
Hypergraph-Based Type Theory for Software Development in a
Cyber-Physical Context

Nathaniel Christen1

1Linguistic Technology Systems, Inc.

January 14, 2020

Abstract

This chapter will explore the integration of several methodologies related to source code analysis and software
Requirements Engineering. The chapter will review graph-based representations of source code, alongside applied
type theory (for expressing programming languages’ type systems) and systematic accounts of foundational
programming elements such as functions/procedures, function calls, and inter-procedure information flows.
The new representational device described here involves a theory of “channels” which permits graph-based
code models to be integrated with type theories and lambda calculi structured around modern programming
paradigms. The proposed techniques support documentation and verification of procedural, data type, and
holistic specifications — implementational assumptions on procedures and/or modeling assumptions on types,
along with larger-scale inter-type relationships. This chapter will use real-world Cyber-Physical case studies
to illustrate data models which call for advanced code-documentation techniques, insofar as Cyber-Physical
software should prioritize safety and reliability. For concrete examples, an accompanying open-source data set (at
https://github.com/scignscape/ntxh) demonstrates code libraries concretizing techniques outlined here.

We take the view that all design has an impact on sustainability and all software has an impact on the world. Therefore, it is the responsibility of those who are
involved in the creation of software to consider this impact carefully. The various efforts described above tackle a wide range of different research questions,
often with very little overlap. ... Some seek to encourage reductions in consumption of energy and material goods, or to support changes in purchasing behavior.
Others seek to use software capabilities to build smarter (lower impact) infrastructure. However, there is a lack of common understanding of the fundamental
concepts of sustainability and how they apply, and a need for a common ground and consistent terminology. As such, persistent misperceptions occur, as
researchers and practitioners disagree over whether we’re even asking the right questions ... We lack a coherent framework with sound theoretical basis that can
provide a well-understood trans-disciplinary basis for sustainability design. — Sustainability Design and Software: The Karlskrona Manifesto [14, page 5]

It is possible to study Cyber-Physical systems at the
level of individual devices. Each device has its own me-
chanical properties, generates its own kind of data, and may
require its own software to interpret and understand that data.
As devices proliferate, so does the diversity of software via
which users may access whatever data they generate.

It is also possible to see Cyber-Physical systems in a
more holistic way. As Cyber-Physical networks proliferate,
we can envision a rise in technologies that merge and inte-
grate data from many kinds of devices and many different
vendors. Such an eventuality has already been contemplated,
including in this volume. Teixera et. al., for example, argue
that

Overall, the increase in sensors, devices, and appli-
ances, in our homes, has transformed it into a rather
complex environment with which to interact. This
characteristic cannot be merely addressed by a match-
ing set of device-dependent applications, turning the
smart home into a set of isolated interactive artifacts.
Hence, there is a strong need to unify this experi-
ence, blending this diversity into a unique interactive
ecosystem. This can be tackled, to a large extent by
the proposal of a unique, integrated, ubiquitous dis-
tributed smart home application capable of handling a
dynamic set of sensors and devices and providing the

1

https://github.com/scignscape/ntxh

different house occupants (e.g., children, teenagers,
young adults, and elderly) with natural and simple
ways of controlling and accessing information. How-
ever, the creation of such application presents a chal-
lenge, particularly due to the need to support natural
and adaptive forms of interaction beyond a simple
home dashboard application.

I will use the term hub application to describe software meet-
ing the requirements of what Teixera et. al. call an “ap-
plication capable of handling a dynamic set of sensors and
devices”.

Hub applications must receive data from many kinds
of devices. They must also respond properly to data once it
is received. Each kind of device should thereby have a cor-
responding software component built around data generated
by that particular device. For sake of discussion, I will call
such device-specific software components a hub library. Hub
libraries need to bridge the low-level realm of Cyber-Physical
signals (and the networks that carry them) with the high-level
realm of software engineering: GUI components, data vali-
dation, fluid and responsive User Experience, and so forth.
We may assume that hub applications will feature many hub
libraries, and that implementing hub libraries will become
an integral step in the process of deploying Cyber-Physical
instruments.

Hub applications, in short, serve as central loci orga-
nizing collections of hub libraries. In this role they have a
significance beyond just supplying a User Interface to Cyber-
Physical data. Hub libraries would provide a concrete artifact
that engineers may consult to obtain information about device
properties and expected behavior. Compared to (as Teixera et.
al. put it) “a set of isolated interactive artifacts”, I believe hub
applications and hub libraries, with a centralized architecture,
are more conducive to rigorous, concrete representation of
Cyber-Physical devices as technical products. This rigor can
make Cyber-Physical systems more secure and trustworthy —
hub applications may be used for testing and prototyping de-
vices and their supporting code, even before they are brought
to market.

This chapter is not explicitly about hub applications;
here I will examine coding and code documentation tech-
niques which are applicable in many contexts. However,
Cyber-Physical hubs are a good case study in programming
contexts where Requirements Engineering is an intrinsic ar-
chitectural feature. I write this chapter, then, from the per-
spective of a programmer creating a hub library for some

form of Cyber-Physical input. This programmer needs to
express in code the physical and computational details spe-
cific to the device’s signals, functionality, and capabilities.
The hub library should serve as a reference point, a proxy for
the device itself, in that engineers may study the library as
an indirect way of coming to understand the device. Given
these requirements, hub libraries need an especially rigor-
ous development methodology, one that emphasizes strict
documentation and verification of coding requirements.

I claim, also, that hub libraries are operationally simi-
lar to a different genre of software components: code libraries
providing access to scientific data sets. In practice, most
Cyber-Physical devices are products of Research and Devel-
opment cycles that emanate from scientific and technological
advances. Research data generated during an R&D phase may
therefore be an originating source for data models which
ultimately govern the deployed Cyber-Physical software. As
a result, code libraries which systematically access research
data may be seen as ancestral versions of hub libraries —
even though hub libraries prototypically work with real-time
input, whereas data sets are curated information spaces that
are frozen in time, and potentially reused in multiple research
projects.

In essence, libraries for accessing research data sets —
belonging to what may be called “dataset applications” — are
analogous to hub libraries whose real-time networking logic
is subtracted out; their input data comes from static files, not
from any kind of decentralized or wireless networks. Hub
libraries actually have two roles: they are low-level drivers
attuned to network signals, and also high-level processors
transforming raw data into analyzable and visualizable repre-
sentations. Hub libraries can inherit the logic for this second,
high-level role from R&D data-set libraries. This means that
published data sets, and their accompanying code, are an
important foundation for establishing data models and cod-
ing practices that may propagate through Cyber-Physical
systems’ subsequent deployment phases.

So, although I claimed to write this chapter from the
perspective of a programming writing a hub library, it is
more literally accurate to say that I am writing from the
perspective of a programmer composing dataset applications
— because that is my perspective in real life. I contend that
dataset applications are a reasonable proxy for hub libraries,
so that these perspectives will coincide for many practical
purposes.

I will orient this chapter’s discussion toward the C++

programming language, which is arguably the most central
point from which to consider the integration of concerns —

2

GUI, device networking, analytics — characteristic of Cyber-
Physical hub software. C++ is unique in having extensive
resources traversing various programming domains, like na-
tive GUI components alongside low-level networking and
logically rigorous data verification. For this reason C++ is a
reasonable default language for examining how these various
concerns interoperate.

The (predominantly C++) demo code for this chapter
includes several re-published data sets in various technical
and Cyber-Physical domains (bioacoustics, speech samples,
and parsed language samples) together with “dataset appli-
cations” to access research data and model its properties.
I hope these demonstrations serve to illustrate how future
Cyber-Physical data sets might be organized. I have also
supplemented the data sets with code bases operationalizing
many of the theoretical paradigms I present in the second
half of this chapter. For example, the code provides a modest
but demonstrative scripting platform via a hypergraph-based
Intermediate Representation based on (what I call) Channel
Algebra. A few code samples are drawn from the demo and
published here to illustrate some basic patterns in these hy-
pergraph structures; interested readers may find these sources
(perhaps in a revised form) discussed in much greater detail
in the documentation for the demo code.

The first two sections in this chapter, however, are less
theoretical and less code-oriented. These sections discuss hub
applications and Cyber-Physical systems on a more practical
level: what are representative examples of data structures
and coding requirements that hub libraries will need to en-
capsulate? The subsequent three sections will then turn to
computer code at a more theoretical level, outlining certain
representational paradigms, such as Directed Hypergraphs,
which I believe can yield more expressive and comprehensive
models of coding structures and requirements. The conclu-
sion will briefly discuss data-sharing initiatives, and how
these may benefit from code-modeling paradigms such as I
outline in this chapter.

1 Hub Applications and Gatekeeper
Code

To begin, I will speak in general terms about hub
applications and about the characteristic coding challenges
which derive from Cyber-Physical technologies’ unique net-
working and safety requirements. Implementing software
hubs introduces technical difficulties which are distinct from
manufacturing Cyber-Physical instruments themselves — in

particular, devices are usually narrowly focused on a par-
ticular kind of data and measurement, while software hubs
are multi-purpose applications that need to understand and
integrate data from many different kinds of devices. Hub
applications also present technical challenges that are dif-
ferent from other kinds of software, even if these hubs are
one specialized domain in the larger class of user-focused
software.

Any software application provides human users with
tools to interactively and visually access data and computer
files, either locally (data encoded on the “host” computer
running the software) or remotely (data accessed over a net-
work). Computer programs can be generally classified as
applications (which are designed with a priority to User Ex-
perience) and background processes (which often start and
maintain their state automatically and have little input or
visibility to human users, except for special troubleshooting
circumstances). Applications, in turn, can be generally clas-
sified as “web applications” (where users typically see one
resource at a time, such as a web page, and where data is
usually stored on remote servers) and “native applications”
(characterized by more complex GUI components, and by the
ability to work with “local” data — data stored on users’
computers or accessible on a local network — instead of or
in addition to data acquired from a web service).

From a software engineering point of view, I believe
we should conceptualize hub software as native, desktop-
style applications which leverage native GUI features. Hub
applications therefore embody a fundamentally different User
Experience than other kinds of Cyber-Physical access points,
like touch screens or phone apps.

To cite a concrete example, Teixeira et. al. describe a
refrigerator “that notifies the user if the door stays acciden-
tally open” and moreover “knows what is inside the refriger-
ator and [its] expiration dates”. Consider then how we would
design a User Interface networking with “smart” refrigera-
tors. A simple indicator showing whether doors are open is
straightforward, but an interface listing the items inside is
much more complicated. Once a refrigerator can detect sig-
nals emanating from food items/containers, we can envision
a list of items presented as a GUI component, perhaps one
food item per line (each line, say, showing a picture, price,
text description, and expiration date). This would require
cross-referencing numeric codes, which might be broadcast
by the items inside the refrigerator, against a database that
would load their images, descriptions, dates, and prices.

One question is then where this database would be
hosted, and how it would be updated (insofar as food compa-

3

nies develop new products fairly often; any static database
could quickly get outdated). Food companies (or some mid-
dleware agent) would have to agree on a common format
so that the refrigerator’s access software can integrate data
from many brands. Since a refrigerator can hold many items,
the GUI would also need enough screen space (and maybe
a multi-level design) for users to comfortably browse many
artifacts; perhaps a line-by-line window supplemented with
separate dialog windows for each item.

On the other hand, a phone app interfacing with that
same data would be constrained by its lesser screen real estate
and limited interactive modalities. With no room on-screen
to show a complete list of items — and no obvious gesture to
navigate between individual and multi-item views — such an
app might choose to list only those items nearing their expiry
date. In general, when adapting to phone-like usage patterns
(smaller screen, brief but frequent user engagement), design-
ers have to offer compact but curated snippets of information.
That is, software is forced to anticipate what info carries
the most user interest — expiry dates are probably most im-
portant to users when items are near perishing. This means
that data mining, Artificial Intelligence, and other techniques
for anticipating users’ needs becomes proportionately more
consequential: if the whole GUI design is premised on AI,
then AI ceases to be just a useful tool, augmenting software’s
analytic reach — it becomes instead a make-or-break User
Experience necessity.

Conversely, if we assume that hub applications will
adopt the “look and feel” of native desktop applications, then
they can present more holistic information — taking advan-
tage of larger screens, with secondary application windows
and other interactive features that we associate with native
GUI components. It is a reasonable hypothesis that this ren-
ders AI less important: the more data that can be shown, the
less need for software to filter information on users’ behalf.
As Teixera et. al. put it, “some authors argue that the number
of interactions between users and the smart home must be
kept to a minimum”, but “to remove obstacles in the adoption
of smart home systems ... preserving the autonomy of the
user may seem like the most sensible course of action”. In
that spirit, investments in AI solutions might be redirected
to HCI, securitization, data transparency, and other software
virtues which customers may value more than “smart” soft-
ware that actually strips them of control.

Hub applications could therefore exemplify what Teix-
era et. al. call “user-centric” design. In this guise, hubs have
at least three key responsibilities:

1. To present device and system data for human users, in
graphical, interactive formats suitable for people to over-

see the system and intervene as needed.

2. To validate device and system data, ensuring that the
system is behaving correctly and predictably.

3. To log data (in whole or in part) for subsequent analysis
and maintenance.

Once software receives device data, it needs to marshal the
information between different formats, exposing data in the
different contexts of GUI components, database storage, and
analytic review, to confirm proper operation of devices and
their handler code.

The more rigorously that engineers understand and
document the morphology of information across these differ-
ent software roles, the more clearly we can define protocols
for software design and user expectations. Careful design
requires answering many technical questions: how should
the application respond if it encounters unexpected data?
How, in the presence of erroneous data, can we distinguish
device malfunction from coding error? How should users
and/or support staff be notified of errors? What is the optimal
Interface Design for users to identify anomalies, or identify
situations needing human intervention, and then be able to
perform the necessary actions via software? What kind of
database should hold system data retroactively, and what kind
of queries or analyses should engineers be able to perform
so as to study system data, to access the system’s past states
and performance?

Because Cyber-Physical devices are intrinsically net-
worked — whether over special wireless networks or the
World Wide Web — there is an enlarged “surface area” for
vulnerability. Moreover, because they are often worn by peo-
ple or used in a domestic setting, they tend carry personal
(e.g., location) information, making network security pro-
tocols especially important ([12], [45], [76], [129], [130],
[134]). In brief, the dangers of coding errors and software
vulnerabilities, in Cyber-Physical Systems like the Internet
of Things (IOT), are even more pronounced than in other
application domains. While it is unfortunate if a software
crash causes someone to lose data, it is even more serious if a
Cyber-Physical “dashboard” application were to malfunction
and leave physical, networked devices in a dangerous state.

It is helpful at this point to distinguish cyber security
from safety. When these concepts are separated, security gen-
erally refers to preventing deliberate, malicious intrusion into
Cyber-Physical networks. Cyber safety refers to preventing
unintended or dangerous system behavior due to innocent hu-
man error, physical malfunction, or incorrect programming.
Malicious attacks — in particular the risks of “cyber warfare”

4

— are prominent in the public imagination, but innocent cod-
ing errors or design flaws are equally dangerous. Incorrect
data readings, for example, led to recent Boeing 737 MAX
jet accidents causing over 300 fatalities (plus the worldwide
grounding of that airplane model and billions of dollars in
losses for the company). Software failures either in runtime
maintenance or anticipatory risk-assessment have been iden-
tified as contributing factors to high-profile accidents like
Chernobyl [92] and the Fukushima nuclear reactor meltdown
[145]. A less tragic but noteworthy case was the 1999 crash
of NASA’s US $125 million Mars Climate Orbiter. This crash
was caused by software malfunctions which in turn were due
to intercommunicating software components producing in-
compatible data — in particular, employing incompatible
scales of measurement (resulting in an unanticipated mixture
of imperial and metric units). In general, it is reasonable to as-
sume that coding errors are among the deadliest and costliest
sources of man-made injury and property damage.

Given the risks of undetected data corruption, seem-
ingly mundane questions about how Cyber-Physical appli-
cations verify data — and respond to apparent anomalies
— become essential aspects of planning and development.
Consider even a simple data aggregate like blood pressure
(combining systolic and diastolic measurements). Empiri-
cally, systolic pressure is always greater than diastolic. Soft-
ware systems need commensurately to agree on a protocol for
encoding the numbers to ensure that they are in the correct
order, and that they represent biologically plausible measure-
ments. How should a particular software component test
that received blood pressure data is accurate? Should it al-
ways test that the systolic quantity is indeed greater than the
diastolic, and that both numbers fall in medically possible
ranges? How should the component report data which fails
this test? If such data checking is not performed — on the
premise that the data will be proofed elsewhere — then how
can this assumption be justified?

In general, how can engineers identify, in a large and
complex software system, all the points where data is subject
to validation tests; and then by modeling the overall system
in terms of these check-points ensure that all needed veri-
fications are performed at least one time? Continuing the
blood-pressure example, how would a software procedure
that does check the integrity of the systolic/diastolic pair
indicate for the overall system model that it performs that
particular verification? Conversely, how would a procedure
which does not perform that verification indicate that this
verification must be performed elsewhere in the system, to
guarantee that the procedure’s assumptions are satisfied?

These questions are important not only for objective,

measurable assessments of software quality, but also for
people’s more subjective trust in the reliability of software
systems. In the modern world we allow software to be a
determining factor in systems’ behavior, in places where mal-
function can be fatal — airplanes, hospitals, electricity grids,
trains carrying toxic chemicals, highways and city streets, etc.
Consider the model of “Ubiquitous Computing” pertinent to
the book series to which this volume (and hence this chapter)
belongs. As explained in the series introduction:1

U-healthcare systems ... will allow physicians to re-
motely diagnose, access, and monitor critical patient’s
symptoms and will enable real time communication
with patients. [This] series will contain systems based
on the four future ubiquitous sensing for healthcare
(USH) principles, namely i) proactiveness, where
healthcare data transmission to healthcare providers
has to be done proactively to enable necessary inter-
ventions, ii) transparency, where the healthcare mon-
itoring system design should transparent, iii) aware-
ness, where monitors and devices should be tuned
to the context of the wearer, and iv) trustworthiness,
where the personal health data transmission over a
wireless medium requires security, control and autho-
rize access.

Observe that in this scenario, patients will have to place a
level of trust in Ubiquitous Health technology comparable to
the trust that they place in human doctors and other health
professionals.

All of this should cause software engineers and devel-
opers to take notice. Modern society places trust in doctors
for well-rehearsed and legally scrutinized reasons: physi-
cians have to prove their competence before being allowed to
practice medicine, and this right can be revoked due to mal-
practice. Treatment and diagnostic clinics need to be licensed,
and pharmaceuticals (as well as medical equipment) are sub-
ject to rigorous testing and scientific investigation before
being marketable. Notwithstanding “free market” ideologies,
governments are aggressively involved in caretaking their
healthcare systems; commercial activities (like marketing)
are regulated, and operational transparency (like reporting
adverse outcomes) is mandated, more so than in most other
sectors of the economy. This level of oversight causes the
public to trust that clinicians’ recommendations are usually

1https://sites.google.com/view/series-title-ausah/home?

authuser=0

5

https://sites.google.com/view/series-title-ausah/home?authuser=0
https://sites.google.com/view/series-title-ausah/home?authuser=0

correct, or that medicines are usually beneficial more than
harmful.

The problem, as software becomes an increasingly
central feature of the biomedical ecosystem, is that no com-
mensurate oversight framework exists in the software world.
Biomedical IT regulations tend to be ad-hoc and narrowly
domain-focused. For example, code bases in the United
States which manage HL-7 data (a standardized EMR — Elec-
tronic Medical Record — format) must meet certain require-
ments, but there is no comparable framework for software
targeting other kinds of health-care information. This is not
only — or not primarily — an issue of lax government over-
sight. The deeper problem is that we do not have a clear
picture, in the framework of computer programming and soft-
ware development, of what a robust regulatory framework
would look like: what kinds of questions it would ask; what
steps a company could follow to demonstrate regulatory com-
pliance; what indicators the public should consult to verify
that any software that could affect their medical outcome has
been properly vetted.

In the United States, HL-7 (which encompasses mul-
tiple clinical, continuity-of-care, and decision-support for-
mats) is a good example of how technology can be backed
with robust certification and Quality Assurance layers (the
“7” refers to the seventh, or application-specific, layer of a
technology stack which collectively enables network-based
digital sharing of health records and other bioinformatic con-
tent). Government-supported programs such as ONC Health
IT Certification (ONC stands for “Office of the National
Coordinator for Health Information Technology”), which
maintains a network of software-evaluation labs and testing
infrastructure to vet Health IT products (called “modules”),
confirm in particular that software claiming HL-7 compliance
can properly consume and query information presented to
the system via document formats or data structures included
in the HL-7 family of standards. This gives developers clear
guidelines of what behaviors their applications must emu-
late in order to legitimately participate in biomedical data
sharing; and also allows doctors and patients to garner more
information about Health IT vendors’ solutions.

The limitation of HL-7 is, however, that its robust eval-
uation methodology only applies to the collection of data
formats standardized in the HL-7 family. Consequently, any
data generated by new treatments or technologies — whether
innovations in clinical methods, Cyber-Physical medical de-
vices, pharmaceuticals, computational methodology, or any
other research — will remain outside the certification pipeline
unless the new kind of generated data can be translated into
one of the HL-7 formats. Some new research may be amenable

to conventional EMR standards: clinical trials of a new medi-
cation, for example, may fit comfortably in existing reporting
formats because the desired outcomes — lowering blood
pressure, lowering viral load, shrinking tumors, and so forth
— can be measured and expressed via standard records. How-
ever, in many cases the whole premise of clinical innovations
is to rethink analytic methodologies; or clinical technology is
introduced which generates new kind of data (reflecting the
novel physical design of diagnostic equipment, for example)
that needs to be included in medical records according to its
own, internal data model.

As a concrete example, consider Eran Bellin’s “Clin-
ical Looking Glass” (CLG) model, developed at Montefiore
Medical Center in New York City [18]. Inspired by “patient-
centered” care trends, CLG seeks to organize clinical data
around “patient-centric time frames” and the structural rep-
resentation of patients’ trajectory through a medical system.
Diagnoses, for example, are then recorded as diagnostic
events (to use an example from CLG’s documentation, dia-
betes may be recorded as the event of a lab test reporting
HemoglobinA1C above 9.5), and subsequent time-points and
time-spans are defined as offsets from such “index events”.
The clinical rationale for CLG data models is to facilitate
“patient-centered” studies of medical data — analyzing for
instance the length of time between patients’ starting a treat-
ment course and the point at which a desired target outcome
is achieved; Bellin argues that conventional clinical software
is designed around “business-volume-centric” queries which
originate from hospitals’ administrative requirements rather
than patient-centered concerns, which makes it more difficult
to query normal clinical databases in a patient-centered man-
ner [17, pages 5-6]. The CLG software counters that trend by
developing a “patient-centered” query methodology (and a
GUI for doctors to graphically formulate queries), along with
a higher-scale “cohort model” where patients are aggregated
(while the patient-centered data models are preserved at the
cohort level). Internally, this query system depends upon an
“object model” whose diagnostic, temporal, and demographic
architecture differs from conventional Health IT representa-
tions. Moreover, the CLG application can pool databases from
multiple sources, so that data sharing and integration is an
intrinsic CLG feature.

Currently CLG is embodied in a single proprietary ap-
plication, but if the CLG query framework is appreciated by
doctors as noticeably more effective, it is easy to imagine
that the CLG object model will be generalized from its spe-
cific application context and repositioned as a object-system
which diverse software components could adopt. In this
scenario, given that CLG is expressly formulated as an alter-

6

native to traditional EMRs, it is reasonable to assume that
the CLG object model would engender its own “consume and
query” protocols — for data sharing, validation, and analysis
— which, consequently, would be too divergent from HL-7

formats for the HL-7 certification process to be applicable. In
that instance, comparable rigor would thus demand either a
separate certification initiative specific to CLG or an informal
(and therefore unregulated) commitment on the part of de-
velopers to comply with behavioral standards appropriate for
the CLG object model.

The case of CLG is just one example of clinical inno-
vation; given the (thankfully) fertile ground for research on
new treatments and technologies, we can see our healthcare
system as targets for many analogous innovations from the
biochemical, bioinformatics, and Cyber-Physical domains.
The sheer volume of new data models makes it likely that
“data-centric” certification as in HL-7 — standardizing a prede-
fined set of data models — will continually become outdated.
For this reason Requirements Engineering should look more
toward a “software-centric” paradigm, where developers con-
sciously adopt design patterns abstracted from particular data
models.2

Outside the medical arena, similar analyses — of the
need for robust but dynamically evolving vetting of new
technologies — could be made regarding software in Cyber-
Physical settings like transportation, energy (power gener-
ation and electrical grids), physical infrastructure, environ-
mental protections, government and civic data, and so forth
— settings where software errors threaten personal and/or
property damages. The public has a relatively inchoate idea
of issues related to cyber safety, security, and privacy: we
(collectively) have an informal impression that current tech-
nology is failing to meet the public’s desired standards, but
there is no clear picture of what IT engineers can or should
do to improve the technology going forward.

Regulatory oversight is only effective in proportion
to scientific clarity vis-à-vis desired outcomes. Drugs and
treatment protocols, for instance, can be evaluated through
“gold standard” double-blind clinical trials — alongside sta-
tistical models, like “five-sigma” criteria, which measure
scientists’ confidence that trial results are truly predictive,
rather than results of random chance. This package of sci-
entific methodology provides a framework which can then
be adopted in legal or legislative contexts. With respect to

2As a case-study, the dataset for this chapter includes an object model with some
similarities to CLG; the documentation and protocols associated with query evalua-
tors for that model demonstrate procedural-level Requirements Engineering using
techniques that can be applied across many data profiles — shifting the weight of
certification, or code evaluation, away from the specific data model and toward
procedural-level implementational maxims.

medications, policy makers can stipulate that pharmaceuti-
cals should be tested in double-blind trials, with statistically
verifiable positive results, before being approved for general-
purpose clinical use. Such a well-defined policy approach is
only possible because there are biomedical paradigms which
define how treatments can be tested to maximize the chance
that positive test results predict similar results for the general
patient population.

Analogously, a general theory of cyber safety should
be a software-design issue before it becomes a policy or
contractual issue. Software engineering and programming
language design needs its own evaluative guidelines; its own
analogs to double-blind trials and five-sigma confidence. It is
at the region of low-level software design — of actual source
code in its local implementation and holistic integration —
that engineers can develop technical “best practices” which
then provide substance to regulative oversight. Stakeholders
or governments can recommend (or require) that certain prac-
tices adopted, but only if engineers identify coding standards
which are believed, on firm theoretical grounds, to effectuate
safer, more robust software.

1.1 Gatekeeper Code

There are several design principles which can help
ensure safety in large-scale, native/desktop-style GUI-based
applications. These include:

1. Identify operational relationships between types. Suppose
D is a data structure modeled via type t. This type can
then be associated with a type (say, t′) of GUI components
which visually display values of that type t. A simple data
structure may have GUI representation via small “widgets”
embedded in other components (consider a thermometer
icon to display temperature). Conversely, if D has many
component parts, its corresponding GUI type may need
to span its own application window, with a collection of
nested textual or graphical elements. There may also be a
type (say, t′′) representing t-values in a format suitable for
database persistence. Application code should explicitly
indicate these sorts of inter-type relationships.

2. Identify coding assumptions which determine the validity
of typed values and/or function calls. For each application-
specific data type, consider whether every computation-
ally possible instance of that type is actually meaningful
for the real-world domain which the type represents. For
instance, a type representing blood pressure has a subset
of values which are biologically meaningful — where
systolic pressure is greater than diastolic and where both

7

numbers are in a sensible range. Likewise, for every
procedure defined on application-specific data types, con-
sider whether the procedure might receive arguments that
are computationally feasible but empirically nonsensical.
Then, establish a protocol for acting upon erroneous data
values or procedure parameters. How should the error be
handled, without disrupting the overall application?

3. Identify points in the code base which represent new data
being introduced into the application; and code which can
materially affect the “outside world”. Most of the code
behind GUI software will manage data being transferred
between different parts of the system, internally. How-
ever, there will be specific implementations for receiving
new data from external sources or signals. These are
places where data “enters the system”.3 Conversely, other
code points localize the software’s capabilities to initiate
external effects.4 The functions which leverage such capa-
bilities reveal data “leaving the system”. Distinguishing
where data “enters” and “leaves” the system from where
data is transferred inside the application helps ensure that
incoming data and external effects are properly vetted.5

Methods I propose in this chapter are applicable to each of
these concerns, but for purposes of exposition I will focus
on the second issue: testing type instances and procedure
parameters for fine-grained specifications (more precise than
strong typing alone).

Strongly-typed programming languages offer some
guarantees on types and procedures: a function which takes
an int will never be called on a value that is not an integer
(e.g., the character-string “46” instead of the number 46).
Likewise, a type where one field is an int (representing some-
one’s age, say), will never be instantiated with something
other than an int in that field. Such minimal guarantees, how-
ever, are too coarse for safety-conscious programming. Even
the smallest unsigned int type (8-bit) would permit some-
one’s age to be 255 years, which is surely an error. So any
safety-conscious code dealing with ages needs to check that
the numbers fall in a range narrower than built-in types allow

3A simple example is, for desktop applications, the preliminary code which runs
when users click a mouse button. In the Cyber-Physical context, an example might
be code which is activated when motion-detector sensors signal something moving
in their vicinity.

4For instance, one consequence of users clicking a mouse button might be that the
on-screen cursor changes shape. Or, motion detection might trigger lights to be
turned on. In these cases the software is hooked up to external devices which have
tangible capabilities, such as activating a light-source or modifying the on-screen
cursor.

5Several mathematical frameworks have been developed to codify the intuition
of software components as “systems” with external data sources and effects, ex-
tending the model of software as self-contained information spaces: notably,
Functional-Reactive Programming (see e.g. [75], [106], [107]) and (a little more
indirectly) the theory of Hypergraph Categories ([24], [55], [56], [82]).

on their own, or to ensure that such checks are performed
ahead of time.

The central technical challenge of safety-conscious
coding is therefore to extend or complement each program-
ming languages’ built-in type system so as to represent more
fine-grained assumptions and specifications. While individ-
ual tests may seem straightforward on a local level, a con-
sistent data-verification architecture — how this coding di-
mension integrates with the totality of software features and
responsibility — can be much more complicated. Developers
need to consider several overarching questions, such as:

• Should data validation be included in the same procedures
which operate on (validated) data, or should validation be
factored into separate procedures?

• Should data validation be implemented at the type level or
the procedural level? That is, should specialized data types
be implemented that are guaranteed only to hold valid data?
Or should procedures work with more generic data types,
and perform validations on a case-by-case basis?

• How should incorrect data be handled? In Cyber-Physical
software, there may be no obvious way to abort an operation
in the presence of corrupt data. Terminating the applica-
tion may not be an option; silently canceling the desired
operation or trying to substitute “correct” or “default” data
may be unwise; and presenting technical error messages to
human users may be confusing.

These questions do not have simple answers. As such, we
should develop a rigorous theoretical framework so as to
codify the various options involved — what architectural
decisions can be made, and what are the strengths and weak-
nesses of different solutions.

I will use the term gatekeeper code for any code which
checks programming assumptions more fine-grained than
strong typing alone allows — for example, that someone’s
age is not reported as 255 years, or that systolic pressure is not
recorded as less than diastolic. I will use the term fragile code
for code which makes programming assumptions without
itself verifying that such assumptions are obeyed. Fragile
code is especially consequential when incorrect data would
cause the code to fail significantly — to crash the application,
enter an infinite loop, or any other nonrecoverable scenario.

Note that “fragile” is not a term of criticism — some
algorithms simply work on a restricted space of values, and
it is inevitable that code implementing such algorithms will
only behave properly when provided values having the requi-
site properties. It is necessary to ensure that such algorithms
are only called with correct data. But insofar as testing of

8

the data lies outside the algorithms themselves, the proper
validation has to occur before the algorithms commence. In
short, fragile and gatekeeper code often has to be paired off:
for each segment of fragile code which makes assumptions,
there should be a corresponding segment of gatekeeper code
which checks those assumptions.

In that general outline, however, there is room for a
variety of coding styles and paradigms. Perhaps these can be
broadly classified into three groups:

1. Combine gatekeeper and fragile code in one procedure.

2. Separate gatekeeper and fragile code into different proce-
dures.

3. Implement narrower types so that gatekeeper code is
called when types are first instantiated.

Consider a function which calculates the difference between
systolic and diastolic blood pressure, returning an unsigned
integer. If this code were called with malformed data wherein
systolic and diastolic were inverted, the difference would be
a negative number, which (under binary conversion to an
unsigned integer) would come out as a potentially extremely
large positive number (as if the patient had blood pressure
in, say, the tens-of-thousands). This nonsensical outcome
indicates that the basic calculation is fragile. We then have
three options: test “systolic-greater-than diastolic” within
the procedure; require that this test be performed prior to
the procedure being called; or use a special data structure
configured such that systolic-over-diastolic can be confirmed
as soon as any blood-pressure value is constructed in the
system.

There are strengths and weaknesses of each option.
Checking parameters at the start of a procedure makes code
more complex and harder to maintain, and also makes up-
dating the code more difficult. The blood-pressure case is
a simple example, but in real situations there may be more
complex data-validation requirements, and separating code
which checks data from code which uses data, into differ-
ent procedures, may simplify subsequent code maintenance.
If the validation code needs to be modified — and if it is
factored into its its own procedure — this can be done with-
out modifying the code which actually works on the data
(reducing the risk of new coding errors).

Also, engineers may appreciate the flexibility to up-
grade how improper data is handled throughout the applica-
tion. Suppose it is decided to log, and periodically review,
all instances of malformed parameters “rejected” by gate-
keeper code. Every if...then...else block could potentially
then need to be paired with logging code, and it would be

time-consuming and error-prone to verify that such protocol
is obeyed everywhere, throughout a large, complex code base.
Isolating gatekeeper procedures, and labeling them as such,
would make it both easier to find all gatekeeping logic and to
modify the protocol for handling failed validations.

In essence, factoring gatekeeper and fragile code into
separate procedures exemplifies the programming maxim of
“separation of concerns”: it makes the overall system more
flexible and easier to maintain. However, such separation
creates a new problem — ensuring that the gatekeeping pro-
cedure is always called. Meanwhile, using special-purpose,
narrowed data types adds complexity to the overall project if
these data types are unique to that one code base, and there-
fore incommensurate with data provided by external sources.
In these situations the software must transform data between
more generic and more specific representations before shar-
ing it (as sender or receiver), which makes the code more
complicated.

Because there is no one best “gatekeeping protocol”,
these issues should be studied holistically, defining a range of
options that can be weighed at the planning and prototyping
stages — well before most of the serious production code
is implemented. Documentation that such preparatory con-
siderations have been worked through can then help external
monitors certify that the eventual code base was developed
rigorously and carefully.

