/* * Vulkan Example - Instanced mesh rendering, uses a separate vertex buffer for instanced data * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "VulkanBuffer.hpp" #include "VulkanTexture.hpp" #include "VulkanModel.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define INSTANCE_BUFFER_BIND_ID 1 #define ENABLE_VALIDATION false #define INSTANCE_COUNT 8192 class VulkanExample : public VulkanExampleBase { public: struct { vks::Texture2DArray rocks; vks::Texture2D planet; } textures; // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_COLOR, }); struct { vks::Model rock; vks::Model planet; } models; // Per-instance data block struct InstanceData { glm::vec3 pos; glm::vec3 rot; float scale; uint32_t texIndex; }; // Contains the instanced data struct InstanceBuffer { VkBuffer buffer = VK_NULL_HANDLE; VkDeviceMemory memory = VK_NULL_HANDLE; size_t size = 0; VkDescriptorBufferInfo descriptor; } instanceBuffer; struct UBOVS { glm::mat4 projection; glm::mat4 view; glm::vec4 lightPos = glm::vec4(0.0f, -5.0f, 0.0f, 1.0f); float locSpeed = 0.0f; float globSpeed = 0.0f; } uboVS; struct { vks::Buffer scene; } uniformBuffers; VkPipelineLayout pipelineLayout; struct { VkPipeline instancedRocks; VkPipeline planet; VkPipeline starfield; } pipelines; VkDescriptorSetLayout descriptorSetLayout; struct { VkDescriptorSet instancedRocks; VkDescriptorSet planet; } descriptorSets; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Vulkan Example - Instanced mesh rendering"; enableTextOverlay = true; srand(time(NULL)); zoom = -18.5f; rotation = { -17.2f, -4.7f, 0.0f }; cameraPos = { 5.5f, -1.85f, 0.0f }; rotationSpeed = 0.25f; } ~VulkanExample() { vkDestroyPipeline(device, pipelines.instancedRocks, nullptr); vkDestroyPipeline(device, pipelines.planet, nullptr); vkDestroyPipeline(device, pipelines.starfield, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, instanceBuffer.buffer, nullptr); vkFreeMemory(device, instanceBuffer.memory, nullptr); models.rock.destroy(); models.planet.destroy(); textures.rocks.destroy(); textures.planet.destroy(); uniformBuffers.scene.destroy(); } // Enable physical device features required for this example virtual void getEnabledFeatures() { // Enable anisotropic filtering if supported if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; } // Enable texture compression if (deviceFeatures.textureCompressionBC) { enabledFeatures.textureCompressionBC = VK_TRUE; } else if (deviceFeatures.textureCompressionASTC_LDR) { enabledFeatures.textureCompressionASTC_LDR = VK_TRUE; } else if (deviceFeatures.textureCompressionETC2) { enabledFeatures.textureCompressionETC2 = VK_TRUE; } }; void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Star field vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.planet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.starfield); vkCmdDraw(drawCmdBuffers[i], 4, 1, 0, 0); // Planet vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.planet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.planet); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.planet.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.planet.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.planet.indexCount, 1, 0, 0, 0); // Instanced rocks vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.instancedRocks, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.instancedRocks); // Binding point 0 : Mesh vertex buffer vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.rock.vertices.buffer, offsets); // Binding point 1 : Instance data buffer vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.rock.indices.buffer, 0, VK_INDEX_TYPE_UINT32); // Render instances vkCmdDrawIndexed(drawCmdBuffers[i], models.rock.indexCount, INSTANCE_COUNT, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { models.rock.loadFromFile(getAssetPath() + "models/rock01.dae", vertexLayout, 0.1f, vulkanDevice, queue); models.planet.loadFromFile(getAssetPath() + "models/sphere.obj", vertexLayout, 0.2f, vulkanDevice, queue); // Textures std::string texFormatSuffix; VkFormat texFormat; // Get supported compressed texture format if (vulkanDevice->features.textureCompressionBC) { texFormatSuffix = "_bc3_unorm"; texFormat = VK_FORMAT_BC3_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionASTC_LDR) { texFormatSuffix = "_astc_8x8_unorm"; texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionETC2) { texFormatSuffix = "_etc2_unorm"; texFormat = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; } else { vks::tools::exitFatal("Device does not support any compressed texture format!", "Error"); } textures.rocks.loadFromFile(getAssetPath() + "textures/texturearray_rocks" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); textures.planet.loadFromFile(getAssetPath() + "textures/lavaplanet" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); } void setupDescriptorPool() { // Example uses one ubo std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader combined sampler vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo descripotrSetAllocInfo; std::vector writeDescriptorSets; descripotrSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);; // Instanced rocks VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descripotrSetAllocInfo, &descriptorSets.instancedRocks)); writeDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSets.instancedRocks, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.instancedRocks, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.rocks.descriptor) // Binding 1 : Color map }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Planet VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descripotrSetAllocInfo, &descriptorSets.planet)); writeDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSets.planet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.planet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.planet.descriptor) // Binding 1 : Color map }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Load shaders std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); // This example uses two different input states, one for the instanced part and one for non-instanced rendering VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); std::vector bindingDescriptions; std::vector attributeDescriptions; // Vertex input bindings // The instancing pipeline uses a vertex input state with two bindings bindingDescriptions = { // Binding point 0: Mesh vertex layout description at per-vertex rate vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX), // Binding point 1: Instanced data at per-instance rate vks::initializers::vertexInputBindingDescription(INSTANCE_BUFFER_BIND_ID, sizeof(InstanceData), VK_VERTEX_INPUT_RATE_INSTANCE) }; // Vertex attribute bindings // Note that the shader declaration for per-vertex and per-instance attributes is the same, the different input rates are only stored in the bindings: // instanced.vert: // layout (location = 0) in vec3 inPos; Per-Vertex // ... // layout (location = 4) in vec3 instancePos; Per-Instance attributeDescriptions = { // Per-vertex attributees // These are advanced for each vertex fetched by the vertex shader vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: Texture coordinates vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color // Per-Instance attributes // These are fetched for each instance rendered vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 4: Position vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 5: Rotation vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 6, VK_FORMAT_R32_SFLOAT,sizeof(float) * 6), // Location 6: Scale vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 7, VK_FORMAT_R32_SINT, sizeof(float) * 7), // Location 7: Texture array layer index }; inputState.pVertexBindingDescriptions = bindingDescriptions.data(); inputState.pVertexAttributeDescriptions = attributeDescriptions.data(); pipelineCreateInfo.pVertexInputState = &inputState; // Instancing pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/instancing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/instancing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Use all input bindings and attribute descriptions inputState.vertexBindingDescriptionCount = static_cast(bindingDescriptions.size()); inputState.vertexAttributeDescriptionCount = static_cast(attributeDescriptions.size()); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.instancedRocks)); // Planet rendering pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/planet.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/planet.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Only use the non-instanced input bindings and attribute descriptions inputState.vertexBindingDescriptionCount = 1; inputState.vertexAttributeDescriptionCount = 4; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.planet)); // Star field pipeline rasterizationState.cullMode = VK_CULL_MODE_NONE; depthStencilState.depthWriteEnable = VK_FALSE; shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/starfield.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/starfield.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Vertices are generated in the vertex shader inputState.vertexBindingDescriptionCount = 0; inputState.vertexAttributeDescriptionCount = 0; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.starfield)); } float rnd(float range) { return range * (rand() / double(RAND_MAX)); } void prepareInstanceData() { std::vector instanceData; instanceData.resize(INSTANCE_COUNT); std::mt19937 rndGenerator(time(NULL)); std::uniform_real_distribution uniformDist(0.0, 1.0); // Distribute rocks randomly on two different rings for (auto i = 0; i < INSTANCE_COUNT / 2; i++) { glm::vec2 ring0 { 7.0f, 11.0f }; glm::vec2 ring1 { 14.0f, 18.0f }; float rho, theta; // Inner ring rho = sqrt((pow(ring0[1], 2.0f) - pow(ring0[0], 2.0f)) * uniformDist(rndGenerator) + pow(ring0[0], 2.0f)); theta = 2.0 * M_PI * uniformDist(rndGenerator); instanceData[i].pos = glm::vec3(rho*cos(theta), uniformDist(rndGenerator) * 0.5f - 0.25f, rho*sin(theta)); instanceData[i].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator)); instanceData[i].scale = 1.5f + uniformDist(rndGenerator) - uniformDist(rndGenerator); instanceData[i].texIndex = rnd(textures.rocks.layerCount); instanceData[i].scale *= 0.75f; // Outer ring rho = sqrt((pow(ring1[1], 2.0f) - pow(ring1[0], 2.0f)) * uniformDist(rndGenerator) + pow(ring1[0], 2.0f)); theta = 2.0 * M_PI * uniformDist(rndGenerator); instanceData[i + INSTANCE_COUNT / 2].pos = glm::vec3(rho*cos(theta), uniformDist(rndGenerator) * 0.5f - 0.25f, rho*sin(theta)); instanceData[i + INSTANCE_COUNT / 2].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator)); instanceData[i + INSTANCE_COUNT / 2].scale = 1.5f + uniformDist(rndGenerator) - uniformDist(rndGenerator); instanceData[i + INSTANCE_COUNT / 2].texIndex = rnd(textures.rocks.layerCount); instanceData[i + INSTANCE_COUNT / 2].scale *= 0.75f; } instanceBuffer.size = instanceData.size() * sizeof(InstanceData); // Staging // Instanced data is static, copy to device local memory // This results in better performance struct { VkDeviceMemory memory; VkBuffer buffer; } stagingBuffer; VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, instanceBuffer.size, &stagingBuffer.buffer, &stagingBuffer.memory, instanceData.data())); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, instanceBuffer.size, &instanceBuffer.buffer, &instanceBuffer.memory)); // Copy to staging buffer VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = { }; copyRegion.size = instanceBuffer.size; vkCmdCopyBuffer( copyCmd, stagingBuffer.buffer, instanceBuffer.buffer, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); instanceBuffer.descriptor.range = instanceBuffer.size; instanceBuffer.descriptor.buffer = instanceBuffer.buffer; instanceBuffer.descriptor.offset = 0; // Destroy staging resources vkDestroyBuffer(device, stagingBuffer.buffer, nullptr); vkFreeMemory(device, stagingBuffer.memory, nullptr); } void prepareUniformBuffers() { VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.scene, sizeof(uboVS))); // Map persistent VK_CHECK_RESULT(uniformBuffers.scene.map()); updateUniformBuffer(true); } void updateUniformBuffer(bool viewChanged) { if (viewChanged) { uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f); uboVS.view = glm::translate(glm::mat4(), cameraPos + glm::vec3(0.0f, 0.0f, zoom)); uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); } if (!paused) { uboVS.locSpeed += frameTimer * 0.35f; uboVS.globSpeed += frameTimer * 0.01f; } memcpy(uniformBuffers.scene.mapped, &uboVS, sizeof(uboVS)); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareInstanceData(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) { return; } draw(); if (!paused) { updateUniformBuffer(false); } } virtual void viewChanged() { updateUniformBuffer(true); } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { textOverlay->addText("Rendering " + std::to_string(INSTANCE_COUNT) + " instances", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); } }; VULKAN_EXAMPLE_MAIN()