ErgoTree Specification

authors

September 12, 2019

Abstract

In this document we consider typed abstract syntax of the language called ErgoTree which
defines semantics of a condition which protects a closed box in the Ergo Platform blockchain.
Serialized graph is written into a box. Most of Ergo users are unaware of the graph since they
are developing contracts in higher-level languages, such as ErgoScript. However, for developers
of alternative higher-level languages, client libraries and clients knowledge of internals would be
highly useful. This document is providing the internals, namely, the following data structures
and algorithms:

e Serialization to a binary format and graph deserialization from the binary form.
e When a graph is considered to be well-formed and when not.

e Type system and typing rules.

e How graph is transformed into an execution trace.

e How execution trace is costed.

e How execution trace is reduced into a Sigma-expression.

e How Sigma-expression is proven and verified.

kushti : Please note that the document is intended for general high-skilled tech audience, so avoid
describing Scala classes etc.

Contents

(1__Introductionl 1

3

5

[4_Evaluation Semantics| 6

b Serialization| 8
5.1 Type Serialization| 9
b2 Data Serializationl 11
(.3 Constant Serfalizationl 12
5.4 Expression Serialization|o 12
b.5 Ergolree serialization| o 12
5.6 Constant Segregation|. 12

[6 The Graph|

(A Predefined types|
IA.1 Boolean typel e
A2 Byte typel . . . o o o
[A.3 Short type|l.
...
A5 Long typel e
[A.6 Biglnt type] o
IA.7 GroupElement type|.
[A.8 SigmaProp type|.o
A9 B 1<
[A.10 AviTree typel o o o e e e e
IA.11 Header type| o e
|A.12 PreHeader type|
A 13 Context typel o o o e
[A.14 Global typel

A.15 Coll type] e
[A.16 Option typel o e

(B Predefined global functions|

[C Serialization format of ErgoTree nodes|

D Motivations
ID.1 Type Serialization format rationale| 000000
[D.2 Constant Segregation rationale| oL

[Compressed encoding of integer values|
[E.1 VLQ encoding|
.2 ZigZag encoding]

1 Introduction

15

16

18
18
18
19
20
22
23
24
25
25
28
31
33
34
35
35
39

40

52

65
65
65

The design space of programming languages is very broad ranging from general-purpose languages

like C,Java,Python up to specialized languages like SQL, HTML, CSS, etc.

Since Ergo’s goal is to provide a platform for contractual money, the choice of the language for

writing contracts is very important.

First of all the language and contract execution environment should be deterministic. Once
created and stored in Ergo blockchain, smart contract should always behave predictably and deter-
ministically, it should only depend on well-defined data context and nothing else. As long as data
context doesn’t change, any execution of the contract should return the same value any time it is

executed, on any execution platform, and even on any compliant language implementation. No gen-
eral purpose programming language is deterministic because all of them provide non-deterministic
operations. ErgoScript doesn’t have non-deterministic operations.

Second, the language should be spam-resistant, meaning it should facilitate in defending against
attacks when malicious contracts can overload network nodes and bring the blockchain down. To
fullfill this goal ErgoScript support ahead-of-time cost estimation, the fast check performed before
contract execution to ensure the evaluation cost is within acceptable bounds. In general, such
cost prediction is not possible, however if the language is simple enough (which is the case of
ErgoScript) and if operations are carefully selected, then costing is possible and doesn’t require
usage of Gas Morphic : cite etherium and allow to avoid related problems Morphic : cite Gas related
problems.

Third, being simple, the contracts language should be ezpressive enough. It should be possible
to implement most of the practical scenarios, which is the case of ErgoScript. In our experi-
ence expressivity of contracts language comes hand in hand with design and capabilities of Ergo
blockchain platform itself, making the whole system turing-complete as we demonstrated in Morphic
. cite TuringPaper.

Forth, simplicity and expressivity are often characteristics of domain-specific languages Morphic
. cite DSL. From this perspective ErgoScript is a DSL for writing smart contracts. The language
directly captures the Ubiquites Language [Ubi] of smart contracts domain directly manipulating
with first-class Boxes, Tokens, Zero-Knowledge Sigma-Propostions etc., these are the novel features
Ergo aims to provide as a platform/service for custom user applicatons. Domain-specific nature na-
ture of ErgoScript also fasilitates spam-resistance, because operations of ErgoScript are all carefully
selected to be costing friendly.

And last, but not the least, we wanted our new language to be, nevertheless, familiar to the
most since we aim to address as large audience of programmers as possible with minimum surprise
and WTF ratio [WTE]. The syntax of ErgoScript is inspired by Scala/Kotlin, but in fact it shares
a common subset with Java and C#, thus if you are proficient in any of these languages you will
be right at home with ErgoScript as well.

Guided by this requirements we designed ErgoScript as a new yet familiar looking language
which directly support all novel features of Ergo blockchain. We also implemented reference imple-
mentation of the specification described in this document.

2 Language

Here we define abstract syntax for ErgoTree language. It is a typed functional language with tuples,
collections, optional types and val binding expressions. The semantics of ErgoTree is specified by
first translating it to a core calculus (Core-\) and then by giving its evaluation semantics. Typing
rules is given in Section [3] and evaluation semantics is given in Section

ErgoTree is defined here using abstract syntax notation as shown in Figure[ll This corresponds
to ErgoTree data structure, which can be serialized to an array of bytes. The mnemonics shown
in the figure correspond to classes of ErgoTree reference implementation.

Set Name Syntax Mnemonic Description
T>T = P SPredefType predefined types (see Appendixlé[)
\ T STypeVar type variable
\ (Th,...,Tn) STuple tuple of n elements (see Tuple type)
| (Th,...,Tn) =T SFunc function of n arguments (see Func type)
| Coll[T] SCollection collection of elements of type T
\ Option[T] SOption optional value of type T'
Term>e == C(v,T) Constant typed constants
| x ValUse variables
| Mz : T;).e FuncExpr lambda expression
| er(€;) Apply application of functional expression
| e.m(e;) MethodCall method invocation
\ (e1,...,€en) Tuple constructor of tuple with n items
| 0{(€;) primitive application (see Appendix
| if (econd) €1 else ex If if-then-else expression
| {val i =e;; e} BlockExpr block expression
cd n= trait I {ms;} STypeCompanion interface declaration
ms = def m[T|(z;:T3): T SMethod method signature declaration

Figure 1: Abstract syntax of ErgoScript language

We assign types to the terms in a standard way following typing rules shown in Figure

Constants keep both the type and the data value of that type. To be well-formed the type of
the constant should correspond to its value.

Variables are always typed and identified by unique id, which refers to either lambda bound
variable of val bound variable. The encoding of variables and their resolution is described in
Section ?77.

Lambda expressions can take a list of lambda-bound variables which can be used in the body
expression, which can be block expression.

Function application takes an expression of functional type (e.g. 171 — T},) and a list of argu-
ments. The reason we do not write it ey(€) is that this notation suggests that (€) is a subterm,
which it is not.

Method invocation allows to apply functions defined as methods of interface types. If expression
e has interface type I and and method m is declared in the interface I then method invocation
e.m(args) is defined for the appropriate args.

Conditional expressions of ErgoTree are strict in condition and lazy in both of the branches.
Each branch is an expression which is executed depending on the result of condition. This laziness

of branches specified by lowering to Core-A (see Figure .

Block expression contains a list of val definitions of variables. To be wellformed each subsequent
definition can only refer to the previously defined variables. Result of block execution is the result
of the resulting expression e, which can use any variable of the block.

Each type may be associated with a list of method declarations, in which case we say that
the type has methods. The semantics of the methods is the same as in Java. Having an instance
of some type with methods it is possible to call methods on the instance with some additional
arguments. Each method can be parameterized by type variables, which can be used in method
signature. Because ErgoTree supports only monomorphic values each method call is monomorphic
and all type variables are assigned to concrete types (see MethodCall typing rule in Figure (3)).

The semantics of ErgoTree is specified by translating all its terms to a somewhat lower and
simplified language, which we call Core-\. This lowering translation is shown in Figure 2]

TeTmErgoTree Termcore

L[Nz : T;).€] = Az (To,...,T,).L[{val z; : T; = z.; e}]

Lles(e] = Lles[(L))

Le.m ()] — Lle].m(L[es])

Ll(e1,...,en)] = (L[ei1], ..., Len])

Ller I ea] — L[if (e1) true else e3]

Lley && ea] — L[if (e1) ez else false]

L[if (econa) €1 else ea] +— (if(L[econd]l, A(-: Unit).Le1], A(-: Unit).L]e2]))()
L{valz; :Ti=e;;el] +— (Az1:T1).(... Man - Tn).Lle])(L]exn]) - --))(L[e1])
L[5l = 6(Le)

L[e] — e

Figure 2: Lowering to Core-A

All n-ary lambdas when n > 1 are transformed to single arguments lambdas using tupled
arguments. Note that if (eqonq) €1 else es term of ErgoTree has lazy evaluation of its branches
whereas right-hand-side if is a primitive operation and have strict evaluation of the arguments.
The laziness is achieved by using lambda expressions of Unit — Boolean type.

We translate logical operations (| |, &) of ErgoTree, which are lazy on second argument to if
term of ErgoTree, which is recursively translated to the corresponding Core-\ term.

Syntactic blocks of ErgoTree are completely eliminated and translated to nested lambda ex-
pressions, which unambiguously specify evaluation semantics of blocks. The Core-\ is specified in
Section [l

3 Typing

ErgoTree is a strictly typed language, in which every term should have a type in order to be
wellformed and evaluated. Typing judgement of the form I' I e : T say that e is a term of type
T in the typing context T'.

Che:T; Ti): (T1,e,Tn) =T :
et (Const) oy (Var) Lol Pl e T2t (prip)

F'Fei: Ty ... T'ken: Ty
T F (e1,en) i (T1,,Tn) (Tuple)

TFe:lI, e:T; mtype(m,I,T;) : (I,T1,...Tn)—=T

em(e): T (MethodCall)

T, Ty Fe: T
T F Mxi:Ti).e : (Toye.sTn)—

Tk oep (Th,T)—T TF e T
TF efer) T (Apply)

T (FuncExpr)

I' F econg: Boolean I''Fe: T T'k ex: T (If)
I' F if (econd) €1 else ex : T

TFei: Th AVEE{2,..,n} Tyoi: Th,.xp—1: Tp—1 b ex: T A Dyxy: Thyeooon: T B oer T
't {val z;=e;; e} : T

(BlockExpr)

Figure 3: Typing rules of ErgoTree

Note that each well-typed term has exactly one type hence we assume there exists a funcion
termType : Term — T which relates each well-typed term with the corresponding type.

Primitive operations can be parameterized with type variables, for example addition (Table ?77?)
has the signature + : (T,T) — T where T is numeric type (Table [3). Function ptype, defined in
Appendix [B| returns a type of primitive operation specialized for concrete types of its arguments,
for example ptype(+, Int,Int) = (Int, Int) — Int.

Similarily, the function mtype returns a type of method specialized for concrete types of the
arguments of the MethodCall term.

BlockExpr rule defines a type of well-formed block expression. It assumes a total ordering on
val definitions. If a block expression is not well-formed than is cannot be typed and evaluated.

The rest of the rules are standard for typed lambda calculus.

4 Evaluation Semantics

Evaluation of ErgoTree is specified by its translation to Core-A, whose terms form a subset of
ErgoTree terms. Thus, typing rules of Core-\ form a subset of typing rules of ErgoTree.

Here we specify evaluation semantics of Core-\, which is based on call-by-value (CBV) lambda
calculus. Evaluation of Core-\ is specified using denotational semantics. To do that, we first
specify denotations of types, then typed terms and then equations of denotational semantics.

Definition 1 (values, producers)

o The following CBV terms are called values:

Vi==z|C(d,T)]| \e.M

o All CBV terms are called producers. (This is because, when evaluated, they produce a value.)

We now describe and explain a denotational semantics for the Core-A language. The key
principle is that each type A denotes a set [A] whose elements are the denotations of values of the
type A.

Thus the type Boolean denotes the 2-element set {true, false}, because there are two values
of type Boolean. Likewise the type (T1,...,T),) denotes ([11],...,[T,]) because a value of type
(T1,...,T,) must be of the form (Vi,...,V,,), where each V; is value of type T;.