In the specific Cyber-Physical context, gatekeeping is
especially important when working with device data. Such
data is almost always constrained by the physical construc-
tion of devices and the kinds of physical quantities they
measure (if they are sensors) or their physical capabilities
(if they are “actuators”, devices that cause changes in their
environments). For sensors, it is an empirical question what
range of values can be expected assuming proper functioning
(and therefore what validations can check that the instrument
is working as intended). For actuators, it should be simi-
larly understood what range of values guarantee safe, correct
behavior. For any device then we can construct a profile —
an abstract, mathematical picture of the space of “normal”
values associated with proper device performance. Gate-
keeping code may thereby ensure that data received from or
sent to devices fits within the profile. Defining device pro-
files, and explicitly notating the corresponding gatekeeping
code, should accordingly be an essential pre-implementation

9

planning step for Cyber-Physical software hubs.

1.2 Fragile Code

Fragile code is code that makes assumptions stronger
than the programming language on its own can guarantee.
Where safety and quality is a priority, fragile code needs
gatekeeping code to ensure that these assumptions are war-
ranted.

Fragile code is not necessarily a harbinger of poor
design. Sometimes implementations can be optimized for
special circumstances, and optimizations are valuable and
should be used wherever possible. Consider an optimized
algorithm that works with two lists that must be the same size.
Such an algorithm should be preferred over a less efficient
one when possible — which is to say, whenever dealing with
two lists which are indeed the same size. Suppose this algo-
rithm is included in an open-source library intended to be
shared among many different projects. The library’s engineer
might, quite reasonably, deliberately choose not to check that
the algorithm is invoked on same-sized lists — checks that
would complicate the code, and sometimes slow the algo-
rithm unnecessarily. It is then the responsibility of code that
calls whatever procedure implements the algorithm to ensure
that it is being employed correctly — specifically, that this
“client” code does not try to use the algorithm with different-
sized lists. Here “fragility” is probably well-motivated: ac-
cepting that algorithms are sometimes implemented in fragile
code can make the code cleaner, its intentions clearer, and
permits their being optimized for speed.

The opposite of fragile code is sometimes called “ro-
bust” code. While robustness is desirable in principle, code
which simplistically avoids fragility may be harder to main-
tain than deliberately fragile but carefully documented code.
Robust code often has to check for many conditions to en-
sure that it is being used properly, which can make the code
harder to maintain and understand. The hypothetical algo-
rithm that I contemplated last paragraph could be made robust
by checking (rather than just assuming) that it is invoked with
same-sized lists. But if it has other requirements — that the
lists are non-empty, and so forth — the implementation can
get padded with a chain of preliminary gatekeeper code. In
such cases the gatekeeper code may be better factored into
a different procedure, or expressed as a specification which
engineers must study before attempting to use the implemen-
tation itself.

Such transparent declaration of coding assumptions
and specifications can inspire developers using the code to

proceed attentively, which can be safer in the long run than
trying to avoid fragile code through engineering alone. The
takeaway is that while “robust” is contrasted with “fragile”
at the smallest scales (such as a single procedure), the overall
goal is systems and components that are robust at the largest
scale — which often means accepting locally fragile code.
Architecturally, the ideal design may combine individual,
locally fragile units with rigorous documentation and gate-
keeping so that the totality is robust. Defining and declaring
specifications is then an intrinsic part of implementing code
bases which are both robust and maintainable.

Unfortunately, specifications are often created only as
human-readable documents, which might have a semi-formal
structure but are not actually machine-readable. There is then
a disconnect between features in the code itself that promote
robustness, and specifications intended for human readers
— developers and engineers. The code-level and human-
level features promoting robustness will tend to overlap par-
tially but not completely, demanding a complex evaluation of
where gatekeeping code is needed and how to double-check
via unit tests and other post-implementation examinations.
This is the kind of situation — an impasse, or partial but
incomplete overlap, between formal and semi-formal spec-
ifications — which many programmers hope to avoid via
strong/expressive type systems.

Advanced type-theoretic constructs — including De-
pendent Types, typestate, and effect-systems — model re-
quirements with more precision than can be achieved via
conventional type systems alone. Integrating these paradigms
into core-language type systems permits data validation to be
integrated with general-purpose type checking, without the
need for static analyzers or other “third party” tools (projects
maintained orthogonally to the actual language — that is,
to languages’ compilers and runtimes). This means that Re-
quirements Specifications that would otherwise be human
documents — communiqués between developers, but only
at best partially enforced by programming languages inter-
nally — get formalized to the point where compilers (for
example) evaluate requirements without human intervention.
Unfortunately, these advanced type systems are also more
complex to implement. If Software Language Engineers
aspire to make Dependent Types and similar advanced con-
structs part of their core language, creating compilers and
runtime engines for these languages becomes proportionately
more difficult.

Programming languages are, at one level, artificial
languages — they allow humans to communicate algorithms
and procedures to computer processors, and to one another.
But programming languages are also themselves engineering

10

artifacts. It is a complex project to transform textual source-
code — which is human-readable and looks a little bit like
natural language — into binary instructions that computers
can execute. For each language, there is a stack of tools —
parsers, compilers, and/or runtime libraries — which enable
source code to be executed according to the language specifi-
cations. Language design is therefore constrained by what
is technically feasible for these supporting tools. Practical
language design, then, is an interdisciplinary process which
needs to consider both the dimension of programming lan-
guages as communicative media and as digital artifacts with
their own engineering challenges and limitations.

These limitations then produce a split between tools in
the language itself and those maintained as separate projects
analyzing code in a given language. They raise the question,
which has no simple answer, of what should be guaranteed
by the language and what should be tested externally. I will
now examine this question in greater detail.

1.3 Core Language vs. External Tools

Because of programming languages’ engineering lim-
itations, such as I just outlined, software projects should not
necessarily rely on core-language features for responsible,
safety-conscious programming. In short, methodologies for
safety-conscious coding can be split between those which
depend on core-language features, and those which rely on
external, retroactive analysis of sensitive code. On the one
hand, some languages and projects prioritize specifications
that are intrinsic to the language and integrate seamlessly
and operationally into the language’s foundational compile-
and-run sequence. Improper code (relative to specifications)
should not compile, or, as a last resort, should fail gracefully
at run-time. Moreover, in terms of programmers’ thought
processes, the description of specifications should be intel-
lectually continuous with other cognitive processes involved
in composing code, such as designing types or implementing
algorithms. For sake of discussion, I will call this paradigm
“internalism”.

The “internalist” mindset seeks to integrate data vali-
dation seamlessly with other language features. Malformed
data should be flagged via similar mechanisms as code which
fails to type-check; and errors should be detected as early in
the development process as possible. Such a mindset is evi-
dent in passages like this (describing the Ivory programming
language):

Ivory’s type system is shallowly embedded within
Haskell’s type system, taking advantage of the ex-
tensions provided by [the Glasgow Haskell Com-
piler]. Thus, well-typed Ivory programs are guar-
anteed to produce memory safe executables, all with-
out writing a stand-alone type-checker [my empha-
sis]. In contrast, the Ivory syntax is deeply embedded
within Haskell. This novel combination of shallowly-
embedded types and deeply-embedded syntax permits
ease of development without sacrificing the ability to
develop various back-ends and verification tools [such
as] a theorem-prover back-end. All these back-ends
share the same AST [Abstract Syntax Tree]: Ivory
verifies what it compiles. [48, page 1].

In other words, the creators of Ivory are promoting the fact
that their language buttresses via its type system — and via
a mathematical precision suitable for proof engines — code
guarantees that for most languages require external analysis
tools.

Contrary to this “internalist” philosophy, other ap-
proaches (perhaps I can call them “externalist”) favor a neater
separation of specification, declaration and testing from the
core language. In particular — according to the “external-
ist” mind-set — most of the more important or complex
safety-checking does not natively integrate with the underly-
ing language, but instead requires either an external source
code analyzer, or regulatory runtime libraries, or some com-
bination of the two. Moreover, it is unrealistic to expect all
programming errors to be avoided with enough proactive
planning, expressive typing, and safety-focused paradigms:
any complex code base requires some retroactive design,
some combination of unit-testing and mechanisms (includ-
ing those third-party to both the language and the projects
whose code is implemented in the language) for externally
analyzing, observing, and higher-scale testing for the code,
plus post-deployment monitoring.

As a counterpoint to the features cited as benefits to
the Ivory language, which I identified as representing the
“internalist” paradigm, consider Santanu Paul’s Source Code
Algebra (SCA) system described in [104] and [98], [135]:

Source code files are processed using tools such as
parsers, static analyzers, etc. and the necessary infor-
mation (according to the SCA data model) is stored in

11

a repository. A user interacts with the system, in prin-
ciple, through a variety of high-level languages, or
by specifying SCA expressions directly. Queries are
mapped to SCA expressions, the SCA optimizer tries
to simplify the expressions, and finally, the SCA eval-
uator evaluates the expression and returns the results
to the user.

We expect that many source code queries will
be expressed using high-level query languages or
invoked through graphical user interfaces. High-
level queries in the appropriate form (e.g., graphi-
cal, command-line, relational, or pattern-based) will
be translated into equivalent SCA expressions. An
SCA expression can then be evaluated using a stan-
dard SCA evaluator, which will serve as a common
query processing engine. The analogy from relational
database systems is the translation of SQL to expres-
sions based on relational algebra. [104, page 15]

So the algebraic representation of source code is favored here
because it makes computer code available as a data structure
that can be processed via external technologies, like “high-
level languages”, query languages, and graphical tools. The
vision of an optimal development environment guiding this
kind of project is opposite, or at least complementary, to a
project like Ivory: the whole point of Source Code Algebra
is to pull code verification — the analysis of code to build
trust in its safety and robustness — outside the language
itself and into the surrounding Development Environment
ecosystem.

These philosophical differences (what I dub “inter-
nalist” vs. “externalist”) are normative as well as descrip-
tive: they influence programming language design, and how
languages in turn influence coding practices. One goal of
language design is to produce languages which offer rigorous
guarantees — fine-tuning their type system and compilation
model to maximize the level of detail guaranteed for any
code which type-checks and compiles. Another goal of lan-
guage design is to define syntax and semantics permitting
valid source code to be analyzed as a data structure in its
own right. Ideally, languages can aspire to both goals. In
practice, however, achieving both equally can be technically
difficult. The internal representations conducive to strong
type and compiler guarantees are not necessarily amenable
to convenient source-level analysis, and vice-versa.

Language engineers, then, have to work with two
rather different constituencies. One community of pro-
grammers tends to prefer that specification and validation

be integral to/integrated with the language’s type system
and compile-run cycle (and standard runtime environment);
whereas a different community prefers to treat code evalua-
tion as a distinct part of the development process, something
logically, operationally, and cognitively separate from hand-
to-screen codewriting (and may chafe at languages restricting
certain code constructs because they can theoretically pro-
duce coding errors, even when the anomalies involved are
trivial enough to be tractable for even barely adequate code
review). One challenge for language engineers is accordingly
to serve both communities. We can, for example, aspire to
implement type systems which are sufficiently expressive
to model many specification, validation, and gatekeeping
scenarios, while also anticipating that language code should
be syntactically and semantic designed to be useful in the
context of external tools (like static analyzers) and models
(like Source Code Algebras and Source Code Ontologies).

The techniques I discuss here work toward these goals
on two levels. First, I propose a general-purpose represen-
tation of computer code in terms of Directed Hypergraphs,
sufficiently rigorous to codify a theory of functional types
as types whose values are (potentially) initialized from for-
mal representations of source code — which is to say, in the
present context, code graphs. Next, I analyze different kinds
of “lambda abstraction” — the idea of converting closed
expressions to open-ended formulae by asserting that some
symbols are “input parameters” rather than fixed values, as
in Lambda Calculus — from the perspective of axioms regu-
lating how inputs and outputs may be passed to and obtained
from computational procedures. I bridge these topics — Hy-
pergraphs and Generalized Lambda Calculi — by taking
abstraction as a feature of code graphs wherein some hypern-
odes are singled out as procedural “inputs” or “outputs”. The
basic form of this model — combining what are essentially
two otherwise unrelated mathematical formations, Directed
Hypergraphs and (typed) Lambda Calculus — is laid out in
Sections §3 and §4. I then engage a more rigorous study
of code-graph hypernodes as “carriers” of runtime values,
some of which collectively form “channels” concerning val-
ues which vary at runtime between different executions of a
function body. Carriers and channels piece together to form
“Channel Groups” that describe structures with meaning both
within source code as an organized system (at “compile time”
and during static code analysis) and at runtime. Channel
Groups have four different semantic interpretations, varying
via the distinctions between runtime and compile-time and
between expressions and (function) signatures. I use the
framework of Channel Groups to identify design patterns
that achieve many goals of “expressive” type systems while
being implementationally feasible given the constraints of

12

mainstream programming languages and compilers.

Prior to launching into that mostly theoretical discus-
sion, however, I will examine real-world Cyber-Physical data
with a little more specificity. My goal in the following pages
is to describe the sorts of details that need to be expressed in
Cyber-Physical data models and therefore verified in Cyber-
Physical code. Whereas my subsequent analyses of code
representation will address how code can demonstrate its un-
derlying data model, my preliminary discussion will motivate
why code needs to do so in the first place.

2 Case Studies

To motivate the themes I will emphasize going for-
ward, this section will examine some concrete data models
which are used or proposed in various Cyber-Physical con-
texts. I hope this discussion will lay out parameters on device
behavior or shared data to illustrate typical modeling patterns
and their corresponding safety or validation requirements. As
an initial overview, the following are some examples of data
profiles that might be wedded to deployed Cyber-Physical
devices (my comments here are also summarized in Table 1
on page 19):

Heart-Rate Monitor A heart-rate sensor generates
continuously-sampled integer values whose understood
Dimension of Measurement is in “beats per minute” and
whose maximum sensible range (inclusive of both rest and
exercise) corresponds roughly to the

[
40− 200

]
interval.

Interpreting heart-rate data depends on whether the person
is resting or exercising. Therefore, a usable data structure
might join a beats-per-minute dimension with a field
indicating (or measuring) exertion, either a two-valued
discrimination between “rest” and “exercise” or a more
granular sampling of a person’s movement cotemporous
with the heart-rate calculations.

Accelerometers These devices measure object’s or people’s
rate of movement (see [8], [19], [84], [86], etc.), and there-
fore can be paired with heart-rate sensors to quantify how
heart rate is affected by exercise (likewise for other biomet-
ric instruments, such as those calculating respiration rate).
Outside the biomedical context, accelerometers are impor-
tant for Smart Cities (or factories, and so forth) for modeling
the integrity of buildings, bridges, and industrial areas or
structures (see e.g. [139], [148]).

An accelerometer presents data as voltage changes in two
or three directional axes, data which may only produce sig-
nals when a change occurs (and therefore is not continuously

varying), and which is mathematically converted to yield
information about physical objects’ (including a person’s)
movement and incline. Mechanically, that is, accelerometers
actually measure voltage, from which quantitative reports of
movement and incline can be derived. Accelerometers are
classified as biaxial or triaxial depending on whether they
sample forces in two or three spatial dimensions.

The pairwise combination of heart-rate and acceleration
data (common in wearable devices) is then a mixture of
these two measurement profiles — partly continuous and
partly discrete sampling, with variegated axes and inter-
dimensional relationships.

Remote Medical Diagnosis An emerging application of
Cyber-Physical technology involves medical equipment de-
ployed outside conventional clinical settings — in remote
areas with little electricity, refugee camps, temporary ad-hoc
medical units (established to contain potential epidemics,
for instance), and so forth. These settings have limited di-
agnostic capabilities, so data is often transmitted to distant
locations in lieu of on-site laboratories.

A good case-study derives from “medical whole slide
imaging” (MWSI) [13], where a mobile phone attached to
an ordinary microscope, by subtle modifications of camera
position and microscope resolution, allows many views to
be made on one slide.6 Positional data (the configuration of
the phone and microscope) then merges with image segmen-
tation computations characteristic of conventional whole
slide imaging (see, e.g., [52]); and by extension diagnos-
tic pathology in general, which is concerned with isolating
medically significant image features and identifying diagnos-
tically indicative anomalies (such as cell shapes suggesting
cancer).

Segmentation, in turn, generates multiple forms of geo-
metric data: in [78], for instance, segments are identified as
approximations to ellipse shapes, and features are tracked
across scales of resolution, so geometric data merges ellipse
dimensions with positional data (in the image) and a metric
of feature persistence across scales. (Features which are
detectable at many scales of resolution are more likely to
be empirically significant rather than visual “noise”; calcu-
lating cross-scale “persistence” is an applied methodology
within Statistical Topology — see e.g. [46], [93], [127]).
Merged with MWSI configuration info and patient data, the
whole data package integrates geometric, Cyber-Physical,
and health-record aspects.

6The modified microscopes themselves — rigged so that mounted cameras can cap-
ture views on microscope slides and transmit them via wifi or cell phones — are an
invention of AlexaPath, an NYU-incubated company that subsequently developed
products in AI and other aspects of remote pathology.

13

Speech Sampling Audio sensors can be used to isolate dif-
ferent people’s speech episodes (see Alluri and Vuppala, this
volume; and Vuddagiri et. al., this volume). Feature extrac-
tion cancels background noise and partitions the foreground
audio into different segments, individuated (potentially) by
differences between speakers as well as each speaker’s sepa-
rated conversation turns. Such data can then be employed
in several ways. The two chapters just mentioned present
methodology for estimating speakers’ emotional states and
identifying samples’ spoken language or dialect, respec-
tively; while the chapter by Teixera et. al. (which I quoted
earlier) discusses speech-activated User Interfaces.

The data profile germane to an audio processor will be
determined by the system’s overarching goals. For example,
[35] describes techniques for measuring emotional stress
via heart-rate signals. Combined with speech-derived data,
a system might accordingly be designed around emotional
profiles, merging linguistic and biometric evidence. For
those use-cases, programming would emphasize signs of
emotional changes (reinforced by both metrics), and secon-
darily isolating times and locations, which factor into proper
software responses to users’ moods.

On the other hand, a voice-based User Interface might
similarly model speakers’ identity and location, but perform
Natural Language Processing to translate speech patterns
into models of user requests. Or, the use-case in Vuddagiri
et. al. in this volume profiles speech data for language clas-
sification (viz., matching voices to the language or dialect
spoken) as part of a “smart city” network. The priority here
is not necessarily identifying individual speakers, or map-
ping vocalizations to semantic or syntactic parses (although
dialect-identification is obviously a first step for those capa-
bilities); even without further Natural Language Processing,
tagged samples can yield a geospatial model of language-use
in a given area.

Bioacoustic Sampling Similar to speech sampling (at least
up to the point where acoustical analysis gives way to syn-
tax and semantics), audio samples can be used to track and
identify species (Ganchev, this volume; and Boulmaiz, et.
al., this volume). Here again feature extraction foregrounds
certain noise patterns, but the main analytic objective is to
map audio samples to the species of the animal that produced
them. Sensor networks can then build a geospatial/tempo-
ral model of species’ distribution in the area covered by
the network: which species are identified, their prevalence,
their concentration in different smaller areas, and so forth.
These measurements can be employed in the study of species
populations and behavioral patterns, and can also add data
to urban-planning or ecological models. For example, pre-
cipitous decline of a species in some location can signal

environmental degradation in that vicinity.
Data sets such as those accompanying [118] (the smallest,

labeled CLO-43SD, is profiled within this chapter’s data set)
provide a good overview of data generated during species
identification: in addition to audio samples themselves (in
WAV format), the data set includes NPY (Numerical Python)
files representing different spectral analysis methods applied
to the bird songs, as well as a metadata file summarizing
species-level data (such as the count of samples identified
for each species). Every species also acquires a 4-letter iden-
tifier then used as part of the WAV and NPY file names, which
thereby themselves serve a classifying role, semantically
linking each sample to its species. These three levels of
information are a good example of the contrast in granularity
— and the mechanisms of information acquisition — be-
tween raw Cyber-Physical input (the audio files), midstream
processing (the spectral representations), and summarial
overviews (species counts and labels; other avian data sets
might also recognize geospatial coordinates obtained via
noting sensor placement, as a further metadata dimension).

Facial Recognition Given a frontal (or, potentially, partial)
view, software can rather reliably match faces to a preex-
isting database or track faces across different locales ([30],
[44], [72], [77], [89], etc.). The most common methodol-
ogy depends on normalizing each foreground image segment
(corresponding to one face) into a rectangle, whose axes then
establish vector components for any features inside the seg-
ment. Feature extraction then isolates anatomical features
like eyes, nose, mouth, and chin, quantifying their position
and distances, yielding a collection of numeric values which
can statistically identify a person with relatively small error
rates.

Given privacy concerns, enterprise or government use of
this data is controversial: should analyses be performed on
every person, or only on exceptional circumstances (crime
investigation, say)? Can facial-recognition outcomes be
anonymized so that faces would be tracked across locations
but not tied to specific persons without extra (normally in-
accessible) data? When and by whom should face data be
obtainable, and under what legal or commercial circum-
stances? Should stores be allowed to use these methods to
prevent shoplifting, for example? What about searching for
a missing or kidnapped child, or keeping tabs on an elderly
patient? When does surveillance cross the line from benevo-
lent (protecting personal or public safety) to privacy-invasive
and authoritarian?

Of course, there are many other examples of Cyber-
Physical devices and capabilities that could be enumerated.
But these cases illustrate certain noteworthy themes. One

14

observation is that a gap often exists between how devices
physically operate and how they are conceptualized — ac-
celerometers, for instance, mechanically measure voltage,
not acceleration or incline; but their data exposed to client
software is constructed to be applied as vectors indicating
persons’ or objects’ movement. Moreover, multiple process-
ing steps may be needed between raw physical inputs and
usable software-facing data structures. Such processing may
generate a large amount of intermediate data; feature extrac-
tion from audio or image samples, say, can yield numeric
aggregates with tens or hundreds of different fields. Further
processing usually reduces these structures to narrower sum-
maries: an audio sample might be consolidated to a spatial
location and temporal timestamp, along with a mapping to
an individual person speaking (perhaps along with a text
transcription), or human language spoken, or animal species.
Engineers then have to decide what level of detail to expose
across a software network. Another issue is integrating data
from multiple sources: most of the more futuristic scenarios
envision multi-modal Ubiquitous Computing spaces where,
e.g., speech and biometric inputs are cross-referenced.

Different levels of data resolution also intersect with
privacy concerns: simpler data structures are more likely
to employ private or sensitive information as an organiz-
ing instrument, heightening security and surveillance con-
cerns. For example, a simple facial-recognition system would
match faces against known residents of or visitors to the rele-
vant municipalities. This is less technologically challenging
than anonymized systems which would persist more mid-
processing data in order to complete the algorithmic cycle —
matching faces to concrete individuals — only under excep-
tional circumstances; of course, though, it is also a greater
invasion of privacy.

Analogously, syncing speech technology with per-
sonal health data would be simplified by directly matching
speaker identifications to biosensor devices wearers. Again,
though, using personal identities as an anchor for disparate
data points makes the overall system more vulnerable to in-
trusive or inappropriate use. In total, security concerns might
call for more complex data structures wherein shared data
excludes the more condensed summaries wherever they may
expose private details, and relies more on multipart, mid-level
processing structures. Rather than organize face-recognition
around a database of persons, for example, the basic units
might be numeric profiles paired with probabilistic links no-
tating that a face detected at one time and place matches a
face analyzed elsewhere, but without that similarity being
anchored in a personal identifier.

Other broad issues raised by these CybePhysical case-

studies include (1) testing and quality assurance and (2) data
interoperability. In the case of testing, many of the scenarios
outlined above require complex computational transforma-
tions to convert raw physical data into usable software arti-
facts. In [6], for example, the authors present technology to
measure heart rate from a distance, based on subtle analysis
of physical motions associated with blood circulation and
breathing. The analytic protocols leverage feature extraction
from wireless signal patterns. As with feature extraction in
audio and image-analysis (e.g. face recognition) settings,
algorithms need to be rigorously tested to guard against false
inferences or erroneous generated data. In [6] the ultimate
goal is to introduce heart and breathing monitors within a
Smart Home environment, with computations performed on
embedded Operating Systems. However, testing and proto-
typing of the technology should be conducted in a desktop
Operating System environment so as to generate or leverage
test data, document algorithmic revisions, and in general
prove the system’s trustworthiness in a controlled setting (in-
cluding a software environment which transparently windows
onto computational processes) before this kind of network is
physically deployed.

With respect to data integration, notice how projects
mentioned here often anticipate pooled or overlapping infor-
mation. For instance, Smart Homes are envisioned to embed
sensors analyzing speech, biomedical data-points like heart
rate, atmospheric measurements (temperature, say) and appli-
ance or architectural states (windows, doors, or refrigerator
doors being open, ovens or stove burners being turned on,
heaters/coolers being active, and so forth). In some cases
this data would be cross-referenced, so that e.g. a voice com-
mand would close a window or turn off a stove. Analogously,
[123] (one of whose co-authors is also a coauthor of this
volume’s chapter on bird species) describes a combination
of face-recognition and speech analysis for “multi-modal
biometric authentication”; here again a component supply-
ing image-processing data and one supplying speech metrics
will need to transmit data to a hub where the two inputs
can be pooled. Or, as I pointed out in the case of Mobile
Whole Slide Imaging, image-segmentation, Cyber-Physical,
and personal-health information fields may all be integrated
into a holistic diagnostic platform.

Overall, future Cyber-Physical systems may be inte-
grated not only with respect to their empirical domain but
in term of the environs where they are deployed — Smart
Homes, Smart Cities (or factories or industrial plants), hospi-
tals and medical offices, schools and children’s activities cen-
ters, refugee or displaced-persons camps/campuses, and so
forth. I’ll take Smart Homes as a case in point. We can imag-

15

ine future homes/apartments provisioned with a panoply of
devices evincing a broad spectrum of scientific backgrounds,
from biology and medicine to ecology and industrial manu-
facturing.

2.1 How “Internet of Things” Interoperability
Affects Data Modeling Priorities

So, let’s imagine the following scenario: homeown-
ers have a choice of applications that they may install on
their computers, supplied by multiple vendors or institutions,
which access the myriad of Smart Home devices they’ve
installed around the property. Cyber-Physical products are
engineered to interoperate with such hub applications — and
therefore with third-party components — rather than just net-
working with their own proprietary access points, like phone
apps.

In this eventuality, technology inside the home is
charged with pooling data from many kinds of devices into a
comprehensive Smart Home platform, where users can see a
broad overview, access disparate device data from a central
location, and where cross-device data will be merged into ag-
gregate models: e.g., cross-referencing speech and biometric
inputs. Devices must be designed to broadcast data to third-
party software platforms, and software hubs must wrangle
received data into a common format permitting integration al-
gorithms — e.g. syncing speech and biometrics — to operate
properly. Received device data must therefore be systemat-
ically mapped to appropriate transform procedures and GUI

components. This is important because we are no longer
considering data models from the viewpoint of devices’ own
capabilities (viz., their specific physical measurements and
parameters). More technically, the key libraries associated
with devices are no longer merely low-level drivers or IOT

signal processors. Instead, the technology stack would in-
clude an intermediate semantic layer acting between “smart
objects” and corresponding hub applications.

The data models at this semantic midlayer, moreover,
would no longer be device-centric. Instead, they would be
assessed in a software-centric milieu: how do we route de-
vice data to proper interpretive procedures? How do we
consolidate device data into GUI presentations? This means
that common representational formats for wireless data, or
standardized IOT Ontologies — however much these may
technically embody semantic middleware — are insufficient
as high-level, software-centric semantic layers.

In the case of a Smart Home, once we commit to

aggregating devices via a software hub, the key organizing
principle is a mesh of procedures implemented in the hub
application that can pool all relevant devices into one infor-
mation space. What needs to be standardized then are not so
much data formats, but in fact data-handling procedures.

To put it differently, device manufacturers would now
be dealing with an ecosystem in which hub applications
receive and aggregate their data, affording users access points
to and overviews of device data and state. Hub applications
may be provided by different companies and iterations, their
inner workings opaque to devices themselves. What can
be standardized, however, are the procedures implemented
within hub software to receive and properly act upon device
data. Software might guarantee, for example, that so long as
devices are supplying signals in their documented formats,
the software has capabilities to receive the signals, unpack
the data, and internally represent the data in a manner suitable
for device particulars. Devices can then specify what kind of
internal representations are appropriate for their specific data,
essentially specifying conditions on software procedures and
data types.

In short, the key units of mutual trust and verifica-
tion among and between Cyber-Physical devices and Cyber-
Physical software are not, in theory, data structures them-
selves, but instead procedures for processing relevant data
structures. Robust Cyber-Physical ecosystems can be devel-
oped by reinforcing procedural alignment wherever possible,
including by curating substantial collections of reusable soft-
ware libraries, either for direct application or as prototypes
and testing tools. Procedural alignment means that disparate
components become integrated by virtue of each components’
anticipating the procedures which the others have available
for sending, receiving, and manipulating data — an inte-
gration strategy I’ll dub “POSC” (Procedure-Oriented and
Software-Centric) by contract to data format or even Onto-
logical alignment.

Suppose many Cyber-Physical sensors were paired
with open-source code libraries which illustrate how to pro-
cess the data each device broadcasts. Commercial products
could use those libraries directly, or, if they want to substi-
tute closed-source alternatives, might be required to docu-
ment that their data management emulates the open-source
prototypes. Test suites and testing technology can then be
implemented against the open-source libraries and reused
for stress-testing analogous proprietary components. This
appears to be the most likely path to ensuring interoperable,
high-quality Cyber-Physical technology that serves the ulti-
mate goal of integrated Smart Home (and Smart City, etc.)
solutions.

16

That hypothesis notwithstanding, there are a lot more
academic papers on Cyber-Physical Ontologies or common
signal/message formats, like COAP and MQTT ([7], [41], [60],
[66], [68], [116], etc.) than there are open-source libraries
which prototype device data, its validation, parameters, and
proper transformations.7 A good case-in-point can be found
in [111, pages 4 ff.] using C structures to model COAP meta-
data: while it is reasonable, even expected, for low-level
driver code to be implemented in C, this code should also
be the basis of data models implemented in a language like
C++ where dimensions and ranges can be made explicit in
the data types. Nevertheless, many engineers will instead
focus on describing the more nuanced data modeling dimen-
sions through Ontologies and other semantic specifications
wholly separate from programming type systems. This has
the effect of scattering the data models into different arti-
facts: low-level implementations with relatively little seman-
tic expressiveness, and expressive Ontologies which, due to
a lack of type-level correspondence between modeling and
programming paradigms, are siloed from implementations
themselves.

Conversely, in lieu of “data-centric” Ontologies whose
mission is to standardize how information is mapped to a
representation, in this chapter I will consider “Procedural”
Ontologies: ones which focus on procedural capabilities and
requirements that indicate whether software components are
properly managing (e.g., Cyber-Physical) data. The idea
is that proving procedural conformance should be a central
step, and an organizing groundwork, for showing that soft-
ware intended for production deployment is trustworthy and
complies with technical and legal specifications.

In practical terms, the above discussion mentioned the
CLO-43SD (avian) data set and then the chapter by Vudda-
giri et. al., which (as noted below) builds off the AP17-OLR

“challenge” corpus. I will also be referring to recent CONLL

corpora. So, together, these constitute three representative

7The rationale for emphasizing standard data formats is probably that these for-
mats constrain any procedure which operates on the data, so standardization in
data representation indirectly leads to standardization in data-management proce-
dures, or what I am calling “procedural alignment”. This accommodates the fact
that shared data may be used in many different software environments — compo-
nents implemented in different programming languages and coding styles. How-
ever, more detailed guarantees can be engineered by grounding standardization
on procedures rather than data representations themselves. To accommodate mul-
tiple programming languages and paradigms, data models can be supplemented
with a “reference implementation” which prototypes proper behavior vis-à-vis con-
formant data; components in different languages can then emulate the prototype,
serving both as an implementation guide and a criterion for other developers to
accept a new implementation as trustworthy. There are several examples of a refer-
ence implementation used as a standardizing tool, analogous to an Ontology, such
as the LIBRETS (Real Estate Transaction Standard) library, servers and clients for
FHIR (Fast Healthcare Interoperability Resources), and clients for DICOM (Digi-
tal Imaging and Communications in Medicine), e.g. for Whole Slide Imaging (see
https://www.orthanc-server.com/static.php?page=wsi).

examples of data sets tangibly applicable to Cyber-Physical
and/or NLP Research and Development: one audio-based (for
species identification); one audio/speech; and one linguis-
tic. Based on the idea that R&D data sets should germinate
deployment data models, we should look to data sets like
these to provide semantic and type-theoretic encapsulations
of their information spaces and analytic methods (e.g., spec-
tral waveform analysis, or Dependency Grammar parsing).
Accompanying materials for this chapter provide profiles of
the three aforementioned data sets, which consolidate their
various files and formats into a streamlined “POSC” repre-
sentational paradigm. The demo code presents examples of
procedures and data types targeting these data sets, as well as
an architecture for deploying data sets in a procedure-oriented
and software-centric manner, in terms of how files and the
information they contain are organized, and in terms of em-
ployment of data-publishing standards such as the “Research
Object” model ([15], [16], [25], [53], [141]).

At present, to make these issues more concrete with
further case-studies, in this introductory discussion I will ex-
amine in more detail the specific case of speech and language
data structures.

2.2 Linguistic Case-Study

Establishing data models for deployed technology is
certainly part of the Research and Development cycle, which
means that data profiles tend to emerge within the scientific
process of formulating and refining technical and algorithmic
designs. This is particularly true for complex, computation-
ally nuanced challenges such as image segmentation or (to
cite one above example) measuring heartbeats and breathing
patterns via subtle waveform analysis. We can assume that ev-
ery R&D phase will itself leave behind an ecosystem of testing
data and code which can be decisive for consolidating data
models, directly or indirectly influencing production code for
systems (even if their deployment and commercialization is
well after the R&D period).

In the case of speech and language technology, a
research-oriented data infrastructure has been systematically
curated, in several subdisciplines, by academic or industry
collaborations. The Conference on Natural Language Learn-
ing (CONLL), for example, invites participants to develop Nat-
ural Language Processing techniques targeted at a common
“challenge” dataset, updated each year. These data sets, along
with the data formats and code libraries which allow soft-
ware to use that data, thereby serve as a reference-point for
Computational Linguistics researchers in general. Similarly,

17

https://www.orthanc-server.com/static.php?page=wsi

this volume’s chapter on Language Identification describes
research targeting a multilingual data set (labeled AP17-OLR)
curated for an annual “Oriental Language Challenge” con-
ference dedicated to language/dialect classification for lan-
guages spoken around East Asia (from East Asian language
families and also Russian).

