/* * Vulkan Example - Basic indexed triangle rendering * * Note: * This is a "pedal to the metal" example to show off how to get Vulkan up and displaying something * Contrary to the other examples, this one won't make use of helper functions or initializers * Except in a few cases (swap chain setup e.g.) * * Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" // We want to keep GPU and CPU busy. To do that we may start building a new command buffer while the previous one is still being executed // This number defines how many frames may be worked on simultaneously at once // Increasing this number may improve performance but will also introduce additional latency #define MAX_CONCURRENT_FRAMES 2 class VulkanExample : public VulkanExampleBase { public: // Vertex layout used in this example struct Vertex { float position[3]; float color[3]; }; // Vertex buffer and attributes struct { VkDeviceMemory memory{ VK_NULL_HANDLE }; // Handle to the device memory for this buffer VkBuffer buffer; // Handle to the Vulkan buffer object that the memory is bound to } vertices; // Index buffer struct { VkDeviceMemory memory{ VK_NULL_HANDLE }; VkBuffer buffer; uint32_t count{ 0 }; } indices; // Uniform buffer block object struct UniformBuffer { VkDeviceMemory memory; VkBuffer buffer; // The descriptor set stores the resources bound to the binding points in a shader // It connects the binding points of the different shaders with the buffers and images used for those bindings VkDescriptorSet descriptorSet; // We keep a pointer to the mapped buffer, so we can easily update it's contents via a memcpy uint8_t* mapped{ nullptr }; }; // We use one UBO per frame, so we can have a frame overlap and make sure that uniforms aren't updated while still in use std::array uniformBuffers; // For simplicity we use the same uniform block layout as in the shader: // // layout(set = 0, binding = 0) uniform UBO // { // mat4 projectionMatrix; // mat4 modelMatrix; // mat4 viewMatrix; // } ubo; // // This way we can just memcopy the ubo data to the ubo // Note: You should use data types that align with the GPU in order to avoid manual padding (vec4, mat4) struct ShaderData { glm::mat4 projectionMatrix; glm::mat4 modelMatrix; glm::mat4 viewMatrix; }; // The pipeline layout is used by a pipeline to access the descriptor sets // It defines interface (without binding any actual data) between the shader stages used by the pipeline and the shader resources // A pipeline layout can be shared among multiple pipelines as long as their interfaces match VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; // Pipelines (often called "pipeline state objects") are used to bake all states that affect a pipeline // While in OpenGL every state can be changed at (almost) any time, Vulkan requires to layout the graphics (and compute) pipeline states upfront // So for each combination of non-dynamic pipeline states you need a new pipeline (there are a few exceptions to this not discussed here) // Even though this adds a new dimension of planning ahead, it's a great opportunity for performance optimizations by the driver VkPipeline pipeline{ VK_NULL_HANDLE }; // The descriptor set layout describes the shader binding layout (without actually referencing descriptor) // Like the pipeline layout it's pretty much a blueprint and can be used with different descriptor sets as long as their layout matches VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; // Synchronization primitives // Synchronization is an important concept of Vulkan that OpenGL mostly hid away. Getting this right is crucial to using Vulkan. // Semaphores are used to coordinate operations within the graphics queue and ensure correct command ordering std::array presentCompleteSemaphores{}; std::array renderCompleteSemaphores{}; VkCommandPool commandPool{ VK_NULL_HANDLE }; std::array commandBuffers{}; std::array waitFences{}; // To select the correct sync objects, we need to keep track of the current frame uint32_t currentFrame{ 0 }; VulkanExample() : VulkanExampleBase() { title = "Vulkan Example - Basic indexed triangle"; // To keep things simple, we don't use the UI overlay from the framework settings.overlay = false; // Setup a default look-at camera camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f)); camera.setRotation(glm::vec3(0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f); // Values not set here are initialized in the base class constructor } ~VulkanExample() { // Clean up used Vulkan resources // Note: Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, vertices.buffer, nullptr); vkFreeMemory(device, vertices.memory, nullptr); vkDestroyBuffer(device, indices.buffer, nullptr); vkFreeMemory(device, indices.memory, nullptr); vkDestroyCommandPool(device, commandPool, nullptr); for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) { vkDestroyFence(device, waitFences[i], nullptr); vkDestroySemaphore(device, presentCompleteSemaphores[i], nullptr); vkDestroySemaphore(device, renderCompleteSemaphores[i], nullptr); vkDestroyBuffer(device, uniformBuffers[i].buffer, nullptr); vkFreeMemory(device, uniformBuffers[i].memory, nullptr); } } // This function is used to request a device memory type that supports all the property flags we request (e.g. device local, host visible) // Upon success it will return the index of the memory type that fits our requested memory properties // This is necessary as implementations can offer an arbitrary number of memory types with different // memory properties. // You can check https://vulkan.gpuinfo.org/ for details on different memory configurations uint32_t getMemoryTypeIndex(uint32_t typeBits, VkMemoryPropertyFlags properties) { // Iterate over all memory types available for the device used in this example for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++) { if ((typeBits & 1) == 1) { if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } typeBits >>= 1; } throw "Could not find a suitable memory type!"; } // Create the per-frame (in flight) sVulkan synchronization primitives used in this example void createSynchronizationPrimitives() { // Semaphores are used for correct command ordering within a queue VkSemaphoreCreateInfo semaphoreCI{}; semaphoreCI.