Given a value V of type A, we write [V] for the element of A that it denotes. Given a close
term M of type A, we recall that it produces a value V of type A. So M will denote an element
[M] of [A].

A value of type A — B is of the form Az.M. This, when applied to a value of type A gives a
value of type B. So A — B denotes [A] — [B]. It is true that the syntax appears to allow us to
apply Az.M to any term N of type A. But NV will be evaluated before it interracts with Az.M, so
Ax.M is really only applied to the value that N produces.

Definition 2 A context I' is a finite sequence of identifiers with value types x1 : A1,...,xTpn : An.
Sometimes we omit the identifiers and write I' as a list of value types.

Given a context I' = x1 : Ay,...,z, : Ap, an environment (list of bindings for identifiers)
associates to each x; as value of type A;. So the environment denotes an element of ([A;], ..., [4xn]),
and we write [I'] for this set.

Given a Core-\ term I' = M : B, we see that M, together with environment, gives a closed
term of type B. So M denotes a function [M] from [I'] to [B].

In summary, the denotational semantics is organized as follows.

e A type A denotes a set [A]
e A context xy: Ay,...,zy, : A, denotes the set ([A1],...,[A4n])

e Aterm I' = M : B denotes a function [M] : [I'] — [B]

The denotations of types and terms is given in Figure [4

The denotations of Core-A types

[Boolean] = {true,false}
[P] = see Appendix [A]
[(Ty,.... T)] = ([11]... ., [T.])
[A — B] = [A] = [B]
The denotations of Core-\ terms
[x[((p.x = z,p")) = 2z
[CA.Dlp) = d
[(M)](p) = ([M:]{p)
[0(N)]{p) = ([0]{p)){v) where v =[N](p)
[M) (p) — Ax[M]{(px > 7))
[My(N)](p) = ([My]{p)){v) where v = [N](p)

2
[Mrm(N:)(p) ([M1]{p))-m(vi) where v; = [Ni](p)

Figure 4: Denotational semantics of Core-A

5 Serialization

This section defines a binary format, which is used to store ErgoTree contracts in persistent stores,
to transfer them over wire and to enable cross-platform interoperation.

Terms of the language described in Section [2| can be serialized to array of bytes to be stored in
Ergo blockchain (e.g. as Box.propositionBytes).

When the guarding script of an input box of a transaction is validated the propositionBytes
array is deserialized to an ErgoTree IR (called ErgoTree), which can be evaluated as it is specified

in Section [l

Here we specify the serialization procedure in general. The serialization format of ErgoTree
terms and types is specified in Appendix [Cland ?? correspondingly.
Table |2 shows size limits which are checked during contract deserialization.

Name Value Description

VLQmax 10 Maximum size of VLQ encoded byte sequence (See VLQ formats)

Typemax 100 Maximum size of serialized type term (see Type format)

Datamaz 10Kb Maximum size of serialized data instance (see Data format)

Constmaz = Typemaz + | Maximum size of serialized data instance (see Const format)
Datamas

Exprmas 1Kb Maximum size of serialized ErgoTree term (see Expr format)

ErgoTreemaes | 24K0b Maximum size of serialized ErgoTree contract (see ErgoTree format)

Table 1: Serialization limits

All serialization formats which are uses and defined thoughout this section are listed in Table

Format #bytes Description

Byte 1 8-bit signed two’s-complement integer

Short 2 16-bit signed two’s-complement integer (big-endian)

Int 4 32-bit signed two’s-complement integer (big-endian)

Long 8 64-bit signed two’s-complement integer (big-endian)

UByte 1 8-bit unsigned integer

UShort 2 16-bit unsigned integer (big-endian)

Ulnt 4 32-bit unsigned integer (big-endian)

ULong 8 64-bit unsigned integer (big-endian)

VLQ (UShort) [1..3] Encoded unsigned Short value using VLQ. See [VLQal [VLQD] and [E.1]

VLQ(UInt) [1..5] Encoded unsigned 32-bit integer using VLQ.

VLQ (ULong) [1..VLQmax] Encoded unsigned 64-bit integer using VLQ.

Bits [1..BitSmaz) A collection of bits packed in a sequence of bytes.

Bytes [1..Bytesmaxz] A sequence (block) of bytes. The size of the block should either stored
elsewhere or wellknown.

Type [1..Typemaz] Serialized type terms of ErgoTree. See

Data [1..Datamaz) Serialized ErgoTree values. Seel@l

GroupElement | 33 Serialized elements of eliptic curve group. See|5.2.1|

SigmaProp [1..SigmaPropmas] | Serialized sigma propositions. See |5.2.2|

Box [1..BoZmaxz) Serialized box data. See |5.2.3|

AvlTree 44 Serialized dynamic dictionary digest. See[5.2.4]

Const [1..Constmaz) Serialized ErgoTree constants (values with types). See

Expr [1..Exprmas] Serialized expression terms of ErgoTree. See I54ﬂ;

ErgoTree [1..ErgoTreemas] Serialized instances of ErgoTree contracts. See|5.5

Table 2: Serialization formats

Table [2| introduce a name for each format and also shows the number of bytes each format may
occupy in the byte stream. We use [1..n] notation when serialization may produce from 1 to n bytes
depending of actual data instance.

Serialization format of ErgoTree is optimized for compact storage. In many cases serialization
procedure is data dependent and thus have branching logic. To express this complex serialization
logic we use pseudo-language operators like for, match, if, optional which allow to specify a
structure on simple serialization slots. Each slot specifies a fragment of serialized stream of bytes,
whereas operators specifiy how the slots are combined together to form the stream of bytes.

5.1 Type Serialization

In this section we describe how the types (like Int, Coll[Bytel, etc.) are serialized, then we define
serialization of typed data. This will give us a basis to describe serialization of Constant nodes of
ErgoTree. From that we proceed to serialization of arbitrary ErgoTree trees.

For motivation behind this type encoding please see Appendix

5.1.1 Distribution of type codes
The whole space of 256 codes is divided as the following:

Interval Distribution
0x00 special value to represent undefined type (NoType in ErgoTree)
0x01 - O0x6F(111) data types including primitive types, arrays, options aka nullable types, classes (in

future), 111 = 255 - 144 different codes
0x70(112) - OxFF(255) | function types T1 => T2, 144 = 12 x 12 different codes

Figure 5: Distribution of type codes

5.1.2 Encoding Data Types

There are 9 different values for primitive types and 2 more are reserved for future extensions. Each
primitive type has an id in a range 1,...,11 as the following.

b=
=B

Type

Boolean

Byte

Short (16 bit)

Tnt (32 bit)

Long (64 bit)

BigInt (java.math.BigInteger)

GroupElement (org.bouncycastle.math.ec. ECPoint)
SigmaProp

O 00| | | U x| W N =

reserved for Char

reserved for Double

=] =
= k=]

reserved

For each type constructor like Coll or Option we use the encoding schema defined below. Type
constructor has associated base code (e.g. 12 for Col1[_], 24 for Co11[Coll[_]] etc.), which is
multiple of 12. Base code can be added to primitive type id to produce code of constructed type,

10

for example 12 + 1 = 13 is a code of Coll[Byte]. The code of type constructor (12 in this example)
is used when type parameter is non-primitive type (e.g. Coll[(Byte, Int)]). In this case the
code of type constructor is read first, and then recursive descent is performed to read bytes of the
parameter type (in this case (Byte, Int)) This encoding allows very simple and quick decoding

by using div and mod operations.
The interval of codes for data types is divided as the following:

Interval Type constructor | Description

0x01 - 0x0B(11) primitive types (including 2 reserved)

0x0C(12) Coll[_] Collection of non-primivite types (Coll[(Int,Boolean)])
0x0D(13) - 0x17(23) Coll[_] Collection of primitive types (Coll[Bytel, Coll[Int], etc.)

0x18(24) Coll[Coll[_]] Nested collection of non-primitive types
(Coll[Coll[(Int,Boolean)]])

0x19(25) - 0x23(35) Coll[Col1[_]] Nested collection of primitive types (Coll[Coll[Bytell,
Col1[Coll[Int]])

0x24(36) Option[_] Option of non-primitive type (Option[(Int, Byte)])

0x25(37) - 0x2F (47) Option[_] Option of primitive type (Option[Int])

0x30(48) Option[Coll[_]] Option of Coll of non-primitive type

(Option[Coll[(Int, Boolean)]])

0x31(49) - 0x3B(59)

Option[Coll[_]]

Option of Coll of primitive type (Option[Coll[Int]])

0x3C(60)

(<,

Pair of non-primitive types (((Int, Byte), (Boolean,Box)),
etc.)

0x3D(61) - 0x47(71) (_, Int) Pair of types where first is primitive ((_, Int))

0x48(72) (Cosl) Triple of types

0x49(73) - 0x53(83) (Int, _) Pair of types where second is primitive ((Int, _))

0x54(84) (Coosos) Quadruple of types

0x55(85) - 0x5F(95) _, Symmetric pair of primitive types ((Int, Int), (Byte,Byte),
etc.)

0x60(96) (Zyeesl) Tuple type with more than 4 items
(Int, Byte, Box, Boolean, Int)

0x61(97) Any Any type

0x62(98) Unit Unit type

0x63(99) Box Box type

0x64(100) Av1Tree AvlTree type

0x65(101) Context Context type

0x65(102) String String

0x66(103) IV Typeldent

0x67(104)- 0x6E(110) reserved for future use

Reserved for future Class type (e.g. user-defined types)

5.1.3 Encoding Function Types

We use 12 different values for both domain and range types of functions. This gives us 12x12 = 144
function types in total and allows to represent 11 % 11 = 121 functions over primitive types using
just single byte.

Each code F' in a range of function types can be represented as F' = D x 12 + R + 112, where
D,R € {0,...,11} - indices of domain and range types correspondingly, 112 - is the first code in
an interval of function types.

If D = 0 then domain type is not primitive and recursive descent is necessary to write/read
domain type.

11

If R = 0 then range type is not primitive and recursive descent is necessary to write/read range
type.
5.1.4 Recursive Descent

When an argument of a type constructor is not a primitive type we fallback to the simple encoding
schema.

In such a case we emit the special code for the type constructor according to the table above
and descend recursively to every child node of the type tree.

We do this descend only for those children whose code cannot be embedded in the parent code.
For example, serialization of Col1[(Int,Boolean)] proceeds as the following:

1. emit 0x0C because element of collection is not primitive
2. recursively serialize (Int, Boolean)

3. emit 0x3D because first item in the pair is primitive

4. recursivley serialize Boolean

5. emit 0x02 - the code for primitive type Boolean

Examples
Type D | R | Bytes #Bytes | Comments
Byte 1 1
Coll[Bytel 124+ 1=13 1
Coll[Coll[Bytel] 244+ 1=25 1
Option[Byte] 36 +1=237 1 register
Option[Coll[Bytel] 48 +1 =149 1 register
(Int,Int) 84 + 3 =87 1 fold
Box=>Boolean 7T 2 | 198 = 7*124-2+112 1 exist, forall
(Int,Int)=>Int 0 | 3 | 115=0*12+3+4112, 87 2 fold
(Int,Boolean) 60 + 3, 2 2
(Int,Box)=>Boolean | 0 | 2 | 0*12+2+112, 60+3, 7 3

5.2 Data Serialization

In ErgoTree all runtime data values have an associated type also available at runtime (this is called
type reification[Rei]). However serialization format separates data values from its type descriptors.
This allows to save space when for example a collection of items is serialized.

The contents of a typed data structure can be fully described by a type tree. For example
having a typed data object d: (Int, Coll[Bytel, Boolean) we can tell that d has 3 items, the
first item contain 32-bit integer, the second - collection of bytes, and the third - logical true/false
value.