Technically, curated and publicly accessible data sets
are a different genre of information space than real-time data
generated by Cyber-Physical technology (e.g. voices picked
up by microphones in a Smart Home). That is to say, soft-
ware developed to access speech and language data sets like
the CONLL’s or the Oriental Language Challenge has different
requirements than software responding to voice requests in
real time — or other deployment use-cases, such as medical
transcription, or identifying dialects spoken in an urban com-
munity. However, data models derived from publicly shared
test corpora do translate over to realtime data: we can assume
that R&D data sets are collections of signals or information
granules which are structurally similar to those produced
by operating Cyber-Physical devices. As a result, portions
of the software targeting R&D data sets — specifically, the
procedures for acquiring, transforming, validating, and in-
teractively displaying individual samples — remain useful
as components or prototypes for deployed products. Code
libraries employed in R&D cycles should typically be the basis
for data models guiding the implementation of production
software.

To make this discussion more concrete, I will use the
example of CONLL data sets. This chapter’s demo includes
samples from the most recent collection of CONLL files and
conference challenge tasks (at the time of writing) as well
as demo code which operates on such data via techniques
described in this chapter. The CONLL format is representative
of the kinds of linguistic parsing requisite for using Natural
Language content (such as speech input) in Cyber-Physical
settings.

This volume’s chapter by Teixera et. al. considers
voice-activated Cyber-Physical interfaces; here Natural Lan-
guage segments become the core elements in translating user
queries to actionable software responses. The proposed sys-
tems analyze speech patterns to build textual reconstructions
of speakers’ communications, then parses the text as Nat-
ural Language content, before eventually (if all goes well)
interpreting the parsed and analyzed text as an instruction the
software can follow. Text data can then be supplemented with
metrics measuring vocal patterns, syntactic and semantic in-
formation, speaker’s spatial location, and other information
that can help interpret speakers’ wishes insofar as software
can respond to them.

The authors discuss, for instance, the possibility of
annotating language samples (after speech-to-text translation)
with Dependency Grammar parses.8 Textual content can also
be annotated with models of intonation, stress patterns, and
other acoustic features (because the original inputs are audio-
based) that can help an NLP engine to properly parse sentences
(for instance by noting which words or syllables are vocally
emphasized). We can assume that audio processing as well
as NLP technology would supply intermediary processing
somewhere between acoustic devices and the centralized
application.

Different kinds of linguistic details require different
data models. Dependency parses, for instance, are often no-
tated via some version of a specialized CONLL format, which
textually serializes parse and lexical data, usually one word
per line. The most recent standard (dubbed CONLL-U) rec-
ognizes ten fields for each word, identifying, in particular,
Parts of Speech and syntactic connections with other words
(see e.g. [32], [65], [70], [100], [126]). As a custom format,
CONLL-U requires its own parser, such as the UDPIPE library
for C++ (a slightly modified version of this library is published
with this chapter’s data set). So, for hub applications, a rea-
sonable assumption is that these programs compile in the
UDPIPE library or an alternative with similar capabilities, in
order for them to handle parsed NLP data.

Suppose, then, that a hub application will periodically
receive a data package comprising an audio sample along
with text transcriptions and NLP-generated, e.g., CONLL-U data.
To make sense of linguistic content, the software would pre-
sumably pair the NLP-specific information with extra details,
such as, the identity of the speaker (if a Smart Home sys-
tem knows of specific users), where and when each sentence
or request was formulated, and perhaps the original audio
input (allowing functionality such as users playing back in-
structions they uttered in the past). A relevant data model
might thereby comprise: (1) CONLL-U data itself; (2) location
info, such as spatial position and which room a speaker is
found in; (3) timestamps; (4) speaker info, if available; (5)
audio files; and maybe (6) extra acoustical or intonation data.
(Those extra details could include annotations based on how
conversation analysts notate speech patterns, or might be
waveform features derived from initial processing of speech
samples.)

8Adequately describing Dependency Grammar is outside the scope of this chapter,
but, in a nutshell, Dependency Grammar models syntax in terms of word-to-word
relations rather than via phrase hierarchies; as such, Dependency parses yields
directed, labeled graphs (node labels are words and edge labels are drawn from
an inventory of syntactic inter-word connections), which are structurally similar to
Semantic Web graphs. See also [1], [85], [102], [103], [114], [119], [144], etc.;
variants include Link Grammar [62], [101] and Extensible Dependency Grammar
[39], [40], [59].

18

This data model would presumably translate to mul-
tiple data types: we can envision (1) a class for UDPIPE sen-
tences obtained from CONLL-U; (2) a class for audio samples;
(3) speaker and time/location information; plus versions of
these classes appropriate for GUIs and database persistence.
And, in addition, these data requirements for speech and text
samples only considers obtaining a valid parse for the text;
to actually react to speech input, an application would need
to map lexical data to terms and actions the software itself,
in the context of its own capabilities, can recognize. For in-
stance, close the window would map to an identifier for which
window is intended (inferred perhaps from speaker location)
and a close operation, which could be available via actuators
embedded in the window area. All of the objects that users
might semantically reference in voice commands therefore
need their own data models, which must be interoperable
with linguistic parses. So along with data types specific to
linguistic elements we can consider “bridge” types connect-
ing linguistic data (e.g., lexemes) to data types modeling
physical objects.

Likewise, we can anticipate the procedures which
speech and/or language data types need to implement: cor-
rectly decoding CONLL-U files; mapping time/location data
points to a spatial model of the Smart Home (which room is
targeted by the location and also if that point is close to a door,
window, appliance, and so forth; and perhaps matching the
location to a 3D or panoramic-photography graphics model
for visualization); audio-playback procedures, along with in-
teractive protocols for this process such as users pausing and
restarting playback; procedures to map identified speakers to
user profiles known to the Smart Home system. The audio
devise makers and NLP providers — assuming those products
are delivered as one or several suites separate and apart from
the Smart Home hub9 — can mandate that hub applications
demonstrate procedural implementations that satisfy these
requirements as a precondition for accessing their broadcast
data. Conversely, hub applications can stipulate the procedu-
ral mandates they are prepared to honor as a guide to how
devices and their drivers and middleware components should
be configured for an integrated Smart Home ecosystem.

The essential point here is that procedural require-
ments and validation becomes the essential glue that unifies
the diverse Smart Home components, and allows products
designed by different companies, with different goals, to
become interoperable. Once again, procedural alignment
and predictability is more important than standardized data
formats.

9For this discussion I assume that hub applications do not perform NLP internally,
but rather receive post-NLP input from NLP technologies designed with particular
attention to vocal commands for “smart” objects.

Data Type Dimensions/Fields Requirements

Blood Pressure Beats per Minute; resting/ac-
tive (boolean) or exercise level
(scalar)

Systolic more than
Diastolic; plausible
resting/active range

Accelerator Incline; Movement in 2 or 3
Dimensions

Biaxial or Triaxial

Audio Sample Binary data/file and/or
(waveform analysis) feature set

Length (in time)
(1D)

Audio Feature Time-interval inside sample
and/or spectral numerics

Subinterval of sam-
ple (1D)

Image Matrix of values in a color
model: RGB, RGBA, HSV, etc.

Matrix Dimensions
(2D)

Image Segment Rectangular Coordinates;
geometric characterization (e.g.
ellipse dimensions); scales of
resolution where detectable

Subregion of image
(2D)

Bioacoustic Sample Audio Sample plus species
identifier; geospatial and
timestamp coordinates

Well-formed space-
time coordinates

Speech Sample Audio Sample plus text
transcription; spacetime
coodinates; identify language/
dialic and/or speaker

Valid dialect and/or
speaker identifier

Dependency-Parsed
Text

Text transcription plus parse
serialization; audio metadata

Valid and accessi-
ble metadata

Lexical Text
Component

Index into parse serialization;
Part of Speech tag;
lexical/semantic classification

Valid index

Table 1: Example Data Profiles

We can also consider representative criteria for testing
procedures; in particular, preconditions that procedures need
to recognize. In CONLL-U, individual words can be extracted
from a parse-model, but the numeric index for the word must
fall within a fixed range (based on word count for the rele-
vant sentence). In audio playback, time intervals are only
meaningful in the context of the length of the audio sample in
(e.g.) seconds or milliseconds. Similarly, features extracted
from an audio sample (of human speech or, say, a bird song)
are localized by time points which have to reside within a
sample window; and image features are localized in rectangu-
lar coordinates that need to fit inside the surrounding image.
Therefore, procedures engaged with these data structures
should be checked to ensure that they honor these ranges
and properly respond to faulty data outside them. This is an
example of the kind of localized procedural testing which,
cumulatively, establishes software as trustworthy.

I will discuss similar procedural-validity issues for the
remainder of this section before developing more abstract
or theoretical models of procedures, as formal constructions,
subsequently in the chapter.

19

2.3 Proactive Design

I have thus far argued that applications which pro-
cess Cyber-Physical data should rigorously organize their
functionality around specific devices’ data profiles. The pro-
cedures that directly interact with devices — receiving data
from and perhaps sending instructions to each one — will
in many instances be “fragile” in the sense I invoke in this
chapter. Each of these procedures may make assumptions
legislated by the relevant device’s specifications, to the ex-
tent that using any one procedure too broadly constitutes
a system error. Furthermore, Cyber-Physical devices may
exhibit errors due to mechanical malfunction, hostile attacks,
or one-off errors in electrical-computing operations, causing
performance anomalies which look like software mistakes
even if the code is entirely correct (see [49] and [110], for ex-
ample). As a consequence, error classification is especially
important — distinguishing kinds of software errors and even
which problems are software errors to begin with.

Summarizing the case studies from earlier in this sec-
tion, Table 1 identifies several details about dimensions, pa-
rameters of operation, data fields, and other pieces of infor-
mation relevant to implementing procedures and data types
capturing Cyber-Physical data. These types may derive from
Cyber-Physical input directly or may model artifacts con-
structed from Cyber-Physical input midstream, such as audio
or image files, or text transcriptions representing speech input.
The summaries are not rigorous profiles, just suggestive cues
about what sort of details engineers should consider when
formalizing data models. In general, detailed models should
be defined for any input source (including those transformed
by middleware components, such as NLP engines), thereby
profiling both Cyber-Physical devices and also “midstream”
artifacts such as audio or image files — i.e., aggregates,
derived from Cyber-Physical input, that can be shared be-
tween software components (within hub applications and/or
between hubs and middleware).

These data profiles need to be integrated with Cyber-
Physical code from a perspective that cuts across multiple
dimensions of project scale and lifetime. Do we design for bi-
axial or triaxial accelerometers, or both, and may this change?
Is heart rate to be sampled in a context where the range con-
sidered normal is based on “resting” rate or is it expanded
to factor in subjects who are exercising? These kinds of
questions point to the multitude of subtle and project-specific
specifications that have to be established when implement-

ing and then deploying software systems in a domain like
Ubiquitous Computing. It is unreasonable to expect that
all relevant standards will be settled a priori by sufficiently
monolithic and comprehensive data models. Instead, devel-
opers and end-users need to acquire trust in a development
process which is configured to make standardization ques-
tions become apparent and capable of being followed-up in
system-wide ways.

For instance, the hypothetical questions I pondered in
the last paragraph — about biaxial vs. triaxial accelerometers
and about at-rest vs. exercise heart-rate ranges — would not
necessarily be evident to software engineers or project archi-
tects when the system is first conceived. These are the kind of
modeling questions that tend to emerge as individual proce-
dures and datatypes are implemented. For this reason, code
development serves a role beyond just concretizing a sys-
tem’s deployment software. The code at fine-grained scales
also reveals questions that need to be asked at larger scales,
and then the larger answers reflected back in the fine-grained
coding assumptions, plus annotations and documentation.
The overall project community needs to recognize software
implementation as a crucial source for insights into the spec-
ifications that have to be established to make the deployed
system correct and resilient.

For these reasons, code-writing — especially at the
smallest scales — should proceed via paradigms disposed to
maximize the “discovery of questions” effect (see also, as a
case study, [11, pages 6-10]). Systems in operation will be
more trustworthy when and insofar as their software bears
witness to a project evolution that has been well-poised to
unearth questions that could otherwise diminish the system’s
trustworthiness.

“Proactiveness”, like transparency and trustworthi-
ness, has been identified as a core USH principle, referring
(again in the series intro, as above) to “data transmission to
healthcare providers ... to enable necessary interventions”
(my emphasis). In other words — or so this language im-
plies, as an unstated axiom — patients need to be confident in
deployed USH products to such degree that they are comfort-
able with clinical/logistical actions — the functional design
of medical spaces; decisions about course of treatment — be-
ing grounded in part on data generated from a USH ecosystem.
This level of trust, or so I would argue, is only warranted if
patients feel that the preconceived notions of a USH project
have been vetted against operational reality — which can hap-
pen through the interplay between the domain experts who
germinally envision a project and the programmers (software
and software-language engineers) who, in the end, produce
its digital substratum.

20

I have argued that hub libraries — intermediaries be-
tween Cyber-Physical devices and hub applications — are
the key components where diverse requirements may be exer-
cised. Hub libraries therefore need capabilities for document-
ing coding assumptions and requirements, such that their cor-
responding applications garner users’ trust and acceptance.
Hub applications, in short, would be deemed trustworthy inso-
far as their hub libraries are properly engineered. These, then,
are the practical concerns driving the code-documentation
proposals I will develop in the next two sections. Hub li-
braries are an environment where such techniques may be
especially applicable.

3 Directed Hypergraphs and Generalized
Lambda Calculus

Thus far in this chapter, I have written in general terms
about architectural features related to Cyber-Physical soft-
ware; especially, verifying coding assumptions concerning
individual data types and/or procedures. My comments were
intended to summarize the relevant territory, so that I can
add some theoretical details or suggestions from this point
forward. In particular, I will explore how to model soft-
ware components at different scales so as to facilitate robust,
safety-conscious coding practices.

Note that almost all non-trivial software is in some
sense “procedural”: the total package of functionality pro-
vided by each software component is distributed among
many individual, interconnected procedures. Each proce-
dure, in general, implements its functionality by calling other
procedures in some strategic order. Of course, often inter-
procedure calls are conditional — a calling procedure will
call one (or some sequence of) procedures when some con-
dition holds, but call alternate procedures when some other
conditions hold. In any case, computer code can be analyzed
as a graph, where connections exist between procedures in-
sofar as one procedure calls, or sometimes calls, the other.

This general picture is only of only limited applica-
bility to actual applications, however, because the basic con-
cept of “procedure” varies somewhat between different pro-
gramming languages. As a result, it takes some effort to
develop a comprehensive model of computer code which
accommodates a representative spectrum of coding styles
and paradigms.

There are perhaps three different perspectives for such
a comprehensive theory. One perspective is to consider

source code as a data structure in its own right, employing
a Source Code Algebra or Source Code Ontology to assert
properties of source code and enable queries against source
code, qua information space. A second option derives from
type theory: to consider procedures as instances of functional
types, specified by tuples of input and output types. A pro-
cedure is then a transform which, in the presence of (zero or
more) inputs having the proper types, produces (one or more)
outputs with their respective types. (In practice, some pro-
cedures do not return values, but they do have some kind of
side-effect, which can be analyzed as a variety of “output”.)
Finally, third, procedures can be studied via mathematical
frameworks such as Lambda Calculus, allowing notions of
functions on typed parameters, and of functional application
— applying functions to concrete values, which is analogous
to calling procedures with concrete input arguments — to be
made formally rigorous.

I will briefly consider all three of these perspectives —
Source Code Ontology, type-theoretic models, and Lambda
Calculus — in this section. I will also propose a new model,
based on the idea of “channels”, which combines elements
of all three.

3.1 Generalized Lambda Calculus

Lambda (or λ -) Calculus emerged in the early 20th
Century as a formal model of mathematical functions and
function-application. There are many mathematical construc-
tions which can be subsumed under the notion of “function-
application”, but these have myriad notations and conven-
tions (compare the visual differences between mathematical
notations — integrals, square roots, super- and sub-scripted
indices, and so forth — to the much simpler alphabets of
mainstream programming languages). But the early 20th
century was a time of great interest in “mathematical foun-
dations”, seeking to provide philosophical underpinnings for
mathematical reasoning in general, unifying disparate mathe-
matical methods and subdisciplines. One consequence of this
foundational program was an attempt to capture the formal
essence of the concept of “function” and of functions being
applied to concrete values.

A related foundational concern is how mathematical
formulae can be nested, yielding new formulae. For example,
the volume of a sphere (expressed in terms of its radius R)
is 4πR3

3 . The symbol R is just a mnemonic which could be
replaced with a different symbol, without the formula being
different. But it can also be replaced by a more complex
expression, to yield a new formula. In this case, substituting

21

the formula for a cube’s half-diagonal —
√

3 3
√

V where V is
its volume — for R, in the first formula, yields 4

3

√
27πV : a

formula for the sphere’s volume in terms of the volume of the
largest cube that can fit inside it ([9] has similar interesting
examples in the context of code optimization). This kind of
tinkering with equations is of course a bread-and-butter of
mathematical discovery. In terms of foundations research,
though, observe that the derivation depended on two givens:
that the R symbol is “free” in the first formula — it is a place-
holder rather than the designation of a concrete value, like
π — and that free symbols (like R) can be bound to other
formulae, yielding new equations.

From cases like these — relatively simple geometric
expressions — mathematicians began to ask foundational
questions about mathematical formulae: what are all for-
mulae that can be built up from a set of core equations via
repeatedly substituting nested expressions for free symbols?
This question turns out to be related to the issue of finite
calculations: in lieu of building complex formulae out of sim-
pler parts, we can proceed in the opposite direction, replacing
nested expressions with values. Formulae are constructed
in terms of unknown values; when we have concrete mea-
surements to plug in to those formulae, the set of unknowns
decreases. If all values are known, then a well-constructed
formula will converge to a (possibly empty) set of outcomes.
This is roughly analogous to a computation which terminates
in real time. On the other hand, a recursive formula — an
expression nested inside itself, such as a continued fraction —
is analogous to a computation which loops indefinitely.10

In the early days of computer programming, it was
natural to turn to λ -Calculus as a formal model of computer
procedures, which are in some ways analogous to mathe-
matical formulae. As a mathematical subject, λ -Calculus
predates digital computers as we know them. While there
were no digital computers at the time, there was a growing
interest in mechanical computing devices, which led to the
evolution of cryptographic machines used during the Sec-
ond World War. So there was indeed a practical interest
in “computing machines”, which eventually led to John von
Neumann’s formal prototypes for digital computers.

Early on, though, λ -Calculus was less about
blueprints for calculating machines and more about abstract
formulation of calculational processes. Historically, the origi-
nal purpose of λ -Calculus was largely a mathematical simula-
tion of computations, which is not the same as a mathematical
prototype for computing machines. Mathematicians in the
decades before WWII investigated logical properties of com-

10Although there are sometimes techniques for converting formulae like Continued
Fractions into “closed form” equations which do “terminate”.

putations, with particular emphasis on what sort of problems
could always be solved in finite time, or what kinds of pro-
cedures can be guaranteed to terminate — a “Computable
Number”, for example, is a number which can be approxi-
mated to any degree of precision by a terminating function.
Similarly, a Computable Function is a function from input
values to output values that can be associated with an always-
terminating procedure which necessarily calculates the de-
sired outputs from a set of inputs. The space of Computable
Functions and Computable Numbers are mathematical ob-
jects whose properties can be studied through mathematical
techniques — for instance, Computable Numbers are known
to be a countable field within the real numbers. These mathe-
matical properties are proven using a formal description of
“any computer whatsoever”, which has no concern for the size
and physical design of the “computers” or the time required
for its “programs”, so long as they are finite. Computational
procedures in this context are not actual implementations but
rather mathematical distillations that can stand in for calcu-
lations for the purpose of mathematical analysis (interesting
and representative contemporary articles continuing these
perspectives include, e.g., [50], [69], [137]).

It was only after the emergence of modern digital com-
puters that λ -Calculus become reinterpreted as a model of
concrete computing machines. In its guise as a Computer
Science (and not just Mathematical Foundations) discipline,
λ -Calculus has been most influential not in its original form
but in a plethora of more complex models which track the
evolution of programming languages. Many programming
languages have important differences which are not describ-
able on a purely mathematical basis: two languages which
are both “Turing complete” are abstractly interchangeable,
but it is important to represent the contrast between, say,
Object-Oriented and Functional programming. In lieu of a
straightforward, mathematical model of formulae as proce-
dures which map inputs to outputs, modern programming
languages add may new constructs which determine different
mechanisms whereby procedures can read and modify val-
ues: objects, exceptions, closures, mutable references, side-
effects, signal/slot connections, and so forth. Accordingly,
new programming constructions have inspired new variants
of λ -Calculus, analyzing different features of modern pro-
gramming languages — Object Orientation, Exceptions, call-
by-name, call-by-reference, side effects, polymorphic type
systems, lazy evaluation — in the hopes of deriving formal
proofs of program behavior insofar as computer code uses
the relevant constructions. In short, a reasonable history can
say that λ -Calculus mutated from being an abstract model
for studying Computability as a mathematical concept, to
being a paradigm for prototype-specifications of concretely

22

realized computing environments.

Modern programming languages have many different
ways of handing-off values between procedures. The “in-
puts” to a function can be “message receivers” as in Object-
Oriented programming, or lexically scoped values “captured”
in an anonymous function that inherits values from the lexical
scope (loosely, the area of source code) where its body is com-
posed. Procedures can also “receive” data indirectly from
pipes, streams, sockets, network connections, database con-
nections, or files. All of these are potential “input channels”
whereby a function implementation may access a value that it
needs. In addition, procedures can “return” values not just by
providing a final result but by throwing exceptions, writing to
files or pipes, and so forth. To represent these myriad “chan-
nels of communication” computer scientists have invented
a menagerie of extensions to λ -Calculus — a noteworthy
example is the “Sigma” calculus to model Object-Oriented
Programming; but parallel extensions represent call-by-need
evaluation, exceptions, by-value and by-reference capture,
etc.

Rather than study each system in isolation, in this
chapter I propose an integrated strategy for unifying disparate
λ -Calculus extensions into an overarching framework. The
“channel-based” tactic I endorse here may not be optimal for a
mathematical calculus which has formal axioms and provable
theorems, but I believe it can be useful for the more practical
goal of modeling computer code and software components,
to establish recommended design patterns and to document
coding assumptions.

In this perspective, different extensions or variations to
λ -Calculus model different channels, or data-sources through
which procedures receive and/or modify values. Different
channels have their own protocols and semantics for passing
values to functions. We can generically discuss “input” and
“output” channels, but programming languages have different
specifications for different genres of input/output, which we
can model via different channels. For a particular channel,
we can recognize language-specific limitations on how values
passed in to or received from those channels are used, and
how the symbols carrying those values interact with other
symbols both in function call-sites and in the body of proce-
dure implementations. For example, procedures can output
values by throwing exceptions, but exceptions are unusual
values which have to be handled in specific ways — lan-
guages employ exceptions to signal possible programming
errors, and they are engineered to interrupt normal program
flow until or unless exceptions are “caught”.

Computer scientists have explored these more com-

plex programming paradigms in part by inventing new vari-
ations on λ -calculi. Here I will develop one theory repre-
senting code in terms of Directed Hypergraphs, which are
subject to multiple kinds of lambda abstraction — in princi-
ple, unifying multiple λ -Calculus extensions. The following
subsection will lay out the details of this form of Directed
Hypergraph and how λ -calculi can be defined on its founda-
tion, while the last subsection summarizes an expanded type
theory which follows organically from this approach.

Many concepts outlined here are reflected in the ac-
companying code set (which includes a C++ Directed Hyper-
graph library). My strategy for unifying multiple λ -calculi
depends in turn on hypergraph code representations, which
is a theme in the umbrella of graph-based data modeling, to
which I now turn.

3.2 Directed Hypergraphs and “Channel
Abstractions”

A hypergraph is a graph whose edges (a.k.a. “hyper-
edges”) can span more than two nodes ([63, e.g. volume 2,
page 24], [88], [96] and [97], [99], [109], [124], [125]). A
directed hypergraph (“DH”) is a hypergraph where each edge
has a head set and tail set (both possibly empty). Both of
these are sets of nodes which (when non-empty) are called
hypernodes. A hypernode can also be thought of as a hyper-
edge whose tail-set (or head-set) is empty. Note that a typical
hyperedge connects two hypernodes (its head- and tail-sets),
so if we consider just hypernodes, a hypergraph potentially
reduces to a directed ordinary graph.11 While “edge” and
“hyperedge” are formally equivalent, I will use the former
term when attending more to the edge’s representational role
as linking two hypernodes, and use the latter term when fo-
cusing more on its tuple of spanned nodes irrespective of
their partition into head and tail.

I assume that hyperedges always span an ordered
node-tuple which induces an ordering in the head- and tail-
sets: so a hypernode is an ordered list of nodes, not just a set
of nodes. I will say that two hypernodes overlap if they share
at least one node; they are identical if they share exactly the
same nodes in the same order; and disjoint if they do not

11Here when distinguishing “head” and “tail” I will invert the orientation which most
mathematical treatments of hypergraphs use: that is, I define hyperedges such that
the edge starts at the head and ends at the tail. My rationale is that hyperedges
induce an orientation not only on the head/tail pair, but within the head and tail,
which become ordered tuples rather than sets. Hyperedges can therefore be seen
as paths that “visit” a chain of hyponodes, first those in the head, then those in the
tail. My terminology is consistent with software libraries wherein the beginning of
an ordered list is called its “head”.

23

overlap at all. I call a Directed Hypergraph “reducible” if all
hypernodes are either disjoint or identical. The information
in reducible DHs can be factored into two “scales”, one a
directed graph whose nodes are the original hypernodes, and
then a table of all nodes contained in each hypernode. Re-
ducible DHs allow ordinary graph traversal algorithms when
hypernodes are treated as ordinary nodes on the coarser scale
(so that their internal information — their list of contained
nodes — is ignored).12

To avoid confusion, I will hereafter use the word “hy-
ponode” in place of “node”, to emphasize the container/con-
tained relation between hypernodes and hyponodes. I will
use “node” as an informal word for comments applicable
to both hyper- and hypo-nodes. Some Hypergraph theories
and/or implementations allow hypernodes to be nested: i.e., a
hypernode can contain another hypernode. In these theories,
in the general case any node is potentially both a hypernode
and a hyponode. For this chapter, I assume the converse:
any “node” (as I am hereafter using the term) is either hypo-
or hyper-. However, multi-scale Hypergraphs can be ap-
proximated by using hyponodes whose values are proxies to
hypernodes.

Here I will focus on a class of DHs which (for rea-
sons to emerge) I will call “Channelizable”. Channelizable
Hypergraphs (CHs) have these properties:

1. They have a Type System T and all hyponodes and hyper-
nodes are assigned exactly one canonical type (they may
also be considered instances of super- or subtypes of that
type).

2. All hyponodes can have (or “express”) at most one value,
an instance of its canonical type, which I will call a hy-
povertex. Hypernodes, similarly, can have at most one
hypervertex. Like “node” being an informal designation
for hypo- and hyper-nodes, “vertex” will be a general
term for both hypo- and hyper-vertices. Nodes which do
have a vertex are called initialized. The hypovertices “of”
a hypernode are those of its hyponodes.

3. Two hyponodes are “equatable” if they express the same
value of the same type. Two (possibly non-identical) hy-
pernodes are “equatable” if all of their hyponodes, com-
pared one-by-one in order, are equatable. I will also
say that values are “equatable” (rather than just saying

12A weaker restriction on DH nodes is that two non-identical hypernodes can over-
lap, but must preserve node-order: i.e., if the first hypernode includes nodes N1,
and N2 immediately after, and the second hypernode also includes N1, then the
second hypernode must also include N2 immediately thereafter. Overlapping hy-
pernodes can not “permute” nodes — cannot include them in different orders or
in a way that “skips” nodes. Trivially, all reducible DHs meet this condition. Any
graphs discussed here are assumed to meet this condition.

“equal”) to emphasize that they are the respective values
of equatable nodes.

4. There may be a stronger relation, defined on equatable
non-equivalent hypernodes, whereby two hypernodes are
inferentially equivalent if any inference justified via edges
incident to the first hypernode can be freely combined
with inferences justified via edges incident to the second
hypernode. Equatable nodes are not necessarily inferen-
tially equivalent.

5. Hypernodes can be assumed to be unique in each graph,
but it is unwarranted to assume (without type-level seman-
tics) that two equatable hypernodes in different graphs
are or are not inferentially equivalent. Conversely, even if
graphs are uniquely labeled — which would appear to en-
able a formal distinction between hypernodes in one graph
from those in another, CH semantics does not permit the
assumption that this separation alone justifies inferences
presupposing that their hypernodes are not inferentially
equivalent.

6. All hypo- and hypernodes have a “proxy”, meaning there
is a type in T including, for each node, a unique identi-
fier designating that node, that can be expressed in other
hyponodes.

7. There are some types (including these proxies) which
may only be expressed in hyponodes. There may be other
types which may only be expressed in hypernodes. Types
can then be classified as “hypotypes” and “hypertypes”.
The T may stipulate that all types are either hypo or hyper.
In this case, it is reasonable to assume that each hypotype
maps to a unique hypertype, similar to “boxing” in a
language which recognizes “primitive” types (in Object-
Oriented languages, boxing allows non-class-type values
to be used as if they were objects).

8. Types may be subject to the restriction that any hypernode
which has that type can only be a tail-set, not a head-set;
call these tail-only types.

9. Hyponodes may not appear in the graph outside of hyper-
nodes. However, a hypernode is permitted to contain only
one hyponode.

10. Each edge, separate and apart from the CH’s actual graph
structure, is associated with a distinct hypernode, called
its annotation. This annotation cannot (except via a proxy)
be associated with any other hypernode (it cannot be a
head- or tail-set in any hypernode). The first hyponode in
its annotation I will dub a hyperedge’s classifier. The out-
going edge-set of a hypernode can always be represented
as an associative array indexed by the classifier’s vertex.

24

11. A hypernode’s type may be subject to restrictions such
that there is a single number of hyponodes shared by all
instances. However, other types may be expressed in
hypernodes whose size may vary. In this case the hypon-
ode types cannot be random; there must be some pattern
linking the distribution of hyponode types evident in hy-
pernodes (with the same hypernode types) of different
sizes. For example, the hypernodes may be dividable
into a fixed-size, possibly empty sequence of hyponodes,
followed by a chain of hyponode-sequences repeating the
same type pattern. The simplest manifestation of this
structure is a hypernode all of whose hyponodes are the
same type.

12. Call a product-type transform of a hypernode to be a dif-
ferent hypernode whose hypovertices are tuples of values
equatable to those from the first hypernode, typed in terms
of product types (i.e., tuples). For example, consider two
different representations of semi-transparent colors: as
a 4-vector RGBT, or as an RGB three-vector paired with
a transparency magnitude. The second representation is
a product-type transform of the first, because the first
three values are grouped into a three-valued tuple. We can
assert the requirement in most contexts that CHs whose
hypernodes are product-type transforms of each other con-
tain “the same information” and as sources of information
are interchangeable.

13. The Type System T is channelized, i.e., closed under a
Channel Algebra, as will be discussed below.

These definitions allude to two strategies for compu-
tationally representing CHs. One, already mentioned, is to
reduce them to directed graphs by treating hypernodes as
integral units (ignoring their internal structure). A second
is to model hypernodes as a “table of associations” whose
keys are the values of the classifier hyponodes on each of
their edges. A CH can also be transformed into an undirected
hypergraph by collapsing head- and tail- sets into an overar-
ching tuple. All of these transformations may be useful in
some analytic/representational contexts, and CHs are flexible
in part by morphing naturally into these various forms.

Notice that information present within a hypernode
can also be expressed as relations between hypernodes. For
example, consider the information that I (Nathaniel), age 46,
live in Brooklyn as a registered Democrat. This may be repre-
sented as a hypernode with hyponodes 〈dNathaniele, d46e〉,
connected to a hypernode with hyponodes 〈dBrooklyne,
dDemocrate〉, via a hyperedge whose classifier encodes
the concept “lives in” or “is a resident of”. However, it may
also be encoded by “unplugging” the “age” attribute so the

Nath 46

Bkln Dem

lives-in
Nath

46

Bkln Dem

lives-in

age

Diagram 1: Unplugging a Node.

first hypernode becomes just dNathaniele and it acquires
a new edge, whose tail has a single hyponode d45e and a
classifier (encoding the concept) “age” (see the comparison
in Diagram 1). This construction can work in reverse: infor-
mation present in a hyperedge can be refactored so that it
“plugs in” to a single hypernode.

These alternatives are not redundant. Generally, repre-
senting information via hyperedges connecting two hypern-
odes implies that this information is somehow conceptually
apart from the hypernodes themselves, whereas represent-
ing information via hyponodes inside hypernodes implies
that this information is central and recurring (enforced by
types), and that the data thereby aggregated forms a recur-
ring logical unit. In a political survey, people’s names may
always be joined to their age, and likewise their district of
residence always joined to their political affiliation. The left-
hand side representation of the info (seen as an undirected hy-
peredge) 〈dNathaniele, d46e, dBrooklyne, dDemocrate〉
in Diagram 1 captures this semantics better because it de-
scribes the name/age and place/party pairings as types which
require analogous node-tuples when expressed by other hy-
pernodes. For example, any two hypernodes with the same
type as 〈dNathaniele, d46e〉 will necessarily have an “age”
hypovertex and so can predictably be compared along this
one axis. By contrast, the right-hand (“unplugged”) version
in Diagram 1 implies no guarantees that the “age” data point
is present as part of a recurring pattern.