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; // Fences are used to check draw command buffer completion on the host VkFenceCreateInfo fenceCI{}; fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; // Create the fences in signaled state (so we don't wait on first render of each command buffer) fenceCI.flags = VK_FENCE_CREATE_SIGNALED_BIT; for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) { // Semaphore used to ensure that image presentation is complete before starting to submit again VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &presentCompleteSemaphores[i])); // Semaphore used to ensure that all commands submitted have been finished before submitting the image to the queue VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &renderCompleteSemaphores[i])); // Fence used to ensure that command buffer has completed exection before using it again VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &waitFences[i])); } } void createCommandBuffers() { // All command buffers are allocated from a command pool VkCommandPoolCreateInfo commandPoolCI{}; commandPoolCI.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; commandPoolCI.queueFamilyIndex = swapChain.queueNodeIndex; commandPoolCI.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VK_CHECK_RESULT(vkCreateCommandPool(device, &commandPoolCI, nullptr, &commandPool)); // Allocate one command buffer per max. concurrent frame from above pool VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, MAX_CONCURRENT_FRAMES); VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, commandBuffers.data())); } // Prepare vertex and index buffers for an indexed triangle // Also uploads them to device local memory using staging and initializes vertex input and attribute binding to match the vertex shader void createVertexBuffer() { // A note on memory management in Vulkan in general: // This is a very complex topic and while it's fine for an example application to small individual memory allocations that is not // what should be done a real-world application, where you should allocate large chunks of memory at once instead. // Setup vertices std::vector vertexBuffer{ { { 1.0f, 1.0f, 0.0f }, { 1.0f, 0.0f, 0.0f } }, { { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f } }, { { 0.0f, -1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } } }; uint32_t vertexBufferSize = static_cast(vertexBuffer.size()) * sizeof(Vertex); // Setup indices std::vector indexBuffer{ 0, 1, 2 }; indices.count = static_cast(indexBuffer.size()); uint32_t indexBufferSize = indices.count * sizeof(uint32_t); VkMemoryAllocateInfo memAlloc{}; memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; VkMemoryRequirements memReqs; // Static data like vertex and index buffer should be stored on the device memory for optimal (and fastest) access by the GPU // // To achieve this we use so-called "staging buffers" : // - Create a buffer that's visible to the host (and can be mapped) // - Copy the data to this buffer // - Create another buffer that's local on the device (VRAM) with the same size // - Copy the data from the host to the device using a command buffer // - Delete the host visible (staging) buffer // - Use the device local buffers for rendering // // Note: On unified memory architectures where host (CPU) and GPU share the same memory, staging is not necessary // To keep this sample easy to follow, there is no check for that in place struct StagingBuffer { VkDeviceMemory memory; VkBuffer buffer; }; struct { StagingBuffer vertices; StagingBuffer indices; } stagingBuffers; void* data; // Vertex buffer VkBufferCreateInfo vertexBufferInfoCI{}; vertexBufferInfoCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; vertexBufferInfoCI.size = vertexBufferSize; // Buffer is used as the copy source vertexBufferInfoCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; // Create a host-visible buffer to copy the vertex data to (staging buffer) VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &stagingBuffers.vertices.buffer)); vkGetBufferMemoryRequirements(device, stagingBuffers.vertices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; // Request a host visible memory type that can be used to copy our data do // Also request it to be coherent, so that writes are visible to the GPU right after unmapping the buffer memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.vertices.memory)); // Map and copy VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.vertices.memory, 0, memAlloc.allocationSize, 0, &data)); memcpy(data, vertexBuffer.data(), vertexBufferSize); vkUnmapMemory(device, stagingBuffers.vertices.memory); VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.vertices.buffer, stagingBuffers.vertices.memory, 0)); // Create a device local buffer to which the (host local) vertex data will be copied and which will be used for rendering vertexBufferInfoCI.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &vertices.buffer)); vkGetBufferMemoryRequirements(device, vertices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.memory)); VK_CHECK_RESULT(vkBindBufferMemory(device, vertices.buffer, vertices.memory, 0)); // Index buffer VkBufferCreateInfo indexbufferCI{}; indexbufferCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; indexbufferCI.size = indexBufferSize; indexbufferCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; // Copy index data to a buffer visible to the host (staging buffer) VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &stagingBuffers.indices.buffer)); vkGetBufferMemoryRequirements(device, stagingBuffers.indices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.indices.memory)); VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.indices.memory, 0, indexBufferSize, 0, &data)); memcpy(data, indexBuffer.data(), indexBufferSize); vkUnmapMemory(device, stagingBuffers.indices.memory); VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.indices.buffer, stagingBuffers.indices.memory, 0)); // Create destination buffer with device only visibility indexbufferCI.