To serialize/deserialize typed data we need to know its type descriptor (type tree). Serialization
procedure is recursive over type tree and the corresponding subcomponents of an object. For
primitive types (the leaves of the type tree) the format is fixed. The data values of ErgoTree types
are serialized using predefined function shown in Figure [6]

12

5.2.1 GroupElement serialization
5.2.2 SigmaProp serialization
5.2.3 Box serialization

5.2.4 AvlTree serialization

5.3 Constant Serialization

Constant format is simple and self sufficient to represent any data value in ErgoTree. Every data
block of Constant format contains both type and data, such it can be stored or wire transfered
and then later unambiguously interpreted. The format is shown in Figure

5.4 Expression Serialization

Expressions of ErgoTree are serialized as tree data structure using recursive procedure described
here.

5.5 [ErgoTree serialization

The root of a serializable ErgoTree term is a data structure called ErgoTree which serialization
format shown in Figure 77

Serialized instances of ErgoTree are self sufficient and can be stored and passed around. Er-
goTree format defines top-level serialization format of ErgoTree scripts. The interpretation of the
byte array depend on the first header bytes, which uses VLQ encoding up to 30 bits. Currently we
define meaning for only first byte, which may be extended in future versions.

Currently we don’t specify interpretation for the second and other bytes of the header. We
reserve the possibility to extend header by using Bit 7 == 1 and chain additional bytes as in VLQ.
Once the new bytes are required, a new version of the language should be created and implemented
via soft-forkability. That new language will give an interpretation for the new bytes.

The default behavior of ErgoTreeSerializer is to preserve original structure of ErgoTree and
check consistency. In case of any inconsistency the serializer throws exception.

If constant segregation bit is set to 1 then constants collection contains the constants for which
there may be ConstantPlaceholder nodes in the tree. If is however constant segregation bit is 0,
then constants collection should be empty and any placeholder in the tree will lead to exception.

5.6 Constant Segregation

13

|

Slot

l

Format

[#bytes [Description

def serializeData(t,v)

match (t,v)

with (Unit,v € [Unit])

with (Boolean,v € [Boolean])

// nothing serialized

l v ‘ Byte ‘ 1 ‘ 0 or 1 in a single byte
with (Byte,v € [Byte])
l v [Byte [1 [in a single byte

with (N,v € [Short]), N € Short, Int, Long

v

VLQ(ZigZag(N))

1.3]

16,32,64-bit signed integer encoded using ZigZag and then using

[VLQ

with (BigInt,v € [BigInt])
bytes = v.toByteArray

numBytes

VLQ(UInt)

number of bytes in bytes array

bytes

Bytes

serialized bytes array

with (GroupElement,v € [GroupElement])

v

l

GroupElement

l

serialization of GroupElement data. See I5.2.1|

with (SigmaProp,v € [SigmaProp])

v

|

SigmaProp

serialization of SigmaProp data. See |5.2.2|

with (Boz,v € [Bozx])

v

l

Box

serialization of Box data. See[5.2.3|

with (AvlTree,v € [AviTree])

v

‘ AvliTree

serialization of AvlTree data. See |5,2.4|

with (Coll[T],v € [Coll[T])

len

l

VLQ (UShort)

[[1.3]

length of the collection

match (T, v)

with (Boolean,v € [Coll[Boolean]])

l items ‘ Bits ‘ [1..1024] ‘ boolean values packed in bits
with (Byte,v € [Coll[Byte]])

l items | Bytes | [1..len] | items of the collection
otherwise

for i =1 to len
serializeData(T,v;)

end for
end match
end match

end serializeData

Figure 6: Data serialization format

Slot ‘ Format ‘ #bytes ‘ Description

def serialize(ge)
if ge.isldentity then

l Const

l

else

|

|

end if
end def

Figure 7: GroupElement serialization format

Slot [Format [#bytes [Description

Figure 8: SigmaProp serialization format

14

Slot ‘ Format ‘ #bytes ‘ Description

Figure 9: Box serialization format

Slot ‘ Format ‘ #bytes ‘ Description

Figure 10: AvlTree serialization format

Slot Format | #bytes Description
type Type [1..Typemaz] | type of the data instance (see5.1]
value | Data [1..Datamas] | serialized data instance (see I5§V
Figure 11: Constant serialization format
l Slot ‘ Format ‘ #bytes ‘ Description

def serializeExpr(e)

e.opCode | Byte

1

opcode of ErgoTree node, used for selection of an appropriate node
serializer from Appendix [C]

if opCode <= LastConstantCode then

l c ‘ Const ‘ [1..Constmaxz] ‘ Constant serializaton slot
else
body Op [1..Ezprmaz] serialization of operation arguments depending on e.opCode as defined
in Appendix [C]
end if

end serializeExpr

Figure 12: Expression serialization format

Slot Format #bytes | Description

header VLQ(UInt) | [1, ¥ the first bytes of serialized byte array which determines interpretation
of the rest of the array

numConstants | VLQ(UInt) | [1, *| size of constants array

for i =1 to numConstants

| const; | Const [1, %] | constant in i-th position

end for

root Expr [1, *] If constantSegregationFlag is true, the contains ConstantPlaceholder
instead of some Constant nodes. Otherwise may not contain place-
holders. It is possible to have both constants and placeholders in the
tree, but for every placeholder there should be a constant in constants
array.

Figure 13: ErgoTree serialization format

Bits Default Value | Description

Bits 0-2 | 0 language version (current version == 0)

Bit 3 0 reserved (should be 0)

Bit 4 0 == 1 if constant segregation is used for this ErgoTree (see Sectionl@l

Bit 5 0 == 1 - reserved for context dependent costing (should be = 0)

Bit 6 0 reserved for GZIP compression (should be 0)

Bit 7 0 == 1 if the header contains more than 1 byte (should be 0)

Figure 14: ErgoTree header bits

15

6 The Graph

16

7 Costing

This is how the file name is specified

val env: ScriptEnv = Map(
ScriptNameProp —> s” filename_verify”,

The file should be in test-out directory. The graph should have explicit nodes like Cost0f (.. .),
which represent access to CostTable entries. The actual cost is counted in the nodes like this
s1340: Int = OpCost(2, List(s1361, s1360), s983). Each such node is handled like costAccumulator.add(
See CostAccumulator

How much cost is represented by OpCost node?

1. Symbols s1361, s1360 are dependencies. They represent cost that should be accumulated
before s983.

2. If upon handling of OpCost, the dependencies are not yet accumulated, then they are accu-
mulated first, and then s983 is accumulated.

3. the values of s1340 is the value of s983.
4. Thus execution of OpCost, consists of 2 parts: a) data flow b) side effect on CostAccumulator

5. OpCost is special node, interpreted in a special way. See method evaluate in Evaluation.

17

References

[Rei]
[Ubi]

[VLQa

[VLQb]

[WTF]

Reification. https://en.wikipedia.org/wiki/Reification_(computer_science)

Ubiquitous language. https://www.itworld.com/article/2833252/
the-most-wtf-y-programming-languages.html.

Variable-length quantity. https://en.wikipedia.org/wiki/Variable-length_
quantity.

Variable-length quantity. https://rosettacode.org/wiki/Variable-length_
quantity.

The most wtf-y programming languages. https://www.itworld.com/article/2833252/
the-most-wtf-y-programming-languages.html.

18

https://en.wikipedia.org/wiki/Reification_(computer_science)
https://www.itworld.com/article/2833252/the-most-wtf-y-programming-languages.html
https://www.itworld.com/article/2833252/the-most-wtf-y-programming-languages.html
https://en.wikipedia.org/wiki/Variable-length_quantity
https://en.wikipedia.org/wiki/Variable-length_quantity
https://rosettacode.org/wiki/Variable-length_quantity
https://rosettacode.org/wiki/Variable-length_quantity
https://www.itworld.com/article/2833252/the-most-wtf-y-programming-languages.html
https://www.itworld.com/article/2833252/the-most-wtf-y-programming-languages.html

A Predefined types

Name Code | IsConstSize isPrinﬂ isEmbed | isNum | Set of values
Boolean 1 true true true false {true, false}

Byte 2 true true true true {—27...2T—1}|A2
Short 3 true true true true {2 . 215 —1}]A3
Int 4 true true true true {—231... 231 —1}[A 4
Long 5 true true true true {253,283 —1}]|A5
BigInt 6 true true true true {2255 ...2%5 —1}1]A.6
GroupElement | 7 true true true false {p € SecP256K1Point}
SigmaProp 8 true true true false Sec. [A.§

Box 99 false false false false Sec. [A.9

AvlTree 100 true false false false Sec. [A.10

Context 101 false false false false Sec. [A.13

Header 104 true false false false Sec. [A.11

PreHeader 105 true false false false Sec. |A.12

Global 106 true false false false Sec. [A.14

The following subsections are autogenerated from type descriptors of ErgoTree reference imple-

mentation.

Table 3: Predefined types of ErgoTree

A.1 Boolean type

A.2 Byte type

A.2.1 Byte.toByte method (Code 106.1)

Description | Converts this numeric value to Byte, throwing exception if overflow.
Parameters

Result Byte

Serialized as |PropertyCall|

A.2.2 Byte.toShort method (Code 106.2)

Description | Converts this numeric value to Short, throwing exception if overflow.
Parameters

Result Short

Serialized as |PropertyCall|

A.2.3 Byte.toInt method (Code 106.3)

Description | Converts this numeric value to Int, throwing exception if overflow.
Parameters

Result Int

Serialized as |PropertyCall|

19

A.2.4 Byte.toLong method (Code 106.4)

Description | Converts this numeric value to Long, throwing exception if overflow.
Parameters

Result Long

Serialized as |PropertyCa11|

A.2.5 Byte.toBigInt method (Code 106.5)

Description | Converts this numeric value to BigInt
Parameters

Result BigInt

Serialized as |PropertyCall|

A.2.6 Byte.toBytes method (Code 106.6)

Description | Returns a big-endian representation of this numeric value in a collection of
bytes. For example, the Int value 0x12131415 would yield the collection of
bytes [0x12, 0x13, 0x14, 0x15].

Parameters

Result Coll[Bytel

Serialized as |PropertyCa11|

A.2.7 Byte.toBits method (Code 106.7)

Description | Returns a big-endian representation of this numeric in a collection of Booleans.
Each boolean corresponds to one bit.

Parameters

Result Coll[Boolean]

Serialized as |PropertyCall|

A.3 Short type
A.3.1 Short.toByte method (Code 106.1)

Description | Converts this numeric value to Byte, throwing exception if overflow.
Parameters

Result Byte

Serialized as |PropertyCa11|

A.3.2 Short.toShort method (Code 106.2)

Description | Converts this numeric value to Short, throwing exception if overflow.
Parameters

Result Short

Serialized as |PropertyCa11

20

A.3.3 Short.toInt method (Code 106.3)

Description | Converts this numeric value to Int, throwing exception if overflow.
Parameters

Result Int

Serialized as |PropertyCa11|

A.3.4 Short.toLong method (Code 106.4)

Description | Converts this numeric value to Long, throwing exception if overflow.
Parameters

Result Long

Serialized as |PropertyCall|

A.3.5 Short.toBigInt method (Code 106.5)

Description | Converts this numeric value to BigInt
Parameters

Result BigInt

Serialized as |PropertyCa11|

A.3.6 Short.toBytes method (Code 106.6)

Description | Returns a big-endian representation of this numeric value in a collection of
bytes. For example, the Int value 0x12131415 would yield the collection of
bytes [0x12, 0x13, 0x14, 0x15].

Parameters

Result Coll [Bytel

Serialized as |PropertyCa11|

A.3.7 Short.toBits method (Code 106.7)

Description | Returns a big-endian representation of this numeric in a collection of Booleans.
Each boolean corresponds to one bit.

Parameters

Result Coll[Boolean]

Serialized as |PropertyCall|

A.4 Int type

A.4.1 1Int.toByte method (Code 106.1)
Description | Converts this numeric value to Byte, throwing exception if overflow.
Parameters
Result Byte
Serialized as |PropertyCa11

21

A.4.2 Int.toShort method (Code 106.2)
Description | Converts this numeric value to Short, throwing exception if overflow.
Parameters
Result Short
Serialized as |PropertyCa11|

A.4.3 Int.toInt method (Code 106.3)
Description | Converts this numeric value to Int, throwing exception if overflow.
Parameters
Result Int
Serialized as |PropertyCall|

A.4.4 1Int.toLong method (Code 106.4)
Description | Converts this numeric value to Long, throwing exception if overflow.
Parameters
Result Long
Serialized as |PropertyCa11|
A.4.5 1Int.toBigInt method (Code 106.5)
Description | Converts this numeric value to BigInt
Parameters
Result BigInt
Serialized as |PropertyCall|

A.4.6 Int.toBytes method (Code 106.6)

Description | Returns a big-endian representation of this numeric value in a collection of
bytes. For example, the Int value 0x12131415 would yield the collection of
bytes [0x12, 0x13, Ox14, 0Ox15].