The two-tiered DH structure is also a factor when in-
tegrating serialized or shared data structures with runtime
data values. In the demo DH library, for example, it is as-
sumed that each node can be associated with a runtime, binary
data allocation (practically speaking, a pointer to user data).
Hypernodes’ internal structure can therefore be represented
either via hyponodes explicit in the graph content or by inter-
nal structure in the user data (or some combination). Graph
deserialization can then be a matter of mapping hyponodes to
fields in the “internal” data allocations, before then mapping

25

Sample 1: Initializing Hypernodes

caon_ptr <RE_Node > RE_Graph_Build :: make_new_node(

caon_ptr <RE_Function_Def_Entry > fdef)

{

caon_ptr <RE_Node > result = new RE_Node(fdef);

RELAE_SET_NODE_LABEL(result , "<fdef >");

return result;

}

...

caon_ptr <RE_Node > RE_Graph_Build ::

new_function_def_entry_node(RE_Node& prior_node ,

RE_Function_Def_Kinds kind ,

caon_ptr <RE_Node > label_node)

{

caon_ptr <RE_Function_Def_Entry > fdef = new

RE_Function_Def_Entry (&prior_node ,

kind , label_node);

caon_ptr <RE_Node > result = make_new_node(fdef);

fdef ->set_node(result);

return result;

}

...

caon_ptr <RE_Node > RE_Graph_Build :: create_tuple(

RE_Tuple_Info :: Tuple_Formations tf,

RE_Tuple_Info :: Tuple_Indicators ti,

RE_Tuple_Info :: Tuple_Formations sf,

bool increment_id)

{

int tuple_id = increment_id ?++ tuple_entry_count_ :0;

caon_ptr <RE_Tuple_Info > tinfo = new RE_Tuple_Info(

tf, ti , tuple_id);

caon_ptr <RE_Node > result = new RE_Node(tinfo);

return result;

}

...

caon_ptr <RE_Node > RE_Markup_Position ::

check_implied_lambda_tuple(

RE_Function_Def_Kinds kind)

{

...

if(caon_ptr <RE_Call_Entry > rce =

current_node_ ->re_call_entry ())

{

...

caon_ptr <RE_Node > fdef_node = graph_build_ ->

new_function_def_entry_node(

*last_pre_entry_node_ , kind);

last_pre_entry_node_ ->delete_relation(

rq_.Run_Call_Entry , current_node_);

current_function_def_entry_node_ = fdef_node;

caon_ptr <RE_Node > tuple_info_node = graph_build_ ->

create_tuple_node(

RE_Tuple_Info :: Tuple_Formations :: Indicates_Input

, RE_Tuple_Info :: Tuple_Indicators :: Enter_Array ,

, RE_Tuple_Info :: Tuple_Formations ::N_A);

caon_ptr <RE_Node > entry_node =

rq_.Run_Call_Entry(current_node_);

...

fdef_node << fr_/rq_.Run_Call_Entry >>

current_node_;

current_node_ << fr_/rq_.Run_Data_Entry >>

tuple_info_node;

tuple_info_node << fr_/rq_.Run_Data_Entry >>

entry_node;

...}}}

1

1

1

2

2

3

4

4

4

inter-hypernode relations to the proper hypervertex-relations.
Code sample 1 demonstrates the pattern of hypervertex con-
struction as C++ objects that get wrapped in new nodes (1 - 2),
along with obtaining nodes already registered in a runtime
graph (3) and then inserting the new nodes (with stated
relationships) alongside prior ones into the runtime graph
(4).13

In general, graph representations like CH and RDF

serve two goals: first, they are used to serialize data struc-
tures (so that they may be shared between different locations;
such as, via the internet); and, second, they provide formal,
machine-readable descriptions of information content, allow-
ing for analyses and transformations, to infer new information
or produce new data structures. The design and rationale of
representational paradigms is influenced differently by these
two goals, as I will review now with an eye in part on drawing
comparisons between CH and RDF.

3.3 Channelized Hypergraphs and RDF

The Resource Description Framework (RDF) models
information via directed graphs ([36], [37], [67], and [117]
are good discussions of Semantic Web technologies from a
graph-theoretic perspective), whose edges are labeled with
concepts that, in well-structured contexts, are drawn from
published Ontologies (these labels play a similar role to “clas-
sifiers” in CHs). In principle, all data expressed via RDF

graphs is defined by unordered sets of labeled edges, also
called “triples” (“〈SUBJECT, PREDICATE, OBJECT〉”, where the
“Predicate” is the label). In practice, however, higher-level
RDF notation such as TTL (TURTLE or “Terse RDF Triple Lan-
guage”) and Notation3 (N3) deal with aggregate groups of
data, such as RDF containers and collections.

For example, imagine a representation of the fact
“(A/The person named) Nathaniel, 46, has lived in Brooklyn,
Buffalo, and Montreal” (shown in Diagram 2 as both a CH

and in RDF). If we consider TURTLE or N3 as languages and
not just notations, it would appear as if their semantics is
built around hyperedges rather than triples. It would seem
that these languages encode many-to-many or one-to-many
assertions, graphed as edges having more than one subject
and/or predicate. Indeed, Tim Berners-Lee himself suggests
that “Implementations may treat list as a data type rather than
just a ladder of rdf:first and rdf:rest properties” [21, page
6]. That is, the specification for RDF list-type data structures

13The code samples in this text are drawn from a working demo at the time of writing;
the actual code belonging to a downloadable data set at the time of publication
may be slightly revised. The data set will include components to help readers
cross-reference between the chapter’s samples and working demo code.

26

CH Structure

RDF Structure

Nath

Bkln Buff Mtl
lived-in

Nath

Bkln

lived-in

rdf:first

Buff

rdf:rest

rdf:first

Mtl

rdf:rest

rdf:first

Diagram 2: CH vs. RDF Collections.

invites us to consider that they may be regarded integral units
rather than just aggregates that get pulled apart in semantic
interpretation.

Technically, perhaps, this is an illusion. Despite their
higher-level expressiveness, RDF expression languages are,
perhaps, supposed to be deemed “syntactic sugar” for a more
primitive listing of triples: the semantics of TURTLE and N3

are conceived to be defined by translating expressions down
to the triple-sets that they logically imply (see also [140]).
This intention accepts the paradigm that providing semantics
for a formal language is closely related to defining which
propositions are logically entailed by its statements.

There is, however, a divergent tradition in formal se-
mantics that is oriented to type theory more than logic. It
is consistent with this alternative approach to see a differ-
ent semantics for a language like TURTLE, where larger-scale
aggregates become “first class” values. So, 〈dNathaniele,
d46e〉 can be seen as a (single, integral) value whose type is
a 〈name, age〉 pair. Such a value has an “internal structure”
which subsumes multiple data-points. The RDF version is
organized, instead, around a blank node which ties together
disparate data points, such as my name and my age. This
blank node is also connected to another blank node which
ties together place and party. The blank nodes play an or-
ganizational role, since nodes are grouped together insofar
as they connect to the same blank node. But the implied
organization is less strictly entailed; one might assume that
the 〈dBrooklyne, dDemocrate〉 nodes could just as readily
be attached individually to the “name/age” blank (i.e., I live

in Brooklyn, and I vote Democratic).

Why, that is, are Brooklyn and Democratic grouped
together? What concept does this fusion model? There is a
presumptive rationale for the name/age blank (i.e., the fusing
name/age by joining them to a blank node rather than allow-
ing them to take edges independently): conceivably there
are multiple 46-year-olds named Nathaniel, so that blank
node plays a key semantic role (analogous to the quantifier in
“There is a Nathaniel, age 46...”); it provides an unambiguous
nexus so that further predicates can be attached to one spe-
cific 46-year-old Nathaniel rather than any old 〈dNathaniele,
d46e〉. But there is no similarly suggested semantic role for
the “place/party” grouping. The name cannot logically be
teased apart from the name/age blank (because there are
multiple Nathaniels); but there seems to be no logical signifi-
cance to the place/party grouping. Yet pairing these values
can be motivated by a modeling convention — reflecting that
geographic and party affiliation data are grouped together in
a data set or data model. The logical semantics of RDF make
it harder to express these kinds of modeling assumptions that
are driven by convention more than logic — an abstracting
from data’s modeling environment that can be desirable in
some contexts but not in others.

So, why does the Semantic Web community effec-
tively insist on a semantic interpretation of TURTLE and N3

as just a notational convenience for N-TRIPLES rather than as
higher-level languages with a different higher-level seman-
tics — and despite statements like the above Tim Berners-Lee
quote insinuating that an alternative interpretation has been
contemplated even by those at the heart of Semantic Web
specifications? Moreover, defining hierarchies of material
composition or structural organization — and so by exten-
sion, potentially, distinct scales of modeling resolution — has
been identified as an intrinsic part of domain-specific On-
tology design (see [10], [22], [23], [42], [51], [108], [120],
[122], or [112]). Semantic Web advocates have not however
promoted multitier structure as a feature of Semantic mod-
els fundamentally, as opposed to criteriology within specific
Ontologies. To the degree that this has an explanation, it
probably has something to do with reasoning engines: the
tools that evaluate SPARQL queries operate on a triplestore
basis. So the “reductive” semantic interpretation is arguably
justified via the warrant that the definitive criteria for Se-
mantic Web representations are not their conceptual elegance
vis-à-vis human judgments but their utility in cross-Ontology
and cross-context inferences.

As a counter-argument, however, note that many in-
ference engines in Constraint Solving, Computer Vision, and
so forth, rely on specialized algorithms and cannot be re-

27

duced to a canonical query format. Libraries such as GECODE

and ITK are important because problem-solving in many do-
mains demands fine-tuned application-level engineering. We
can think of these libraries as supporting special or domain-
specific reasoning engines, often built for specific projects,
whereas OWL-based reasoners like FACT++ are general engines
that work on general-purpose RDF data without further qual-
ification. In order to apply “special” reasoners to RDF, a
contingent of nodes must be selected which are consistent
with reasoners’ runtime requirements.

Of course, special reasoners cannot be expected to
run on the domain of the entire Semantic Web, or even on
“very large” data sets in general. A typical analysis will sub-
divide its problem into smaller parts that are each tractable
to custom reasoners — in radiology, say, a diagnosis may
proceed by first selecting a medical image series and then
performing image-by-image segmentation. Applied to RDF,
this two-step process can be considered a combination of gen-
eral and special reasoners: a general language like SPARQL

filters many nodes down to a smaller subset, which are then
mapped/deserialized to domain-specific representations (in-
cluding runtime memory). For example, RDF can link a
patient to a diagnostic test, ordered on a particular date by
a particular doctor, whose results can be obtained as a suite
of images — thereby selecting the particular series relevant
for a diagnostic task. General reasoners can find the images
of interest and then pass them to special reasoners (such as
segmentation algorithms) to analyze. Insofar as this architec-
ture is in effect, Semantic Web data is a site for many kinds
of reasoning engines. Some of these engines need to oper-
ate by transforming RDF data and resources to an optimized,
internal representation. Moreover, the semantics of these
representations will typically be closer to a high-level N3

semantics taken as sui generis, rather than as interpreted re-
ductively as a notational convenience for lower-level formats
like N-TRIPLE. This appears to undermine the justification for
reductive semantics in terms of OWL reasoners.

Perhaps the most accurate paradigm is that Semantic
Web data has two different interpretations, differing in being
consistent with special and general semantics, respectively.
It makes sense to label these the “special semantic inter-
pretation” or “semantic interpretation for special-purpose
reasoners” (SSI, maybe) and the “general semantic interpre-
tation” (GSI), respectively. Both these interpretations should
be deemed to have a role in the “semantics” of the Semantic
Web.

Another order of considerations involve the semantics
of RDF nodes and CH hypernodes particularly with respect to
uniqueness. Nodes in RDF fall into three classes: blank nodes;

nodes with values from a small set of basic types like strings
and integers; and nodes with URLs which are understood to
be unique across the entire World Wide Web. There are no
blank nodes in CH; and intrinsically no URLs either, although
one can certainly define a URL type. There is nothing in the
semantics of URLs which guarantees that each URL designates
a distinct internet resource; this is just a convention which
essentially, de facto, fulfills itself because it structures a web
of commercial and legal practices, not just digital ones; e.g.
ownership is uniquely granted for each internet domain name.
In CH, a data type may be structured to reflect institutional
practices which guarantee the uniqueness of values in some
context: books have unique ISBN codes; places have distinct
GIS locations, etc. These uniqueness requirements, however,
are not intrinsically part of CH, and need to be expressed
with additional axioms. In general, a CH hypernode is a tuple
of relatively simple values and any additional semantics are
determined by type definitions (it may be useful to see CH

hypernodes as roughly analogous to C structs — which have
no a priori uniqueness mechanism).

Also, RDF types are less intrinsic to RDF semantics
than in CH (see [105]). The foundational elements of CH are
value-tuples (via nodes expressing values, whose tuples in
turn are hypernodes). Tuples are indexed by position, not by
labels: the tuple 〈dNathaniele, d46e〉 does not in itself draw
in the labels “name” or “age”, which instead are defined at
the type-level (insofar as type-definitions may stipulate that
the label “age” is an alias for the node in its second position,
etc.). So there is no way to ascertain the semantic/conceptual
intent of hypernodes without considering both hyponode
and hypernode types. Conversely, RDF does not have actual
tuples (though these can be represented as collections, if
desired); and nodes are always joined to other nodes via
labeled connectors — there is no direct equivalent to the CH

modeling unit of a hyponode being included in a hypernode
by position.

At its core, then, RDF semantics are built on the propo-
sition that many nodes can be declared globally unique by
fiat. This does not need to be true of all nodes — RDF types
like integers and floats are more ethereal; the number 46 in
one graph is indistinguishable from 46 in another graph. This
can be formalized by saying that some nodes can be objects
but never subjects. If such restrictions were not enforced,
then RDF graphs could become in some sense overdetermined,
implying relationships by virtue of quantitative magnitudes
devoid of semantic content. This would open the door to
bizarre judgments like “my age is non-prime” or “I am older
than Mohamed Salah’s 2018 goal totals”. One way to block
these inferences is to prevent nodes like “the number 46”

28

from being subjects as well as objects. But nodes which
are not primitive values — ones, say, designating Mohamed
Salah himself rather than his goal totals — are justifiably
globally unique, since we have compelling reasons to adopt
a model where there is exactly one thing which is that Mo-
hamed Salah. So RDF semantics basically marries some prim-
itive types which are objects but never subjects with a web
of globally unique but internally unstructured values which
can be either subject or object.

In CH the “primitive” types are effectively hypotypes;
hyponodes are (at least indirectly) analogous to object-only
RDF nodes insofar as they can only be represented via in-
clusion inside hypernodes. But CH hypernodes are neither
(in themselves) globally unique nor lacking in internal struc-
ture. In essence, an RDF semantics based on guaranteed
uniqueness for atom-like primitives is replaced by a seman-
tics based on structured building-blocks without guaranteed
uniqueness. This alternative may be considered in the context
of general versus special reasoners: since general reasoners
potentially take the entire Semantic Web as their domain,
global uniqueness is a more desired property than internal
structure. However, since special reasoners only run on spe-
cially selected data, global uniqueness is less important than
efficient mapping to domain-specific representations. It is
not computationally optimal to deserialize data by running
SPARQL queries.

Finally, as a last point in the comparison between
RDF and CH semantics, it is worth considering the distinction
between “declarative knowledge” and “procedural knowl-
edge” (see e.g. [63, volume 2, pages 182-197]). According
to this distinction, canonical RDF data exemplifies declar-
ative knowledge because it asserts apparent facts without
explicitly trying to interpret or process them. Declarative
knowledge circulates among software in canonical, reusable
data formats, allowing individual components to use or make
inferences from data according to their own purposes.

Counter to this paradigm, return to hypothetical Cyber-
Physical examples, such as the conversion of Voltage data to
acceleration data, which is a prerequisite to accelerometers’
readings being useful in most contexts. Software possessing
capabilities to process accelerometers therefore reveals what
can be called procedural knowledge, because software so
characterized not only receives data but also processes such
data in standardized ways.

The declarative/procedural distinction perhaps fails to
capture how procedural transformations may be understood
as intrinsic to some semantic domains — so that even the
information we perceive as “declarative” has a procedural

element. For example, the very fact that “accelerometers”
are not called “Voltmeters” (which are something else) sug-
gests how the Ubiquitous Computing community perceives
voltage-to-acceleration calculations as intrinsic to accelerom-
eters’ data. But strictly speaking the components which
participate in USH networks are not just engaged in data shar-
ing; they are functioning parts of the network because they
can perform several widely-recognized computations which
are understood to be central to the relevant domain — in
other words, they have (and share with their peers) a certain
“procedural knowledge”.

RDF is structured as if static data sharing were the
sole arbiter of semantically informed interactions between
different components, which may have a variety of designs
and rationales — which is to say, a Semantic Web. But a
thorough account of formal communication semantics has
to reckon with how semantic models are informed by the
implicit, sometimes unconscious assumption that producers
and/or consumers of data will have certain operational capac-
ities: the dynamic processes anticipated as part of sharing
data are hard to conceptually separate from the static data
which is literally transferred. To continue the accelerometer
example, designers can think of such instruments as “measur-
ing acceleration” even though physically this is not strictly
true; their output must be mathematically transformed for it
to be interpreted in these terms. Whether represented via RDF

graphs or Directed Hypergraphs, the semantics of shared data
is incomplete unless the operations which may accompany
sending and receiving data are recognized as preconditions
for legitimate semantic alignment.

While Ontologies are valuable for coordinating and
integrating disparate semantic models, the Semantic Web
has perhaps influenced engineers to conceive of semantically
informed data sharing as mostly a matter of presenting static
data conformant to published Ontologies (i.e., alignment
of “declarative knowledge”). In reality, robust data sharing
also needs an “alignment of procedural knowledge”: in an
ideal Semantic Network, procedural capabilities are circled
among components, promoting an emergent “collective pro-
cedural knowledge” driven by transparency about code and
libraries as well as about data and formats. The CH model
arguably supports this possibility because it makes type as-
sertions fundamental to semantics. Rigorous typing both
lays a foundation for procedural alignment and mandates that
procedural capabilities be factored in to assessments of net-
work components, because a type attribution has no meaning
without adequate libraries and code to construct and interpret
type-specific values.

29

Despite their differences, the Semantic Web, on the
one hand, and Hypergraph-based frameworks, on the other,
both belong to the overall space of graph-oriented seman-
tic models. Hypergraphs can be emulated in RDF, and RDF

graphs can be organically mapped to a Hypegraph represen-
tation (insofar as Directed Hypegraphs with annotations are
a proper superspace of Directed Labeled Graphs). Seman-
tic Web Ontologies for computer source code can thus be
modeled by suitably typed DHs as well, even while we can
also formulate Hypergraph-based Source Code Ontologies
as well. So, we are justified in assuming that a sufficient
Ontology exists for most or all programming languages. This
means that, for any given procedure, we can assume that
there is a corresponding DH representation which embodies
that procedure’s implementation.

Procedures, of course, depend on inputs which are
fixed for each call, and produce “outputs” once they termi-
nate. In the context of a graph-representation, this implies
that some hypernodes represent and/or express values that
are inputs, while others represent and/or express its outputs.
These hypernodes are abstract in the sense (as in Lambda Cal-
culus) that they do not have a specific assigned value within
the body, qua formal structure. Instead, a runtime manifesta-
tion of a DH (or equivalently a CH, once channelized types are
introduced) populates the abstract hypernodes with concrete
values, which in turn allows expressions described by the CH

to be evaluated.

These points suggest a strategy for unifying Lambda
Calculi with Source Code Ontologies. The essential construct
in λ -calculi is that mathematical formulae include “free sym-
bols” which are abstracted: sites where a formula can give
rise to a concrete value, by supplying values to unknowns;
or give rise to new formulae, via nested expressions. Anal-
ogously, nodes in a graph-based source-code representation
are effectively λ -abstracted if they model input parameters,
which are given concrete values when the procedure runs.
Connecting the output of one procedure to the input of an-
other — which can be modeled as a graph operation, linking
two nodes — is then a graph-based analog to embedding a
complex expression into a formula (via a free symbol in the
latter).

Carrying this analogy further, I earlier mentioned
different λ -Calculus extensions inspired by programming-
language features such as Object-Orientation, exceptions,
and by-reference or by-value captures. These, too, can be in-
corporated into a Source Code Ontology: e.g., the connection
between a node holding a value passed to an input parameter
node, in a procedure signature, is semantically distinct from

the nodes holding “Objects” which are senders and receivers
for “messages”, in Object-Oriented Parlance. Variant in-
put/output protocols, including Objects, captures, and excep-
tions, are certainly semantic constructs (in the computer-code
domain) which Source Code Ontologies should recognize.
So we can see a convergence in the modeling of multifarious
input/output protocols via λ -Calculus and via Source Code
Ontologies. I will now discuss a corresponding expansion in
the realm of applied Type Theory, with the goal of ultimately
folding type theory into this convergence as well.

3.4 Procedural Input/Output Protocols via
Type Theory

Parallel to the historical evolution where λ -Calculus
progressively diversified and re-oriented toward concrete pro-
gramming languages, there has been an analogous (and to
some extent overlapping) history in Type Theory. When there
are multiple ways of passing input to a function, there are
potentially multiple kinds of function types. For instance,
Object-Orientation inspired expanded λ -calculi that distin-
guish function inputs which are “method receivers” or “this
objects” from ordinary (“lambda”) inputs. Simultaneously,
Object-Orientation also distinguishes “class” from “value”
types and between function-types which are “methods” ver-
sus ordinary functions. So, to take one example, a function
telling us the size of a list can exhibit two different types, de-
pending on whether the list itself is passed in as a method-call
target (list.size() vs. size(list)).

One way to systematize the diversity of type systems
is to assume that, for any particular type system, there is a
category T of types conformant to that system. This requires
modeling important type-related concepts as “morphisms”
or maps between types. Another useful concept is an “endo-
functor”: an “operator” which maps elements in a category to
other (or sometimes the same) elements. In a T an endofunc-
tor selects (or constructs) a type t2 from a type t1 — note
how this is different from a morphism which maps values of
t1 to t2. Type systems are then built up from a smaller set of
“core” types via operations like products, sums, enumerations,
and forming “function-like” types.

We may think of the “core” types for practical pro-
gramming as number-based (booleans, bytes, and larger in-
teger types), with everything else built up by aggregation or
encodings (like ASCII and UNICODE, allowing types to include
text and alphabets; or pixel-coordinates and colors, allowing

30

for graphical/visual components).14 Ultimately, a type sys-
tem T is characterized (1) by which are its core types and (2)
by how aggregate types are built from simpler ones (which
essentially involves endofunctors and/or products).

In Category Theory, a Category C is called “Cartesian
Closed” if for every pair of elements e1 and e2 in C there is
an element e1→ e2 representing (for some relevant notion of
“function”) all functions from e1 to e2 [28]. The stipulation
that a type system T include function-like types is roughly
equivalent, then, to the requirement that T, seen as a Category,
is Cartesian-Closed. The historical basis for this concept
(suggested by the terminology) is that the construction to
form function-types is an “operator”, something that creates
new types out of old. A type system T may then be “closed”
under products: if t1 and t2 are in T then t1 × t2 must be
as well. Analogously, T supports function-like types if it is
closed under a kind of “functionalization” operator — if the
t1 × t2 product can be mapped onto a function-like type
t1→ t2.

In general, more sophisticated type systems T are
described by identifying new kinds of inter-type operators
and studying those type systems which are closed under these
operators: if t1 and t2 are in T then so is the combination of
t1 and t2, where the meaning of “combination” depends on
the operator being introduced. Expanded λ -calculi — which
define new ways of creating functions — are correlated with
new type systems, insofar as “new ways of creating functions”
also means “new ways of combining types into function-like
types”.

Furthermore, “expanded” λ -calculi generally involve
“new kinds of abstraction”: new ways that the building-blocks
of functional expressions, whether these be mathematical
formulae or bodies of computer code, can be “abstracted”,
treated as inputs or outputs rather than as fixed values. In
this chapter, I attempt to make the notion of “abstraction”
rigorous by analyzing it against the background of DHs that
formally model computer code. So, given the correlations
I have just described between λ -calculi and type systems —
specifically, on T-closure stipulations — there are parallel
correlations between type systems and kinds of abstraction
defined on Channelized Hypergraphs. I will now discuss this
further.

14In other contexts, however, non-mathematical core types may be appropriate: for
example, the grammar of natural languages can be modeled in terms of a type sys-
tem whose core are the two types Noun and Proposition and which also includes
function types (maps) between pairs or tuples of types (verbs, say, map Nouns —
maybe multiple nouns, e.g. direct objects — to Propositions).

3.4.1 Kinds of Abstraction

The “abstracted” nodes in a CH are loosely classifiable
as “input” and “output”, but in practice there are various
paradigms for passing values into and out of functions, each
with their own semantics. For example, a “this” symbol in
C++ is an abstracted, “input” hypernode with special treatment
in terms of overload resolution and access controls. Similarly,
exiting a function via return presents different semantics
than exiting via throw. As mentioned earlier, some of this
variation in semantics has been formally modeled by different
extensions to λ -Calculus.

So, different hypernodes in a CH are subject to differ-
ent kinds of abstraction. Speaking rather informally, hyper-
nodes can be grouped into channels based on the semantics
of their kind of abstraction. More precisely, channels are
defined initially on symbols, which are associated with hy-
pernodes: in any “body” (i.e., an “implementation graph”)
hypernodes can be grouped together by sharing the same
symbol, and correlatively sharing the same value during a
“runtime manifestation” of the CH. Therefore, the “channels
of abstraction” at work in a procedure can be identified by
providing a name representing the kind of channel and a list
of symbols affected by that kind of abstraction.

I propose “Channel Algebra” as a tactic for captur-
ing the semantics of channels, so as to model programming
languages’ conventions and protocols with respect to calls
between procedures. Once we get beyond the basic contrast
between “input” and “output” parameters, it becomes nec-
essary to define conditions on channels’ size, and on how
channels are associated with different procedures that may
share values. Here are several examples:

• In most Object-Oriented languages, any procedure can have
at most one this (“message receiver”) object. Let sigma
model a “Sigma” channel, as in “Sigma Calculus” (written
as ς -calculus: see e.g. [2], [29], [54], [146], etc.). We then
have the requirement than any procedure’s sigma channel
can carry at most one value.

• In all common languages which have exceptions, proce-
dures can either throw an exception or return a value. If re-
turn and exception model the channels carrying standard
returns and thrown exceptions, respectively, this convention
translates to a requirement that the two channels cannot
both be non-empty.

• A thrown exception cannot be handled as an ordinary value.
The whole point of throwing exceptions is to disrupt or-
dinary program flow, which means the exception value is
only accessible in special constructs, like a catch block.

31

One way to model this restriction is to forbid exception
channels from transferring values to other channels. Instead,
exception values are bound (in catch blocks) to lexically-
scoped symbols (I will discuss channel-to-symbol transfers
below).

• Suppose a procedure is an Object-Oriented method (it has
a non-empty “sigma” channel). Any other methods called
from that procedure will — at least in the conventional
Object-Oriented protocol — automatically receive the en-
closing method’s sigma channel unless a different object
for the called method is supplied expressly.

• In the object-oriented technique known as “method chain-
ing”, one procedures’ return channel is transferred to a sub-
sequent procedures’ sigma channel. The pairing of return
and sigma thereupon gives rise to one function-composition
operator. With suitable restrictions (on channel size), re-
turn and lambda channels engender a different function-
composition operator. So channels can be used to define
operators between procedures which yield new function-like
values (i.e., instances of function-like types). In some cases,
function-like values defined via inter-function operators can
be used in lieu of those instantiated from implemented pro-
cedures (although the specifics of this substitutability — an
example of so-called “eta (η) equivalence” — varies by
language).

The above examples represent possible combinations
or interconnections (sharing values) between channels, to-
gether with semantic restrictions on when such connections
are possible. In this chapter, I assume that notations describ-
ing these connections and restrictions can be systematized
into a “Channel Algebra”, and then used to model program-
ming language conventions and computer code. A basic ex-
ample of inter-channel aggregation would be how a lambda
channel, combined with a return channel, associated with
one procedure, yields a conventional input/output pairing.
One particular channel formation — lambda+return, say
— therefore models the basic λ -Calculus and, simultaneously,
a minimal definition of function-like types. Notionally, a pro-
cedure is, in the simplest conceptualization, the unification
of an input channel and an output channel — written, say,
C1 +©C2 (with the +© possibly holding extra stipulations, like
C1 and C2 cannot both be non-empty). So a “channel sum”
creates the basic foundation for a procedure, analogous to
how input and output graph elements yield the foundations
for morphisms in Hypergraph Categories. More complex
channel combinations and protocols can then model more
complex variations on λ -Calculi and on programming lan-
guage type systems.

3.4.2 Channelized Type Systems

Collectively, to summarize my discussion to this point,
I will say that formulations describing channel kinds, their
restrictions, and their interrelationships outline a Channel Al-
gebra, which express how channels combine to describe pos-
sible function signatures — and accordingly to describe func-
tional types. The purpose of a Channel Algebra is, among
other things, to elucidate how formal languages (like pro-
gramming languages) formulate functions and procedures,
and the rules they put in place for inputs and outputs. If χ

is a Channel Algebra, a language adequately described by
its formulations (channel kinds, restrictions, and interrela-
tionships) can be called a χ-language. The basic λ -Calculus
can be described as a χ-language for the algebra defined
by a minimal lambda+return combination (with return
channels restricted to at most one element). Analogously,
a type system T is a “χ-type-system”, and is “closed” with
respect to χ , if valid signatures characterized using channel
kinds in χ correspond to types found in T. Types may be
less granular than signatures: as a case in point, functions
differing in signature only by whether they throw exceptions
may or may not be deemed the same type. But a channel
construction on types in T must also yield a type in T.

I say that a type system is channelized if it is closed
with respect to some Channel Algebra. Channelized Hyper-
graphs are then DHs whose type system is Channelized. We
can think of channel constructions as operators which com-
bine groups of types into new types. Once we assert that a
CH is Channelized, we know that there is a mechanism for
describing some Hypergraphs or subgraphs as “procedure
implementations” some of whose hypernodes are subject to
kinds of abstraction present in the relevant Channel Alge-
bra. Channel formulae and signatures describe source-code
norms which could also be expressed via more conventional
Ontologies. So Channel Algebra can be seen as a general-
ization of (RDF-environment) Source Code Ontology (of the
kinds studied for example by [79], [83], [87], [138], [142],
[143]). Given the relations between RDF and Directed Hyper-
graphs (despite differences I have discussed here), Channel
Algebras can also be seen as adding to Ontologies governing
Directed Hypergraphs. Such is the perspective I will take for
the remainder of this chapter.

For a Channel Algebra χ and a χ-closed type system
(written, say) Tχ , χ extends T because function-signatures
conforming to χ become types in T. At the same time, T
also extends χ , because the elements that populate channels
in χ have types within T. Assume that for any type system,
there is a partner “Type Expression Language” (TXL) which
governs how type descriptions (especially for aggregate types

32

that do not have a single symbol name) can be composed
consistent with the logic of the system. The TXL for a type-
system T can be notated as LT. If T is channelized then its
TXL is also channelized — say, LTχ for some χ .

Similarly, we can then develop for Channel Algebras
a Channel Expression Language, or CXL, which can indeed
be integrated with appropriate TXLs. Formal declarations of
channel axioms — e.g., restrictions on channel sizes, alone
or in combination — are examples of terms that should be
representable in a CXL. However, whereas the CXL expressions
I have described so far elucidate the overall shape of channels
— which channels exist in a given context and their sizes —
CXL expressions can also add details concerning the types
of values that can or do populate channels. CXL expressions
with these extra specifications then become function signa-
tures, and as such type-expressions in the relevant TXL. A
channelized TXL is then a superset of a CXL, because it adds —
to CXL expressions for function-signatures — the stipulation
that a particular signature does describe a type; so CXL ex-
pressions become TXL expressions when supplemented with a
proviso that the stated CXL construction describes a function-
like type’s signature. With such a proviso, descriptions of
channels used by a function qualifies as a type attribution,
connecting function symbol-names to expressions recognized
in the TXL as describing a type.

Some TXL expressions designate function-like types,
but not all, since there are many types (int, etc.) which do
not have channels at all. While a TXL lies “above” a CXL by
adding provisos that yield type-definition semantics from CXL

expressions, the TXL simultaneously in a sense lies “beneath”
the CXL in that it provides expressions for the non-functional
types which in the general case are the basis for CXL expres-
sions of functional types, since most function parameters —
the input/output values that populate channels — have non-
functional types. Section §5 will discuss the elements that
“populate” channels (which I will call “carriers”) in more
detail.

In the following sections I will sketch a Channel Alge-
bra that codifies the graph-based representation of functions
as procedures whose inputs and outputs are related to other
functions by variegated semantics (semantics that can be cat-
alogued in a Source Code Ontology). With this foundation, I
will argue that Channel-Algebraic type representations can
usefully model higher-scale code segments (like statements
and code blocks) within a type system, and also how type
interpretations can give a rigorous interpretation to model-
ing constructs such as code specifications and “gatekeeping”
code. I will start this discussion, however, by expanding on
the idea of employing code-graphs — hypergraphs annotated

according to a Source Code Ontology — to represent proce-
dure implementations, and therefore to model procedures as
instances of function-like types.

4 Modeling Procedures via Channelized
Hypergraphs

Assuming we have a suitable Source Code Ontology,
software procedures can be seen from two perspectives. On
the one hand, they are examples of well-formed code graphs:
annotated graph structures convey the lexical symbols, in-
put/output parameters (via different “abstractions”, in the
sense of λ -abstraction, subject to relevant channel protocols),
and calls to other procedures, through which any given pro-
cedure’s functionality is achieved. On the other hand, we
can see procedures as instances of function-like types, where
the types carried in each channel determine the type of the
procedure itself, as a functional value. Although these two
perspectives are usually mutually consistent, the notion of
functional values is more general than procedures which are
expressly implemented in computer code. In particular, as
I briefly mentioned earlier, sometimes functional values are
denoted via inter-function operators (like the composition
f◦g) rather than by giving an explicit implementation. We
can say that functions defined via operators (like ◦) lack a
“function body”.

Going forward, I will generally use the term procedure
with reference to function-like type instances that are defined
with function bodies: that is, they are associated with sections
of code that supply the procedure’s implementation, and
can be represented via code-graphs. I will use the term
function more generally for instances of function-like types,
irregardless of their provenance. In particular, functions are
values — instances of types in a relevant type-system T —
whereas I will not usually discuss procedures as “values”.
On the other hand, code-graphs capture the implementations
through which function-like types are (mostly) populated
with concrete values.

To model the general maxim that any coding assump-
tions made (but not verified) by one procedure — say, P1
— should be tested by other procedures which call P1, we
need a systematic outline capturing the notion of procedures
calling other procedures, in the course of their own imple-
mentation. Here I propose to model these details via channels
and interrelationships between channels. Moreover, channels
can be seen as structures on graphs, as well as runtime infor-
mation flows, so that channels are applicable for both static

33

and dynamic program analysis.

One consequence of my graph-oriented approach
is that the technical distinctions between procedures and
function-values (in general) have to be duly observed. There
are some relevant complications appertaining to the general
picture of source-code segments instantiating function-like
types. I will briefly review these issues now, before pivot-
ing to more macro-scale themes concerning Requirements
Engineering via code models.

4.1 Initializing Function-Typed Values

Although in general function-typed values are initial-
ized from code-graphs that blueprint their implementation,
this glosses over several different mechanisms by which
function-typed values may be defined:

1. In the simplest case, there is a one-to-one relationship
between a code graph and an implemented function (f,
say). If f is polymorphic, in this case, it must be an exam-
ple of subtype (or “runtime”) polymorphism where the
declared types of f’s parameters are actually instantiated,
at runtime, by values of their subtypes.