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &indices.buffer)); vkGetBufferMemoryRequirements(device, indices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &indices.memory)); VK_CHECK_RESULT(vkBindBufferMemory(device, indices.buffer, indices.memory, 0)); // Buffer copies have to be submitted to a queue, so we need a command buffer for them // Note: Some devices offer a dedicated transfer queue (with only the transfer bit set) that may be faster when doing lots of copies VkCommandBuffer copyCmd; VkCommandBufferAllocateInfo cmdBufAllocateInfo{}; cmdBufAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; cmdBufAllocateInfo.commandPool = commandPool; cmdBufAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cmdBufAllocateInfo.commandBufferCount = 1; VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, ©Cmd)); VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo)); // Put buffer region copies into command buffer VkBufferCopy copyRegion{}; // Vertex buffer copyRegion.size = vertexBufferSize; vkCmdCopyBuffer(copyCmd, stagingBuffers.vertices.buffer, vertices.buffer, 1, ©Region); // Index buffer copyRegion.size = indexBufferSize; vkCmdCopyBuffer(copyCmd, stagingBuffers.indices.buffer, indices.buffer, 1, ©Region); VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd)); // Submit the command buffer to the queue to finish the copy VkSubmitInfo submitInfo{}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = ©Cmd; // Create fence to ensure that the command buffer has finished executing VkFenceCreateInfo fenceCI{}; fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceCI.flags = 0; VkFence fence; VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &fence)); // Submit to the queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence)); // Wait for the fence to signal that command buffer has finished executing VK_CHECK_RESULT(vkWaitForFences(device, 1, &fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT)); vkDestroyFence(device, fence, nullptr); vkFreeCommandBuffers(device, commandPool, 1, ©Cmd); // Destroy staging buffers // Note: Staging buffer must not be deleted before the copies have been submitted and executed vkDestroyBuffer(device, stagingBuffers.vertices.buffer, nullptr); vkFreeMemory(device, stagingBuffers.vertices.memory, nullptr); vkDestroyBuffer(device, stagingBuffers.indices.buffer, nullptr); vkFreeMemory(device, stagingBuffers.indices.memory, nullptr); } // Descriptors are allocated from a pool, that tells the implementation how many and what types of descriptors we are going to use (at maximum) void createDescriptorPool() { // We need to tell the API the number of max. requested descriptors per type VkDescriptorPoolSize descriptorTypeCounts[1]; // This example only one descriptor type (uniform buffer) descriptorTypeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; // We have one buffer (and as such descriptor) per frame descriptorTypeCounts[0].descriptorCount = MAX_CONCURRENT_FRAMES; // For additional types you need to add new entries in the type count list // E.g. for two combined image samplers : // typeCounts[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; // typeCounts[1].descriptorCount = 2; // Create the global descriptor pool // All descriptors used in this example are allocated from this pool VkDescriptorPoolCreateInfo descriptorPoolCI{}; descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; descriptorPoolCI.pNext = nullptr; descriptorPoolCI.poolSizeCount = 1; descriptorPoolCI.pPoolSizes = descriptorTypeCounts; // Set the max. number of descriptor sets that can be requested from this pool (requesting beyond this limit will result in an error) // Our sample will create one set per uniform buffer per frame descriptorPoolCI.maxSets = MAX_CONCURRENT_FRAMES; VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool)); } // Descriptor set layouts define the interface between our application and the shader // Basically connects the different shader stages to descriptors for binding uniform buffers, image samplers, etc. // So every shader binding should map to one descriptor set layout binding void createDescriptorSetLayout() { // Binding 0: Uniform buffer (Vertex shader) VkDescriptorSetLayoutBinding layoutBinding{}; layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; layoutBinding.descriptorCount = 1; layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; layoutBinding.pImmutableSamplers = nullptr; VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{}; descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; descriptorLayoutCI.pNext = nullptr; descriptorLayoutCI.bindingCount = 1; descriptorLayoutCI.pBindings = &layoutBinding; VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout)); // Create the pipeline layout that is used to generate the rendering pipelines that are based on this descriptor set layout // In a more complex scenario you would have different pipeline layouts for different descriptor set layouts that could be reused VkPipelineLayoutCreateInfo pipelineLayoutCI{}; pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutCI.pNext = nullptr; pipelineLayoutCI.setLayoutCount = 1; pipelineLayoutCI.pSetLayouts = &descriptorSetLayout; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); } // Shaders access data using descriptor sets that "point" at our uniform buffers // The descriptor sets make use of the descriptor set layouts created above void createDescriptorSets() { // Allocate one descriptor set per frame from the global