Parameters

Result Coll[Bytel

Serialized as |PropertyCall|

A.4.7 Int.toBits method (Code 106.7)
Description | Returns a big-endian representation of this numeric in a collection of Booleans.
Each boolean corresponds to one bit.
Parameters
Result Coll[Boolean]
Serialized as |PropertyCa11|

22

A.5 Long type

A.5.1 Long.toByte method (Code 106.1)

Description | Converts this numeric value to Byte, throwing exception if overflow.
Parameters

Result Byte

Serialized as |PropertyCall|

A.5.2 Long.toShort method (Code 106.2)

Description | Converts this numeric value to Short, throwing exception if overflow.
Parameters

Result Short

Serialized as |PropertyCa11|

A.5.3 Long.toInt method (Code 106.3)

Description | Converts this numeric value to Int, throwing exception if overflow.
Parameters

Result Int

Serialized as |PropertyCall|

A.5.4 Long.toLong method (Code 106.4)

Description | Converts this numeric value to Long, throwing exception if overflow.
Parameters

Result Long

Serialized as |PropertyCall|

A.5.5 Long.toBigInt method (Code 106.5)

Description | Converts this numeric value to BigInt
Parameters

Result BigInt

Serialized as IPropertyCalll

A.5.6 Long.toBytes method (Code 106.6)

Description | Returns a big-endian representation of this numeric value in a collection of
bytes. For example, the Int value 0x12131415 would yield the collection of
bytes [0x12, 0x13, 0x14, 0x15].

Parameters

Result Coll[Bytel

Serialized as |PropertyCall|

23

A.5.7 Long.toBits method (Code 106.7)

Description | Returns a big-endian representation of this numeric in a collection of Booleans.
Each boolean corresponds to one bit.

Parameters

Result Coll[Boolean]

Serialized as |PropertyCall|

A.6 Biglnt type

A.6.1 Biglnt

.toByte method (Code 106.1)

Description | Converts this numeric value to Byte, throwing exception if overflow.
Parameters

Result Byte

Serialized as IPropertyCalll

A.6.2 BigInt

.toShort method (Code 106.2)

Description | Converts this numeric value to Short, throwing exception if overflow.
Parameters

Result Short

Serialized as |PropertyCa11|

A.6.3 BigInt

.toInt method (Code 106.3)

Description | Converts this numeric value to Int, throwing exception if overflow.
Parameters

Result Int

Serialized as |PropertyCall|

A.6.4 BigInt

.toLong method (Code 106.4)

Description | Converts this numeric value to Long, throwing exception if overflow.
Parameters

Result Long

Serialized as |PropertyCa11|

A.6.5 Biglnt

.toBigInt method (Code 106.5)

Description | Converts this numeric value to BigInt
Parameters

Result BiglInt

Serialized as |PropertyCa11

24

A.6.6 BigInt.toBytes method (Code 106.6)

Description | Returns a big-endian representation of this numeric value in a collection of
bytes. For example, the Int value 0x12131415 would yield the collection of
bytes [0x12, 0x13, 0x14, 0x15].

Parameters

Result Coll[Bytel

Serialized as |PropertyCall|

A.6.7 BigInt.toBits method (Code 106.7)

Description | Returns a big-endian representation of this numeric in a collection of Booleans.
Each boolean corresponds to one bit.

Parameters

Result Coll[Boolean]

Serialized as |PropertyCall|

A.7 GroupElement type

A.7.1 GroupElement.getEncoded method (Code 7.2)

Description | Get an encoding of the point value.
Parameters

Result Coll [Bytel

Serialized as |PropertyCall|

A.7.2 GroupElement.exp method (Code 7.3)

Description | Exponentiate this GroupElement to the given number. Returns this to the
power of k

Parameters k : BigInt // The power

Result GroupElement

Serialized as |Exponentiate|

A.7.3 GroupElement.multiply method (Code 7.4)

Description | Group operation.

Parameters other : GroupElement // other element of the group
Result GroupElement

Serialized as IMultiplyGroupl

A.7.4 GroupElement.negate method (Code 7.5)

Description | Inverse element of the group.
Parameters

Result GroupElement

Serialized as |PropertyCa11|

25

A.8 SigmaProp type

Values of SigmaProp type hold sigma propositions, which can be proved and verified using Sigma
protocols. Each sigma proposition is represented as an expression where sigma protocol primitives
such as ProveDlog, and ProveDHTuple are used as constants and special sigma protocol connectives
like &&,| | and THRESHOLD are used as operations.

The abstract syntax of sigma propositions is shown in Figure

Set Syntax Mnemonic Description

Tree>t := Trivial(b) TrivialProp boolean value b as sigma proposition
| Dlog(ge) ProveDLog knowledge of discrete logarithm of ge
| DHTuple(g,h,u,v) ProveDHTuple knowledge of Diffie-Hellman tuple
| THRESHOLD(k,ti,...,t,) THRESHOLD knowledge of k out of n secrets
| OR(t1,...,tn) OR knowledge of any one of n secrets
| AND(t1,...,tn) AND knowledge of all n secrets

Figure 15: Abstract syntax of sigma propositions

Every well-formed tree of sigma proposition is a value of type SigmaProp, thus following the
notation of Section 4] we can define denotation of SigmaProp

[SigmaProp] = {t € Tree}

The following methods can be called on all instances of SigmaProp type.

A.8.1 SigmaProp.propBytes method (Code 8.1)

Description | Serialized bytes of this sigma proposition taken as ErgoTree.
Parameters

Result Coll[Bytel

Serialized as |SigmaPropBytes|

A.8.2 SigmaProp.isProven method (Code 8.2)

Description | Verify that sigma proposition is proven. (FRONTEND ONLY)
Parameters
Result Boolean

For a list of primitive operations on SigmaProp type see Appendix

A.9 Box type

A.9.1 Box.value method (Code 99.1)

Description | Mandatory: Monetary value, in Ergo tokens (NanoErg unit of measure)
Parameters

Result Long

Serialized as |ExtractAmount|

26

A.9.2 Box.propositionBytes method (Code 99.2)

Description | Serialized bytes of guarding script, which should be evaluated to true in order
to open this box. (aka spend it in a transaction)

Parameters

Result Coll [Bytel

Serialized as |ExtractScriptBytes|

A.9.3 Box.bytes method (Code 99.3)

Description | Serialized bytes of this box’s content, including proposition bytes.
Parameters

Result Coll [Bytel

Serialized as |ExtractBytes|

A.9.4 Box.bytesWithoutRef method (Code 99.4)

Description | Serialized bytes of this box’s content, excluding transactionld and index of
output.

Parameters

Result Coll[Bytel

Serialized as |ExtractBytesWithNoRef|

A.9.5 Box.id method (Code 99.5)

Description | Blake2b256 hash of this box’s content, basically equals to blake2b256 (bytes)
Parameters

Result Coll [Bytel

Serialized as |ExtractId|

A.9.6 Box.creationInfo method (Code 99.6)

Description | If tx is a transaction which generated this box, then creationInfo._1 is a
height of the tx’s block. The creationInfo._2 is a serialized transaction iden-
tifier followed by box index in the transaction outputs.

Parameters

Result (Int,Coll[Bytel)

Serialized as IExtractCreationInfol

A.9.7 Box.getReg method (Code 99.7)

Description | Extracts register by id and type. Type param T expected type of the register.
Returns Some (value) if the register is defined and has given type and None
otherwise

Parameters regld : Int // zero-based identifier of the register.

Result Option[T]

Serialized as |ExtractRegisterAs|

27

A.9.8 Box.tokens method (Code 99.8)

Description | Secondary tokens
Parameters
Result Col1[(Coll[Byte] ,Long)]

Serialized as

IPropertyCalll

A.9.9 Box.RO method (Code 99.9)

Description | Monetary value, in Ergo tokens
Parameters

Result Option[T]

Serialized as |ExtractRegisterAs|

A.9.10 Box.R1 method (Code 99.10)

Description | Guarding script
Parameters

Result Option[T]
Serialized as |ExtractRegisterAs|

A.9.11 Box.R2 method (Code 99.11)

Description | Secondary tokens
Parameters

Result Option[T]
Serialized as |ExtractRegisterAs|

A.9.12 Box.R3 method (Code 99.12)

Description | Reference to transaction and output id where the box was created
Parameters

Result Option[T]

Serialized as |ExtractRegisterAs|

A.9.13 Box.R4 method (Code 99.13)

Description | Non-mandatory register
Parameters

Result Option[T]

Serialized as |ExtractRegisterAs|

A.9.14 Box.R5 method (Code 99.14)

Description | Non-mandatory register
Parameters

Result Option[T]

Serialized as |ExtractRegisterAs

28

A.9.15 Box.R6 method (Code 99.15)

Description | Non-mandatory register

Parameters

Result Option[T]

Serialized as |ExtractRegisterAs|

A.9.16 Box.R7 method (Code 99.16)

Description | Non-mandatory register

Parameters

Result Option[T]

Serialized as |ExtractRegisterAs|

A.9.17 Box.R8 method (Code 99.17)

Description | Non-mandatory register

Parameters

Result Option[T]

Serialized as |ExtractRegisterAs|

A.9.18 Box.R9 method (Code 99.18)

Description | Non-mandatory register

Parameters

Result Option[T]

Serialized as |ExtractRegisterAs

A.10 AvlTree type
A.10.1 AvlTree.digest method (Code 100.1)

Description | Returns digest of the state represented by this tree. Authenticated tree digest

= root hash bytes ++ tree height

Parameters

Result Coll[Bytel

Serialized as |PropertyCa11|

A.10.2 AvlTree.enabledOperations method (Code 100.2)

Description | Flags of enabled operations packed in

single

byte.

isInsertAllowed == (enabledOperations & 0x01) != 0
isUpdateAllowed == (enabledOperations & 0x02) != 0
isRemoveAllowed == (enabledOperations & 0x04) != 0
Parameters
Result Byte

Serialized as |PropertyCall

29

A.10.3 AvlTree.keyLength method (Code 100.3)

Description

Parameters

Result Int
Serialized as | [PropertyCall

A.10.4 AvlTree.valueLengthOpt method (Code 100.4)

Description

Parameters

Result Option[Int]
Serialized as |PropertyCa11|

A.10.5 AvlTree.isInsertAllowed method (Code 100.5)

Description

Parameters

Result Boolean
Serialized as |PropertyCall

A.10.6 AvlTree.isUpdateAllowed method (Code 100.6)

Description

Parameters

Result Boolean
Serialized as |PropertyCall

A.10.7 AvlTree.isRemoveAllowed method (Code 100.7)

Description

Parameters

Result Boolean
Serialized as |PropertyCa11

A.10.8 AvlTree.updateOperations method (Code 100.8)

Description

Parameters

Result AvlTree
Serialized as |MethodCa1 1|

A.10.9 AvlTree.contains method (Code 100.9)

Description

Parameters

Result Boolean
Serialized as |MethodCa11

30

A.10.10 AvlTree.get method (Code 100.10)

Description

Parameters

Result Option[Coll [Bytel]
Serialized as | MethodCall|

A.10.11 AvlTree.getMany method (Code 100.11)

Description

Parameters

Result

Coll[Option[Coll[Bytell]

Serialized as

MethodCall

A.10.12 AvlTree.insert method (Code 100.12)

Description

Parameters

Result Option[AvlTree]
Serialized as |MethodCa11|

A.10.13 AvlTree.update method (Code 100.13)

Description

Parameters

Result Option[AvlTree]
Serialized as |MethodCa11|

A.10.14 AvlTree.remove method (Code 100.14)

Description

Parameters

Result Option[AvlTree]
Serialized as |MethodCa11|

A.10.15 AvlTree.updateDigest method (Code 100.15)