2. A different situation (“compile-time” polymorphism) ap-
plies to generic code as in C++ templates. Here, a single
code-graph generates multiple function bodies, which dif-
fer only by virtue of their expected types. For example, a
templated sort function will generate multiple function
bodies — one for integers, say, one for strings, etc. These
functions may be structurally similar, but they have differ-
ent signatures by virtue of working with different types.
This means that symbols used in the function-bodies may
refer to different functions even though the symbols them-
selves do not vary between function-bodies (since, after
all, they come from the same node in a single code-graph).
That is, the code-graphs rely on symbol-overloading for
function names to achieve a kind of polymorphism, where
one code-graph yields multiple bodies.

In this compile-time polymorphism, symbols are re-
solved to the proper overload-implementation at compile-
time, whereas in runtime polymorphism this decision
is deferred until the runtime-polymorphic function is
actually being executed. The key difference is that
runtime-polymorphic functions are one function-typed
value, which can work for diverse types only via subtyp-
ing — or via more exotic forms of indirection, like using
function-pointers in place of function symbols; whereas
compile-time-polymorphic (i.e., templated) functions are

multiple values, which share the same code-graph repre-
sentation but are otherwise unrelated.

3. A third possibility for producing function-like values is to
define operators on function-like types themselves, which
transform functional values to other functional values, by
analogy to how arithmetic operations transform numbers
to other numbers. As will be discussed below, this may or
may not be different from initializing functional values via
code-graphs. For instance, given the composition operator
◦, f◦g may or may not be treated as only a convenient
shorthand for a code graph spelling out something like
f(g(x)).

4. Finally, as a special case of operators on functional values,
one function may be obtained from another by “Currying”,
that is, fixing the value of one or more of the original
function’s arguments. For example, the inc (“increment”)
function which adds 1 to a value is a special case of
addition, where the added value is always 1. Here again,
Currying may or may not be treated as a function-value-
initialization process different from ones starting from
code-graphs.

The differences between how languages may process
the initialization of function-type values, which I alluded to
in (3) and (4), reflect differences in how function-like values
are internally represented. We might treat all initializations of
these values as via code-graphs (in practice, compiled down
via an Abstract Syntax Tree or Graph to some Intermediate
Representation or byte-code). Suppose we have an add func-
tion and want to define an inc function, as in int inc(int
x){return add(x,1)}. Even if a language has a special
Currying notation, that notation could translate behind-the-
scenes to an explicit function body, like the code at the end
of the last sentence. Alternatively, however, a language en-
gine may also note that inc is derived from add and can be
wholly described by a handle denoting add (a pointer, say)
along with a designation of the fixed value: in other words,
〈&add, 1〉. Instead of initializing inc from a code-graph,
the language can represent it via a two-part data structure
like 〈&add, 1〉 — but only if the language can represent
function-like types’ instances as compound data structures.

Let’s assume a language can always represent some
functional values, ones that are obtained from code-graphs,
via pointers to (or some other unique identifier for) an in-
ternal memory area where at least some compiled function
bodies are stored. The interesting question is whether all
function-like values are represented in this manner and, in
either case, the consequences for the semantics of functional

34

types — semantic issues such as f◦g composition operators
and Currying (and also, as I will argue, Dependent Types).

4.1.1 Addressability and Implementation

Talk about polymorphism in a language like C++ cov-
ers several distinct language features: achieving code reuse
by templating on type symbols is internally very different
from using virtual methods calls. The key difference — high-
lighted by the contrast between runtime- and compile-time
polymorphism — is that there are some function implementa-
tions which actually compile to single functions, meaning in
particular that their compiled code has a single place in mem-
ory and that they may be invoked through function pointers.
Conversely, what appears in written code as one function
body may actually be duplicated, somewhere in the compiler
workflow, generating multiple function-like values. The most
common cases of such duplication are templated code as
discussed above (though there are more exotic options, e.g.
via C++ macros and/or repeated file #includes). Implementa-
tions of the first sort I will call “addressable”, whereas those
of the second produce multiple addressable values. These
concepts prove to be consequential in the abstract theory of
types, although for non-obvious reasons.

To see why, consider first that type systems are intrin-
sically pluralistic: there are numerous details whereby the
type system underlying one computing environment can dif-
fer from those employed by other environments. So there is
no single, universal “Type Expression Language”. One role
of any given TXL is to model what its corresponding language
recognizes as a type, or — better — a potential type. A TXL

expression which designates a (unique) type is well-formed
if it unambiguously describes a type that could exist. Such an
expression does not, however, implement the type on its own,
or mandate that the type be implemented; it would merely
affirm that the type so designated is implementable within
the target language.

As a concrete example, consider a type described in
English as: “the type inhabited by functions which take, as
one parameter, a Unicode string, and, as the second param-
eter, an unsigned integer less than the length of the string”.
A TXL version of this specification would only be valid if the
requirements thereby described can be satisfied, in the target
language, via type-checking alone.

For a more in-depth example, if in C++ I assert
“template<T>MyList”, it would then be consistent with
a C++-specific TXL to describe a type as MyList<int> (as-
sume this will be implemented as a list of integers). However,
the type MyList<int> is not, without further code, actually

implemented. It is a possible type because its description con-
forms to a relevant TXL, but not an actual type. If a program-
mer supplies a templated implementation for MyList<T>,
then the compiler can derive a “specialization” of the tem-
plate for a specific T — or the programmer can specialize
MyList on int (or any other chosen type) manually. But in
either case the actualization of MyList<T> will depend on
an implementation (either a templated implementation that
works for multiple types or a specialization for a single type);
this is separate and apart from MyList<T> being a valid
expression denoting a possible type.

Templates and specialization add complexity to dis-
cussions about types, because compilers may automatically
instantiate concrete types from templated code unless pro-
grammers supply specializations which deviate from the tem-
plate. As a result, in a local segment of a source file it may
be impossible to know whether or not the code concretizing
a templated type is automatically generated from a template.
Another complication is that compilers may derive default im-
plementations of types’ constructors, unless these are coded
explicitly. Taking these two considerations together, it can
be difficult in a code base to, given a type, find which code-
segments yield that types’ constructors.

As an analytic device, here I assume that every im-
plementable type can be associated with a procedure I will
call a co-constructor, whose role is to wrap constructor-calls
in a readily identifiable code body. Co-constructors are “or-
dinary” procedures in the sense that they are “addressable”.
Specifically, addressable procedures have these properties:

1. You can take their address (assuming we are dealing with
a language that supports function pointers in the first
place).

2. They have a corresponding (possibly templated) location
in source code (and therefore a code-graph). For co-
constructors, this location can be marked as such — it
should be straightforward to identify all co-constructor
implementations in a code base.

3. They can be exposed to scripting engines and runtime
reflection; so co-constructors enable type-instances to
be created via scripts and other runtime-introspection
capabilities.

Operationally, co-constructors are similar to factory proce-
dures or object factories (see e.g. [34, esp. pages 32-35],
[38, esp. pages 34-35], [74], [94]), which similarly delegate
to constructors but can be used in contexts where construc-
tors cannot, e.g. where it is necessary to address the factory
through a pointer (note that in C++ you may not take the
address of an actual constructor).

35

Insofar as co-constructors are addressable, they pro-
vide an indirect mechanism for designating their correspond-
ing type. I will use the term preconstructor to mean a
function-pointer holding the address of a co-constructor, or
some similar data structure which uniquely identifies a co-
constructor. A preconstructor thereby holds a compact value
which is associated with exactly one type. A valid precon-
structor, in particular, serves as proof that a given type is
implemented — it confirms the existence of at least one fully
implemented constructor for that type, indicating that the
type is actual and not just potential.

Suppose certification requires that the function which
displays the gas level on a car’s dashboard never attempts to
display a value above 100 (intended to mean “One Hundred
percent”, or completely full). One way to ensure this speci-
fication is to declare the function as taking a type which, by
design, will only ever include whole numbers in the range0,100. Thus, a type system may support such a type by
including in its TXL notation for “range-delimited” types,
types derived from other types by declaring a fixed range
of allowed values. A notation might be, say, int0,100,
for integers in the 0,100 range — or, more generally ex-
pressions like TV1,V2

, meaning a type derived from T but
restricted to the range spanned by V1 and V2 (assumed to be
values of T — notice that a TXL supporting this notation must
consequently support some notation of specific values, like
numeric literals).

However, merely describing range-delimited types’
desired space of values does not provide a full implementa-
tion specification. What should happen if someone tries to
construct an int0,100 value with the number, say, 101?
What about with values taken from an external source, like
a web API, where it cannot be proved that the values fall
in the proper range? These question point to implementa-
tion choices that transcend formal designations. This is why
TXL expressions should be seen as just articulating potential
types, because bringing types into actuality will usually call
for engineering choices that transcend type theory per se.
Once types are implemented, co-constructors serve as tangi-
ble witness to types’ actualization, and preconstructors are
convenient proxies referring to those types.15

Reasoning abstractly about functions and types needs
to be differentiated from reasoning about available, imple-
mented types (and functions defined on them). Consider
function pointers: what is the address of f◦g if that expres-
sion is interpreted in and of itself as evaluating to a functional

15Similar issues are sometimes addressed by a modal type theory (cf., e.g., [57])
where (in one interpretation) a logical assertion about a type may be possible but
not necessary (the modality ranging over “computing environments”, which act
like “possible worlds”).

value?16 This suggests that a composition operator does not
work in function-like types quite like arithmetic operators in
numeric types (which is not unexpected insofar as functional
values, internally, are more like pointers than numbers-with-
arithmetic).17 To put it differently, an address-of operator
may be available for f◦g if it is available for f and g, but this
depends on language design; it is not an abstract property of
type systems.

A similar discussion applies to “Currying” — the pro-
posal that types t1→ t2→ t3 and t1→ (t2→ t3) are equiva-
lent, in that fixing one value as argument to a binary function
yields a new unary function. Again, since the Curried func-
tion is not necessarily implemented, there is a modal differ-
ence between t1→ t2→ t3 and t1→ (t2→ t3). Languages
may be engineered to silently Curry any function on demand,
but purported t1→ t2→ t3 and t1→ (t2→ t3) equivalence
is not a necessary feature of type systems.

To the extent that both mathematical and programming
concepts have a place here, we find a certain divergence in
how the word “function” is used. If I say that “there exists
a function from t1 to t2”, where t1 and t2 are (not neces-
sarily different) types, then this statement has two possible
interpretations. One is that, mathematically, I can assume
the existence of a t1⇒ t2 mapping by appeal to some sort
of logic; the other is that a t1⇒ t2 function actually exists
in code. This is not just a “metalanguage” difference pro-
jected from how the discourse of mathematical type theory
is used to different ends than discourses about engineered
programming languages, which are social as well as digital-
technical artifacts. Instead, we can make the difference exact:
when a function-value is keyed to a procedure, it is bound
to a segment of code subject to analysis and to alternative
representations (such as code graphs).

Since co-constructors are addressable, they cannot —
at least not within the framework I have discussed thus far
— be “temporary” function-values analogous to f◦g. This
means that types cannot be temporary values. More precisely,
a type system may be constrained by the proposition that no
type can be created whose co-constructors would have to be
temporary values — or, to put it differently, no type can be
created whose co-constructors are not procedures that can
be mapped to source-code function-bodies (and thereby to
code-graphs).

16In my perspective here, f◦g may be a plausible value, but it is not an actual value
without being implemented, whether via a code graph (spelling out the equivalent
of λx. f gx) or some indirect/behavioral description (analogous to inc represented
as 〈&add, 1〉).

17Of course, languages are free to implement functions behind the scenes to expand
(say) f◦g, but then f◦g is just syntactic sugar (even if its purpose is not just to
neaten source code, but also to inspire programmers toward thinking of function-
composition in quasi-arithmetic ways).

36

Notice that co-constructors then are not just function-
like values; co-constructors have to be in that subspace of
function-like values initialized via code-graphs, rather than
via some quasi-arithmetic inter-function operator like f◦g.
This then limits what we can do with Dependent Types, type-
state, and other “expressive” type mechanisms. I will call this
the “metaconstructor” problem: insofar as co-constructors
are function-like values, they (in principle) need their own
constructors — call these “metaconstructors”. We can stipu-
late that metaconstructors — constructors of co-constructors
— have to be derived from code graphs (they cannot be tempo-
rary values), but this renders certain advanced type-theoretic
features inaccessible to our applied type systems. Conversely,
we can accept the idea of constructors being (potentially) tem-
porary values, but this interferes with preconstructors being
referential proxies for types themselves (unless types also
are, potentially, temporary constructs, which creates a new
set of problems). I will now explain this choice in greater
depth.

4.2 Dependent Types and Co-Constructors

To see why the metaconstructor problem determines
how extensively Dependent Types are supported in a type
system, consider a variation on the range 0,100 type. In
lieu of a fixed range, consider a procedure taking a (variable)
T-range r and a number x which must be in that range.
Here x “depends” on r — its type is r seen as its own
TV1,V2

 type — so x can vary among many range-types,
only being fixed at runtime. Defining a type for procedures
meeting those specifications is a classic problem of Depen-
dent Type theory.

Using the r-type as before, the type of f’s second
parameter would then be T restricted to the r interval, but
here r is not fixed in f’s declaration but rather passed in to
f as a parameter. Unless we know a priori that only a specific
set of rs in the first parameter will ever be encountered,
the compiler has to be prepared for x being assigned any
one of many different range types, depending on the f’s first
argument. In particular, the compiler cannot know ahead of
time which constructor to call for x. More precisely, it is
impossible for the compiler to have separate constructors
for millions of possible range types. Instead, the compiler
must either “create” a constructor “on the fly” or else have
some generic constructor which services many range-types,
but then requires extra information to establish which range
is desired.

Assuming we use co-constructors to wrap construc-
tors, these two options for compiler writers correspond to
the choice of either creating ad-hoc co-constructors or de-
signing co-constructors as a compound data structure. We
could certainly write a function that takes a range and a value
and ensures that the value fits the range — perhaps by throw-
ing an exception if not, or mapping the value to the range’s
closest point. Such a function would provide common func-
tionality for a family of constructors each associated with a
given range. But a function (Cf, say) providing “common
functionality” for value constructors is not necessarily itself
a value constructor.18 To treat such a function as a real value
constructor we would have to add contextual modifiers: Cf
is a value constructor for range-type r in the presence of
a T-pair to specify r at runtime. The co-constructor for a
range type Tr is accordingly the “common functionality”
base function plus T’s passed to it — some sort of 〈&Cf, r1,
r2〉 compound data structure, again by analogy to inc and
〈&add, 1〉 (see footnote 16, above). Here again, though, the
co-constructor is a temporary data structure, created on-the-
fly to model the desired value constructor for an x whose
type (and therefore whose constructor) is not known until
runtime. I contend, on examples like these, that Dependant
Typing for a type system T is thus logically equivalent to the
possibility of T co-constructors being temporary values.

But value constructors (and by extension co-
constructors) are not just any function-value: they have a
privileged status vis-à-vis types, and may be invoked when-
ever an appropriately-typed value is used. Many constructors
are called behind-the-scenes: in C++, the standard function-
call mechanism is “pass by value”, wherein values are copied
when passed between procedures; but any copy can poten-
tially invoke a so-called “copy constructor”. Indeed, program-
mers use certain constructors as “hooks” to silently insert
logic into normal program flow (usually this is to make com-
plex types behave like built-in-types from client code’s point
of view). Allowing large type families (like one type for each
int or each two-number range r — similar to “inductive
families” as discussed by Edwin Brady in the context of the
Idris language [26, page 12]) — could easily conflict with
user-defined constructor overrides: users (meaning, in this
context, library developers) would need not only to write
their own (e.g., copy) constructors, but to hook into a com-
plex run-time mechanism for creating constructors ad-hoc
as temporary values. Conversely, forcing co-constructors to
be addressable prohibits “large” type families — like types
indexed over other (non-enumerative) types (see e.g. [20,
page 4]) — at least as actual types. This apparently pre-

18Here I say “value constructor” to clarify that I am not commenting on type con-
structors, which derive specialized types from generic ones.

37

cludes full-fledged Dependent Types, since dependent-typed
values invariably require in general some extra contextual
data — not just a function-pointer — to designate the desired
value constructor at the point where a value, attributed to the
relevant dependent type, is needed. It may be infeasible to
add the requisite contextual information at every point where
a dependent-typed value has to be constructed — unless,
perhaps, a description of the context can be packaged and
carried around with the value, sharing the value’s lifetime.

As I will now review, this analysis in the realm of
Dependent Types carries over into typestate, which is another
mechanism intended to model coding requirements via type-
checkable specifications.

4.2.1 Dependent Types and Typestate

Typestates are finer-grained classifications than types.
A canonical example of typestate is restricting how functions
are called which operate on files. A single “file” type actually
covers several cases, including files that are open or closed,
and even files that are nonexistent — they may be described
by a path on a filesystem which does not actually point to a
file (perhaps in preparation for creating such a file). Instead
of one type covering each of these cases, we can envision
different types for nonexistent, closed, or open files. With
these more detailed types, constraints like “don’t try to create
an already-existing file” or “don’t try to modify a closed or
nonexistent file” are enforced by type-checking.

While this kind of gatekeeping is valuable in theory,
it raises questions in practice. Reifying “cases” — i.e., type-
states like open, closed, or nonexistent — to distinct types
implies that a “file” value can go through different types be-
tween construction and destruction. If this is literally true, it
violates the convention that types are an intrinsic and fixed
aspect of typed values. It is true that, as part of a type cast,
values can be reinterpreted (like treating an int as a float),
but this typically assumes a mathematical overlap where one
type can be considered as subsumed by a different type for
some calculation, without this changing anything: any inte-
ger is equally a ratio with unit denominator, say. “Casting” a
closed file to an open one is the opposite effect, using disjunc-
tures between types to capture the fact that state has changed;
to capture a trajectory of states for one value — which must
then have different types at different times, since this is the
whole point of modeling successive states via alternations in
type-attribution.

An alternative interpretation is that the “trajectory” is
not a single mutated value but a chain of interrelated values,
wherein each successive value is obtained via a state-change

from its predecessor. But a weakness of this chain-of-values
model is that it assumes only one value in the chain is cur-
rently correct: a file can’t be both open and closed, so if one
value with type “closed file” is succeeded by a different value
with type “opened file”, the latter value will be correct only if
the file was in fact opened, and the former otherwise — but a
compiler can’t know which is which, a priori. Or, instead of
a “chain” of differently-typed values we can employ a single
general “file” type and then “cast” the value to an “open file”
type when a function needs specifically an open file, and so
forth. The effect in that case is to insert the cast operator
as a “gatekeeper” function preventing the function receiving
the casted value from getting nonconformant input. Again,
though, the compiler cannot make any assumptions about
whether the “casts” will work (e.g., whether the attempt to
open a file will succeed).

In short, typestate forces us to modify some basic
assumptions about the relationship between types and values:
either values can change types mid-stream, or a lexical scope
can subsume a sequence of value “holders” which share the
same symbol-name (and maybe the same type) but differ
in state (some holding values unrelated to actual program
state). Both options upend normal programming expectations.
This situation can be juxtaposed with the “metaconstructor
problem”, i.e., how Dependent Types force a rethink on basic
value-constructor theory.

A good real-world example of the overlap between De-
pendent Types and typestate (also grounded on file input/out-
put) comes from the “Dependent Effects” tutorial from the
Idris (programming language) documentation [73]:

A practical use for dependent effects is in specifying
resource usage protocols and verifying that they are
executed correctly. For example, file management
follows a resource usage protocol with ... require-
ments [that] can be expressed formally in [Idris] by
creating a FILE IO effect parameterised over a file
handle state, which is either empty, open for reading,
or open for writing. In particular, consider the type of
[a function to open files]: This returns a Bool which
indicates whether opening the file was successful. The
resulting state depends on whether the operation was
successful; if so, we have a file handle open for the
stated purpose, and if not, we have no file handle. By
case analysis on the result, we continue the protocol
accordingly. ... If we fail to follow the protocol cor-
rectly (perhaps by forgetting to close the file, failing

38

to check that open succeeded, or opening the file for
writing [when given a read-only file handle]) then we
will get a compile-time error.

So how does Idris mitigate the type-vs.-typestate conundrum?
Apparently the key notion is that there is one single file type,
but a more fine-grained type-state; and, moreover, an effect
system “parametrized over” these typestates. In other words,
the effect of file operations is to modify typestates (not types)
of a file value. Moreover, Dependent Typing ensures that
functions cannot be called sequentially in ways which “vio-
late the protocol”, because functions are prohibited from hav-
ing effects that are incompatible with the potentially affected
values’ current states. This elegant syntheses of Dependent
Types, typestate, and Effectual Typing brings together three
of the key features of “fine-grained” or “very expressive”
type systems.

But the synthesis achieved by Idris relies on De-
pendent Typing: typestate can be enforced because Idris
functions may support restrictions which depend on values’
current typestate to satisfy effect-requirements in a type-
checking way. In effect, Idris requires that all possible vari-
ations in values’ unfolding typestate are handled by calling
code, because otherwise the handlers will not type-check.
An analogous tactic in C++ would be to provide an “open
file” function only with a signature that takes two callbacks,
one for when the open succeeds and a second for when it
fails (to mimic the Idris tutorial’s “case analysis”). But that
C++ version still requires convention to enforce that the two
callbacks behave differently: via Dependent Types Idris can
confirm that the “open file” callback, for example, is only
actually supplied as a callback for files that have indeed been
opened. A better C++ approximation to this design would be
to cast files to separate types — not only typestates — after
all, but only when passing these values to the callback func-
tions (or, as I will discuss later, using a “passkey” to vouch
that a callback’s file argument can be thus cast).

In the case of Idris, Dependent Types are feasible
because the final “reduction” of expressions to evaluable
representations occurs at runtime. In the language of the
Idris tutorial:

In Idris, types are first class, meaning that they can be
computed and manipulated (and passed to functions)
just like any other language construct. For example,
we could write a function which computes a type

[and] use this function to calculate a type anywhere
that a type can be used. For example, it can be used
to calculate a return type [or] to have varying input
types.

More technically, Edwin Brady (and, here, Matúš Tejiščák)
elaborate that

Full-spectrum dependent types ... treat types as first-
class language constructs. This means that types can
be built by computation just like any other value, lead-
ing to powerful techniques for generic programming.
Furthermore, it means that types can be parameterised
on values, meaning that strong, explicit, checkable
relationships can be stated between values and used to
verify properties of programs at compile-time. This
expressive power brings new challenges, however,
when compiling programs. ... The challenge, in short,
is to identify a phase distinction between compile-
time and run-time objects. Traditionally, this is sim-
ple: types are compile-time only, values are run-time,
and erasure consists simply of erasing types. In a
dependently typed language, however, erasing types
alone is not enough [131, page 1].

To summarize, Idris works by “erasing” some, but not all, of
the extra contextual detail needed to ensure that dependent-
typed functions are used (i.e., called) correctly (see also [33],
and [47, page 195]). This means that a lot of contextual detail
is not erased; Idris provides machinery to join executable
code and user specifications onto types so that they take effect
whenever affected types’ values are constructed or passed to
functions.

Despite a divergent technical background, the net re-
sult is arguably not vastly different from an Aspect-Oriented
approach wherein constructors and function calls are “point-
cuts” setting anchors upon source locations or logical run-
points, where extra code can be added to program flow (see
e.g. [64], [95], [147]). Recall my contrast of “internalist” and
“externalist” paradigms, sketched at the top of this chapter:
Aspect-Oriented Programming involves extra code added by
external tools (that “modify” code by “weaving” extra code
providing extra features or gatekeeping). Implementations
like Idris pursue what often are in effect similar ends from a
more “internalist” angle, using the type system to host added
code and specifications without resorting to some external

39

tool that introduces this code in a manner orthogonal to the
language proper. But Idris relies on Haskell to provide its
operational environment; it is not clear how Idris’s strategies
(or those of other Haskell and ML-style Dependent Type lan-
guages) for attaching runtime expressions to type constructs
would work in an imperative or Object-Oriented environment,
like C++ as a host language.

4.2.2 Simulating Dependent Types with Preconstruc-
tors

Because Dependent Types and typestate recognize
fine-grained requirements on which values may be passed to
which functions, it might seem as if they are a logical con-
tinuation of the telos toward granular data modeling. If our
goal is to provide the most expressive data models possible
within the bounds of computational tractability (I will return
to this in the conclusion), we should certainly allow for De-
pendent Types and any other constructions which logically
imply them (essentially, any formulation wherein types or
their constructors are ad-hoc temporary values).

However, Dependent Types have the technical conse-
quence of leaving pre-runtime values (or whatever construct
we recognize as “holding” or “carrying” values) either with-
out types, or with different types than they have at runtime. In
this case it becomes difficult to query code outside runtime,
which arguably subtracts expressiveness from the framework.
In short, we are free to explore some foundation for emulat-
ing Dependent Types without giving up on static reflection;
the resulting system would not necessarily be expressively
lesser than a T with full-fledged Dependent Type support.

An elegant compromise might seem to be allowing
each value to have two potential type attributions — one
“static” and one at runtime, potentially changing with each
call to the surrouding function-body. After all, it is often
consequential that a value of type t1 may be coerced to, or
reinterpreted as an instance of, t2. This means that a t1’s
specific value is consistent with also being a t2: it falls into
the “space” where t1 and t2 overlap; or there is an available
conversion that creates a t2 from the t1. However, this con-
vertibility is usually a factor when (using this chapter’s terms)
the t1 is transferred to a channel in a place for a t2. Bear in
mind that types are not “sets”; it’s not as if we can regard
two types as indistinguishable within the collection of values
where they can be interconverted. In my treatment, types
are manifest first and foremost as recipes for values to be
“handed off” between channels.

So, a “second” or “dynamic” type for some value
would only be operational if it corresponds to the “static”

type in some receiving channel (this is how subtyping works).
But then we are no closer to dealing with “temporary” types,
because the “metaconstructor” problem simply reappears
within the new channel. This is not to rule out the receiving
context having its own duality of static and dynamic types,
where the hand-off has to match requirements on both static-
to-static and dynamic-to-dynamic type-pairs. In that case,
however, the dynamic types are not really “second” types
to which the initial values are cast; they are more like logi-
cal preconditions which must be satisfied at both ends of a
channel-transfer.

Indeed, type-attributions do two different things: first
they establish that some value is suitable for transfer between
procedures, but, second, they affirm certain predicates vis-
à-vis that value. With dynamically-recognized, temporarily
“constructed” types we are actually dealing with the second
salience: proof that values can be attributed to some (maybe
temporary and context-specific) type establishes facts about
that value. But in this case we are not interested in using
that second type as the infrastructure for a carrier-transfer;
we are instead trying to employ the type-attribution logically
as a transfer precondition. Perhaps a credible analogy is the
post office only accepting boxes within a certain size and
weight (manifesting logistical constraints in how the boxes
can be handled) vs. only accepting boxes which their sender
certifies not to contain dangerous contents (establishing con-
tractual rules that transcend the raw logistics of transporting
packages). Channel packages-to-complexes (I will explain
this terminology in the next section) is an analogous “binary”
transporting which can be factored into an underlying digital
logistics and a more nuanced accounting of package/complex
compatibility, wherein we desire to reject certain package/-
complex pairs which ordinary type systems would allow (e.g.
an index parameter on the package side incompatible with the
size of a list parameter). The problem is how to achieve se-
mantics modeling Dependent Types within a framework that
situates type theory itself in a channel-transfer (and graph-
oriented) context: types only “exist” insofar as they regulate
inter-channel handoffs. A given type therefore only exists if
there are capabilities in the system to test package/complex
matches against the proposed type’s logical posits.

The solution I suggest to effectuate this compromise
involves using preconstructors as witnesses that a given value
construction could be performed — so that a given value
(or values) is/are logically consistent with being construed
as instance of some (perhaps ad-hoc) type, but are not liter-
ally assigned to that type. The preconstructor can then be
passed in to functions as an extra parameter, which when
valid (e.g., when not a null function pointer) vouches for the

40

co-construction it references being permissible. That is, the
preconstructor become a “passkey” parameter returned from
a gatekeeper procedure and then passed on as evidence of the
gatekeeping validation.

As a concrete example, suppose a procedure requires
two numbers where the second is greater than the first (the in-
verse of the systolic-over-diastolic mandate): f(x, y) where
x < y. How can we express the x < y condition within f’s
signature, assuming the signature can only express seman-
tics pertinent to f’s type attribution? On the face of it, we
know that the desired “increasing” condition is equivalent
to y having a type like range gt<x> — a range bounded
(only) from below — where this “x” is the x preceding y in
f’s signature. But using such directly as y’s type-attribution
means that from the perspective of f’s own type-attribution, y
does not have a single, fixed type; its type varies according to
the value of x. Here again we encounter a “metaconstructor”
problem: in order for the x < y condition to be modeled
directly by y’s type-attribution we would need the constructor
for y’s value-constructor to be some operation that produces
a temporary function-value — not simply the compilation of
a code-graph to an addressable, non-temporary implementa-
tion.

These issues go away if, instead of working with a
function taking two integers, we instead consider a function
taking one value which is a monotone-increasing pair (some-
thing like int f(mi pair pr)). A type like mi pair, based on
ordered pairs x,y of ints, solves the metaconstructor problem
for y because x and y are no longer distinct f parameters with
distinct value-constructors; they are subsumed into one pair,
whose own value-constructor can check the x < y condition.
The requirements for the original (two-valued) f may then be
described as x and y being convertible into a pair pr which
is an instance of mi pair (so that x < y). This description
is not a type, but elevating the description to type level can
be at least approximated with a wrapper like int f(int x,
int y){ return f(x, y, mi pair(x, y)); }, so f when used
as f(x, y) will silently call the mi pair constructor. This is
only approximate because it allows anomalies like f(x, y,
mi pair(0, 1)), — taking mi pairs on anything but x and
y defeats the purpose — but at least we can approximate a
Dependent Type signature with a passkey protocol that is not
difficult to enforce via calling conventions (client code should
never call the three-argument form directly, which could be
sequestered to a file-scoped or private member function).

Now, notice that we do not actually need the third
argument; we just want to know that the mi pair constructor
would accept the x,y pair. So we can replace the actual
mi pair constructor with a preconstructor that could be used

as a factory for mi pair instances if needed, but can also
serve to certify that a certain set of arguments (here a pair
of numbers) meets the logical preconditions which an actual
constructor would check off.

For this to work, the mi pair type would need to
be implemented with a static procedure that returns a
valid preconstructor for valid inputs — plus, assuming the
preconstructor/co-constructor pattern I am advocating, a co-
constructor whose address would be the basis of the precon-
structor value. These are obviously not features of C++ (or
any other language I know of) but could readily be an imple-
mentational norm for data types used in a safety-conscious
project. In effect, consistent use of preconstructors for fine-
grained types is one strategy for siting gatekeeping code
broadly throughout a code base.

Further discussion of preconstructors is outside the
scope of this paper, but concrete examples of range-checking
via preconstructor passkeys can be found in the demo. Here
I’ll make the further point that — if we accept a Channel
Algebra which expands beyond present programming lan-
guages — we can move preconstructor passkeys to a separate
channel, thereby approximating Dependent Types more elo-
quently. Co-constructors may be identified via a dedicated
co-constructing channel — coconstruct — which signals
that a return value is not any procedure returning the as-
sociated type, but a constructing procedure which is part
of the type’s interface and helps to demarcate its space of
values. A coconstruct channel paired with a special pre-
construct channel, for preconstructor passkeys, provides a
metamodel wherein Dependent Types, typestate, and many
effect-systems can be reasonably encoded.

This last case also points to how a theory of chan-
nels adds semantic expressiveness to code models: we can
achieve via descriptions of inter-procedure information flows
— including distinguishing distinct roles such as passkeys vs.
ordinary parameters, and constructing returns vs. ordinary
procedures happening to return a given type — a semantic ex-
actitude that is implementationally harder (from a language
engineering perspective) to achieve directly within a type
system. Channel Algebras are not limited to channels actu-
ally recognized by existing languages — they could be the
basis for new languages, and/or new analytic tools isolating
patterns in existing code. With this flexibly channels can
be lifted into a construct recognized within data and code
modeling paradigms — as well as an added structural layer
within hypergraphs — in general. These possibilities may
become clearer as I present a theory of channels in more
detail next section.

41

5 Channels and Carriers

Suppose one procedure calls a second. From a high
level perspective, this has several consequences that can be
semantic-graph represented — among others, that the call-
ing procedure depends on an implementation of the callee
being available — but at the source code level the key con-
sequence is that a node representing source tokens which
designate functional values enters into different semantic re-
lations (modeled by different kinds of edge-annotations) than
nodes marking other types of values and literals. Suppose
we have an edge-annotation that x is a value passed to f;
this graph is only semantically well-formed if f’s representa-
tum has functional type (by analogy to the well-formedness
criteria of λx. f x).

This motivates the following: suppose we have a Di-
rected Hypergraph, where the nodes for each hyper-edge
represent source-code tokens (specifically, symbols and liter-
als). Via the relevant Source Code Ontology, we can assert
that certain edge-annotations are only possible if a token
(in subject or object position) designates a value passed to
a function. From the various edge-annotation kinds which
meet this criteria, we can define a set of “channel kinds”.

This implicitly assumes that symbols “hold” values;
to make the notion explicit, I will say that symbols are car-
riers for values. Carriers do not necessarily hold a value
at every point in the execution of a program; they may be
“preinitialized”, and also “retired” (the latter meaning they
no longer hold a meaningful value; consider deleted pointers
or references to out-of-scope symbols). A carrier may pass
through a “career” from preinitialized to initialized, maybe
then changing to hold “different” values, and maybe then re-
tired.19 I assume each carrier is associated with a single type
throughout its career, and can only hold values appropriate
for its type.20

19Because “uninitialized” carriers and “dangling pointers” are coding errors, within
“correct” code, carriers and values are bound tightly enough that the whole carri-
er/value distinction might be considered an artifact of programming practice, out
of place in a rigorous discussion of programming languages (as logicomathemati-
cal systems, in some sense). But even if the “career” of symbols is unremarkable,
we cannot avoid in some contexts — within a debugger and/or an IDE (Integrated
Development Environment, software for writing programs), for example — need-
ing to formally distinguish the carrier from the value which it holds, or recognize
that carriers can potentially be in a “state” where, at some point in which they are
relevant for code analysis or evaluation, they do not yet (or do not any longer) hold
meaningful values. Consequently, the “trajectory” of carrier “lifetime” — from
being declared, to being initialized, to falling “out of scope” or otherwise “retired”
— should be integrated into our formal inventory of programming constructs, not
relegated to an informal “metalanguage” suitable for discussing computer code as
practical documents but not as formal systems.