descriptor pool for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) { VkDescriptorSetAllocateInfo allocInfo{}; allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; allocInfo.descriptorPool = descriptorPool; allocInfo.descriptorSetCount = 1; allocInfo.pSetLayouts = &descriptorSetLayout; VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &uniformBuffers[i].descriptorSet)); // Update the descriptor set determining the shader binding points // For every binding point used in a shader there needs to be one // descriptor set matching that binding point VkWriteDescriptorSet writeDescriptorSet{}; // The buffer's information is passed using a descriptor info structure VkDescriptorBufferInfo bufferInfo{}; bufferInfo.buffer = uniformBuffers[i].buffer; bufferInfo.range = sizeof(ShaderData); // Binding 0 : Uniform buffer writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writeDescriptorSet.dstSet = uniformBuffers[i].descriptorSet; writeDescriptorSet.descriptorCount = 1; writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; writeDescriptorSet.pBufferInfo = &bufferInfo; writeDescriptorSet.dstBinding = 0; vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } } // Create the depth (and stencil) buffer attachments used by our framebuffers // Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare void setupDepthStencil() { // Create an optimal image used as the depth stencil attachment VkImageCreateInfo imageCI{}; imageCI.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = depthFormat; // Use example's height and width imageCI.extent = { width, height, 1 }; imageCI.mipLevels = 1; imageCI.arrayLayers = 1; imageCI.samples = VK_SAMPLE_COUNT_1_BIT; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; imageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &depthStencil.image)); // Allocate memory for the image (device local) and bind it to our image VkMemoryAllocateInfo memAlloc{}; memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &depthStencil.memory)); VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.memory, 0)); // Create a view for the depth stencil image // Images aren't directly accessed in Vulkan, but rather through views described by a subresource range // This allows for multiple views of one image with differing ranges (e.g. for different layers) VkImageViewCreateInfo depthStencilViewCI{}; depthStencilViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; depthStencilViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilViewCI.format = depthFormat; depthStencilViewCI.subresourceRange = {}; depthStencilViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; // Stencil aspect should only be set on depth + stencil formats (VK_FORMAT_D16_UNORM_S8_UINT..VK_FORMAT_D32_SFLOAT_S8_UINT) if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) { depthStencilViewCI.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; } depthStencilViewCI.subresourceRange.baseMipLevel = 0; depthStencilViewCI.subresourceRange.levelCount = 1; depthStencilViewCI.subresourceRange.baseArrayLayer = 0; depthStencilViewCI.subresourceRange.layerCount = 1; depthStencilViewCI.image = depthStencil.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilViewCI, nullptr, &depthStencil.view)); } // Create a frame buffer for each swap chain image // Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare void setupFrameBuffer() { // Create a frame buffer for every image in the swapchain frameBuffers.resize(swapChain.imageCount); for (size_t i = 0; i < frameBuffers.size(); i++) { std::array attachments; // Color attachment is the view of the swapchain image attachments[0] = swapChain.buffers[i].view; // Depth/Stencil attachment is the same for all frame buffers due to how depth works with current GPUs attachments[1] = depthStencil.view; VkFramebufferCreateInfo frameBufferCI{}; frameBufferCI.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; // All frame buffers use the same renderpass setup frameBufferCI.renderPass = renderPass; frameBufferCI.attachmentCount = static_cast(attachments.size()); frameBufferCI.pAttachments = attachments.data(); frameBufferCI.width = width; frameBufferCI.height = height; frameBufferCI.layers = 1; // Create the framebuffer VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCI, nullptr, &frameBuffers[i])); } } // Render pass setup // Render passes are a new concept in Vulkan. They describe the attachments used during rendering and may contain multiple subpasses with attachment dependencies // This allows the driver to know up-front what the rendering will look like and is a good opportunity to optimize especially on tile-based renderers (with multiple subpasses) // Using sub pass dependencies also adds implicit layout transitions for the attachment used, so we don't need to add explicit image memory barriers to transform them // Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare void setupRenderPass() { // This example will use a single render pass with one subpass // Descriptors for the attachments used by this renderpass std::array attachments{}; // Color attachment attachments[0].format = swapChain.colorFormat; // Use the color format selected by the swapchain attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; // We don't use multi sampling in this example attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear this attachment at the start of the render pass attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; // Keep its contents after the render pass is finished (for displaying it) attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // We don't use stencil, so don't care for load attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // Same for store attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // Layout to which the attachment is transitioned when the render pass is finished // As we want to present the color buffer to the swapchain, we transition to PRESENT_KHR // Depth attachment attachments[1].format = depthFormat; // A proper depth format is selected in the example base attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at start of first subpass attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // We don't need depth after render pass has finished (DONT_CARE may result in better performance) attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // No stencil attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // No Stencil attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Transition to depth/stencil attachment // Setup attachment references VkAttachmentReference colorReference{}; colorReference.attachment = 0; // Attachment 0 is color colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // Attachment layout used as color during the subpass VkAttachmentReference depthReference{}; depthReference.attachment = 1; // Attachment 1 is color depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment used as depth/stencil used during the subpass // Setup a single subpass reference VkSubpassDescription subpassDescription{}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; // Subpass uses one color attachment subpassDescription.pColorAttachments = &colorReference; // Reference to the color attachment in slot 0 subpassDescription.pDepthStencilAttachment = &depthReference; // Reference to the depth attachment in slot 1 subpassDescription.inputAttachmentCount = 0; // Input attachments can be used to sample from contents of a previous subpass subpassDescription.pInputAttachments = nullptr; // (Input attachments not used by this example) subpassDescription.preserveAttachmentCount = 0; // Preserved attachments can be used to loop (and preserve) attachments through subpasses subpassDescription.pPreserveAttachments = nullptr; // (Preserve attachments not used by this example) subpassDescription.pResolveAttachments = nullptr; // Resolve attachments are resolved at the end of a sub pass and can be used for e.g. multi sampling // Setup subpass dependencies // These will add the implicit attachment layout transitions specified by the attachment descriptions // The actual usage layout is preserved through the layout specified in the attachment reference // Each subpass dependency will introduce a memory and execution dependency between the source and dest subpass described by // srcStageMask, dstStageMask, srcAccessMask, dstAccessMask (and dependencyFlags is set) // Note: VK_SUBPASS_EXTERNAL is a special constant that refers to all commands executed outside of the actual renderpass) std::array dependencies; // Does the transition from final to initial layout for the depth an color attachments // Depth attachment dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; dependencies[0].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT; dependencies[0].dependencyFlags = 0; // Color attachment dependencies[1].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].dstSubpass = 0; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].srcAccessMask = 0; dependencies[1].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT; dependencies[1].dependencyFlags = 0; // Create the actual renderpass VkRenderPassCreateInfo renderPassCI{}; renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassCI.attachmentCount = static_cast(attachments.size()); // Number of attachments used by this render pass renderPassCI.pAttachments = attachments.data(); // Descriptions of the attachments used by the render pass renderPassCI.subpassCount = 1; // We only use one subpass in this example renderPassCI.pSubpasses = &subpassDescription; // Description of that subpass renderPassCI.dependencyCount = static_cast(dependencies.size()); // Number of subpass dependencies renderPassCI.pDependencies = dependencies.data(); // Subpass dependencies used by the render pass VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderPass)); } // Vulkan loads its shaders from an immediate binary representation called SPIR-V // Shaders are compiled offline from e.g. GLSL using the reference glslang compiler // This function loads such a shader from a binary file and returns a shader module structure VkShaderModule loadSPIRVShader(std::string filename) { size_t shaderSize; char* shaderCode{ nullptr }; #if defined(__ANDROID__) // Load shader from compressed asset AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); shaderSize = AAsset_getLength(asset); assert(shaderSize > 0); shaderCode = new char[shaderSize]; AAsset_read(asset, shaderCode, shaderSize); AAsset_close(asset); #else std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate); if (is.is_open()) { shaderSize = is.tellg(); is.seekg(0, std::ios::beg); // Copy file contents into a buffer shaderCode = new char[shaderSize]; is.read(shaderCode, shaderSize); is.close(); assert(shaderSize > 0); } #endif if (shaderCode) { // Create a new shader module that will be used for pipeline creation VkShaderModuleCreateInfo shaderModuleCI{}; shaderModuleCI.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; shaderModuleCI.codeSize = shaderSize; shaderModuleCI.pCode = (uint32_t*)shaderCode; VkShaderModule shaderModule; VK_CHECK_RESULT(vkCreateShaderModule(device, &shaderModuleCI, nullptr, &shaderModule)); delete[] shaderCode; return shaderModule; } else { std::cerr << "Error: Could not open shader file \"" << filename << "\"" << std::endl; return VK_NULL_HANDLE; } } void createPipelines() { // Create the graphics pipeline used in this example // Vulkan uses the concept of rendering pipelines to encapsulate fixed states, replacing OpenGL's complex state machine // A pipeline is then stored and hashed on the GPU making pipeline changes very fast // Note: There are still a few dynamic states that are not directly part of the pipeline (but the info that they are used is) VkGraphicsPipelineCreateInfo pipelineCI{}; pipelineCI.