Description

Parameters

Result AvlTree
Serialized as |MethodCall

31

A.11 Header type
A.11.1 Header.id method (Code 104.1)

Description
Parameters | arg0 : Header //
Result Coll [Bytel

A.11.2 Header.version method (Code 104.2)

Description
Parameters | arg0 : Header //
Result Byte

A.11.3 Header.parentId method (Code 104.3)

Description
Parameters | arg0 : Header //
Result Coll[Bytel

A.11.4 Header.ADProofsRoot method (Code 104.4)

Description
Parameters | arg0 : Header //
Result Coll[Bytel

A.11.5 Header.stateRoot method (Code 104.5)

Description
Parameters | arg0 : Header //
Result Av1Tree

A.11.6 Header.transactionsRoot method (Code 104.6)

Description
Parameters | arg0 : Header //
Result Coll[Bytel

A.11.7 Header.timestamp method (Code 104.7)

Description
Parameters | arg0 : Header //
Result Long

A.11.8 Header.nBits method (Code 104.8)

Description
Parameters | arg0 : Header //
Result Long

32

A.11.9 Header.height method (Code 104.9)

Description
Parameters | arg0 : Header //
Result Int

A.11.10 Header.extensionRoot method (Code 104.10)

Description
Parameters | arg0 : Header //
Result Coll [Bytel

A.11.11 Header.minerPk method (Code 104.11)

Description
Parameters | arg0 : Header //
Result GroupElement

A.11.12 Header.powOnetimePk method (Code 104.12)

Description
Parameters | arg0 : Header //
Result GroupElement

A.11.13 Header.powNonce method (Code 104.13)

Description
Parameters | arg0 : Header //
Result Coll [Bytel

A.11.14 Header.powDistance method (Code 104.14)

Description
Parameters | arg0 : Header //
Result BigInt

A.11.15 Header.votes method (Code 104.15)

Description
Parameters | arg0 : Header //
Result Coll [Bytel

33

A.12 PreHeader type

A.12.1 PreHeader.version method (Code 105.1)
Description

Parameters | arg0 : PreHeader //

Result Byte

A.12.2 PreHeader.parentId method (Code 105.2)

Description
Parameters | arg0 : PreHeader //
Result Coll[Bytel

A.12.3 PreHeader.timestamp method (Code 105.3)

Description
Parameters | arg0 : PreHeader //
Result Long

A.12.4 PreHeader.nBits method (Code 105.4)

Description
Parameters | arg0 : PreHeader //
Result Long

A.12.5 PreHeader.height method (Code 105.5)

Description
Parameters | arg0 : PreHeader //
Result Int

A.12.6 PreHeader.minerPk method (Code 105.6)

Description
Parameters | arg0 : PreHeader //
Result GroupElement

A.12.7 PreHeader.votes method (Code 105.7)

Description
Parameters | arg0 : PreHeader //
Result Coll[Bytel

34

A.13 Context type

A.13.1 Context.dataInputs method (Code 101.1)
Description
Parameters | arg0 : Context //
Result Coll [Box]

A.13.2 Context.headers method (Code 101.2)

Description
Parameters | arg0 : Context //
Result Coll[Header]

A.13.3 Context.preHeader method (Code 101.3)

Description
Parameters | arg0 : Context //
Result PreHeader

A.13.4 Context.INPUTS method (Code 101.4)

Description
Parameters | arg0 : Context //
Result Coll[Box]

A.13.5 Context.0UTPUTS method (Code 101.5)

Description
Parameters | arg0 : Context //
Result Coll [Box]

A.13.6 Context.HEIGHT method (Code 101.6)

Description
Parameters | arg0 : Context //
Result Int

A.13.7 Context.SELF method (Code 101.7)

Description
Parameters | arg0 : Context //
Result Box

A.13.8 Context.selfBoxIndex method (Code 101.8)

Description
Parameters | arg0 : Context //
Result Int

35

A.13.9 Context.LastBlockUtxoRootHash method (Code 101.9)

Description
Parameters | arg0 : Context //
Result Av1Tree

A.13.10 Context.minerPubKey method (Code 101.10)

Description
Parameters | arg0 : Context //
Result Coll [Bytel
A.13.11 Context.getVar method (Code 101.11)
Description
Parameters | 2780 ¢ Context //
argl : Byte //
Result Option[T]

A.14 Global type

A.14.1 SigmaDslBuilder.groupGenerator method (Code 106.1)
Description
Parameters
Result GroupElement
Serialized as | GroupGenerator

A.14.2 SigmaDslBuilder.xor method (Code 106.2)

Description
arg0 : SigmaDslBuilder //
Parameters | argl : Coll[Byte] //
arg2 : Coll[Byte] //
Result Coll[Bytel

A.15 Coll type

A.15.1 SCollection.size method (Code 12.1)
Description | The size of the collection in elements.
Parameters
Result Int
Serialized as |Size0f|

36

A.15.2 SCollection.getOrElse method (Code 12.2)

Description | Return the element of collection if index is in range 0 .. size-1

Parameters index : Int // index of the element of this collection
default : IV // value to return when index is out of range

Result IV

Serialized as |ByIndex|

A.15.3 SCollection.map method (Code 12.3)

Description | Builds a new collection by applying a function to all elements of this collection.
Returns a new collection of type Coll[B] resulting from applying the given
function £ to each element of this collection and collecting the results.

Parameters f : (IV) => 0V // the function to apply to each element

Result Coll1[0OV]

Serialized as |MapCollection|

A.15.4 SCollection.exists method (Code 12.4)

Description | Tests whether a predicate holds for at least one element of this collection. Re-
turns true if the given predicate p is satisfied by at least one element of this
collection, otherwise false

Parameters p : (IV) => Boolean // the predicate used to test elements

Result Boolean

Serialized as |Exists|

A.15.5 SCollection.fold method (Code 12.5)

Description | Applies a binary operator to a start value and all elements of this collection,
going left to right.
zero : 0OV // a starting value
P t .
aramesers op (OV,IV) => 0V // the binary operator
Result v
Serialized as |Fold|

A.15.6 SCollection.forall method (Code 12.6)

Description | Tests whether a predicate holds for all elements of this collection. Returns true
if this collection is empty or the given predicate p holds for all elements of this
collection, otherwise false.

Parameters p : (IV) => Boolean // the predicate used to test elements

Result Boolean

Serialized as |ForA11|

37

A.15.7 SCollection.slice method (Code 12.7)

Description Selects an interval of elements. The returned collection is made up of all ele-
ments x which satisfy the invariant: from <= index0f(x) < until
from : Int // the lowest index to include from this collection
Parameters .] . .
until : Int // the lowest index to EXCLUDE from this collection
Result Coll[IV]
Serialized as |Slice|

A.15.8 SCollection.filter method (Code 12.8)

Description | Selects all elements of this collection which satisfy a predicate. Returns a new
collection consisting of all elements of this collection that satisfy the given pred-
icate p. The order of the elements is preserved.

Parameters p : (IV) => Boolean // the predicate used to test elements.

Result Coll1[1IV]

Serialized as

Filter

A.15.9 SCollection.append method (Code 12.9)

Description | Puts the elements of other collection after the elements of this collection (con-
catenation of 2 collections)

Parameters other : Coll[IV] // the collection to append at the end of this

Result Coll[IV]

Serialized as |Append|

A.15.10 SCollection.apply method (Code 12.10)

Description | The element at given index. Indices start at 0; xs.apply(0) is the first el-
ement of collection xs. Note the indexing syntax xs(i) is a shorthand for
xs.apply(i). Returns the element at the given index. Throws an exception if
i < Oorlength <=1

Parameters i : Int // the index

Result IV

Serialized as |ByIndex|

A.15.11 SCollection.indices method (Code 12.14)
Description | Produces the range of all indices of this collection as a new collection containing
[0 .. length-1] values.
Parameters
Result Coll[Int]
Serialized as |PropertyCa11|

38

A.15.12 SCollection.flatMap method (Code 12.15)

Description

Builds a new collection by applying a function to all elements of this collection
and using the elements of the resulting collections. Function f is constrained
to be of the form x => x.someProperty, otherwise it is illegal. Returns a new
collection of type Coll[B] resulting from applying the given collection-valued
function f to each element of this collection and concatenating the results.

Parameters

f : (IV) => Coll[0V] // the function to apply to each element.

Result

Coll[0OV]

Serialized as

MethodCall

A.15.13 SCollection.patch method (Code 12.19)

Description

Parameters

Result Coll[IV]
Serialized as |MethodCa11|

A.15.14 SCollection.updated method (Code 12.20)

Description

Parameters

Result Coll[1IV]
Serialized as |MethodCa11|

A.15.15 SCollection.updateMany method (Code 12.21)

Description

Parameters

Result Coll[1IV]
Serialized as |MethodCa11|

A.15.16 SCollection.index0f method (Code 12.26)

Description

Parameters

Result Int
Serialized as |MethodCa1 1|

A.15.17 SCollection.zip method (Code 12.29)

Description

Parameters

Result Coll[(IV,0W)]
Serialized as |MethodCall|

39

A.16 Option type

A.16.1 SOption.isDefined method (Code 36.2)
Description | Returns true if the option is an instance of Some, false otherwise.
Parameters
Result Boolean
Serialized as |OptionIsDefined|

A.16.2 SOption.get method (Code 36.3)

Description | Returns the option’s value. The option must be nonempty. Throws exception
if the option is empty.

Parameters

Result T

Serialized as IOptionGetl

A.16.3 SOption.getOrElse method (Code 36.4)

Description | Returns the option’s value if the option is nonempty, otherwise return the result
of evaluating default.

Parameters default : T // the default value

Result T

Serialized as |0ptionGetDrElse|

A.16.4 SOption.map method (Code 36.7)

Description | Returns a Some containing the result of applying £ to this option’s value if this
option is nonempty. Otherwise return None.

Parameters f : (T) => R // the function to apply

Result Option[R]

Serialized as |MethodCa11|

A.16.5 SOption.filter method (Code 36.8)

Description | Returns this option if it is nonempty and applying the predicate p to this
option’s value returns true. Otherwise, return None.

Parameters p : (T) => Boolean // the predicate used for testing

Result Option[T]

Serialized as |MethodCall|

40

B Predefined global functions

Code Mnemonic Signature Description
placeholder:
115 ConstantPlaceholder (Int) Create special ErgoTree node which can be replaced by constant with
=> T given id.
IS substConstants:
116 ubstConstants| (Coll[Bytel, Coll[Int], Coll[T])
=> Coll[Byte]
TongToByteArray:
122 LongToByteArra; (Long) Converts Long value to big-endian bytes representation.
=> Coll[Byte]
byteArrayToBigInt:
123 ByteArrayToBigInt (Coll[Bytel) Convert big-endian bytes representation (Coll[Byte]) to BigInt value.
=> BigInt
byteArrayTolLong:
124 ByteArrayToLon4 (Coll[Bytel) Convert big-endian bytes representation (Coll[Byte]) to Long value.
=> Lon,
downcagt:
125 Downcast| (T) Cast this numeric value to a smaller type (e.g. Long to Int). Throws
=> R exception if overflow.
TUpcast:
126 Upcast (T) Cast this numeric value to a bigger type (e.g. Int to Long)
SSTSctFIeIa
140 [SelectField (T, Byte) Select tuple field by its 1-based index. E.g. input._1 is transformed to
=> R SelectField(input, 1)
143 LT| (T, T) Returns true is the left operand is less then the right operand, false oth-
=> Boolean erwise.
144 LE| (T, T) Returns true is the left operand is less then or equal to the right operand,
=> Boolean false otherwise.
>
145 GT| (T, T) Returns true is the left operand is greater then the right operand, false
=> Boolean otherwise.
146 GE| (T, T) Returns true is the left operand is greater then or equal to the right
=> Boolean operand, false otherwise.
147 EQ (T, T Compare equality of left and right arguments
Ti4Ron1pan
148 [NEQ] (T, T) Compare inequality of left and right arguments
=> Boolean
if:
149 If] (Boolean, T, T) Compute condition, if true then compute trueBranch else compute false-
=> T Branch
all0f:
150 IAND; (Coll[Boolean]) Returns true if all the elements in collection are true.
=> RBgolean
any(Uf:
151 0; (Coll[Boolean]) Returns true if any the elements in collection are true.
=> Boolean
atLeast:
152 AtLeast (Int, Coll[SigmaPropl)
=> SigmaProp
153 inus| (T, T) Returns a result of subtracting second numeric operand from the first.
=T
154 Plus| (T, T) Returns a sum of two numeric operands
b;ngry_l :
155 or] (Coll[Bytel, Coll[Bytel) Byte-wise XOR of two collections of bytes
=> Coll[Byte]
*7T
156 [Multiply| (T, T Returns a multiplication of two numeric operands
=T
157 Division| (T, T) Integer division of the first operand by the second operand.
=>T
8
158 odulol (T, T Reminder from division of the first operand by the second operand.
et
161 |Min (T, T) Minimum value of two operands.
22
162 ax) (T, T Maximum value of two operands.
a_n>ll¥ree:
182 CreateAvlTree (Byte, Coll[Byte], Int, Option[Int]) Construct a new authenticated dictionary with given parameters and tree
=> AvlTree root digest.
treeLookup:
183 TreeLookup (AvlTree, Coll[Bytel, Coll[Bytel)
=> Option[Coll[Bytell
blake2b256:
203 CalcBlake2b256 (Coll[Bytel) Calculate Blake2b hash from input bytes.
=> Coll[Byte]
sha256:
204 CalcSha256) (Coll[Bytel) Calculate Sha256 hash from input bytes.
=> Coll[Byte]

41

205

Creat eProveDlogI

proveDIog:
(GroupElement)
=> SigmaProp

ErgoTree operation to create a new SigmaProp value representing public
key of discrete logarithm signature protocol.