20The variety of possible careers for carriers is not directly tied to its type: a carrier
which cannot change values (be reinitialized) is not necessarily holding a CONST-
typed value.

Via carrier careers we then have a ready account of
the transformations effectuated by a procedure: in particu-
lar, return or exception (or other output channels’) carriers
transition from, before the procedure begins, being preinitial-
ized, to, after it ends, being initialized (depending on how
the procedure exits). Input carriers may also be modified
(i.e., undergo a state-change). As such, procedures result
in (potential) changes to the state of those carriers within
their signature channel-complex (and other carriers sharing
values with them). Morphisms in carrier-states thereby play
a logical role akin to reduction in λ -Calculi.

In short, carriers embody the contrast between ab-
stract or mathematical type theory and practical languages’
type systems. Instead of the (still rather abstract and circu-
lar) notion of a typed value — an instance of a type — we
can focus on carriers which are tangible elements of source
code and also (during runtimes) binary resources. Carri-
ers evince different states; in those states where they hold
a concrete value, carriers play a conceptual role analogous
to type-instances in formal type theory. On the other hand,
carriers can have other states which are orthogonal to type
systems: carriers holding no value, for example, are different
than carriers holding values of a “null” type.

With this the basic idea, I will now consider carrier
operations in more detail, before then expanding on the theory
of carriers by considering how carriers group into channels.

5.1 Carrier Transfers

In this theory, carriers are the basic means by which
values are represented within computer code, including dur-
ing communications between different parts of code source
(such as calling a procedure). The “information flow” mod-
eled by a function-call includes values held by carriers at the
function-call site being transferred to carriers at the function-
implementation site. This motivates the idea of a “transfer”
of values between carriers, a kind of primitive operation on
carriers, linking disparate pieces of code. It also illustrates
that the symbols used to name function parameters, as part
of function signatures, should be considered “carriers” analo-
gous to lexically-scoped symbols.

Taking this further, we can define a channel as a list of
carriers which, by inter-carrier transfers, signify (or orches-
trate) the passage of data into and out of function bodies.21

21Note that this usage varies somewhat from process calculi, where a channel would
correspond roughly to what is here called a single carrier; I assume channels in the
general case are composed of multiple carriers (see e.g. [115] and [90], or [136]).

42

I’ll use the notation# to represent inter-carrier transfer: let
c1 and c2 be carriers, then c1#c2 is a transfer “operator”
(note that# is non-commutative; the “transfer” happens in a
fixed direction), marking the logical moment when a value is
moved from code-point to code-point. The# is intended to
model several scenarios, including “forced coercions” where
the associated value is modified. Meanwhile, without further
details a “transfer” can be generalized to channels in multiple
ways. If c1 and c2 are carriers which belong to two channels
(χ1, χ2), then c1#c2 elevates to a transfer between the chan-
nels — but this needs two indices to be concrete: the notation
has to specify which carrier in χ1 transfers to which carrier
in χ2. For example, consider the basic function-composition
f◦g: (f.g)(x) = f(g(x)). The analogous “transfer” notation
would be, say, g:return1#f:lambda1: here the first carrier
in the return channel of g transfers to the first carrier in the
lambda channel of f (the subscripts indicate the respective
positions).

Most symbols in procedure code (so corresponding
nodes in a code graph) accordingly represent carriers, which
are either passed in to a function or lexically declared in a
function body. Assume each function body corresponds with
one lexical scope which can have subscopes (the nature of
these scopes and how they fit in graph representation will
be addressed later in this section). The declared carriers are
initialized with values returned from other functions (perhaps
the current function called recursively), which can include
constructors that work on literals (so, the carrier-binding in
source code can look like a simple assignment to a literal,
as in int i = 0). In sum, whether they are passed to a
function or declared in a function, carriers are only initialized
— and only participate in the overall semantics of a program
— insofar as they are passed to other functions or bound to
their return values.

Furthermore, both of these cases introduce associa-
tions between different carriers in different areas of source
code. When a carrier is passed to a function, there is a cor-
responding carrier (declared in the callee’s signature) that
receives the former’s value: “calling a function” means trans-
ferring values between carriers present at the site of the func-
tion call to those present in the function’s implementation.
Sometimes this works in reverse: a function’s return may
cause the value of one of its carriers to be transferred to a
carrier in the caller (whatever carrier is bound to the caller’s
return value).

Let c1 and c2 be two carriers. The# operator (rep-
resenting a value passed from c1 to c2) encompasses several
cases. These include:

1. Values transfer directly between two carriers in one scope,

like a = b or a := b.

2. A value transferred between one carrier in one function
body when the return value of that function is assigned to
a carrier at the call site, as in y = f(x) when f exits with
return 5, so the value 5 is transferred to y.

3. A value transferred between a carrier at a call-site and a
carrier in the called function’s body. Given y = f(x) and
f declared as, say, int f(int i), then the value in carrier x
at the call-site is transferred to the carrier i in the function
body. In particular, every node in the called function’s
code-graph whose vertex represents a source-code token
representing symbol i then becomes a carrier whose value
is that transferred from x.

4. A value transferred between a return channel and either
a lambda or sigma channel, as part of a nested expres-
sion or a “chain of method calls”. So in h(f(x)), the
value held by the carrier in f’s return channel is trans-
ferred to the first carrier in h’s lambda. An analogous
return#sigma transfer is seen in code like f(x).h(): the
value in f’s return channel becomes the value in h’s
sigma, i.e., its “this” (we can use # as a notation be-
tween channels in this case because we understand the
Channel Algebra in force to restrict the size of both re-
turn and sigma to be at most one carrier).

Let c1� c2 be the special case of# corresponding
to item (3): a transfer effectuated by a function call, where
c1 is at the call site and c2 is part of a function’s signature.
If f1 calls f2 then c1 is in f1’s context, c2 is in f2’s context,
and c2 is initialized with a copy of c1’s value prior to f2
executing. A channel then becomes a collection of carriers
which are found in the scope of one function and can be on
the right hand side of an c1� c2 operator.

To flesh out Channels’ “transfer semantics” further, I
will refer back to the model of function-implementations as
represented in code graphs. If we assume that all code in a
computer program is found in some function-body, then we
can assume that any function-call operates in the context of
some other function-body. In particular, any carrier-transfer
caused by a function call involves a link between nodes in
two different code graphs (I set aside the case of recursive
functions — those which call themselves — for this discus-
sion).

Analysis of value-transfers is particularly significant
in the context of Source Code Ontologies and RDF or Di-
rected Hypergraph representations of computer code. This is
because code-graphs give us a rigorous foundation for model-
ing computer programs as sets of function-implementations

43

x y

gxy

x and y (being lexically scoped)
remain initialized between g and f

x
y

z

fxyzinput

output input

z = g (x , y) ; f (x , y , z)

: output carriers : input carriers

x y : carriers embedded in lexically-
scoped symbols

: handoffs (value transferred between
carriers)

Diagram 3: Visualizing Carrier Transfers (“Handoffs”)

which call one another. Instead of abstractly talking about
“procedures” as conceptual primitives, we can see proce-
dures as embodied in code-graphs (and function-values as
constructed from them). Figure 3, for example, shows how
graph constructions can track the flow of carriers and values
between procedures: this graph-modeling use-case (with ad-
ditional illustrations) is discussed in greater detail within the
demo’s documentation. “Passing values between” procedures
is then explicitly a family of relationships between nodes (or
hypernodes) in disparate code-graphs, and the various seman-
tic nuances associated with some such transfers (type casts,
for example) can be directly modeled by edge-annotations.
Given these possibilities, I will now explore further how the
framework of carriers and channels fits into a code-graph
context.

5.1.1 Channel Groups and Code Graphs

For this discussion, assume that f1 and f2 are imple-
mented functions with code graphs Γ1 and Γ2, respectively.
Assume furthermore that some statement or expression in f1
involves a call to f2. There are several specific cases that can
obtain: the expression calling f2 may be nested in a larger
expression; f2 may be called for its side effects alone, with
no concern to its return value (if any); or the result of f2 may
be bound to a symbol in f1’s scope, as in y = f(x). I’ll take
this third case as canonical; my discussion here extends to
the other cases in a relatively straightforward manner.

A statement like y = f(x) has two parts: the expres-
sion f(x) and the symbol y to which the results of f are
assigned. Assume that this statement occurs in the body
of function f1; x and y are then symbols in f1’s scope and

the symbol f designates (or resolves to) a function which
corresponds to what I refer to here as f2. Assume f2 has
a signature like int f(int i) As such, the expression f(x),
where x is a carrier in the context of f1, describes a carrier
transfer according to which the value of x gets transferred to
the carrier i in f2’s context.

I will say that f2’s signature represents a channel
“complex” — which, in the current example, has a lambda
channel of size one (with one carrier of type int) and a re-
turn channel of size one (f2 returns one int). Considered
in the context of carrier-transfers between code graphs, a
channel complex may be regarded as a description of how
two distinct code-graphs are to be connected via carrier trans-
fers. When a function is called, there is a channel group
which I’ll call a package that supplies values to the channel
complex. In the concrete example, the statement y = f(x)
is a call site describing a channel package, which becomes
connected to a function implementation whose signature rep-
resents a channel complex: a collection of transfers c1#c2
together describe an overall transfer between a package and
a complex.

More precisely, the f(x) example represents a carrier
transfer whose target is part of f2’s lambda channel, which
we can notate c1#lambdac2. Furthermore, the full statement
y = f(x) shows a transfer in the opposite direction: the value
in f2’s return channel is transferred to the carrier y in the
package. This relation, involving a return channel, can be
expressed with notation like c2#returnc1. The syntax of a pro-
gramming language governs how code at a call site supplies
values for carrier transfers to and from a function body: in
the current example, binding a call-result to a symbol always
involves a transfer from a return channel, whereas handling
an exception via code like catch(Exception e) transfers
a value from a called function’s exception channel. The
syntactic difference between code which takes values from
return and exception channels, respectively, helps reinforce
the semantic difference between exceptions and “ordinary”
returns. Similarly, method-call syntax like obj.f(x) visually
separates the values that get transferred to a “sigma” chan-
nel (obj in this case) from the “ordinary” (lambda) inputs,
reinforcing Object semantics.

To consolidate the terms I am using: we can interpret
both function signatures and calls in terms of channels. Both
involve “carrier transfers” in which values are transferred to
or from the channels described by a function signature. I will
say that channels are convoluted if there is a potential carrier-
transfer between them. The distinction between procedures’
“inputs” and “outputs” can be more rigorously stated, with
this further background, as the distinction between channels

44

in function signatures which receive values from carriers at a
call site (inputs), and those from which values are obtained
as a procedure has completed (outputs).

A Channel Expression Language (CXL) can describe
channels both in signatures and at call-sites. The aggrega-
tion of channels generically described by CXL expressions I
am calling a Channel Group. A Channel Group represent-
ing a function signature I am calling a channel complex,
whereas groups representing a function call I am calling a
channel package. Input channels are then those whose carrier
transfers occur in the package-to-complex direction, whereas
output channels are the converse.

Alongside the package/complex distinction, we can
also understand Channel Groups at two further levels. On the
one hand, we can treat Channel Groups as found in source
code, where they describe the general pattern of package/-
complex transfers. On the other hand, we can represent
Channel Groups at runtime in terms of the actual values and
types held by carriers as transfers are effectuated prior to,
and then after, execution of the called function. Accordingly,
each Channel Group may be classified as a compile-time
package or complex, or a runtime package or complex, re-
spectively. The code accompanying this chapter includes a
“Channel Group library” — for creating and analyzing Chan-
nel Groups via a special Intermediate Representation — that
represents groups of each variety, so it can be used both for
static analysis and for enhanced runtimes and scripting.

The channel/group/complex/package/carrier vocabu-
lary, I believe, codifies a descriptive framework integrating
the semantic and syntactic dimensions of source code and pro-
gram execution. Specifically, on the semantic side, computer
programs can be understood in terms of λ -Calculi combined
with models of computation (call-by-value or by-reference,
eager and lazy evaluation, and so forth). These semantic
analyses focus on how values change and are passed between
functions during the course of a running program. From this
perspective, source code is analyzed in terms of the seman-
tics of the program it describes: where and when are values
moved around?

Conversely, source code can also be approached syn-
tactically, as well-formed expressions of a computer lan-
guage. From this perspective, correct source code is matched
against language grammars, and individual code elements
(like tokens, code blocks, expressions, and statements) —
plus their inter-relationships — are established against this
background.

The theory of Channel Groups straddles both the se-
mantic and syntactic dimensions of computer code. Seman-

tically, carrier-transfers capture the fundamental building
blocks of program semantics: the overall evolving runtime
state of a program can be modeled as a succession of carrier-
transfers, marking code-points bridged via a transfer. Mean-
while, syntactically, how carriers belong to channels — the
carrier-to-channel map fixing carriers’ semantics — struc-
tures and motivates languages’ grammars and rules. In par-
ticular, carrier-transfers induce relationships between code-
graph nodes. As a result, language grammars can be studied
through code-graphs’ profiles insofar as they satisfy RDF

and/or DH Ontologies.

In sum, a DH and/or Semantic Web representation of
computer code can be a foundation for both semantic and
syntactic analyses, and this may be considered a benefit of
Channel Group representations even if they only restate what
are established semantic patterns in mainstream program-
ming language — for example, even if they are restricted to
a sigma-lambda-return-exception Channel Algebra mod-
eled around, say, C++ semantics prior to C++11 (more recent
C++ standards also call for a “capture” channel for inline
anonymous functions).

At the same time, one of my claims in this chapter is
that more complex Channel Algebras can lead to new tac-
tics for introducing more expressive type-theoretic semantics
in mainstream programming environments. As such, most
of the rest of this section will explore additional Channel
Kinds and associated Channel Groups which extend, in addi-
tion to merely codifying, mainstream languages’ syntax and
semantics.

5.2 Channelized-Type Interpretations of
Larger-Scale Source Code Elements

By intent, Channel Algebras provide a machinery
for modeling function-call semantics more complex than
“pure” functions which have only one sort of input parame-
ter (as in lambda abstraction) — note that this is unrelated
to parameters’ types — and one sort of (single-value) re-
turn. Examples of a more complex paradigm come from
Object-Oriented code, where there are two varieties of input
parameters (“lambda” and “sigma”); the “sigma” (this)
carrier is privileged, because its type establishes the class
to which function belongs — influencing when the function
may be called and how polymorphism is resolved.22

22Also, as I discussed earlier (page 32), “chaining” method calls means that the
result of one method becomes an object that may then receive another method (the
following one in the chain). Such chaining allows for an unambiguous function-
composition operator.

45

Another case-study is offered by exceptions. A func-
tion throws an exception instead of returning a value. As
a result, return and exception channels typically evince
a semantic requirement (which earlier — see page 31 — I
sketched as an algebra stipulation): when functions have both
kinds of channels, only one may have an initialized carrier
after the function returns. Usually, thrown-exception values
can only be bound to carriers in catch(...) formations —
once held in a carrier they can be used normally, but carriers
in exception channels themselves can only transfer values
to other carriers in narrow circumstances (this in turn de-
pends on delineating code blocks, which will be reviewed
below). So exception channels are not a sugared form of
ordinary returns, any more than objects are sugar for func-
tions’ first parameter; there are axiomatic criteria defining
possible formations of exception and return channels and
carriers, criteria which are more transparently rendered by
recognizing exception and return as distinct channels of
communication available within function bodies.

In general, extensions to λ -Calculus are meaningful
because they model semantics other than ordinary lambda ab-
straction. For example, method-calls (usually) have different
syntax than non-method-calls, but ς -calculi aren’t trivial ex-
tensions or syntactic sugar for lambdas; the more significant
difference is that sigma-abstracted symbols and types have
different consequences for overload resolution and function
composition than lambda-abstractions. Similarly, excep-
tions interact with calling code differently than return values.
Instead of scattered λ -extensions, Channel Algebra unifies
multiple expansions by endowing functions (their signatures,
in the abstract, and function-calls, in the concrete) with mul-
tiple channels, each of which can be independently modeled
by some λ -extension (objects, exceptions, captures, and so
forth).

Specific examples of unorthodox λ s (objects, excep-
tions, captures) suggest a general case: relations or operators
between procedures can be modeled as relations between
their respective channels, subject to channel-specific seman-
tic restrictions. A method can be described as a function
with several different channels: “lambda” with ordinary
arguments (as in λ -calculus); “sigma” channel with a distin-
guished this carrier (formally studied via “ς -calculus”); and
a return channel representing the return value. Because the
contrast between these channels is first and foremost seman-
tic — they have different meanings in the semantics of the
programs where they appear — channels may therefore have
restrictions governed by programs’ semantics. For example,
as I mentioned in the context of “method chaining”, it may
be stipulated that both sigma and return channels can have

at most one carrier; as a result, a special channel-to-channel
operator can be defined which is specific to passing values
between the carriers of return and sigma channels. This
operator is available because of the intended semantics of
the channel system. Each channel kind has its own semantic
interpretation, with commensurate axioms and restrictions.
Subject to these semantics, carrier-to-carrier operators trans-
late to channel-to-channel operators. A Channel Algebra
in this sense is not a single fixed system, but an outline for
modeling function-call semantics in the context of different
programming languages and environments.

As the preceding paragraphs have presupposed, differ-
ent functions may have different kinds of channels, which
may or may not be reflected in functions’ types (consider
the question, can two functions have the same type, if only
one may throw an exception)? This may vary between type
systems; but in any case the contrast between channel “struc-
tures” is available as a criteria for modeling type descriptions.
On this basis, as I will now argue, we can provide type-system
interpretations to source code structures beyond just values
and symbols.

5.2.1 Statements, Blocks, and Control Flow

The previous paragraphs discussed expanded chan-
nel structures — with, for example, objects and exceptions
— that model call semantics more complex than the basic
lambda+return (of classical λ -Calculus). A variation on
this theme, in the opposite direction, is to simplify call struc-
tures: procedures which lack a return channel have to com-
municate solely through side-effects, whose rigorous analysis
demands a “type-and-effect” system. Even further, consider
functions with neither lambda nor return (nor sigma nor,
maybe, exception). As an alternate channel of communi-
cation, suppose function bodies are nested in overarching
bodies, and can “capture” carriers scoped to the enclosing
function. “Capture semantics” specifications in C++ are a
useful example, because C++ (unlike most languages that sup-
port anonymous or “intra-expression” function-definitions)
mandates that symbols are explicitly captured (in a “capture
clause”), rather than allowing functions to access surrounding
lexically-scoped with no further notation: this helps visualize
the idea that captured symbols are a kind of “input channel”
analogous to lambda and sigma.

I contend this works just as well for code blocks. Any
language which has blocks can treat them as unnamed func-
tion bodies, with a “capture” channel (but not lambda or
return). When (by language design) blocks can throw ex-
ceptions, it is reasonable to give them “exception” channels

46

(further work, that I put off for now, is needed for loop-
blocks, with break and continue). Blocks can then be typed
as function-like values, under the convention that function-
types can be expressed through descriptions of their channels
(or lack thereof).

Consider ordinary source-code expressions to repre-
sent a transfer of values between graph structures: let Γ1 and
Γ2 be code-graphs compiled from source at a call site and
at the callee’s implementation, respectively. The function
call transfers values from carriers marked by Γ1 nodes to Γ2
carriers; with the further detail of “channel complexes” we
can additionally say that the recipient Γ2 carriers are situated
in a graph structure which translates to a channel description.
So the morphology of Γ1 has to be consistent with the chan-
nel structure of Γ2. For regular (“value”) expressions, we
can introduce a new kind of channel (which in the demo I
call “fground”) acknowledging that the function called by
an expression may itself be evaluated by its own expression,
rather than named as a single symbol (as in a pointer-to-
function call like (*f)(x) in C). A segment of source code
represents a value-expression insofar as an equivalent graph
representation comprises a Γ semantically and morpholog-
ically consistent with the provision of values to channels
required by a function call — including the fground chan-
nel on the basis of which the proper implementation (for
overloaded functions) is selected. How the graph-structure
maps to the appropriate channels varies by channel kind: for
instance the return channel is not passed to the callee, but
rather bound to a carrier as the right-hand-side of an assign-
ment (an rvalue) — or else passed to a different function
(thus an example of channel-to-channel connection without
an intervening carrier). A well-formed Γ represents part of
a procedure’s code graph, specifically that describing how a
channel complex is concretely provisioned with values (i.e.,
a package).

I will use the term call-clause to designate the portion
of a code graph, and the associated collection of source code
elements, describing a channel package. Term a call-clause
anchored if its resulting value is held in a carrier (as in y
= f(x)), and transient if this value is instead passed on (im-
mediately) to another function (as in h(f(x))); moreover a
call-clause can be standalone if it has no result value or this
value is not used; and multiply-anchored if it has several
anchored result values — i.e., a multi-carrier return chan-
nel, assuming the type system allows as much. Anchored
and standalone call-clauses can, in turn, model statements;
specifically, “assignment” and “standalone” statements, re-
spectively.

This vocabulary can be useful for interpreting pro-

gram flow. Assignment statements with no other side effects
can — in principle — be delayed until their grounding carrier
is “convoluted” with some other carrier.23 When modeling
eager-evaluation languages, particular edge-types can be des-
ignated as forcing a temporal order or else edges can be
annotated with additional temporalizing details. Without this
extra documentation, however, execution order among graph
elements can be evaluated based on other criteria.

In the case of statements, an assignment without side
effects has temporalizing relations only with other statements
using its anchoring carrier. In particular, the order of state-
ments’ runtime need not replicate the order in which they are
written in source code. A Channel Algebra may make this
the default case, modeling “lazy” evaluation languages, in
the absence of any temporalizing factors. The actual runtime
order among sibling statements — those in the same block —
then depends, in the absence of further information, on how
their anchoring carriers are used; this in turn works backward
from a function’s return channel (in the absence of exceptions
or effectual calls). That is, runtime order works backward
from statements that initialize carriers in the return channel,
then carriers used in those statements, etc.

This order needs to broken, of course, for statements
with side-effects. A case in point is the expansion of “do-
notation” in Haskell: without an a priori temporality, Haskell
source code relies on the asymmetric order of values passed
into lambda abstractions to enforce requirements that effec-
tual expressions evaluate before other expressions (Haskell
does not have “statements” per se). Haskell’s do “blocks”
can be modeled (in the techniques used here) as a series of
assignment statements where the anchoring carrier of each
statement becomes (i.e., transfers its value to) the sole oc-
cupant of a lambda channel marking a new function body,
which includes all the following statements (and so on re-
cursively). There are two concepts in play here: interpreting
any sequence of statements (plus one terminating expres-
sion, which becomes a statement initializing a return carrier)
as a function body (not just those covering the extent of a
“block”); and interpreting assignment statements as passing
values into “hidden” lambda channels. What looks like one
block in Haskell source code internally maps to a string of
blocks interspersed with hidden lambda transfers. Opera-
tionally, Haskell backs this syntactic convention with monad

23Of course, the default choice of “eager” or “lazy” evaluation is programming-
language-specific, but for abstract discussion of source code graphs, we have no
a priori idea of temporality; of a program executing in time. This is not a matter
of concurrency — we have no a priori idea of procedures running at the same
time any more than of them running sequentially. Any temporal direction through
a graph is an interpretation of the graph, and as such it is useful to assume that
graphs in and of themselves assert no temporal ordering among their nodes or
edges.

47

semantics — lambda values passed are not the actual value
of the monad-typed carrier but its “contained” value (see [61]
or [121] for a review of monads24). For sake of discussion,
let’s call this a monad-subblock formation.

The temporalizing elements in this formation are the
“hidden lambdas”. In a multi-channel paradigm, we can
therefore consider “monad-subblocks” with respect to other
channels. Consider how individual statements can be typed:
like blocks, statements may select from symbols in scope and
can potentially result in thrown expressions, so their chan-
nel structure is something like capture+exception. Even
without hidden lambdas, observe that the runtime order of
statements can be fixed in situations where an earlier state-
ment may affect the value (via non-constant capture) of a
carrier whose value is then used by a later statement. So for
languages with a more liberal treatment of side-effects than
Haskell, we can interpret chains of statements in fixed order
as successively capturing (and maybe modifying) symbols
which occur in multiple statements. Having discussed con-
voluted carriers, extend this to channels: in particular, say
two capture channels are convoluted if there is a modifiable
carrier in the first which is convoluted with a carrier in the
second (this is an ordered relation). One statement must run
before a second if their capture channels are convoluted, in
that order.

This is approaching toward a “monad-subblock” for-
mation using capture in place of lambda. To be sure,
Haskell monad-subblock does have the added gatekeeping
dimension that the symbol occurring after its appearance as
anchoring an assignment statement is no longer the symbol
with a monad type, but a different (albeit visually identical)
symbol taken from the monad. Between two statements, if
the prior is anchored by a monad, the implementation of its
bind function is silently called, with the subsequent (and all
further) statements grouped into a block passed in to bind,
which in turn (by design) both extracts its wrapped value and
(if appropriate) calls the passed function. But this architec-
ture can certainly be emulated on non-lambda channels —
a transform that would belong to the larger topic of treating
blocks as function-values passed to other functions, to which
I now turn.

5.2.2 Code Blocks as Typed Values

Insofar as blocks can be typed as procedures, they
may readily be passed around: so loops, if...then...else, and
other control flow structures can plausibly be modeled as

24I cite these articles among many because, written by linguists, they bring an extra
multi-disciplinary interest; see also [31], [91]; [80], [81]; or [27].

Sample 2: Implementing If/Then/Else Blocks
void test_if_then_else(quint64 args_ptr)

{

QVector <quint64 >& args = *(QVector <quint64 >*)

(args_ptr);

int i = 0;

bool test = false;

for(quint64 qui: args)

{

if(i % 2)

{

if(test)

{

PHR_Callable_Value ** pcv =

(PHR_Callable_Value **) qui;

(*pcv)->run();

return;

}

}

else

{

PHR_Expression_Object ** pxo =

(PHR_Expression_Object **) qui;

PHR_Channel_Group_Evaluator* ev = (*pxo)->run ();

qint32 i1 = ev->get_result_value_as <qint32 >();

test = (bool) i1;

}

++i;

}

}

...

void init_basic_functions(PhaonIR& phr ,

PHR_Code_Model& pcm ,

PHR_Channel_Group_Table& table ,

PHR_Symbol_Scope& pss)

{

init_test_functions(phr , pcm , table , pss);

PHR_Type_System* type_system = pcm.type_system ();

PHR_Channel_System& pcs = *phr.channel_system ();

PHR_Channel_Semantic_Protocol* lambda =

pcs["lambda"];

...

PHR_Channel_Group g1;

...

{

PHR_Type* ty = type_system ->get_type_by_name(

"argvec");

PHR_Carrier* phc = new PHR_Carrier;

phc ->set_phr_type(ty);

g1.init_channel(lambda , 1);

(*g1[lambda])[0] = phc;

table.init_phaon_function(g1 , pss , "if-t-e", 700,

&if_t_e);

table.init_phaon_function(g1 , pss ,

"test -if -then -else", 700, &test_if_then_else);

g1.clear_all ();

}

...

}

1

2

3

48

ordinary function calls. This requires some extra semantic
devices: consider the case of if...then...else (I’ll use this
also to designate code sequences with potential “else if”s),
which has to become an associative array of expressions and
functions with “block” type (e.g., with only capture and
exception channels). We need, however, a mechanism to
suppress expression evaluation. Recall that expressions are
concretized channel-structures which include an fground
channel providing the actual implementation to call. All we
need then is to decorate fground with a flag marking whether
eager or lazt evaluation is desired. Assume also that carriers
can be declared which hold (or somehow point to) expres-
sions that evaluate to typed values, in lieu of holding these
values directly (note that this is by intent orthogonal to a type
system: the point is not that carriers can hold values whose
type is designed to encapsulate potential computations yield-
ing another type, like std::future in C++). Consider again the
nested-expression variant of c1#c2: when the result of one
function call becomes a parameter to another function, the
value in the former’s return carrier (assume there is just one)
gets transferred to a carrier in the latter’s lambda channel
(or sigma, say). This handoff can be described before being
effectuated: a language runtime is free to vary the order of
expression-evaluation no less than of statements. The seman-
tics of a carrier-transfer between f2’s return and f1’s lambda
does not stipulate that f2 has to run before f1; language en-
gines can provide semantics for c1#c2 allowing c1 to hold
a delayed capability to evaluate the f2 expression. Insofar as
this is an option, functions can be given a signature — this
would be included in the relevant TXL — where some carriers
are of this “delayed” kind. Functions like if...then...else
can then be declared in terms of these carriers.

Given a runtime engine based on Channel Algebra,
deferred evaluation is relatively straightforward: any de-
layed expression would be saved according to its channel-
package data structure, which can be passed to functions as
an encapsulation of the (not-yet-evaluated) expression itself.
Code Sample 2 shows an implementation from the demo,
on the runtime side. At 1 , a pointer to the relevant uneval-
uated expression is extracted, and a run method is called
which completes the hitherto-delayed evaluation. The demo
test if then else procedure takes an “argvec” parameter
(2), which allows a variant number of blocks and expres-
sions to be passed as inputs (analogous to C++ var arg lists).
The code around 3 shows a channel complex being con-
structed which is then used to register the signature for the
if...then...else kernel function in a lookup table.

Meanwhile, the hook into this C++ runtime code is
demonstrated in Sample 3, in the “channelized” Interme-

diate Representation used for the demo. One pertinent
point in this code is the instruction at 5 , where the name
temp anchor channel group by need suggests how the
compiled channel package is being stored on a “by need”
basis (internally, it gets a flag suppressing evaluation before
being used in runtime procedures). At 6 , a block itself is
assigned to a “callable value” type (cf. the “cv” initials).
The arguments identified for the kernel procedure (4), then,
alternate between encapsulations of by-need expressions and
compiled blocks deemed internally as opaque “callable val-
ues”.

A thorough treatment of blocks-as-functions also
needs to consider standard procedural affordances like break
and continue statements. Since blocks can be nested, some
languages allow inner blocks to express the codewriter’s in-
tention to “break out of” an outer block from an inner block.
One way to model this via Channel Algebra is to introduce a
special kind of return channel for blocks (called a “break”,
perhaps) which, when it has an initialized carrier, uses this
channel to hold a value that the enclosing block interprets in
turn: by examining the inner break the immediately outer
block can decide whether it itself needs to “break” and, if so,
whether its own break channel needs to have an initialized
carrier. The presence of such a break can type-theoretically
distinguish loop blocks from blocks in (say) if...then...else
contexts.

Further discussion of code models via Channel Groups
and Channel Algebras is outside the scope of this chapter, but
is demonstrated in greater detail in the accompanying code-
set. Hopefully, the best way to present Channel Semantics
outside the basic lambda/sigma/return/exception quartet
is via demonstrations in live code. In that spirit, the demo
code focuses on practical engineering and problem-solving
where channel models can be useful, and I’ll briefly review
its structure and its organizing rationales in the Conclusion.

6 Conclusion

To regard data modeling as just a practical, behind-
the-scenes endeavor is to underestimate the scientific rich-
ness and importance of data modeling paradigms as the-
oretical constructs. In science, data models delineate the
structure of information generated during scientific investiga-
tions (e.g., experiments and field work), and so their structure
concretizes scientific theories and/or experimental protocols.
Meanwhile, data modeling has to balance the complexity of
human concepts with a predictability conducive to software

49

Sample 3: Channelized Intermediate Representation, with de-
ferred evaluation
.; generate_from_fn_node ;.

push_carrier_stack $ fground ;.

hold_type_by_name $ fbase ;.

push_carrier_symbol $ &test -if -then -else ;.

.; args ;.

push_carrier_stack $ lambda ;.

push_unwind_scope $ 1 result ;.

.; unwind_scope: 1 ;.

.; generate_from_fn_node ;.

push_carrier_stack $ fground ;.

hold_type_by_name $ fbase ;.

push_carrier_raw_value $ #=? ;.

.; args ;.

push_carrier_stack $ lambda ;.

hold_type_by_name $ u4 ;.

push_carrier_raw_value $ 4 ;.

hold_type_by_name $ u4 ;.

push_carrier_raw_value $ 5 ;.

push_carrier_stack $ result ;.

index_channel_group ;.

coalesce_channel_group ;.

.; pop ;.

pop_unwind_scope ;.

temp_anchor_channel_group_by_need ;.

.; end fground entry ;.

hold_type_by_name $ u4 ;.

push_carrier_expression ;.

.; block ... ;.

@fnp ;.

.; generate_from_fn_node ;.

push_carrier_stack $ fground ;.

hold_type_by_name $ fbase ;.

push_carrier_symbol $ &prn ;.

.; args ;.

push_carrier_stack $ lambda ;.

hold_type_by_name $ u4 ;.

push_carrier_raw_value $ 78 ;.

coalesce_channel_group ;.

evaluate_channel_group ;.

delete_temps ;.

delete_retired ;.

clear_temps ;.

reset_program_stack ;.

.; end of statement ;.

@fne ;.

.; end block ... ;.

hold_type_by_name $ pcv ;.

push_carrier_anon_fn @ last_source_fn_name ;.

4

5

6

and computational treatments; data modeling thereby helps
expose the boundary, in human cognition, between what is
mechanical and what is not — between the “mind as com-
puter” metaphor and the philosophies of “situational” and
“embodied” cognition which push against it.

With its resonance against these larger themes, data
modeling is notjust an operational prerequisite for scientific
or technology research — and then the conversion of new
discoveries into new technologies with practical benefits —
but also an interdisciplinary nexus informed by and relevant
to Computer Science, mathematics, Philosophy of Science,
Sociology of Knowledge, formal semantics, and so forth.

One key interdisciplinary question is: how can data
models be expressive enough to represent cultural and sci-
entific ideas and artifacts — without any sense of concep-
tual mismatch or simplification — but also serve a software
ecosystem? To be employed, that is, in a context where
data structures require sufficient stability and classifiability
that they are amenable to algorithms and mutations to ac-
commodate different software roles, such as database and
GUI presentations? Data models should be systematic so
that they engender safe, reliable code. On the other hand,
digital resources should be expressive enough to represent
complex concepts without “dehumanizing” their structure
— failing to recognize connections or distinctions which are
part of human conceptualization, even if these are technically
challenging to model computationally.