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; // The layout used for this pipeline (can be shared among multiple pipelines using the same layout) pipelineCI.layout = pipelineLayout; // Renderpass this pipeline is attached to pipelineCI.renderPass = renderPass; // Construct the different states making up the pipeline // Input assembly state describes how primitives are assembled // This pipeline will assemble vertex data as a triangle lists (though we only use one triangle) VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI{}; inputAssemblyStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssemblyStateCI.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; // Rasterization state VkPipelineRasterizationStateCreateInfo rasterizationStateCI{}; rasterizationStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizationStateCI.polygonMode = VK_POLYGON_MODE_FILL; rasterizationStateCI.cullMode = VK_CULL_MODE_NONE; rasterizationStateCI.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rasterizationStateCI.depthClampEnable = VK_FALSE; rasterizationStateCI.rasterizerDiscardEnable = VK_FALSE; rasterizationStateCI.depthBiasEnable = VK_FALSE; rasterizationStateCI.lineWidth = 1.0f; // Color blend state describes how blend factors are calculated (if used) // We need one blend attachment state per color attachment (even if blending is not used) VkPipelineColorBlendAttachmentState blendAttachmentState{}; blendAttachmentState.colorWriteMask = 0xf; blendAttachmentState.blendEnable = VK_FALSE; VkPipelineColorBlendStateCreateInfo colorBlendStateCI{}; colorBlendStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlendStateCI.attachmentCount = 1; colorBlendStateCI.pAttachments = &blendAttachmentState; // Viewport state sets the number of viewports and scissor used in this pipeline // Note: This is actually overridden by the dynamic states (see below) VkPipelineViewportStateCreateInfo viewportStateCI{}; viewportStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportStateCI.viewportCount = 1; viewportStateCI.scissorCount = 1; // Enable dynamic states // Most states are baked into the pipeline, but there are still a few dynamic states that can be changed within a command buffer // To be able to change these we need do specify which dynamic states will be changed using this pipeline. Their actual states are set later on in the command buffer. // For this example we will set the viewport and scissor using dynamic states std::vector dynamicStateEnables; dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT); dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR); VkPipelineDynamicStateCreateInfo dynamicStateCI{}; dynamicStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicStateCI.pDynamicStates = dynamicStateEnables.data(); dynamicStateCI.dynamicStateCount = static_cast(dynamicStateEnables.size()); // Depth and stencil state containing depth and stencil compare and test operations // We only use depth tests and want depth tests and writes to be enabled and compare with less or equal VkPipelineDepthStencilStateCreateInfo depthStencilStateCI{}; depthStencilStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; depthStencilStateCI.depthTestEnable = VK_TRUE; depthStencilStateCI.depthWriteEnable = VK_TRUE; depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; depthStencilStateCI.depthBoundsTestEnable = VK_FALSE; depthStencilStateCI.back.failOp = VK_STENCIL_OP_KEEP; depthStencilStateCI.back.passOp = VK_STENCIL_OP_KEEP; depthStencilStateCI.back.compareOp = VK_COMPARE_OP_ALWAYS; depthStencilStateCI.stencilTestEnable = VK_FALSE; depthStencilStateCI.front = depthStencilStateCI.back; // Multi sampling state // This example does not make use of multi sampling (for anti-aliasing), the state must still be set and passed to the pipeline VkPipelineMultisampleStateCreateInfo multisampleStateCI{}; multisampleStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampleStateCI.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; multisampleStateCI.pSampleMask = nullptr; // Vertex input descriptions // Specifies the vertex input parameters for a pipeline // Vertex input binding // This example uses a single vertex input binding at binding point 0 (see vkCmdBindVertexBuffers) VkVertexInputBindingDescription vertexInputBinding{}; vertexInputBinding.binding = 0; vertexInputBinding.stride = sizeof(Vertex); vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; // Input attribute bindings describe shader attribute locations and memory layouts std::array vertexInputAttributs; // These match the following shader layout (see triangle.vert): // layout (location = 0) in vec3 inPos; // layout (location = 1) in vec3 inColor; // Attribute location 0: Position vertexInputAttributs[0].binding = 0; vertexInputAttributs[0].location = 0; // Position attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32) vertexInputAttributs[0].format = VK_FORMAT_R32G32B32_SFLOAT; vertexInputAttributs[0].offset = offsetof(Vertex, position); // Attribute location 1: Color vertexInputAttributs[1].binding = 0; vertexInputAttributs[1].location = 1; // Color attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32) vertexInputAttributs[1].format = VK_FORMAT_R32G32B32_SFLOAT; vertexInputAttributs[1].offset = offsetof(Vertex, color); // Vertex input state used for pipeline creation VkPipelineVertexInputStateCreateInfo vertexInputStateCI{}; vertexInputStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputStateCI.vertexBindingDescriptionCount = 1; vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding; vertexInputStateCI.vertexAttributeDescriptionCount = 2; vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributs.data(); // Shaders std::array shaderStages{}; // Vertex shader shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; // Set pipeline stage for this shader shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; // Load binary SPIR-V shader shaderStages[0].