ICreateProveDHTuple

proveDHTuple:

(GroupElement, GroupElement, GroupElementiErgxsilpEdemprtition to create a new SigmaProp value representing public

=> SigmaProp

key of Diffie Hellman signature protocol. Common input: (g,h,u,v)

209

BoolToSigmaProp

sigmaProp:
(Boolean)
=> SigmaProp

212

DeserializeContext

executeFromVar:
(Byte)

213

DeserializeRegister|

=T
executeFromSelfReg:

(Byte, Option[T])
=T

218

Appl.

apply:
«T) =>R, T)
=> R

Apply the function to the arguments.

227

GetVar]

getVar:
(Byte)

Get context variable with given varId and type.

234

|Si gmaAnd}

=> Option[T]
allZK:

(Coll[SigmaPropl)
=> SigmaProp

Returns sigma proposition which is proven when all the elements in col-
lection are proven.

235

Ligmaﬂr

anyZK:
(Coll[SigmaPropl)
=> SigmaProp

Returns sigma proposition which is proven when any of the elements in
collection is proven.

236

BinOr|

IT:
(Boolean, Boolean)

Logical OR of two operands

237

inAnd

=> Boolean
128

(Boolean, Boolean)

Logical AND of two operands

238

DecodePoint

=> Bgoolean
decodePoint:
(Coll[Bytel)

=> GroupElement

Convert Coll[Bytel to GroupElement using GroupElementSerializer

239

LogicalNot;

unary_T:
(Boolean)
=> Boolean

Logical NOT operation. Returns true if input is false and false if input
is true.

240

Il\legat ionf

unary_-:
(T)
=>T

Negates numeric value x by returning -x.

241

BitInversion

unary_ :

(T)

Invert every bit of the numeric value.

242

BitOr

Bitwise OR of two numeric operands.

243

BitAnd

Bitwise AND of two numeric operands.

244

inXor]

(Boolean, Boolean)

Logical XOR of two operands

245

BitXor

=> Bgolean
bit_":

(T, T
=T

Bitwise XOR of two numeric operands.

246

BitShiftRight

bit_
(T, T
=T

Right shift of bits.

247

BitShiftLeft

bit_<<t
(T, O
=T

Left shift of bits.

248

BitShiftRightZeroed

bit_
(T, T

Right shift of bits.

or0f

=> T

xorUf:
(Coll[Boolean])
=> Boolean

Similar to allOf, but performing logical XOR operation between all con-
ditions instead of &&

B.0.1 placeholder method (Code 115)

Morphic : This table is autogenerated from sigma operation descriptors. See SigmaPredef.scala

Description | Create special ErgoTree node which can be replaced by constant with given id.
Parameters index : Int // index of the constant in ErgoTree header

Result T

Serialized as | ConstantPlaceholder

42

B.0.2

substConstants method (Code 116)

Description

Transforms serialized bytes of ErgoTree with segregated constants by replacing
constants at given positions with new values. This operation allow to use seri-
alized scripts as pre-defined templates. The typical usage is ”check that output
box have proposition equal to given script bytes, where minerPk (constants(0))
is replaced with currentMinerPk”. Each constant in original scriptBytes have
SType serialized before actual data (see ConstantSerializer). During substitu-
tion each value from newValues is checked to be an instance of the corresponding
type. This means, the constants during substitution cannot change their types.
Returns original scriptBytes array where only specified constants are replaced
and all other bytes remain exactly the same.

Parameters

: Coll[Byte]
: Coll[Int]
: Coll[T]

scriptBytes // serialized ErgoTree with ConstantSegregatiq
positions

newValues // new values to be injected into the correspon

Result

Coll[Bytel

Serialized as

|SubstConstant sl

B.0.3 longToByteArray method (Code 122)

Description | Converts Long value to big-endian bytes representation.
Parameters input : Long // value to convert

Result Coll[Bytel

Serialized as |LongToByteArray|

B.0.4 DbyteArrayToBigInt method (Code 123)

Description | Convert big-endian bytes representation (Coll[Byte]) to Biglnt value.
Parameters input : Coll[Byte] // collection of bytes in big-endian format
Result BigInt

Serialized as |ByteArrayToBigInt|

B.0.5 byteArrayToLong method (Code 124)

Description | Convert big-endian bytes representation (Coll[Byte]) to Long value.
Parameters input : Coll[Byte] // collection of bytes in big-endian format
Result Long

Serialized as |ByteArrayToLong|

B.0.6 downcast method (Code 125)

Description | Cast this numeric value to a smaller type (e.g. Long to Int). Throws exception
if overflow.

Parameters input : T // value to cast

Result R

Serialized as |Downcast|

43

nklag set to 1.

// zero based indexes in ErgoTree.constants array which shou

ding positions :

B.0.7 upcast method (Code 126)

Description | Cast this numeric value to a bigger type (e.g. Int to Long)
Parameters input : T // value to cast

Result R

Serialized as IUpcastl

B.0.8 selectField method (Code 140)

Description | Select tuple field by its 1-based index. E.g. input._1 is transformed to
SelectField(input, 1)
input : T // tuple of items

P t . .

arameters fieldIndex : Byte // index of an item to select
Result R
Serialized as |SelectFie1d|

B.0.9

< method (Code 143)

Description | Returns true is the left operand is less then the right operand, false otherwise.
Parameters 1§ft : T // lgft operand
right : T // right operand
Result Boolean
Serialized as Iﬁl

B.0.10 <= method (Code 144)
Description | Returns true is the left operand is less then or equal to the right operand,
false otherwise.
Parameters lgft T // lcift operand
right : T // right operand
Result Boolean

Serialized as

B.0.11 > method (Code 145)
Description | Returns true is the left operand is greater then the right operand, false oth-
erwise.
Parameters lc.aft : T // I?ft operand
right : T // right operand
Result Boolean

Serialized as

44

B.0.12 >= method (Code 146)
Description | Returns true is the left operand is greater then or equal to the right operand,
false otherwise.
Parameters lgft : T // 1§ft operand
right : T // right operand
Result Boolean

Serialized as

B.0.13 == method (Code 147)
Description | Compare equality of left and right arguments
Parameters 1§ft : T // léft operand
right : T // right operand
Result Boolean

Serialized as

B.0.14 '= method (Code 148)
Description | Compare inequality of left and right arguments
Parameters 1(.aft : T // I?ft operand
right : T // right operand
Result Boolean
Serialized as |NEQ|

B.0.15 if method (Code 149)
Description | Compute condition, if true then compute trueBranch else compute falseBranch
condition : Boolean // condition expression
Parameters trueBranch : T // expression to execute when condition == trug
falseBranch : T // expression to execute when condition == fal
Result T

Serialized as

B.0.16 2al10f method (Code 150)
Description | Returns true if all the elements in collection are true.
Parameters conditions : Coll[Boolean] // a collection of conditions
Result Boolean
Serialized as |AND|

B.0.17 anyO0f

method (Code 151)

Description | Returns true if any the elements in collection are true.
Parameters conditions : Coll[Boolean] // a collection of conditions
Result Boolean

Serialized as

oA

45

Ur w

B.0.18 atLeast method (Code 152)
Description | Logical threshold. AtLeast has two inputs: integer bound and children same
as in AND/OR. The result is true if at least bound children are proven.
bound : Int // required minimum of proven children
Parameters . . o .
children : Coll[SigmaProp] // proposition to be proven/validated
Result SigmaProp
Serialized as |AtLeast|

B.0.19 - method (Code 153)
Description | Returns a result of subtracting second numeric operand from the first.
Parameters 1§ft : T // léft operand
right : T // right operand
Result T
Serialized as |Minus|

B.0.20 + method (Code 154)
Description | Returns a sum of two numeric operands
Parameters 1(.aft : T // I?ft operand
right : T // right operand
Result T
Serialized as |P1us|

B.0.21 binary_| method (Code 155)

Description | Byte-wise XOR of two collections of bytes
left : Coll[Byte] // left operand
P
arameters right : Coll[Bytel // right operand
Result Coll [Bytel
Serialized as |Xor|

B.0.22 * method (Code 156)
Description | Returns a multiplication of two numeric operands
Parameters 1§ft : T // lgft operand
right : T // right operand
Result T
Serialized as Multiplyl

46

B.0.23 / method (Code 157)

Description | Integer division of the first operand by the second operand.
Parameters 1('aft : T // lgft operand
right : T // right operand
Result T
Serialized as |Division|

B.0.24 % method (Code 158)

Description | Reminder from division of the first operand by the second operand.
Parameters le.zft : T // lc?ft operand
right : T // right operand
Result T
Serialized as |Modulo|

B.0.25 min method (Code 161)

Description | Minimum value of two operands.
Parameters 1§ft : T // lgft operand

right : T // right operand
Result

Serialized as

T
Min]

B.0.26 max method (Code 162)

Description | Maximum value of two operands.

Parameters l?ft : T // léft operand
right : T // right operand

Result T

Serialized as |Max|

B.0.27 avlTree method (Code 182)

Description | Construct a new authenticated dictionary with given parameters and tree root
digest.
operationFlags : Byte // flags of available operations
digest : Coll[Byte] // hash of merkle tree root
Parameters . .
keyLength : Int // length of dictionary keys in bytes
valueLengthOpt : Option[Int] // optional width of dictionary values in h
Result AvlTree

Serialized as

CreateAvlTree

47

ytes

B.0.28 treeLookup method (Code 183)
Description
tree : AvlTree // tree to lookup the key
Parameters key : Coll[Bytel // akey of an item in the tree to lookup
proof : Coll[Bytel // proof to perform verification of the operation
Result Option[Coll [Bytel]
Serialized as | TreeLookup

B.0.29 blake2b256 method (Code 203)

Description | Calculate Blake2b hash from input bytes.
Parameters input : Coll[Byte]l // collection of bytes
Result Coll [Bytel

Serialized as | [CalcBlake2b256

B.0.30 sha256 method (Code 204)
Description | Calculate Sha256 hash from input bytes.
Parameters input : Coll[Bytel // collection of bytes
Result Coll[Bytel
Serialized as |CalcSha256|

B.0.31 proveDlog method (Code 205)

Description | ErgoTree operation to create a new SigmaProp value representing public key of
discrete logarithm signature protocol.

