRrwzDN2uNivX3qOhHoe\nLFhQ0tMLV1gZP14VViS5qgrArpW8Fj703QQ0xAY5YlJQUHDksc/nw+fzxfqRTmrf3qaBFBTAk0+m\nujWmdIWV116zAg75+VbSq21bFRuQ+AkEAgQCgYi2jXUQ5L/Ao9jgR13KHwQBHQIn3datVjJr1ixb\n+pUK4Qorfr+FXt26JetuW7VS6ElyJHIazCvAmRw9DaYRMB6b+gLwEjZYchrWS/w1UN7KVQVgnI0d\nC5MnW8WTZIVNuMKK329z9VRhRVJNE6EddfgwtGtn1w+58cbEfU+4worfD9OmqcKKpBcFoMPmzIEb\nbrDSWfFcJbFvH7z1loXe9OlWNDQ/XxVWJP0oAB13yy1WAeXRR2P7nN27LezCFVbatbPQ69cPGjaM\nT1tF4k0B6LhNm6yH9sEH0Z+HK11hZfZsuPxyCz1VWJFMoQAU/vhHePNN67lVNSBSusLKnDm2CiM/\nXxVWJDMpAIXiYmjTBh56yIqClrVpk10Xo7DQKqx062ahpworkukUgAJYkdBbb7WSWXXqwIYNNj+v\nsLCkwkpeHlx7rSqsSPZQAMoRN9xg18j4+uuSCit5edC1qyqsSHZSAMoRGzfC738P110HXbqowopk\nPwWgiDirsgBU3Q0RcZYCUEScpQAUEWcpAEXEWQpAEXGWAlBEnKUAFBFnKQBFxFkKQBFxlgJQRJyl\nABQRZykARcRZCkARcZYCUEScpQAUEWcpAEXEWQpAEXGWAlBEnKUAFBFnKQBFxFkKQBFxlgJQRJyl\nABQRZykARcRZCkARcZYCUEScpQAUEWcpAEXEWQpAEXGWAlBEnKUAFBFnKQBFxFkKQBFxVqwBWA+Y\nCawCZgB1y9mmKTAb+Bz4DPhFjN8pIhIXsQbgcCwAmwGzQs/LKgbuBr4HXArcAbSI8XtFRGIWawD2\nASaGHk8E+pWzzSZgUejxbmA50CjG7xURiVlOjO/fBny71Gd9U+p5eXKB97De4O4yr3me58XYHBGR\no+Xk5EAFWVcrgvfPBBqU8/ORZZ57oVtFTgIKgaEcG34AFBQUHHns8/nw+XwRNE9EpEQgECAQCES0\nbaw9wBWADzvMbYgNdpxfznbHAf8A3gSerOCz1AMUkbirrAcY6znAacAtoce3AFPK+37gOWAZFYef\niEjSxdoDrAe8ApwJrAMGANuxQY7xQE+gI/BPYAklh8gjgLfKfJZ6gCISd5X1AGMNwHhSAIpI3CXy\nEFhEJGMpAEXEWQpAEXGWAlBEnKUAFBFnKQBFxFkKQBFxlgJQRJylABQRZykARcRZCkARcZYCUESc\npQAUEWcpAEXEWQpAEXGWAlBEnKUAFBFnKQBFxFkKQBFxlgJQRJylABQRZykARcRZCkARcZYCUESc\npQAUEWcpAEXEWQpAEXGWAlBEnKUAFBFnKQBFxFkKQBFxlgJQRJylABQRZykARcRZCkARcZYCUESc\npQAUEWcpAEXEWQpAEXGWAlBEnKUAFBFnxRKA9YCZwCpgBlC3nG2OB+YCi4BlwOgYvk9EJK5iCcDh\nWAA2A2aFnpe1H+gCtAEuDD3uGMN3iojETSwB2AeYGHo8EehXwXZ7Q/e1gZrANzF8p4hI3MQSgGcA\nm0OPN4eeV/Qdi0LbzMYOhUVEUq5WFa/PBBqU8/ORZZ57oVt5gtgh8KnA24APCETcQhGRBKkqALtW\n8tpmLBw3AQ2BLVV81g5gOtCOCgKwoKDgyGOfz4fP56viI0VEjhYIBAgEAhFtmxPD9zwG/Bd4FBsA\nqcuxAyGnA4eA7cAJWA/wQWzQpCzP8yrqRIqIVE9OTg5UkHWxBGA94BXgTGAdMAALukbAeKAnNvL7\nf9h5wBrA34HHK/g8BaCIxF2iAjDeFIAiEneVBaBWgoiIsxSAIuIsBaCIOEsBKCLOUgCKiLMUgCLi\nLAWgiDhLASgizlIAioizFIAi4iwFoIg4SwEoIs5SAIqIsxSAIuIsBaCIOEsBKCLOUgCKiLMUgCLi\nLAWgiDhLASgizlIAioizFIAi4iwFoIg4SwEoIs5SAIqIsxSAIuIsBaCIOEsBKCLOUgCKiLMUgCLi\nLAWgiDhLASgizlIAioizFIAi4iwFoIg4SwEoIs5SAIqIsxSAIuIsBaCIOEsBKCLOUgCKiLMUgCLi\nrFgCsB4wE1gFzADqVrJtTWAhUBTD94mIxFUsATgcC8BmwKzQ84oMBZYBXgzflzECgUCqmxAX2bIf\noH1JR+mwH7EEYB9gYujxRKBfBds1AXoAzwI5MXxfxkiHX2w8ZMt+gPYlHaXDfsQSgGcAm0OPN4ee\nl+ePwL1AMIbvEhGJu1pVvD4TaFDOz0eWee5R/uFtL2ALdv7PF23jRETS1QpKwrFh6HlZvwPWA18A\nXwF7gOcr+Lw1lASpbrrpplu8botIgMeAYaHHw4FHqti+MxoFFpEsUQ94h2OnwTQCppezfWdgWnKa\nJiIiIiJpKdKJ1OuAJdhAyidJaVl0smlCeCT7cjwwFzuvsgwYnbTWRSeSfWkKzAY+Bz4DfpG01kUn\n0r9jE7AZGUuT1K5IXYuNEaym5LRZWU+FXl8MXJSkdqXUY8B9ocfDqPgc4hfYX4B0Fel+APwv8CLp\neyog0n2pE7qvBXwMdExwu6ojkn1pALQJPT4JWAm0SHzTohbp7+VKLDzSKQBrYgOcucBx2H+cZf+M\newBvhB5fgv2dynorKJk72IDyR5HBAvC0pLSoeiLdjybYOdMupG8PMNJ9CasDzANaJrJR1RTtvgBM\nAa5OWIuqL5p9ySW9AvAy4K1Sz4dz7KqxccANpZ6X3t+ESmUxhEgnUntYcMwHbktCu6KVTRPCI92X\nGtj/5JuxQ8hliW9a1CLdl7BcrPc0N4Ftqq5o9yWdNMamwoVtCP2sqm2aJLhdQNUToWMV60RqgCuw\nOYT1Q5+3Ang/Xg2MUDZNCI/H7ySIHTqeCryN7VMgPs2LSjz2BezwtxBbs747Pk2LWrz2Jd1E2tay\ny2STso+JDsCulby2GfuFb8ImUm+pYLuvQvdfA68DHUh+AMa6H5dja6d7YIMIp2ATwn8Y32ZGJB6/\nk7Ad2JSndqQmAOOxL8cBfuAF7BA4VeL5e0knG7HBprCmWA+vsm2ahH6WcKk8BJ4G3BJ6fAvl/+Wr\nA5wcenwi0I30Or8Bke3Hr7Bf8NnAD4B3SU34VSWSfTmdklHIE7B/uAsT37SoRbIvOcBz2CH8k0lq\nV3VEsi/paj5wHnaKoTZ2rq/sIOA0Sv49XApsp+SQP2tFMpH6HOxc0yJsmsKIJLcxEtk0ITySfbkQ\nWID9TpZg5zXTUST70hE7nF+EhfhCbMpGuon079hLwJfAAeyc2uAktrEy12Ej7Gso+Tc8JHQLeyb0\n+mLg4qS2TkRERERERERERERERERERERERERERCST/D+TSfdBDSQxowAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 23 }, { "cell_type": "code", "collapsed": false, "input": [ "w=11\n", "print w*w*1.2*0.002" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0.2904\n" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 19 } ], "metadata": {} } ] }