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.vert.spv"); // Main entry point for the shader shaderStages[0].pName = "main"; assert(shaderStages[0].module != VK_NULL_HANDLE); // Fragment shader shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; // Set pipeline stage for this shader shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; // Load binary SPIR-V shader shaderStages[1].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.frag.spv"); // Main entry point for the shader shaderStages[1].pName = "main"; assert(shaderStages[1].module != VK_NULL_HANDLE); // Set pipeline shader stage info pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); // Assign the pipeline states to the pipeline creation info structure pipelineCI.pVertexInputState = &vertexInputStateCI; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; // Create rendering pipeline using the specified states VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); // Shader modules are no longer needed once the graphics pipeline has been created vkDestroyShaderModule(device, shaderStages[0].module, nullptr); vkDestroyShaderModule(device, shaderStages[1].module, nullptr); } void createUniformBuffers() { // Prepare and initialize the per-frame uniform buffer blocks containing shader uniforms // Single uniforms like in OpenGL are no longer present in Vulkan. All Shader uniforms are passed via uniform buffer blocks VkMemoryRequirements memReqs; // Vertex shader uniform buffer block VkBufferCreateInfo bufferInfo{}; VkMemoryAllocateInfo allocInfo{}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.pNext = nullptr; allocInfo.allocationSize = 0; allocInfo.memoryTypeIndex = 0; bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferInfo.size = sizeof(ShaderData); // This buffer will be used as a uniform buffer bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT; // Create the buffers for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) { VK_CHECK_RESULT(vkCreateBuffer(device, &bufferInfo, nullptr, &uniformBuffers[i].buffer)); // Get memory requirements including size, alignment and memory type vkGetBufferMemoryRequirements(device, uniformBuffers[i].buffer, &memReqs); allocInfo.allocationSize = memReqs.size; // Get the memory type index that supports host visible memory access // Most implementations offer multiple memory types and selecting the correct one to allocate memory from is crucial // We also want the buffer to be host coherent so we don't have to flush (or sync after every update. // Note: This may affect performance so you might not want to do this in a real world application that updates buffers on a regular base allocInfo.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); // Allocate memory for the uniform buffer VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &(uniformBuffers[i].memory))); // Bind memory to buffer VK_CHECK_RESULT(vkBindBufferMemory(device, uniformBuffers[i].buffer, uniformBuffers[i].memory, 0)); // We map the buffer once, so we can update it without having to map it again VK_CHECK_RESULT(vkMapMemory(device, uniformBuffers[i].memory, 0, sizeof(ShaderData), 0, (void**)&uniformBuffers[i].mapped)); } } void prepare() { VulkanExampleBase::prepare(); createSynchronizationPrimitives(); createCommandBuffers(); createVertexBuffer(); createUniformBuffers(); createDescriptorSetLayout(); createDescriptorPool(); createDescriptorSets(); createPipelines(); prepared = true; } virtual void render() { if (!prepared) return; // Use a fence to wait until the command buffer has finished execution before using it again vkWaitForFences(device, 1, &waitFences[currentFrame], VK_TRUE, UINT64_MAX); VK_CHECK_RESULT(vkResetFences(device, 1, &waitFences[currentFrame])); // Get the next swap chain image from the implementation // Note that the implementation is free to return the images in any order, so we must use the acquire function and can't just cycle through the images/imageIndex on our own uint32_t imageIndex; VkResult result = vkAcquireNextImageKHR(device, swapChain.swapChain, UINT64_MAX, presentCompleteSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex); if (result == VK_ERROR_OUT_OF_DATE_KHR) { windowResize(); return; } else if ((result != VK_SUCCESS) && (result != VK_SUBOPTIMAL_KHR)) { throw "Could not acquire the next swap chain image!"; } // Update the uniform buffer for the next frame ShaderData shaderData{}; shaderData.projectionMatrix = camera.matrices.perspective; shaderData.viewMatrix = camera.matrices.view; shaderData.modelMatrix = glm::mat4(1.0f); // Copy the current matrices to the current frame's uniform buffer // Note: Since we requested a host coherent memory type for the uniform buffer, the write is instantly visible to the GPU memcpy(uniformBuffers[currentFrame].mapped, &shaderData, sizeof(ShaderData)); // Build the command buffer // Unlike in OpenGL all rendering commands are recorded into command buffers that are then submitted to the queue // This allows to generate work upfront in a separate thread // For basic command buffers (like in this sample), recording is so fast that there is no need to offload this vkResetCommandBuffer(commandBuffers[currentFrame], 0); VkCommandBufferBeginInfo cmdBufInfo{}; cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; // Set clear values for all framebuffer attachments with loadOp set to clear // We use two attachments (color and depth) that are cleared at the start of the subpass and as such we need to set clear values for both VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo{}; renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassBeginInfo.pNext = nullptr; renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; renderPassBeginInfo.framebuffer = frameBuffers[imageIndex]; const VkCommandBuffer commandBuffer = commandBuffers[currentFrame]; VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffer, &cmdBufInfo)); // Start the first sub pass specified in our default render pass setup by