Parameters value : GroupElement // element of elliptic curve group

Result SigmaProp

Serialized as |CreateProveDlog|

B.0.32 proveDHTuple method (Code 206)

Description | ErgoTree operation to create a new SigmaProp value representing public key of
Diffie Hellman signature protocol. Common input: (g,h,u,v)
g : GroupElement //
Parameters h : GroupElement //
u : GroupElement //
v : GroupElement //
Result SigmaProp
Serialized as |CreateProveDHTup1e|

48

B.0.33 sigmaProp method (Code 209)

Description | Embedding of Boolean values to SigmaProp values. As an example,
this operation allows boolean experessions to be used as arguments of
atLeast (..., sigmaProp(boolExpr), ...) operation. During execution re-
sults to either TrueProp or FalseProp values of SigmaProp type.

Parameters condition : Boolean // boolean value to embed in SigmaProp value

Result SigmaProp

Serialized as |BoolToSigmaProp|

B.0.34 executeFromVar method (Code 212)

Description | Extracts context variable as Coll[Byte], deserializes it to script and then exe-
cutes this script in the current context. The original Coll [Byte] of the script is
available as getVar [Coll[Byte]] (id). Type parameter V result type of the de-
serialized script. Throws an exception if the actual script type doesn’t conform
to T. Returns a result of the script execution in the current context

Parameters id : Byte // identifier of the context variable

Result T

Serialized as IDeserializeContextI

B.0.35 executeFromSelfReg method (Code 213)

Description | Extracts SELF register as Coll [Byte], deserializes it to script and then exe-
cutes this script in the current context. The original Coll [Byte] of the script
is available as SELF.getReg[Coll[Bytel] (id). Type parameter T result type
of the deserialized script. Throws an exception if the actual script type doesn’t
conform to T. Returns a result of the script execution in the current context

id : Byte // identifier of the register

Parameters

default : Option[T] // optional default value, if register is not available

Result T

Serialized as

|Deseria1 izeRegister|

B.0.36 apply method (Code 218)
Description | Apply the function to the arguments.
Parameters func (T) => R // f}mctlon which is applied
args : T // list of arguments
Result R
Serialized as |App1y|

B.0.37 getVar method (Code 227)

Description | Get context variable with given varId and type.
Parameters varId : Byte // Byte identifier of context variable
Result Option[T]

Serialized as |GetVar|

49

B.0.38 allZK method (Code 234)
Description | Returns sigma proposition which is proven when all the elements in collection
are proven.
Parameters propositions : Coll[SigmaProp] // a collection of propositions
Result SigmaProp
Serialized as |SigmaAnd|

B.0.39 anyZK method (Code 235)

Description | Returns sigma proposition which is proven when any of the elements in collec-
tion is proven.

Parameters propositions : Coll[SigmaProp] // a collection of propositions

Result SigmaProp

Serialized as |Sigma0r|

B.0.40 || method (Code 236)
Description | Logical OR of two operands
Parameters 1§ft : Boolean // l(?ft operand
right : Boolean // right operand
Result Boolean
Serialized as |Bin0r|

B.0.41 && method (Code 237)

Description | Logical AND of two operands

Parameters léft : Boolean // 1(?ft operand
right : Boolean // right operand

Result Boolean

Serialized as |BinAnd|

B.0.42 decodePoint method (Code 238)

Description | Convert Coll[Byte] to GroupElement using GroupElementSerializer
Parameters input : Coll[Byte] // serialized bytes of some GroupElement value
Result GroupElement

Serialized as |DecodePoint|

B.0.43 unary_! method (Code 239)
Description | Logical NOT operation. Returns true if input is false and false if input is
true.
Parameters input : Boolean // input Boolean value
Result Boolean
Serialized as |Logica1Not

50

B.0.44 unary_- method (Code 240)

Description | Negates numeric value x by returning -x.
Parameters input : T // value of numeric type
Result T

Serialized as |Negation|

B.0.45 unary_~ method (Code 241)

Description | Invert every bit of the numeric value.
Parameters input : T // value of numeric type
Result T

Serialized as | BitInversion

B.0.46 Dbit_| method (Code 242)
Description | Bitwise OR of two numeric operands.
Parameters lt?ft : T // lgft operand

right : T // right operand
Result T

Serialized as

BitOr

B.0.47 bit_& method (Code 243)

Description | Bitwise AND of two numeric operands.
left : T left d
Parameters (.a // ot operan
right : T // right operand
Result T
Serialized as | BitAnd

B.0.48 "~ method (Code 244)

Description | Logical XOR of two operands
lef : Bool lef
Parameters ° ¢ oolean // ?t operand
right : Boolean // right operand
Result Boolean
Serialized as |BinXor|

B.0.49 bit_~ method (Code 245)

Description | Bitwise XOR of two numeric operands.
Parameters 1§ft : T // lgft operand

right : T // right operand
Result T
Serialized as | BitXor

o1

B.0.50 bit_>> method (Code 246)

Description | Right shift of bits.

Parameters léft : T // lgft operand
right : T // right operand

Result T

Serialized as | BitShiftRight

B.0.51 bit_<< method (Code 247)

Description | Left shift of bits.

Parameters le.zft : T // lc?ft operand
right : T // right operand

Result T

Serialized as | BitShiftLeft

B.0.52 bit_>>> method (Code 248)

Description | Right shift of bits.

Parameters 1§ft : T // lgft operand
right : T // right operand

Result T

Serialized as | BitShiftRightZeroed

B.0.53 xor0f method (Code 255)
Description | Similar to all0f, but performing logical XOR operation between all conditions
instead of &&
Parameters conditions : Coll[Boolean] // a collection of conditions
Result Boolean
Serialized as |Xor0f|

52

C Serialization format of ErgoTree nodes

Morphic : These subsections are autogenerated from instrumented ValueSerializers

C.0.1 ConcreteCollection operation (OpCode 131)

Slot Format #bytes | Description
numltems VLQ(UShort) | [1, *| number of item in a collection of expressions
elementType | Type 1, *] type of each expression in the collection
for i =1 to numltems
item; ‘ Expr ‘ 1, * ‘ expression in i-th position
end for

C.0.2 ConcreteCollectionBooleanConstant operation (OpCode 133)

Slot Format #bytes | Description

numBits | VLQ(UShort) | [1, *] number of items in a collection of Boolean values

bits Bits [1, 1024] | Boolean values encoded as as bits (right most byte is zero-
padded on the right)

C.0.3 Tuple operation (OpCode 134)

Slot Format | #bytes | Description
numltems | UByte 1 number of items in the tuple
for i+ =1 to numltems

’ item; Expr \ 1, *] \ tuple’s item in i-th position
end for

C.0.4 SelectField operation (OpCode 140)

Select tuple field by its 1-based index. E.g. input._1 is transformed to SelectField(input, 1)
See[selectField

Slot Format | #bytes | Description
input Expr (1, *] tuple of items
fieldIndex | Byte 1 index of an item to select

C.0.5 LT operation (OpCode 143)

Returns true is the left operand is less then the right operand, false otherwise. See

’ Slot ‘ Format ‘ #bytes ‘ Description
match (left,right)
otherwise
left | Expr [1, *] left operand
right | Expr 1, *] right operand
end match

53

C.0.6 LE operation (OpCode 144)

Returns true is the left operand is less then or equal to the right operand, false otherwise. See
’ Slot ‘ Format ‘ #bytes ‘ Description ‘
match (left,right)

otherwise
left | Expr [1, *] left operand
right | Expr [1, * right operand

end match

C.0.7 GT operation (OpCode 145)

Returns true is the left operand is greater then the right operand, false otherwise. See

’ Slot ‘ Format ‘ #bytes ‘ Description ‘
match (left,right)
otherwise
left | Expr [1, *] left operand
right | Expr 1, *] right operand
end match

C.0.8 GE operation (OpCode 146)

Returns true is the left operand is greater then or equal to the right operand, false otherwise.

See
’ Slot ‘ Format ‘ #bytes ‘ Description
match (left,right)
otherwise
left | Expr [1, * left operand
right | Expr [1, *] right operand
end match

C.0.9 EQ operation (OpCode 147)

Compare equality of left and right arguments See [==]

’ Slot ‘ Format ‘ #bytes ‘ Description
match (left,right)
otherwise
left | Expr 1, *] left operand
right | Expr [1, *] right operand
end match

C.0.10 NEQ operation (OpCode 148)

Compare inequality of left and right arguments See [!5]

54

’ Slot ‘ Format ‘ #bytes ‘ Description
match (left,right)

otherwise
left | Expr [1, *] left operand
right | Expr [1, *] right operand

end match

C.0.11 If operation (OpCode 149)

Compute condition, if true then compute trueBranch else compute falseBranch See
Slot Format | #bytes | Description
condition Expr 1, *] condition expression
trueBranch | Expr 1, * expression to execute when condition == true
falseBranch | Expr 1, * expression to execute when condition == false

C.0.12 AND operation (OpCode 150)

Returns true if all the elements in collection are true. See[all0f
Slot Format | #bytes | Description

conditions [1, *] a collection of conditions

Expr

C.0.13 OR operation (OpCode 151)

Returns true if any the elements in collection are true. See [any0f
Slot Format | #bytes | Description
conditions [1, *] a collection of conditions

Expr

C.0.14 AtLeast operation (OpCode 152)

Logical threshold. AtLeast has two inputs: integer bound and children same as in AND/OR. The
result is true if at least bound children are proven. See[atLeast

Slot Format | #bytes | Description
bound Expr [1, *] required minimum of proven children
children | Expr [1, *] proposition to be proven/validated

C.0.15 Minus operation (OpCode 153)

Returns a result of subtracting second numeric operand from the first. See [

Slot | Format | #£bytes | Description
left | Expr [1, *] left operand
right | Expr 1, *] right operand

C.0.16 Plus operation (OpCode 154)

Returns a sum of two numeric operands See

Slot | Format | #bytes | Description
left | Expr (1, *] left operand
right | Expr 1, *] right operand

95

C.0.17 Xor operation (OpCode 155)
Byte-wise XOR, of two collections of bytes See [pinary_|

Slot | Format | #bytes | Description
left | Expr (1, *] left operand
right | Expr 1, *] right operand

C.0.18 Multiply operation (OpCode 156)

Returns a multiplication of two numeric operands See

Slot | Format | #bytes | Description
left | Expr (1, * left operand
right | Expr (1, *] right operand

C.0.19 Division operation (OpCode 157)

Integer division of the first operand by the second operand. See [/]

Slot | Format | #bytes | Description
left | Expr [1, *] left operand
right | Expr [1, *] right operand

C.0.20 Modulo operation (OpCode 158)

Reminder from division of the first operand by the second operand. See [/]

Slot | Format | #bytes | Description
left | Expr [1, *] left operand
right | Expr 1, *] right operand

C.0.21 Exponentiate operation (OpCode 159)

Exponentiate this GroupElement to the given number. Returns this to the power of k See|GroupElement . exp|

Slot | Format | #bytes | Description
this | Expr [1, *] this instance
k Expr [1, * The power

C.0.22 MultiplyGroup operation (OpCode 160)

Group operation. See [GroupElement.multiply]

Slot | Format | #bytes | Description
this | Expr (1, * this instance
other | Expr (1, * other element of the group

C.0.23 Min operation (OpCode 161)

Minimum value of two operands. See min]

Slot | Format | #bytes | Description
left | Expr 1, *] left operand
right | Expr [1, *] right operand

56

C.0.24 Max operation (OpCode 162)

Maximum value of two operands. See max

Slot | Format | #bytes | Description
left | Expr (1, *] left operand
right | Expr (1, *] right operand

C.0.25 MapCollection operation (OpCode 173)

Builds a new collection by applying a function to all elements of this collection. Returns a new
collection of type Coll[B] resulting from applying the given function f to each element of this
collection and collecting the results. See|[SCollection.map|

Slot | Format | #bytes | Description
this | Expr 1, * this instance
f Expr [1, *] the function to apply to each element

C.0.26 Exists operation (OpCode 174)

Tests whether a predicate holds for at least one element of this collection. Returns true if
the given predicate p is satisfied by at least one element of this collection, otherwise false

SeelSCollection.existsl
Slot | Format | #bytes | Description
this | Expr 1, * this instance
D Expr [1, *] the predicate used to test elements

C.0.27 ForAll operation (OpCode 175)

Tests whether a predicate holds for all elements of this collection. Returns true if this collec-
tion is empty or the given predicate p holds for all elements of this collection, otherwise false.