Achieving all of these goals involves a certain balanc-
ing act, where data repositories are modeled via expressive,
fine-grained prototypes without becoming too unstructured,
or too heterogeneous, for rigorous software implementations.
The technical terrain of Ontology-based or type-theoretic
modeling can therefore be seen as a drive to expand models’
expressiveness as far as possible, but without losing their
underlying formal rigor and tractability. In terms of data
models, this can be reflected in the evolution from fixed-
field structures (like spreadsheets and relational databases)
to labeled-graph Ontologies to Hypergraphs and other multi-
scale graph paradigms. Parallel to the emergence of Semantic
Web technology there is also a body of research in Scien-
tific Computing, where expressiveness translates to modeling
strategies which encapsulate scientific theories and work-
flows — cf. Object-Oriented simulations ([132], [133] being
a good case-study) and such formats or approaches as Con-
ceptual Space theory (in science and linguistics) and Concep-
tual Space Markup Language ([3], [4], [5], [43], [58], [71],
[113], [128]). Meanwhile, in type theory, a similar impe-
tus leads from the simple type systems of Typed Lambda
Calculi through to Dependent Types, typestate, effect sys-

50

tems, Object-Orientation, and other properties of modern
programming environments.

Whatever their features, data models are ultimately
only as usable as the software that receives them. Applica-
tions may be importing Cyber-Physical measurements “in
real time” or affording access to archived research data sets,
but in each case the structured formats of shared and/or per-
sisted information must be transformed into interactive (usu-
ally GUI-based) presentations if applications are to qualify as
productive viewers onto the relevant information space. This
is how we should understand the criterion of expressiveness:
expressiveness at the modeling level is a means to an end; the
ultimate goal is “expressive” software, i.e., software whose
layout, visual presentations, and interactive features/respon-
siveness render applications effective vehicles for interfacing
with complex, nuanced digital content. Ultimately, then, data
models are effective to the extent that they promote effec-
tive software engineering for the applications that transform
modeled data into user-facing digital content.

On the other hand, this leaves room for differences in
what is prioritized: data models can be targeted at a narrow,
specialized set of software end-points, or can be designed
flexibly to work with a diversity of software products, in
the present and going forward. Broader application-scope
is desirable in theory, but practically speaking a data model
which is open-ended enough to work with a range of software
components is potentially too provisional, or insufficiently
detailed, to promote the highest-quality software.

Information Technology in the last one or two decades
evidently has favored general-purpose data models — or at
least serialization techniques — which exist in isolation from
applications that work with them. Canonical examples would
be JSON, XML, and RDF. Conceptually, however, data models’
most important manifestation are in the software components
where they are shared — sent (perhaps indirectly via a gener-
ated archive) and received. To the degree that multi-purpose
formats like XML are beneficial, there merits are in part that
developers can anticipate the code that generated and/or will
receive the data: while programmers do not necessarily just
write code off of an XML sample (or corresponding Docu-
ment Type Declaration), any XML document or DTD gives us
a rough idea of what its client code would look like.

Nevertheless, for robust software engineering we
should aspire to something more rigorous than that. In effect,
we should consider documentation of components which
send and/or receive data structures to be an intrinsic aspect of
rigorous data modeling itself: description of the procedures
which construct, serialize/deserialize, validate, and transform

data structures, particularly those procedures supplying func-
tionality determinative of their components’ ability to be part
of a conformant data-sharing network. In this sense data
and code modeling coincide. In particular, characterization
of individual procedures — their types, assumptions, and
requirements — is an essential building-block of data models
generally. Data structures can be indirectly systematized in
terms of the procedures which act upon them.

With this background, the code archive supplement-
ing this chapter operationalizes the notion of “Procedural
Hypergraph Ontologies”, combining features of Procedural
Ontologies and of Directed Hypergraphs that I have presented
in this chapter. Procedural Hypergraph Ontologies extend (or
diverge from) conventional Semantic Web Ontology partly
by orienting toward Hypergraphs, but more substantially by
centering on this procedural dimension: the role of an Ontol-
ogy being to describe components’ procedural interface as
well as their targeted data structures. Using a phrase I intro-
duced above (page 16), this technology aspires to promote a
procedure-oriented, software-centric (“POSC”) understand-
ing of data-sharing pipelines.

In particular, the demo presents both a hypergraph
serialization format and methodology for generating inter-
face descriptions, based on channel complexes. The demo
code shows a compilation process which works with channel
groups, branching off into a runtime engine which actually
evaluates channel packages and, separately, algorithms to
compile information about procedure signatures and func-
tion calls. This last capability can be a point for embedding
more detailed Interface Definition metadata, including via the
non-standard channel protocols I have discussed in this chap-
ter. Both static data structures and compiled channel groups
translate to a Hypergraph format, which thereby serves as a
common denominator between code and data.

Architecturally, then, the demo includes several data
sets repackaged in a hypergraph-serialization format, and,
simultaneously, application-level code which bridges the data
sets to GUI components. The code base parses serialized hy-
pergraphs to in-memory hypergraphs and then traverses them,
using a kind of visitor pattern, to build in-memory C++ objects,
which in turn are mapped to GUI objects. So this chain of pro-
cessing steps models hypergraph-based data representations
and the logistics of incoporating them at the application level.
At the same time, C++ objects reconstituted from hypergraphs
— as well as the GUI components which receive them — are
documented with an Interface Description Language that em-
ploys channels for articulating procedural signatures, an IDL

which in turn compiles to hypergraph structures leveraged
for various code-analysis tasks (for example, generating a

51

testing mechanism integrated with the application code).

The techniques thereby demonstrated can be practi-
cally adopted in several ways. On the one hand, concepts like
channels and preconstructors can be applied to mainstream
programming languages such as C++, becoming new design
patterns or new coding practices that, over a large code base,
can help produce components which are statically analyzable
and (by systematically documenting and validating coding
assumptions) priotize safety at runtime. On the other hand
(as profiled via special languages and Intermediate Repre-
sentations in the demo), the techniques I have outlined can
be used for new data and code models which guide, test,
and/or retroactively analyze software components (e.g., us-
ing Channel Algebra in a fine-grained Interface Definition
Language).

Aside from these practical applications, moreover, I
contend that channels and Channelized Hypergraphs can be
of interest in topics like linguistics and the Philosophy of
Science as well — insofar as data models and representations
of information flow ensapsulate the structure of scientific
theories, and the conceptual networks that lie behind Natural
Language as well as formal semantics.

References

1 Frank Abromeit and Christian Chiarcos, “Automatic Detection of
Language and Annotation Model Information in CoNLL Corpora”. In
Proceedings of the 2nd Conference on Language, Data and

Knowledge (LDK 2019) , 2019.
http://drops.dagstuhl.de/opus/volltexte/2019/10387/

2 Martin Abadi and Luca Cardelli, “A Semantics of Object Types”.
Proceedings of the IEEE Symposium on Logic in Computer Science,
Paris, 1994.
http://lucacardelli.name/Papers/PrimObjSemLICS.A4.pdf

3 Benjamin Adams and Martin Raubal, “A Metric Conceptual Space
Algebra”, 2009. https://pdfs.semanticscholar.org/521a/

cbab9658df27acd9f40bba2b9445f75d681c.pdf

4 Benjamin Adams and Martin Raubal, “Conceptual Space Markup
Language (CSML): Towards the Cognitive Semantic Web”. In
Proceedings of the 2009 IEEE International Conference on

Semantic Computing , Berkeley, CA, 2009, pages 253-260.
http://idwebhost-202-147.ethz.ch/Publications/

RefConferences/ICSC_2009_AdamsRaubal_Camera-FINAL.pdf

5 Benjamin Adams and Martin Raubal, “The Semantic Web Needs More
Cognition”, 2010. http://www.semantic-web-

journal.net/sites/default/files/swj37_0.pdf

6 Fadel Adib, et. al., “Smart Homes that Monitor Breathing and Heart
Rate”, In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, Seoul, Republic of Korea, April 18-23,
2015, pages 837-846.

http://witrack.csail.mit.edu/vitalradio/content/vitalradio-

paper.pdf

7 Firas Albalas, et. al., “Security-aware CoAP Application Layer
Protocol for the Internet of Things using Elliptic-Curve Cryptography”.
In The International Arab Journal of Information Technology ,
Vol. 15, No. 3A, Special Issue 2018
https://www.researchgate.net/publication/325987571_

Security-aware_CoAP_Application_Layer_Protocol_for_the_

Internet_of_Things_using_Elliptic-Curve_Cryptography

8 Marco Altini, “Combining Wearable Accelerometer and Physiological
Data for Activity and Energy Expenditure Estimation”. In
Proceedings of Wireless Health 13 , November 1-3, 2013.
https://www.marcoaltini.com/uploads/1/3/2/3/13234002/

1569766907-altini.pdf

9 Kenneth R. Anderson, “Freeing the Essence of a Computation”, 2005.
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=

AE06DA08DECE997F2D599CAB91914169?doi=10.1.1.408.1988&rep=

rep1&type=pdf

10 Gonzalo A. Aranda-Corral and Joaquı́n Borrego-Dı́az,
“Mereotopological Analysis of Formal Concepts in Security
Ontologies.” In Computational Intelligence in Security for

Information Systems , Herrero Á, Corchado E., Redondo C., Alonso
Á, eds. (Advances in Intelligent and Soft Computing, vol 85), Springer,
Berlin, Heidelberg, 2010.
https://core.ac.uk/download/pdf/158966553.pdf

11 Flávia Linhalis Arantes, “Requirements Engineering of a Web Portal
Using Organizational Semiotics Artifacts”. In International Journal

of Computer Engineering and Information Technology 5, 2013.
https://arxiv.org/pdf/1305.3255.pdf

12 Ronald Ashri, et. al., “Torwards a Semantic Web Security
Infrastructure”. American Association for Artificial Intelligence, 2004.
https://www.aaai.org/Papers/Symposia/Spring/2004/SS-04-

06/SS04-06-012.pdf

13 Louis Auguste and Dhaval Palsana, “Mobile Whole Slide Imaging
(mWSI): a low resource acquisition and transport technique for
microscopic pathological specimens”. In BMJ Innovations 1 (3),
2015.
https://www.researchgate.net/publication/279276605_Mobile_

Whole_Slide_Imaging_mWSI_A_low_resource_acquisition_and_

transport_technique_for_microscopic_pathological_specimens

14 Christoph Becker, et. al., “Sustainability Design and Software: The
Karlskrona Manifesto”.
http://www.cs.toronto.edu/~sme/papers/2015/Beckeretal-

ICSE2015.pdf

15 Khalid Belhajjame, et. al., “Using a suite of ontologies for preserving
workflow-centric research objects”. Web Semantics: Science,

Services and Agents on the World Wide Web , 2015
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3199184

16 Khalid Belhajjame, et. al., “Workflow-Centric Research Objects: First
Class Citizens in Scholarly Discourse”.In Proceedings of the 2nd

Workshop on Semantic Publishing , vol. 903, 2012.
http://ceur-ws.org/Vol-903/paper-01.pdf

17 Eran Bellin, “The Cohort Paradigm”, 2015.
http://exploreclg.montefiore.org/upload/training-

materials/The%20Cohort%20ParadigmV30.pdf

52

http://drops.dagstuhl.de/opus/volltexte/2019/10387/
http://lucacardelli.name/Papers/PrimObjSemLICS.A4.pdf
https://pdfs.semanticscholar.org/521a/cbab9658df27acd9f40bba2b9445f75d681c.pdf
https://pdfs.semanticscholar.org/521a/cbab9658df27acd9f40bba2b9445f75d681c.pdf
http://idwebhost-202-147.ethz.ch/Publications/RefConferences/ICSC_2009_AdamsRaubal_Camera-FINAL.pdf
http://idwebhost-202-147.ethz.ch/Publications/RefConferences/ICSC_2009_AdamsRaubal_Camera-FINAL.pdf
http://www.semantic-web-journal.net/sites/default/files/swj37_0.pdf
http://www.semantic-web-journal.net/sites/default/files/swj37_0.pdf
http://witrack.csail.mit.edu/vitalradio/content/vitalradio-paper.pdf
http://witrack.csail.mit.edu/vitalradio/content/vitalradio-paper.pdf
https://www.researchgate.net/publication/325987571_Security-aware_CoAP_Application_Layer_Protocol_for_the_Internet_of_Things_using_Elliptic-Curve_Cryptography
https://www.researchgate.net/publication/325987571_Security-aware_CoAP_Application_Layer_Protocol_for_the_Internet_of_Things_using_Elliptic-Curve_Cryptography
https://www.researchgate.net/publication/325987571_Security-aware_CoAP_Application_Layer_Protocol_for_the_Internet_of_Things_using_Elliptic-Curve_Cryptography
https://www.marcoaltini.com/uploads/1/3/2/3/13234002/1569766907-altini.pdf
https://www.marcoaltini.com/uploads/1/3/2/3/13234002/1569766907-altini.pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AE06DA08DECE997F2D599CAB91914169?doi=10.1.1.408.1988&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AE06DA08DECE997F2D599CAB91914169?doi=10.1.1.408.1988&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AE06DA08DECE997F2D599CAB91914169?doi=10.1.1.408.1988&rep=rep1&type=pdf
https://core.ac.uk/download/pdf/158966553.pdf
https://arxiv.org/pdf/1305.3255.pdf
https://www.aaai.org/Papers/Symposia/Spring/2004/SS-04-06/SS04-06-012.pdf
https://www.aaai.org/Papers/Symposia/Spring/2004/SS-04-06/SS04-06-012.pdf
https://www.researchgate.net/publication/279276605_Mobile_Whole_Slide_Imaging_mWSI_A_low_resource_acquisition_and_transport_technique_for_microscopic_pathological_specimens
https://www.researchgate.net/publication/279276605_Mobile_Whole_Slide_Imaging_mWSI_A_low_resource_acquisition_and_transport_technique_for_microscopic_pathological_specimens
https://www.researchgate.net/publication/279276605_Mobile_Whole_Slide_Imaging_mWSI_A_low_resource_acquisition_and_transport_technique_for_microscopic_pathological_specimens
http://www.cs.toronto.edu/~sme/papers/2015/Beckeretal-ICSE2015.pdf
http://www.cs.toronto.edu/~sme/papers/2015/Beckeretal-ICSE2015.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3199184
http://ceur-ws.org/Vol-903/paper-01.pdf
http://exploreclg.montefiore.org/upload/training-materials/The%20Cohort%20ParadigmV30.pdf
http://exploreclg.montefiore.org/upload/training-materials/The%20Cohort%20ParadigmV30.pdf

18 Eran Bellin, et. al., “Democratizing Information Creation From Health
Care Data for Quality Improvement, Research, and Education – The
Montefiore Medical Center Experience”. In Academic Medicine 85
(8), 2010, https://pdfs.semanticscholar.org/ad02/

adebdfe8d51c6defb120aac9f6f102e16596.pdf

19 Vincas Benevičius, et. al., “Finite element model of MEMS
accelerometer for accurate prediction of dynamic characteristics in
biomechanical applications ”. In Journal of Vibroengineering 13
(4), 2011, pages 803-809.
https://www.jvejournals.com/article/10526/pdf

20 Jean-Philippe Bernardy, et. al., “Parametricity and Dependent Types”.
In Proceedings of ICFP’10 , September 27-29, 2010.
http://www.staff.city.ac.uk/~ross/papers/pts.pdf

21 Tim Berners-Lee, “N3Logic: A Logical Framework For the World
Wide Web”. 2007. https://arxiv.org/pdf/0711.1533.pdf

22 Thomas Bittner, Barry Smith, and Maureen Donnelly, “The logic of
systems of granular partitions”, 2002. http://ontology.buffalo.

edu/smith/articles/BittnerSmithDonnelly.pdf

23 Thomas Bittner and Barry Smith “A taxonomy of granular partitions”.
In Daniel R. Montello, ed., Spatial Information Theory , COSIT
2001, Lecture Notes in Computer Science, vol. 2205.
http://qrg.northwestern.edu/papers/Files/Bittner_Smith_

Taxonomy_granular_partitions.pdf

24 Joe Bolt, et. al., “Interacting Conceptual Spaces I: Grammatical
Composition of Concepts”, 2017.
https://arxiv.org/pdf/1703.08314.pdf

25 Philip E. Bourne, et. al., “Improving The Future of Research
Communications and e-Scholarship”. Manifesto from Dagstuhl

Perspectives Workshop 11331 http://drops.dagstuhl.de/opus/

volltexte/2012/3445/pdf/dagman_v001_i001_p041_11331.pdf

26 Edwin Brady, “Idris, a General Purpose Dependently Typed
Programming Language: Design and Implementation”. 2013.
https://pdfs.semanticscholar.org/1407/

220ca09070233dca256433430d29e5321dc2.pdf

27 Edwin Brady, “State Machines all the Way Down: An Architecture for
Dependently Typed Languages”, 2016.
https://www.idris-lang.org/drafts/sms.pdf

28 R. Brown, et. al., “Graphs of Morphisms of Graphs”. In Electronic

Jornal of Combinatorics 15, 2008.
https://www.emis.de/journals/EJC/Volume_15/PDF/v15i1a1.pdf

29 Joana Campos and Vasco T. Vasconcelos, “Channels as Objects in
Concurrent Object-Oriented Programming”. In Proceedings of

Programming Language Approaches to Concurrency and

Communication-Centric Software (PLACES’10), 2010.
https://arxiv.org/pdf/1110.4157.pdf

30 Wei-Lun Chao, “Face Recognition”. http:
//disp.ee.ntu.edu.tw/~pujols/Face%20Recognition-survey.pdf

31 Stergios Chatzikyriakidis and Zhaohui Luo, “Individuation Criteria,
Dot-types and Copredication: A View from Modern Type Theories.”
Association for Computational Linguistics, Proceedings of the

14th Meeting on the Mathematics of Language (MoL 14) , pages
39–50, 2015. http://www.aclweb.org/anthology/W15-2304

32 Christian Chiarcos and Niko Schenk, “The ACoLi CoNLL Libraries:

Beyond Tab-Separated Values”. In Proceedings of the 11th

International Conference on Language Resources and Evaluation

(LREC 2018) , 2018. https://aclweb.org/anthology/L18-1090

33 David Raymond Christiansen, “Practical Reflection and
Metaprogramming for Dependent Types”. Dissertation, IT University
of Copenhagen, 2015.
http://davidchristiansen.dk/david-christiansen-phd.pdf

34 Matúš Chochlı́k and Axel Naumann, “Static reflection: Rationale,
design and evolution.”, 2016. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2016/p0385r0.pdf

35 Jongyoon Choi and Ricardo Gutierrez-Osuna, “Using Heart Rate
Monitors to Detect Mental Stress”, In Proceedings of the 6th

International Workshop on Wearable and Implantable Body Sensor

Networks , 2009, pages 219-223. http:

//research.cse.tamu.edu/prism/publications/bsn09_choi.pdf

36 Madalina Croitoru and Ernesto Compatangelo, “Ontology Constraint
Satisfaction Problems using Conceptual Graphs”. In Proceedings of

the SGAI Conference (Specialist Group on Artificial Intelligence),
2006. https://pdfs.semanticscholar.org/d05e/

eb82298201d6fae0129c6d53fe16db6d4803.pdf

37 Ernesto Damiani, et. al., “Modeling Semistructured Data by Using
Graph-based Constraints”, 2003. http://home.deib.polimi.it/

schreibe/TeSI/Materials/Tanca/PDFTanca/csse.pdf

38 Jeremiah Y. Dangler, “Categorization of Security Design Patterns”.
Electronic Theses and Dissertations. (East Tennessee State
University), Paper 1119, 2013 https:

//dc.etsu.edu/cgi/viewcontent.cgi?article=2303&context=etd

39 Ralph Debusmann, “Extensible Dependency Grammar: A Modular
Grammar Formalism Based On Multigraph Description.” Universität
des Saarlandes, dissertation 2006.

40 Ralph Debusmann, Denys Duchier and Andreas Rossberg, “Modular
Grammar Design with Typed Parametric Principles”. James Rogers,
ed., Formal Grammar/Mathematics of Language 2005 , CSLI
Publications, 2009. http://web.stanford.edu/group/

cslipublications/cslipublications/FG/2005/debusmann.pdf.

41 Badis Djamaa, et. al., “Hybrid CoAP-based Resource Discovery for
the Internet of Things”. In Journal of Ambient Intelligence and

Humanized Computing 8 (3), 2017, pages 357-372.
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/

11602/Hybrid_CoAP-based_resource_discovery-

Internet_of_Things-2017.pdf?sequence=3&isAllowed=y

42 Maureen Donnelly, et. al., “A Formal Theory for Spatial
Representation and Reasoning in Biomedical Ontologies”.In
Artificial Intelligence in Medicine 36, 2006, pages 1-27.
http://www.acsu.buffalo.edu/~md63/DonnellyAIMed05.pdf

43 Igor Douven, et. al., “Vagueness: A Conceptual spaces approach”. In
Journal of Philosophical Logic 42 (1), 2010, pages 1-24.
https://www.researchgate.net/publication/225689962_

Vagueness_A_Conceptual_Spaces_Approach

44 Yueqi Duan, et. al., “Topology Preserving Graph Matching for Partial
Face Recognition”. In Proceedings of the IEEE International

Conference on Multimedia and Expo (ICME) , 2017.
http://ivg.au.tsinghua.edu.cn/people/Yueqi_Duan/ICME17_

Topology%20Preserving%20Graph%20Matching%20for%20Partial%

53

https://pdfs.semanticscholar.org/ad02/adebdfe8d51c6defb120aac9f6f102e16596.pdf
https://pdfs.semanticscholar.org/ad02/adebdfe8d51c6defb120aac9f6f102e16596.pdf
https://www.jvejournals.com/article/10526/pdf
http://www.staff.city.ac.uk/~ross/papers/pts.pdf
https://arxiv.org/pdf/0711.1533.pdf
http://ontology.buffalo.edu/smith/articles/BittnerSmithDonnelly.pdf
http://ontology.buffalo.edu/smith/articles/BittnerSmithDonnelly.pdf
http://qrg.northwestern.edu/papers/Files/Bittner_Smith_Taxonomy_granular_partitions.pdf
http://qrg.northwestern.edu/papers/Files/Bittner_Smith_Taxonomy_granular_partitions.pdf
https://arxiv.org/pdf/1703.08314.pdf
http://drops.dagstuhl.de/opus/volltexte/2012/3445/pdf/dagman_v001_i001_p041_11331.pdf
http://drops.dagstuhl.de/opus/volltexte/2012/3445/pdf/dagman_v001_i001_p041_11331.pdf
https://pdfs.semanticscholar.org/1407/220ca09070233dca256433430d29e5321dc2.pdf
https://pdfs.semanticscholar.org/1407/220ca09070233dca256433430d29e5321dc2.pdf
https://www.idris-lang.org/drafts/sms.pdf
https://www.emis.de/journals/EJC/Volume_15/PDF/v15i1a1.pdf
https://arxiv.org/pdf/1110.4157.pdf
http://disp.ee.ntu.edu.tw/~pujols/Face%20Recognition-survey.pdf
http://disp.ee.ntu.edu.tw/~pujols/Face%20Recognition-survey.pdf
http://www.aclweb.org/anthology/W15-2304
https://aclweb.org/anthology/L18-1090
http://davidchristiansen.dk/david-christiansen-phd.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0385r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0385r0.pdf
http://research.cse.tamu.edu/prism/publications/bsn09_choi.pdf
http://research.cse.tamu.edu/prism/publications/bsn09_choi.pdf
https://pdfs.semanticscholar.org/d05e/eb82298201d6fae0129c6d53fe16db6d4803.pdf
https://pdfs.semanticscholar.org/d05e/eb82298201d6fae0129c6d53fe16db6d4803.pdf
http://home.deib.polimi.it/schreibe/TeSI/Materials/Tanca/PDFTanca/csse.pdf
http://home.deib.polimi.it/schreibe/TeSI/Materials/Tanca/PDFTanca/csse.pdf
https://dc.etsu.edu/cgi/viewcontent.cgi?article=2303&context=etd
https://dc.etsu.edu/cgi/viewcontent.cgi?article=2303&context=etd
http://web.stanford.edu/group/cslipublications/cslipublications/FG/2005/debusmann.pdf
http://web.stanford.edu/group/cslipublications/cslipublications/FG/2005/debusmann.pdf
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/11602/Hybrid_CoAP-based_resource_discovery-Internet_of_Things-2017.pdf?sequence=3&isAllowed=y
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/11602/Hybrid_CoAP-based_resource_discovery-Internet_of_Things-2017.pdf?sequence=3&isAllowed=y
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/11602/Hybrid_CoAP-based_resource_discovery-Internet_of_Things-2017.pdf?sequence=3&isAllowed=y
http://www.acsu.buffalo.edu/~md63/DonnellyAIMed05.pdf
https://www.researchgate.net/publication/225689962_Vagueness_A_Conceptual_Spaces_Approach
https://www.researchgate.net/publication/225689962_Vagueness_A_Conceptual_Spaces_Approach
http://ivg.au.tsinghua.edu.cn/people/Yueqi_Duan/ICME17_Topology%20Preserving%20Graph%20Matching%20for%20Partial%20Face%20Recognition.pdf
http://ivg.au.tsinghua.edu.cn/people/Yueqi_Duan/ICME17_Topology%20Preserving%20Graph%20Matching%20for%20Partial%20Face%20Recognition.pdf
http://ivg.au.tsinghua.edu.cn/people/Yueqi_Duan/ICME17_Topology%20Preserving%20Graph%20Matching%20for%20Partial%20Face%20Recognition.pdf

20Face%20Recognition.pdf

45 Abhishek Dwivedi, et. al., “Cancellable Biometrics for Security and
Privacy Enforcement on Semantic Web”, 2011.
https://pdfs.semanticscholar.org/7c7c/

957edf8dd1dcb2c5baf315021d6fc387d030.pdf

46 Herbert Edelsbrunner and John Harer, “Persistent Homology — a
Survey”, In Discrete Computational Geometry 453, 2008.
https://www.maths.ed.ac.uk/~v1ranick/papers/edelhare.pdf

47 Richard A. Eisenberg, “Dependent Types in Haskell: Theory and
Practice”. Dissertation, University of Pennsylvania, 2017. http:

//www.cis.upenn.edu/~sweirich/papers/eisenberg-thesis.pdf

48 Trevor Elliott, et. al. “Guilt Free Ivory”. Haskell Symposium 2015
https://github.com/GaloisInc/ivory/blob/master/ivory-

paper/ivory.pdf?raw=true

49 Michael Engel, et. al., “Unreliable yet Useful – Reliability Annotations
for Data in Cyber-Physical Systems”. In Proceedings of the 2011

Workshop on Software Language Engineering for Cyber-physical

Systems (WS4C) , 2011. https://pdfs.semanticscholar.org/d6ca/

ecb4cd59e79090f3ebbf24b0e78b3d66820c.pdf

50 Martı́n Escardó and Weng Kin Ho, “Operational domain theory and
topology of sequential programming languages”. Information and
Computation 207 (2009), pages 411-437.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

104.6465&rep=rep1&type=pdf

51 Sara Irina Fabrikant, “Visualizing Region and Scale in Information
Spaces”. In Proceedings of the 20th International Cartographic

Conference , ICC 2001, Beijing, China, 2001, pages 2522-2529.
https://www.semanticscholar.org/paper/VISUALIZING-REGION-

AND-SCALE-IN-INFORMATION-SPACES-

Fabrikant/526a09e4767ff634c4cfbc51e6f7f4ebb700096a

52 Farahani N, et. al., “Whole slide imaging in pathology: advantages,
limitations, and emerging perspectives”, 2015.
https://www.dovepress.com/whole-slide-imaging-in-pathology-

advantages-limitations-and-emerging-p-peer-reviewed-

article-PLMI

53 Katrina Fenlon, “Modeling Digital Humanities Collections as
Research Objects”, 2019. https:

//drum.lib.umd.edu/bitstream/handle/1903/21860/fenlon_

jcdl2019_researchObjects_final.pdf?sequence=1&isAllowed=y

54 Kathleen Fisher, et. al., “A Lambda Calculus of Objects and Method
Specialization”. Nordic Journal of Computing 1 (1994), pages 3-37.
https://pdfs.semanticscholar.org/5cf7/

1e3120c48c23f9cecdbe5f904b884e0e1a2d.pdf

55 Brendan Fong, “Decorated Cospans”, In Theory and Applications

of Categories 30 (33), 2015, pages 1096-1120.
https://arxiv.org/abs/1502.00872

56 Brendan Fong, “The Algebra of Open and Interconnected Systems”.
Oxford University, dissertation 2016.
https://arxiv.org/pdf/1609.05382.pdf

57 Murdoch J. Gabbay and Aleksandar Nanevski, “Denotation of
Contextual Modal Type Theory (CMTT): Syntax and
Metaprogramming”. In Journal of Applied Logic 11 (1), 2013,
pages 1-29. https:

//software.imdea.org/~aleks/papers/cmtt/cmtt-semantics.pdf

58 Peter Gärdenfors and Frank Zenker, “Theory Change as Dimensional
Change: Conceptual Spaces Applied to the Dynamics of Empirical
Theories”. Synthese 190(6) , pages 1039-1058, 2013.
http://lup.lub.lu.se/record/1775234

59 Michael Gasser, “Toward Synchronous Extensible Dependency
Grammar”, 2011. http://openaccess.uoc.edu/webapps/o2/

bitstream/10609/5643/3/Gasser_Freerbmt11_Toward.pdf

60 Riccardo Giambona, et. al., “MQTT+: Enhanced Syntax and Broker
Functionalities for Data Filtering, Processing and Aggregation”. In
Proceedings of the Association for Computing Machinery

Conference’17 , July 2017, Washington, DC, 2018.
https://arxiv.org/pdf/1810.00773.pdf

61 Gianluca Giorgolo and Ash Asudeh, “Monads as a Solution for
Generalized Opacity”. In Proceedings of the EACL 2014 Workshop

on Type Theory and Natural Language Semantics (TTNLS) , pages
19–27, Gothenburg, Sweden, April 26-30 2014.
http://www.aclweb.org/anthology/W14-1403

62 Ben Goertzel, “Probabilistic Language Networks: Integrating Word
Grammar and Link Grammar in the Framework of Probabilistic
Logic”, 2008. http://goertzel.org/ProwlGrammar.pdf

63 Ben Goetzel, et. al., “Engineering General Intelligence”, Parts 1 & 2.
Atlantis Press, 2014.
http://wiki.opencog.org/w/Background_Publications

64 Dinesh Gopalani, et. al., “A Type System and Type Soundness for the
Calculus of Aspect-Oriented Programming Languages”. Proceedings
of the International MultiConference of Engineers and Computer
Scientists (IMECS 2012) Vol 1, March 14-16, Hong Kong.
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp263-

268.pdf

65 Johannes Graën, et. al., “Modelling Large Parallel Corpora: The
Zurich Parallel Corpus Collection”, 2019. http://corpora.ids-

mannheim.de/CMLC7-final/CMLC-7_2019-Graen_et_al.pdf

66 Cenk Gündoğann, et. al., “NDN, CoAP, and MQTT: A Comparative
Measurement Study in the IoT”. In Proceedings of the ACM

Conference on Information-Centric Networking , 2018.
https://arxiv.org/pdf/1806.01444.pdf

67 Renzo Angles and Claudio Guttierez, “Querying RDF Data from a
Graph Database Perspective”. In The Semantic Web: Research and

Applications Second European Semantic Web Conference, ESWC
2005, Heraklion, Crete, Greece, May 29-June 1, 2005.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

70.225&rep=rep1&type=pdf

68 Jussi Haikara, “Publish-Subscribe Communication for CoAP”, 2017.
http://kth.diva-portal.org/smash/get/diva2:

1111621/FULLTEXT01.pdf

69 Masahito Hasegawa, “Decomposing Typed Lambda Calculus into a
Couple of Categorical Programming Languages”. Proceedings of the
6th International Conference on Category Theory and Computer
Science, 1995. http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.53.715&rep=rep1&type=pdf

70 Daniel Hershcovich, et. al., “Universal Dependency Parsing with a
General Transition-Based DAG”, 2018. http:

54

http://ivg.au.tsinghua.edu.cn/people/Yueqi_Duan/ICME17_Topology%20Preserving%20Graph%20Matching%20for%20Partial%20Face%20Recognition.pdf
http://ivg.au.tsinghua.edu.cn/people/Yueqi_Duan/ICME17_Topology%20Preserving%20Graph%20Matching%20for%20Partial%20Face%20Recognition.pdf
https://pdfs.semanticscholar.org/7c7c/957edf8dd1dcb2c5baf315021d6fc387d030.pdf
https://pdfs.semanticscholar.org/7c7c/957edf8dd1dcb2c5baf315021d6fc387d030.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/edelhare.pdf
http://www.cis.upenn.edu/~sweirich/papers/eisenberg-thesis.pdf
http://www.cis.upenn.edu/~sweirich/papers/eisenberg-thesis.pdf
https://github.com/GaloisInc/ivory/blob/master/ivory-paper/ivory.pdf?raw=true
https://github.com/GaloisInc/ivory/blob/master/ivory-paper/ivory.pdf?raw=true
https://pdfs.semanticscholar.org/d6ca/ecb4cd59e79090f3ebbf24b0e78b3d66820c.pdf
https://pdfs.semanticscholar.org/d6ca/ecb4cd59e79090f3ebbf24b0e78b3d66820c.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.6465&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.6465&rep=rep1&type=pdf
https://www.semanticscholar.org/paper/VISUALIZING-REGION-AND-SCALE-IN-INFORMATION-SPACES-Fabrikant/526a09e4767ff634c4cfbc51e6f7f4ebb700096a
https://www.semanticscholar.org/paper/VISUALIZING-REGION-AND-SCALE-IN-INFORMATION-SPACES-Fabrikant/526a09e4767ff634c4cfbc51e6f7f4ebb700096a
https://www.semanticscholar.org/paper/VISUALIZING-REGION-AND-SCALE-IN-INFORMATION-SPACES-Fabrikant/526a09e4767ff634c4cfbc51e6f7f4ebb700096a
https://www.dovepress.com/whole-slide-imaging-in-pathology-advantages-limitations-and-emerging-p-peer-reviewed-article-PLMI
https://www.dovepress.com/whole-slide-imaging-in-pathology-advantages-limitations-and-emerging-p-peer-reviewed-article-PLMI
https://www.dovepress.com/whole-slide-imaging-in-pathology-advantages-limitations-and-emerging-p-peer-reviewed-article-PLMI
https://drum.lib.umd.edu/bitstream/handle/1903/21860/fenlon_jcdl2019_researchObjects_final.pdf?sequence=1&isAllowed=y
https://drum.lib.umd.edu/bitstream/handle/1903/21860/fenlon_jcdl2019_researchObjects_final.pdf?sequence=1&isAllowed=y
https://drum.lib.umd.edu/bitstream/handle/1903/21860/fenlon_jcdl2019_researchObjects_final.pdf?sequence=1&isAllowed=y
https://pdfs.semanticscholar.org/5cf7/1e3120c48c23f9cecdbe5f904b884e0e1a2d.pdf
https://pdfs.semanticscholar.org/5cf7/1e3120c48c23f9cecdbe5f904b884e0e1a2d.pdf
https://arxiv.org/abs/1502.00872
https://arxiv.org/pdf/1609.05382.pdf
https://software.imdea.org/~aleks/papers/cmtt/cmtt-semantics.pdf
https://software.imdea.org/~aleks/papers/cmtt/cmtt-semantics.pdf
http://lup.lub.lu.se/record/1775234
http://openaccess.uoc.edu/webapps/o2/bitstream/10609/5643/3/Gasser_Freerbmt11_Toward.pdf
http://openaccess.uoc.edu/webapps/o2/bitstream/10609/5643/3/Gasser_Freerbmt11_Toward.pdf
https://arxiv.org/pdf/1810.00773.pdf
http://www.aclweb.org/anthology/W14-1403
http://goertzel.org/ProwlGrammar.pdf
http://wiki.opencog.org/w/Background_Publications
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp263-268.pdf
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp263-268.pdf
http://corpora.ids-mannheim.de/CMLC7-final/CMLC-7_2019-Graen_et_al.pdf
http://corpora.ids-mannheim.de/CMLC7-final/CMLC-7_2019-Graen_et_al.pdf
https://arxiv.org/pdf/1806.01444.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.225&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.225&rep=rep1&type=pdf
http://kth.diva-portal.org/smash/get/diva2:1111621/FULLTEXT01.pdf
http://kth.diva-portal.org/smash/get/diva2:1111621/FULLTEXT01.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.715&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.715&rep=rep1&type=pdf
http://www.cs.huji.ac.il/~oabend/papers/daniel_ud_parser.pdf
http://www.cs.huji.ac.il/~oabend/papers/daniel_ud_parser.pdf