the base class // This will clear the color and depth attachment vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Update dynamic viewport state VkViewport viewport{}; viewport.height = (float)height; viewport.width = (float)width; viewport.minDepth = (float)0.0f; viewport.maxDepth = (float)1.0f; vkCmdSetViewport(commandBuffer, 0, 1, &viewport); // Update dynamic scissor state VkRect2D scissor{}; scissor.extent.width = width; scissor.extent.height = height; scissor.offset.x = 0; scissor.offset.y = 0; vkCmdSetScissor(commandBuffer, 0, 1, &scissor); // Bind descriptor set for the currrent frame's uniform buffer, so the shader uses the data from that buffer for this draw vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &uniformBuffers[currentFrame].descriptorSet, 0, nullptr); // Bind the rendering pipeline // The pipeline (state object) contains all states of the rendering pipeline, binding it will set all the states specified at pipeline creation time vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); // Bind triangle vertex buffer (contains position and colors) VkDeviceSize offsets[1]{ 0 }; vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets); // Bind triangle index buffer vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32); // Draw indexed triangle vkCmdDrawIndexed(commandBuffer, indices.count, 1, 0, 0, 1); vkCmdEndRenderPass(commandBuffer); // Ending the render pass will add an implicit barrier transitioning the frame buffer color attachment to // VK_IMAGE_LAYOUT_PRESENT_SRC_KHR for presenting it to the windowing system VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer)); // Submit the command buffer to the graphics queue // Pipeline stage at which the queue submission will wait (via pWaitSemaphores) VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; // The submit info structure specifies a command buffer queue submission batch VkSubmitInfo submitInfo{}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.pWaitDstStageMask = &waitStageMask; // Pointer to the list of pipeline stages that the semaphore waits will occur at submitInfo.pCommandBuffers = &commandBuffer; // Command buffers(s) to execute in this batch (submission) submitInfo.commandBufferCount = 1; // We submit a single command buffer // Semaphore to wait upon before the submitted command buffer starts executing submitInfo.pWaitSemaphores = &presentCompleteSemaphores[currentFrame]; submitInfo.waitSemaphoreCount = 1; // Semaphore to be signaled when command buffers have completed submitInfo.pSignalSemaphores = &renderCompleteSemaphores[currentFrame]; submitInfo.signalSemaphoreCount = 1; // Submit to the graphics queue passing a wait fence VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, waitFences[currentFrame])); // Present the current frame buffer to the swap chain // Pass the semaphore signaled by the command buffer submission from the submit info as the wait semaphore for swap chain presentation // This ensures that the image is not presented to the windowing system until all commands have been submitted VkPresentInfoKHR presentInfo{}; presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; presentInfo.waitSemaphoreCount = 1; presentInfo.pWaitSemaphores = &renderCompleteSemaphores[currentFrame]; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = &swapChain.swapChain; presentInfo.pImageIndices = &imageIndex; result = vkQueuePresentKHR(queue, &presentInfo); if ((result == VK_ERROR_OUT_OF_DATE_KHR) || (result == VK_SUBOPTIMAL_KHR)) { windowResize(); } else if (result != VK_SUCCESS) { throw "Could not present the image to the swap chain!"; } // Select the next frame to render to, based on the max. no. of concurrent frames currentFrame = (currentFrame + 1) % MAX_CONCURRENT_FRAMES; } }; // OS specific main entry points // Most of the code base is shared for the different supported operating systems, but stuff like message handling differs #if defined(_WIN32) // Windows entry point VulkanExample *vulkanExample; LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) { for (size_t i = 0; i < __argc; i++) { VulkanExample::args.push_back(__argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(hInstance, WndProc); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif defined(__ANDROID__) // Android entry point VulkanExample *vulkanExample; void android_main(android_app* state) { vulkanExample = new VulkanExample(); state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; androidApp = state; vulkanExample->renderLoop(); delete(vulkanExample); } #elif defined(_DIRECT2DISPLAY) // Linux entry point with direct to display wsi // Direct to Displays (D2D) is used on embedded platforms VulkanExample *vulkanExample; static void handleEvent() { } int main(const int argc, const char *argv[]) { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif defined(VK_USE_PLATFORM_DIRECTFB_EXT) VulkanExample *vulkanExample; static void handleEvent(const DFBWindowEvent *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } int main(const int argc, const char *argv[]) { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) VulkanExample *vulkanExample; int main(const int argc, const char *argv[]) { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif defined(__linux__) || defined(__FreeBSD__) // Linux entry point VulkanExample *vulkanExample; #if defined(VK_USE_PLATFORM_XCB_KHR) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #else static void handleEvent() { } #endif int main(const int argc, const char *argv[]) { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif (defined(VK_USE_PLATFORM_MACOS_MVK) && defined(VK_EXAMPLE_XCODE_GENERATED)) VulkanExample *vulkanExample; int main(const int argc, const char *argv[]) { @autoreleasepool { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(nullptr); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); } return 0; } #elif defined(VK_USE_PLATFORM_SCREEN_QNX) VULKAN_EXAMPLE_MAIN() #endif