//www.cs.huji.ac.il/~oabend/papers/daniel_ud_parser.pdf

71 Kenneth Holmqvist, “Dimensions of Cognition”, in Jens Allwood and
Peter Gärdenfors, eds., Cognitive Semantics , pp 153 - 171,
Amsterdam, Philadelphia: John Benjamins, 1999. https://www.lucs.

lu.se/spinning/categories/cognitive/Holmqvist/kenneth.pdf

72 Gary B. Huang, et. al., “Towards Unconstrained Face Recognition”, In
Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops , Anchorage,
Alaska, 2008, pages 1-8. http://vis-

www.cs.umass.edu/papers/unconstrained_face_workshop.pdf

73 Idris Development Wiki. “The Effects Tutorial”.
http://docs.idris-lang.org/en/latest/effects/index.html

74 Dawid R. Ireno, “Dynamic Factory: New Possibilities for Factory
Design Pattern”. In Proceedings 28th European Conference on

Modelling and Simulation . Flaminio Squazzoni et. al., editors, 2014.
http://www.scs-

europe.net/dlib/2014/ecms14papers/dis_ECMS2014_0114.pdf

75 Wolfgang Jeltsch, “Categorical Semantics for Functional Reactive
Programming with Temporal Recursion and Corecursion”. In Neel
Krishnaswami and Paul Levy, eds., Mathematically Structured

Functional Programming 2014 (MSFP 2014), pages 127–142.
https://arxiv.org/pdf/1406.2062.pdf

76 Lalana Kagal, et. al., “A Policy-Based Approached to Security for the
Semantic Web”, 2003.
https://ebiquity.umbc.edu/_file_directory_/papers/60.pdf

77 Patchaiah Kalaiselvi and Sivasamy Nithya, “Face Recognition System
under Varying Lighting Conditions”. In IOSR Journal of Computer

Engineering , Volume 14, Issue 3 (Sep.-Oct. 2013), pages 79-88.
http://www.iosrjournals.org/iosr-jce/papers/Vol14-

issue3/M01437988.pdf

78 Aslı Kale and Selim Aksoy, “Segmentation of Cervical Cell Images”.
In Proceedings of the 20th International Conference on Pattern

Recognition , Istanbul, 2010, pages 2399-2402.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

619.3398&rep=rep1&type=pdf

79 Iman Keivanloo, et. al., “Semantic Web-based Source Code Search”,
2010. https:

//www.researchgate.net/publication/228942934_SemanticWeb

80 Oleg Kiselyov, Applicative Abstract Categorial Grammars.
http://okmij.org/ftp/gengo/applicative-symantics/AACG.pdf

81 Oleg Kiselyov and Chung-chieh Shan, “Lambda: the ultimate
syntax-semantics interface”, 2010. https://pdfs.semanticscholar.

org/fb41/793ae7098c40fcdb6706b905c48a270b0b48.pdf

82 Aleks Kissinger, “Finite Matrices are Complete for
(dagger-)Hypergraph Categories”, 2014.
https://arxiv.org/abs/1406.5942

83 Werner Klieber, et. al., “Using Ontologies For Software
Documentation”, 2019. http://www.know-center.tugraz.at/

download_extern/papers/MJCAI2009%20software%20ontology.pdf

84 James Knight, et. al., “Uses of Accelerometer Data Collected From a
Wearable System”. In Personal and Ubiquitous Computing , 11 (2),
2007, pages 117-132.
http://pure-oai.bham.ac.uk/ws/files/4856321/PUC_Accel.pdf

85 Lingpeng Kong, Alexander M. Rush, and Noah A. Smith,
“Transforming Dependencies into Phrase Structures”. In Proceedings

of the 2015 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language

Technologies , Denver, Colorado, May-June 2015.
https://www.semanticscholar.org/paper/Transforming-

Dependencies-into-Phrase-Structures-Kong-

Rush/fed1a48da3d35694da6a75952829fbce5ea232c9

86 Hyunwoo Lee, et. al., “An Enhanced Method to Estimate Heart Rate
from Seismocardiography via Ensemble Averaging of Body
Movements at Six Degrees of Freedom”.In Sensors 18 (1), 2018,
https://www.ncbi.nlm.nih.gov/pubmed/29342958

87 Johnathan Lee, et. al., “Task-Based Conceptual Graphs as a Basis for
Automating Software Development”. In International Journal of

Intelligent Systems 15, pages 1177-1207.
https://www.csie.ntu.edu.tw/~jlee/publication/tbcg99.pdf

88 Haishan Liu, et. al., “Mining Biomedical Data using RDF
Hypergraphs”. 12th International Conference on Machine Learning
and Applications, 2013. http://ix.cs.uoregon.edu/~dou/

research/papers/icmla13_hypergraph.pdf

89 Feng Lu, et. al., “Adaptive Linear Regression for Appearance-Based
Gaze Estimation”, In IEEE Transactions on Pattern Analysis and

Machine Intelligence , 36 (10), 2014, pages 2033-2046.
https://www.ncbi.nlm.nih.gov/pubmed/26352633

90 Zhaohui Luo, “Using Signatures in Type Theory to Represent
Situations”. In Tsuyoshi Murata, et. al., eds., New Frontiers in

Artificial Intelligence , JSAI-isAI 2014, Lecture Notes in
Computer Science, vol. 9067, 2014.
https://www.researchgate.net/publication/268079019_Using_

Signatures_in_Type_Theory_to_Represent_Situations

91 Zhaohui Luo and Sergei Soloviev, “Dependent Coercions”. In
Electronic Notes in Theoretical Computere Science 29, 1999,
pages 152-168. https://www.sciencedirect.com/science/

article/pii/S1571066105803147

92 Mikhail V. Malko, “The Chernobyl Reactor: Design Features and
Reasons for Accident”, 2002. http://www.rri.kyoto-

u.ac.jp/NSRG/reports/kr79/kr79pdf/Malko1.pdf

93 Haney Maxwell, “Persistent Homology of Finite Topological Spaces”,
2010. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/

REUPapers/Maxwell.pdf

94 William B. McNatt and James M. Bieman, “Coupling of Design
Patterns: Common Practices and Their Benefits”. In Proc. Computer

Software & Applications Conf. (COMPSAC 2001), October 2001.
http://www.cs.colostate.edu/pubserv/pubs/McNatt-bieman-

Pubs-McnattBieman01.pdf

95 Katharina Mehner, et. al., “Analysis of Aspect-Oriented Model
Weaving”. http://www.mathematik.uni-

marburg.de/~swt/Publikationen_Taentzer/MMT09.pdf

96 Mark Minas, “Concepts and realization of a diagram editor generator
based on hypergraph transformation”. In Science of Computer

Programming , Volume 44, Issue 2, August 2002, pages 157-180.
https://www.sciencedirect.com/science/article/pii/

S0167642302000370

97 Mark Minas and Hans J Schneider, “Graph Transformation by

55

http://www.cs.huji.ac.il/~oabend/papers/daniel_ud_parser.pdf
http://www.cs.huji.ac.il/~oabend/papers/daniel_ud_parser.pdf
https://www.lucs.lu.se/spinning/categories/cognitive/Holmqvist/kenneth.pdf
https://www.lucs.lu.se/spinning/categories/cognitive/Holmqvist/kenneth.pdf
http://vis-www.cs.umass.edu/papers/unconstrained_face_workshop.pdf
http://vis-www.cs.umass.edu/papers/unconstrained_face_workshop.pdf
http://docs.idris-lang.org/en/latest/effects/index.html
http://www.scs-europe.net/dlib/2014/ecms14papers/dis_ECMS2014_0114.pdf
http://www.scs-europe.net/dlib/2014/ecms14papers/dis_ECMS2014_0114.pdf
https://arxiv.org/pdf/1406.2062.pdf
https://ebiquity.umbc.edu/_file_directory_/papers/60.pdf
http://www.iosrjournals.org/iosr-jce/papers/Vol14-issue3/M01437988.pdf
http://www.iosrjournals.org/iosr-jce/papers/Vol14-issue3/M01437988.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.3398&rep=rep1&type=pdf
https://www.researchgate.net/publication/228942934_SemanticWeb
https://www.researchgate.net/publication/228942934_SemanticWeb
http://okmij.org/ftp/gengo/applicative-symantics/AACG.pdf
https://pdfs.semanticscholar.org/fb41/793ae7098c40fcdb6706b905c48a270b0b48.pdf
https://pdfs.semanticscholar.org/fb41/793ae7098c40fcdb6706b905c48a270b0b48.pdf
https://arxiv.org/abs/1406.5942
http://www.know-center.tugraz.at/download_extern/papers/MJCAI2009%20software%20ontology.pdf
http://www.know-center.tugraz.at/download_extern/papers/MJCAI2009%20software%20ontology.pdf
http://pure-oai.bham.ac.uk/ws/files/4856321/PUC_Accel.pdf
https://www.semanticscholar.org/paper/Transforming-Dependencies-into-Phrase-Structures-Kong-Rush/fed1a48da3d35694da6a75952829fbce5ea232c9
https://www.semanticscholar.org/paper/Transforming-Dependencies-into-Phrase-Structures-Kong-Rush/fed1a48da3d35694da6a75952829fbce5ea232c9
https://www.semanticscholar.org/paper/Transforming-Dependencies-into-Phrase-Structures-Kong-Rush/fed1a48da3d35694da6a75952829fbce5ea232c9
https://www.ncbi.nlm.nih.gov/pubmed/29342958
https://www.csie.ntu.edu.tw/~jlee/publication/tbcg99.pdf
http://ix.cs.uoregon.edu/~dou/research/papers/icmla13_hypergraph.pdf
http://ix.cs.uoregon.edu/~dou/research/papers/icmla13_hypergraph.pdf
https://www.ncbi.nlm.nih.gov/pubmed/26352633
https://www.researchgate.net/publication/268079019_Using_Signatures_in_Type_Theory_to_Represent_Situations
https://www.researchgate.net/publication/268079019_Using_Signatures_in_Type_Theory_to_Represent_Situations
https://www.sciencedirect.com/science/article/pii/S1571066105803147
https://www.sciencedirect.com/science/article/pii/S1571066105803147
http://www.rri.kyoto-u.ac.jp/NSRG/reports/kr79/kr79pdf/Malko1.pdf
http://www.rri.kyoto-u.ac.jp/NSRG/reports/kr79/kr79pdf/Malko1.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Maxwell.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Maxwell.pdf
http://www.cs.colostate.edu/pubserv/pubs/McNatt-bieman-Pubs-McnattBieman01.pdf
http://www.cs.colostate.edu/pubserv/pubs/McNatt-bieman-Pubs-McnattBieman01.pdf
http://www.mathematik.uni-marburg.de/~swt/Publikationen_Taentzer/MMT09.pdf
http://www.mathematik.uni-marburg.de/~swt/Publikationen_Taentzer/MMT09.pdf
https://www.sciencedirect.com/science/article/pii/S0167642302000370
https://www.sciencedirect.com/science/article/pii/S0167642302000370

Computational Category Theory”, 2010.
https://www2.informatik.uni-

erlangen.de/staff/schneider/gtbook/fmn-final.pdf

98 Gilad Mishne and Maarten de Rijke, “Source Code Retrieval using
Conceptual Similarity”. In Coupling Approaches, Coupling Media

and Coupling Languages for Information Retrieval , Proceedings of
RIAO 2004 (Recherche d’Information et ses Applications), Vaucluse,
France, pages 539-554. https://staff.fnwi.uva.nl/m.derijke/

Publications/Files/riao2004.pdf

99 Bálint Molnár, “Applications of Hypergraphs In informatics: A survey
and opportunities for research”. In Annales Universitatis

Scientarium Budapestinensis, Sectio Computatorica 42, pages
261-282. http://ac.inf.elte.hu/Vol_042_2014/261_42.pdf

100 Amir More, “CoNLL-UL: Universal Morphological Lattices for
Universal Dependency Parsing”. In Proceedings of the 11th

International Conference on Language Resources and Evaluation

(LREC 2018) , 2018.
http://coltekin.net/cagri/papers/more2018.pdf

101 Erwan Moreau, “From link grammars to categorial grammars”. In
Proceedings of Categorial Grammars 2004 , Montpellier, France, Jun
2004, pages 31-45.
https://hal.archives-ouvertes.fr/hal-00487053/document

102 Joakim Nivre, “Dependency Grammar and Dependency Parsing”,
2005. http://stp.lingfil.uu.se/~nivre/docs/05133.pdf

103 Timothy Osborne and Daniel Maxwell, “A Historical Overview of the
Status of Function Words in Dependency Grammar”. In Proceedings

of the Third International Conference on Dependency

Linguistics (Depling 2015) , Uppsala, Sweden, August 24-26, 2015,
pages 241-250. https://www.aclweb.org/anthology/W15-2127

104 Santanu Paul and Atul Prakash, “Supporting Queries on Source Code:
A Formal Framework”. In International Journal of Software

Engineering and Knowledge Engineering (Special Issue on Reverse
Engineering) 4 (3), 1994, pages 325-348.
hhttp://web.eecs.umich.edu/~aprakash/papers/ijseke94.pdf.

105 Heiko Paulheim and Christian Bizer, “Type Inference in Noisy RDF
Data”. In: Harith Alani, et. al., eds., The Semantic Web - ISWC 2013 ,
Lecture Notes in Computer Science, vol. 8218, 2013.
http://www.heikopaulheim.com/docs/iswc2013.pdf

106 Jennifer Paykin, et. al., “Curry-Howard for GUIs: Or, User Interfaces
via Linear Temporal, Classical Linear Logic”, 2014.
https://www.cl.cam.ac.uk/~nk480/obt.pdf

107 Jennifer Paykin, et. al., “The Essence of Event-Driven Programming”,
2016. https://jpaykin.github.io/papers/pkz_CONCUR_2016.pdf

108 John Petitot and Barry Smith, “New Foundations for Qualitative
Physics”. In Evolving Knowledge in Natural Science and

Artificial Intelligence , J. E. Tiles, G. T. McKee and C. G. Dean,
eds., London: Pitman Publishing, 1990, pages 231-249. http://

ontology.buffalo.edu/smith/articles/qualitative_physics.pdf

109 Alexandra Poulovassilis and Mark Levene, “A Nested-Graph Model
for the Representation and Manipulation of Complex Objects”. Data
and. Knowledge Engineering, 6, 3 (1991), pages 205-224
http://www.dcs.bbk.ac.uk/~mark/download/tois.pdf

110 Lavanya Ramapantulu, et. al., “A Conceptual Framework to Federate

Testbeds for Cybersecurity”. Proceedings of the 2017 Winter
Simulation Conference.
http://simulation.su/uploads/files/default/2017-

ramapantulu-teo-chang.pdf

111 Ashish Patro and Suman Banerjee “COAP: A Software-Defined
Approach for Managing Residential Wireless Gateways”.
https://research.cs.wisc.edu/wings/projects/coap/papers/

coap_spec.pdf

112 Pietro Ramellini, “Boundary Questions Between Ontology and
Biology”.In Theory and Applications of Ontology:

Philosophical Perspectives , R. Poli and J. Seibt, eds., Springer,
2010, pages 153-175. http://mirror.thelifeofkenneth.com/lib/

electronics_archive/Theory_and_Applications_of_Ontology_

Philosophical_Perspectives.pdf

113 Martin Raubal, “Formalizing Conceptual Spaces”, 2004.
http://www.raubal.ethz.ch/Courses/288MR_Spring08_Papers/

Raubal_FormalizingConceptualSpaces_FOIS04.pdf

114 Siva Reddy, et. al., “Transforming Dependency Structures to Logical
Forms for Semantic Parsing”.
https://aclweb.org/anthology/Q16-1010

115 Greg Restall, “Logics, Situations, and Channels”, 2006.
https://pdfs.semanticscholar.org/58a5/

c8938d8e1500d4ae060cb40137e4dc011520.pdf

116 Alejandro Rodriguez, et. al., “On Modelling and Validation of the
MQTT IoT Protocol for M2M Communication”. In Proceedings of

PSNE@Petri Nets/ACSD , 2018.
http://ceur-ws.org/Vol-2138/paper5.pdf

117 Marko A. Rodriguez and Jennifer H. Watkins, “Grammar-Based
Geodeics for Semantic Networks”. In Knowlegde-Based Systems 23
(8), 2010, pages 844-855. http://arxiv.org/pdf/1009.0670.pdf

118 Justin Salamon, et. al., “Towards the Automatic Classification of
Avian Flight Calls for Bioacoustic Monitoring”. PLOS ONE,
November 2016, pages 1-26.
http://www.justinsalamon.com/uploads/4/3/9/4/4394963/

salamon_flightcalls_plosone_2016.pdf

119 Gerold Schneider, “A Linguistic Comparison of Constituency,
Dependency and Link Grammar”. Zurich University, diploma, 2008.
https://files.ifi.uzh.ch/cl/gschneid/papers/

FINALSgeroldschneider-latl.pdf

120 Aviv Segev and Avigdor Gal, “Putting things in context: a topological
approach to mapping contexts and ontologies”. In Stefano
Spaccapietra, et. al., eds., Journal on Data Semantics IX , Lecture
Notes in Computer Science, vol. 4601, 2007.
https://www.aaai.org/Papers/Workshops/2005/WS-05-01/WS05-

01-003.pdf

121 Chung-Chieh Shan, “Monads for natural language semantics”.
http://arxiv.org/pdf/cs/0205026.pdf (archived 17 May 2002)

122 Barry Smith and Anand Kumar, “The Ontology of Blood Pressure: A
Case Study in Creating Ontological Partitions in Biomedicine”, 2003.
https://www.researchgate.net/publication/228961604_The_

Ontology_of_Blood_Pressure_A_Case_Study_in_Creating_

Ontological_Partitions_in_Biomedicine

123 Mohamed Soltane, et. al., “Face and Speech Based Multi-Modal

56

https://www2.informatik.uni-erlangen.de/staff/schneider/gtbook/fmn-final.pdf
https://www2.informatik.uni-erlangen.de/staff/schneider/gtbook/fmn-final.pdf
https://staff.fnwi.uva.nl/m.derijke/Publications/Files/riao2004.pdf
https://staff.fnwi.uva.nl/m.derijke/Publications/Files/riao2004.pdf
http://ac.inf.elte.hu/Vol_042_2014/261_42.pdf
http://coltekin.net/cagri/papers/more2018.pdf
https://hal.archives-ouvertes.fr/hal-00487053/document
http://stp.lingfil.uu.se/~nivre/docs/05133.pdf
https://www.aclweb.org/anthology/W15-2127
hhttp://web.eecs.umich.edu/~aprakash/papers/ijseke94.pdf.
http://www.heikopaulheim.com/docs/iswc2013.pdf
https://www.cl.cam.ac.uk/~nk480/obt.pdf
https://jpaykin.github.io/papers/pkz_CONCUR_2016.pdf
http://ontology.buffalo.edu/smith/articles/qualitative_physics.pdf
http://ontology.buffalo.edu/smith/articles/qualitative_physics.pdf
http://www.dcs.bbk.ac.uk/~mark/download/tois.pdf
http://simulation.su/uploads/files/default/2017-ramapantulu-teo-chang.pdf
http://simulation.su/uploads/files/default/2017-ramapantulu-teo-chang.pdf
https://research.cs.wisc.edu/wings/projects/coap/papers/coap_spec.pdf
https://research.cs.wisc.edu/wings/projects/coap/papers/coap_spec.pdf
http://mirror.thelifeofkenneth.com/lib/electronics_archive/Theory_and_Applications_of_Ontology_Philosophical_Perspectives.pdf
http://mirror.thelifeofkenneth.com/lib/electronics_archive/Theory_and_Applications_of_Ontology_Philosophical_Perspectives.pdf
http://mirror.thelifeofkenneth.com/lib/electronics_archive/Theory_and_Applications_of_Ontology_Philosophical_Perspectives.pdf
http://www.raubal.ethz.ch/Courses/288MR_Spring08_Papers/Raubal_FormalizingConceptualSpaces_FOIS04.pdf
http://www.raubal.ethz.ch/Courses/288MR_Spring08_Papers/Raubal_FormalizingConceptualSpaces_FOIS04.pdf
https://aclweb.org/anthology/Q16-1010
https://pdfs.semanticscholar.org/58a5/c8938d8e1500d4ae060cb40137e4dc011520.pdf
https://pdfs.semanticscholar.org/58a5/c8938d8e1500d4ae060cb40137e4dc011520.pdf
http://ceur-ws.org/Vol-2138/paper5.pdf
http://arxiv.org/pdf/1009.0670.pdf
http://www.justinsalamon.com/uploads/4/3/9/4/4394963/salamon_flightcalls_plosone_2016.pdf
http://www.justinsalamon.com/uploads/4/3/9/4/4394963/salamon_flightcalls_plosone_2016.pdf
https://files.ifi.uzh.ch/cl/gschneid/papers/FINALSgeroldschneider-latl.pdf
https://files.ifi.uzh.ch/cl/gschneid/papers/FINALSgeroldschneider-latl.pdf
https://www.aaai.org/Papers/Workshops/2005/WS-05-01/WS05-01-003.pdf
https://www.aaai.org/Papers/Workshops/2005/WS-05-01/WS05-01-003.pdf
http://arxiv.org/pdf/cs/0205026.pdf
https://www.researchgate.net/publication/228961604_The_Ontology_of_Blood_Pressure_A_Case_Study_in_Creating_Ontological_Partitions_in_Biomedicine
https://www.researchgate.net/publication/228961604_The_Ontology_of_Blood_Pressure_A_Case_Study_in_Creating_Ontological_Partitions_in_Biomedicine
https://www.researchgate.net/publication/228961604_The_Ontology_of_Blood_Pressure_A_Case_Study_in_Creating_Ontological_Partitions_in_Biomedicine

Biometric Authentication”. In International Journal of Advanced

Science and Technology 21, 2010.
https://www.researchgate.net/publication/228463467_Face_

and_Speech_Based_Multi-Modal_Biometric_Authentication

124 John G. Stell, “Granulation for Graphs”. International Journal of
Signs and Semiotic Systems, 2(1), 32-71, January-June 2012.
https://pdfs.semanticscholar.org/9e0f/

a93a899e36dc3df62feabc004a0ecef4365d.pdf

125 John G. Stell, “Formal Concepts Analysis over Graphs and
Hypergraphs”. In Madalina Croitoru, et. al., eds., Graph Structures

for Knowledge Representation and Reasoning , Springer, 2013, pages
165-179. http://eprints.whiterose.ac.uk/78795/7/GKRLNCS_

with_coversheet.pdf

126 Milan Straka, et. al., “UDPipe: Trainable Pipeline for Processing
CoNLL-U Files Performing Tokenization, Morphological Analysis,
POS Tagging and Parsing”. In Proceedings of the 10th

International Conference on Language Resources and Evaluation

(LREC 2016) , 2016. http://www.lrec-

conf.org/proceedings/lrec2016/pdf/873_Paper.pdf

127 Harry Strange, et. al. “Modeling Mammographic Microcalcification
Clusters using Persistent Mereotopology”, In Pattern Recognition

Letters 47 (1), 2014, pages 157-163. https://www.sciencedirect.

com/science/article/pii/S0167865514001263

128 Gregor Strle, “Semantics Within: The Representation of Meaning
Through Conceptual Spaces”. Univ. of Novi Gorici, dissertation, 2012.

129 Takeshi Takahashi, et. al., “Ontological Approach toward
Cybersecurity in Cloud Computing”. 3rd International Conference on
Security of Information and Networks (SIN 2010), Sept. 7-11, 2010,
Taganrog, Rostov Oblast, Russia.
https://arxiv.org/pdf/1405.6169.pdf

130 Mozhgan Tavakolifard, “On Some Challenges for Online Trust and
Reputation Systems”. Dissertation, Norwegian University of Science
and Technology, 2012. https://pdfs.semanticscholar.org/fc60/

d309984eddd4f4229aa56de2c47f23f7b65e.pdf

131 Matúš Tejiščák and Edwin Brady, “Practical Erasure in Dependently
Typed Languages”, 2015. https://eb.host.cs.st-

andrews.ac.uk/drafts/dtp-erasure-draft.pdf

132 Alexandru Telea, “Visualisation and Simulation with Object-Oriented
Networks”. Dissertation, Eindhoven, 1999.
http://papers.cumincad.org/data/works/att/83cb.content.pdf

133 Alexandru Telea and Jarke J. van Wijk, “VISSION: An Object
Oriented Dataflow System for Simulation and Visualization”, 1999.
https://www.rug.nl/research/portal/files/3178139/

1999ProcVisSymTelea.pdf

134 Bhavani Thuraisingham, “Security Standards for the Semantic Web”.
https://pdfs.semanticscholar.org/f49c/

6558265fcbfb0cbb3221af089d5deb06aa35.pdf

135 Scott R. Tilley, et. al., “Towards a Framework for Program
Understanding”. In Proceedings of WPC ’96 , 4th Workshop on
Program Comprehension, Berlin, Germany, 1996, pages 19-28.
https://pdfs.semanticscholar.org/71d0/

4492be3c2abf9e1a88b9b263193a5c51eff1.pdf

136 Bernardo Toninho, et. al., Functions as Session-Typed Processes.

In Lars Birkedal, ed., Foundations of Software Science and

Computational Structures , FoSSaCS 2012, Lecture Notes in
Computer Science, vol. 7213, 2012.
http://www.cs.cmu.edu/~./fp/papers/fossacs12.pdf

137 J. V. Tucker and J. I. Zucker, “Computation by ‘While’ Programs on
Topological Partial Algebras ”. Theoretical Computer Science 219
(1999), pages 379-420.
https://core.ac.uk/download/pdf/82201923.pdf

138 Raymond Turner and Amnon H. Eden, “Towards a Programming
Language Ontology”, 2007.
https://www.researchgate.net/publication/242381616_Towards_

a_Programming_Language_Ontology

139 G. R. Wetherington, Jr., et. al., “Two-Year Operational Evaluation Of
A Consumer Electronics-Based Data Acquisition System For
Equipment Monitoring”. In Evro Wee Sit, et. al., eds., Sensors and

Instrumentation , vol. 5. Conference Proceedings of the Society for
Experimental Mechanics Series, 2017.
https://www.osti.gov/servlets/purl/1393863

140 Yurick Wilks, “The Semantic Web as the Apotheosis of Annotation,
but What Are Its Semantics?”. In IEEE Intelligent Systems 23,
2008, pages 41-49. http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.131.4958&rep=rep1&type=pdf

141 Mark D. Wilkinson, et. al., “The FAIR Guiding Principles for
Scientific Data Management and Stewardship”.In Scientific Data 3 ,
2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:26860037

142 Rene Witte, et. al., “Ontological Text Mining of Software
Documents”, 2007. https://pdfs.semanticscholar.org/7034/

95109535e510f81b9891681f99bae1e704fc.pdf

143 Pornpit Wongthongtham, et. al., “Development of a Software
Engineering Ontology for Multi-site Software Sevelopment”. In IEEE

Transactions on Knowledge and Data Engineering 21 (8), 2009,
pages 1205-1217. https://www.researchgate.net/publication/

220072121_Development_of_a_Software_Engineering_Ontology_

for_Multisite_Software_Development

144 Fei Xia and Martha Palmer, “Converting Dependency Structures to
Phrase Structures”, 2001.
http://www.aclweb.org/anthology/H01-1014

145 Joon-Eon Yang, “Fukushima Dai-Ichi Accident: Lessons Learned and
Future Actions from the Risk Perspectives”. In Nuclear Engineering

and Technology , 46 (1), 2014, pages 27-38. https://www.

sciencedirect.com/science/article/pii/S1738573315300875

146 Edward N. Zalta, “The Modal Object Calculus and its Interpretation”.
In Maarten de Rijke, ed., Advances in Intensional Logic , 1996,
pages 245-276.
https://mally.stanford.edu/Papers/calculus.pdf

147 Charles Zhang and Hans-Arno Jacobsen, “Refactoring Middleware
with Aspects”. IEEE Transactions on Parallel and Distributed Systems
Vol. 14 No. 12, November 2003. https://pdfs.semanticscholar.

org/0304/5c5cc518c7d44c3f7b117ea11dfae4932a89.pdf?_ga=2.

207853466.903112516.1533046888-196394048.1525384494

148 Li Zhu, et. al., “Development of a High-Sensitivity Wireless
Accelerometer for Structural Health Monitoring”. In Sensors 18 (1),
2018. https://www.ncbi.nlm.nih.gov/pubmed/29342102

57

https://www.researchgate.net/publication/228463467_Face_and_Speech_Based_Multi-Modal_Biometric_Authentication
https://www.researchgate.net/publication/228463467_Face_and_Speech_Based_Multi-Modal_Biometric_Authentication
https://pdfs.semanticscholar.org/9e0f/a93a899e36dc3df62feabc004a0ecef4365d.pdf
https://pdfs.semanticscholar.org/9e0f/a93a899e36dc3df62feabc004a0ecef4365d.pdf
http://eprints.whiterose.ac.uk/78795/7/GKRLNCS_with_coversheet.pdf
http://eprints.whiterose.ac.uk/78795/7/GKRLNCS_with_coversheet.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/873_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/873_Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0167865514001263
https://www.sciencedirect.com/science/article/pii/S0167865514001263
https://arxiv.org/pdf/1405.6169.pdf
https://pdfs.semanticscholar.org/fc60/d309984eddd4f4229aa56de2c47f23f7b65e.pdf
https://pdfs.semanticscholar.org/fc60/d309984eddd4f4229aa56de2c47f23f7b65e.pdf
https://eb.host.cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf
https://eb.host.cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf
http://papers.cumincad.org/data/works/att/83cb.content.pdf
https://www.rug.nl/research/portal/files/3178139/1999ProcVisSymTelea.pdf
https://www.rug.nl/research/portal/files/3178139/1999ProcVisSymTelea.pdf
https://pdfs.semanticscholar.org/f49c/6558265fcbfb0cbb3221af089d5deb06aa35.pdf
https://pdfs.semanticscholar.org/f49c/6558265fcbfb0cbb3221af089d5deb06aa35.pdf
https://pdfs.semanticscholar.org/71d0/4492be3c2abf9e1a88b9b263193a5c51eff1.pdf
https://pdfs.semanticscholar.org/71d0/4492be3c2abf9e1a88b9b263193a5c51eff1.pdf
http://www.cs.cmu.edu/~./fp/papers/fossacs12.pdf
https://core.ac.uk/download/pdf/82201923.pdf
https://www.researchgate.net/publication/242381616_Towards_a_Programming_Language_Ontology
https://www.researchgate.net/publication/242381616_Towards_a_Programming_Language_Ontology
https://www.osti.gov/servlets/purl/1393863
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.4958&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.4958&rep=rep1&type=pdf
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26860037
https://pdfs.semanticscholar.org/7034/95109535e510f81b9891681f99bae1e704fc.pdf
https://pdfs.semanticscholar.org/7034/95109535e510f81b9891681f99bae1e704fc.pdf
https://www.researchgate.net/publication/220072121_Development_of_a_Software_Engineering_Ontology_for_Multisite_Software_Development
https://www.researchgate.net/publication/220072121_Development_of_a_Software_Engineering_Ontology_for_Multisite_Software_Development
https://www.researchgate.net/publication/220072121_Development_of_a_Software_Engineering_Ontology_for_Multisite_Software_Development
http://www.aclweb.org/anthology/H01-1014
https://www.sciencedirect.com/science/article/pii/S1738573315300875
https://www.sciencedirect.com/science/article/pii/S1738573315300875
https://mally.stanford.edu/Papers/calculus.pdf
https://pdfs.semanticscholar.org/0304/5c5cc518c7d44c3f7b117ea11dfae4932a89.pdf?_ga=2.207853466.903112516.1533046888-196394048.1525384494
https://pdfs.semanticscholar.org/0304/5c5cc518c7d44c3f7b117ea11dfae4932a89.pdf?_ga=2.207853466.903112516.1533046888-196394048.1525384494
https://pdfs.semanticscholar.org/0304/5c5cc518c7d44c3f7b117ea11dfae4932a89.pdf?_ga=2.207853466.903112516.1533046888-196394048.1525384494
https://www.ncbi.nlm.nih.gov/pubmed/29342102

	Hypergraph-Based Type Theory ...
	Hub Applications and Gatekeeper Code
	Gatekeeper Code
	Fragile Code
	Core Language vs. External Tools

	Case Studies
	How Internet of Things Interoperability Affects Data Modeling Priorities
	Linguistic Case-Study
	Proactive Design

	Directed Hypergraphs and Generalized Lambda Calculus
	Generalized Lambda Calculus
	Directed Hypergraphs and 'Channel Abstractions'
	Channelized Hypergraphs and RDF
	Procedural Input/Output Protocols via Type Theory
	Kinds of Abstraction
	Channelized Type Systems

	Modeling Procedures via Channelized Hypergraphs
	Initializing Function-Typed Values
	Addressability and Implementation

	Dependent Types and Co-Constructors
	Dependent Types and Typestate
	Simulating Dependent Types with Preconstructors

	Channels and Carriers
	Carrier Transfers
	Channel Groups and Code Graphs

	Channelized-Type Interpretations of Larger-Scale Source Code Elements
	Statements, Blocks, and Control Flow
	Code Blocks as Typed Values

	Conclusion
	References