SeeSCollection.foralll
Slot | Format | #bytes | Description
this | Expr (1, *] this instance
D Expr [1, *] the predicate used to test elements

C.0.28 Fold operation (OpCode 176)

Applies a binary operator to a start value and all elements of this collection, going left to right.

SeelSCollection.foldl
Slot | Format | #bytes | Description
this | Expr 1, * this instance
zero | Expr 1, * a starting value
op Expr 1, * the binary operator

C.0.29 SizeOf operation (OpCode 177)

The size of the co

lection in elements. See[SCollection.sizel

Slot | Format

#bytes

Description

this | Expr

1, "]

this instance

57

C.0.30 ByIndex operation (OpCode 178)

Return the element of collection if index is in range 0 ..

size-1 See|SCollection.getOrElse|

Slot Format | #bytes | Description
this Expr (1, *] this instance
index Expr 1, *] index of the element of this collection
optional default
’ tag ‘ Byte ‘ 1 ‘ 0 - no value; 1 - has value ‘
when tag ==1
’ default | Expr | [1, 7] | value to return when index is out of range ‘

end optional

C.0.31 Append operation (OpCode 179)

Puts the elements of other collection after the elements of this collection (concatenation of 2 col-
lections) See [SCollection.append|

Slot | Format | #bytes | Description
this | Expr 1, * this instance
other | Expr (1, * the collection to append at the end of this

C.0.32 Slice operation (OpCode 180)

Selects an interval of elements. The returned collection is made up of all elements x which satisfy
the invariant: from <= index0f(x) < until See[SCollection.slice]

Slot | Format | #bytes | Description

this | Expr 1, *| this instance

from | Expr [1, *] the lowest index to include from this collection

until | Expr 1, * the lowest index to EXCLUDE from this collection
C.0.33 ExtractAmount operation (OpCode 193)
Mandatory: Monetary value, in Ergo tokens (NanoErg unit of measure) See Box.value

Slot | Format | #bytes | Description

this | Expr [1, *] this instance

C.0.34 ExtractScriptBytes operation (OpCode 194)

Serialized bytes of guarding script, which should be evaluated to true in order to open this box.
(aka spend it in a transaction) See [Box.propositionBytes|

Slot

Format

#Dbytes

Description

this

Expr

1, "]

this instance

C.0.35 ExtractBytes operation (OpCode 195)

Serialized bytes of this box’s content, including proposition bytes. See [Box.bytes

Slot

Format

#bytes

Description

this

Expr

1, *]

this instance

58

C.0.36 ExtractBytesWithNoRef operation (OpCode 196)

Serialized bytes of this box’s content, excluding transactionld and index of output. See[Box.bytesWithoutRef]

Slot

Format

#bytes

Description

this

Expr

1, *]

this instance

C.0.37 ExtractId operation (OpCode 197)

Blake2b256 hash of this box’s content, basically equals to blake2b256 (bytes) See [Box.id
Slot | Format | #bytes | Description
this [1, *] this instance

Expr

C.0.38 ExtractRegisterAs operation (OpCode 198)

Extracts register by id and type. Type param T expected type of the register. Returns Some (value)
if the register is defined and has given type and None otherwise See Box.getReg

Slot | Format | #bytes | Description

this | Expr 1, *] this instance

regld | Byte 1 zero-based identifier of the register.
type | Type 1, *] expected type of the value in register

C.0.39 ExtractCreationInfo operation (OpCode 199)

If tx is a transaction which generated this box, then creationInfo._1 is a height of the tx’s block.
The creationInfo._2 is a serialized transaction identifier followed by box index in the transaction
outputs. See[Box.creationInfo|

Slot

Format

#bytes

Description

this

Expr

1, *]

this instance

C.0.40 CalcBlake2b256 operation (OpCode 203)
Calculate Blake2b hash from input bytes. See [blake2b256

Slot

Format

#bytes

Description

input

Expr

1, *]

collection of bytes

C.0.41 CalcSha256 operation (OpCode 204)

Calculate Sha256 hash from input bytes. See[sha256

Slot

Format

#Dbytes

Description

input

Expr

1, *]

collection of bytes

C.0.42 CreateProveDlog operation (OpCode 205)

ErgoTree operation to create a new SigmaProp value representing public key of discrete logarithm
signature protocol. See [proveDlog

Slot

Format

#bytes

Description

value

Expr

[, *]

element of elliptic curve group

59

C.0.43 CreateProveDHTuple operation (OpCode 206)

ErgoTree operation to create a new SigmaProp value representing public key of Diffie Hellman
signature protocol. Common input: (g,h,u,v) See [proveDHTuple

Slot | Format | #bytes | Description
g |Epr (L7
h Expr [1, *]
u Expr (1, *]
v Expr 1, *

C.0.44 SigmaPropBytes operation (OpCode 208)

Serialized bytes of this sigma proposition taken as ErgoTree. See [SigmaProp.propBytes|
Slot | Format | #bytes | Description
this | Expr [1, *] this instance

C.0.45 BoolToSigmaProp operation (OpCode 209)

Embedding of Boolean values to SigmaProp values. As an example, this operation allows boolean
experessions to be used as arguments of atLeast (..., sigmaProp(boolExpr), ...) operation.
During execution results to either TrueProp or FalseProp values of SigmaProp type. See[sigmaProp|
Slot Format | #bytes | Description
condition | Expr [1, *] boolean value to embed in SigmaProp value

C.0.46 DeserializeContext operation (OpCode 212)

Extracts context variable as Coll [Byte], deserializes it to script and then executes this script in the
current context. The original Coll[Byte] of the script is available as getVar [Coll[Bytel] (id).
Type parameter V result type of the deserialized script. Throws an exception if the actual script type
doesn’t conform to T. Returns a result of the script execution in the current context SeelexecuteFromVar|
Slot | Format | #bytes | Description
type | Type 1, * expected type of the deserialized script
id Byte 1 identifier of the context variable

C.0.47 DeserializeRegister operation (OpCode 213)

Extracts SELF register as Coll[Byte], deserializes it to script and then executes this script in the

current context. The original Coll [Byte] of the script is available as SELF . getReg [Coll [Bytel] (id).

Type parameter T result type of the deserialized script. Throws an exception if the actual script type

doesn’t conform to T. Returns a result of the script execution in the current context SeelexecuteFromSelfReg]

60

Slot Format | #bytes | Description
id Byte 1 identifier of the register
type Type 1, * expected type of the deserialized script
optional default
’ tag ‘ Byte ‘ 1 ‘ 0 - no value; 1 - has value
when tag ==
’ default ‘ Expr ‘ (1, * ‘ optional default value, if register is not available

end optional

C.0.48 ValDef operation (OpCode 214)

’ Slot ‘ Format ‘ #bytes ‘ Description

C.0.49 FunDef operation (OpCode 215)

’ Slot ‘ Format ‘ #Dbytes ‘ Description

C.0.50 BlockValue operation (OpCode 216)

Slot Format #bytes | Description

numltems | VLQ(UInt) | [1, *] number of block items

for i =1 to numltems

’ item; ‘ Expr ‘ (1, *] ‘ block’s item in i-th position
end for
| result | Expr | [1,] | result expression of the block

C.0.51 FuncValue operation (OpCode 217)

Slot Format #bytes | Description
numArgs | VLQ(UInt) | [1, ¥ number of function arguments
for i =1 to numArgs
id; VLQ(UInt) | [1, ¥ identifier of the i-th argument
type; Type [1, * type of the i-th argument
end for
body ‘ Expr ‘ [1, ¥ ‘ function body, which is parameterized by arguments

C.0.52 Apply operation (OpCode 218)

Apply the function to the arguments. See [applyl

Slot Format #bytes | Description
func Expr 1, *] function which is applied
#items | VLQ(UInt) | [1, *] number of items in the collection
for i =1 to #items

| args; | Expr | [1, 7] | i-th item in the list of arguments
end for

61

C.0.53 PropertyCall operation (OpCode 219)

Slot Format | #bytes | Description

typeCode Byte 1 type of the method (see Table
methodCode | Byte 1 a code of the property

obj Expr (1, *] receiver object of this property call

C.0.54 MethodCall operation (OpCode 220)

Slot Format #bytes | Description
typeCode Byte 1 type of the method (see Table i
methodCode | Byte 1 a code of the method
obj Expr (1, *] receiver object of this method call
#Hitems VLQ(UInt) | [1, ¥ number of items in the collection
for ¢ =1 to #items

’ args; ‘ Expr ‘ 1, *] ‘ i-th item in the arguments of the method call
end for

C.0.55 GetVar operation (OpCode 227)

Get context variable with given varId and type. See[getVar]
Slot Format | #bytes | Description
varld | Byte 1 Byte identifier of context variable
type Type 1, * expected type of context variable

C.0.56 OptionGet operation (OpCode 228)

Returns the option’s value. The option must be nonempty. Throws exception if the option is empty.

See [SOption.get

Slot

Format

#bytes

Description

this | Expr

1, *]

this instance

C.0.57 OptionGetOrElse operation (OpCode 229)

Returns the option’s value if the option is nonempty, otherwise return the result of evaluating

default. See[SOption.getOrElse]

Slot Format | #bytes | Description
this Expr 1, * this instance
default | Expr 1, * the default value

C.0.58 OptionIsDefined operation (OpCode 230)

Returns true if the option is an instance of Some, false otherwise. See[SOption.isDefined|

Slot

Format

#bytes

Description

this | Expr

1, *]

this instance

62

C.0.59 SigmaAnd operation (OpCode 234)

Returns sigma proposition which is proven when all the elements in collection are proven

. SeelallZK

Slot Format #bytes | Description
#items VLQ(UInt) | [1, ¥ number of items in the collection
for i =1 to #items
’ propositions; ‘ Expr ‘ (1, *] ‘ i-th item in the a collection of propositions

end for

C.0.60 SigmaOr operation (OpCode 235)

Returns sigma proposition which is proven when any of the elements in collection

See [anyZK

is proven.

Slot Format #bytes | Description
#Hitems VLQ(UInt) | [1, ¥ number of items in the collection
for i =1 to #items
’ propositions; ‘ Expr ‘ [1, *] ‘ i-th item in the a collection of propositions

end for

C.0.61 BinOr operation (OpCode 236)
Logical OR of two operands See [[T]

’ Slot ‘ Format ‘ #bytes ‘ Description
match (left,right)
otherwise
left | Expr [1, ¥ left operand
right | Expr [1, *| right operand

end match

C.0.62 BinAnd operation (OpCode 237)
Logical AND of two operands See

’ Slot ‘ Format ‘ #bytes ‘ Description

match (left,right)

otherwise
left | Expr [1, *] left operand
right | Expr [1, *] right operand
end match

C.0.63 DecodePoint operation (OpCode 238)

Convert Coll[Byte] to GroupElement using GroupElementSerializer See|decodePoint

Slot | Format | #bytes | Description

input | Expr 1, *] serialized bytes of some GroupElement value

63

C.0.64 LogicalNot operation (OpCode 239)

Logical NOT operation. Returns true if input is false and false if input is true. See junary_!
Slot | Format | #bytes | Description
input | Expr 1, *] input Boolean value

C.0.65 Negation operation (OpCode 240)

Negates numeric value x by returning -x. See junary_-|
Slot | Format | #bytes | Description
input | Expr (1, *] value of numeric type

C.0.66 BinXor operation (OpCode 244)
Logical XOR of two operands See[7]

’ Slot ‘ Format ‘ #bytes ‘ Description
match (left,right)
otherwise
left | Expr [1, *] left operand
right | Expr [1, *] right operand

end match

C.0.67 XorOf operation (OpCode 255)

Similar to all0f, but performing logical XOR operation between all conditions instead of &&

See [xorQf
Slot Format | #bytes | Description

conditions | Expr [1, *] a collection of conditions

C.0.68 SubstConstants operation (OpCode 116)

Transforms serialized bytes of ErgoTree with segregated constants by replacing constants at given
positions with new values. This operation allow to use serialized scripts as pre-defined templates.
The typical usage is ”check that output box have proposition equal to given script bytes, where
minerPk (constants(0)) is replaced with currentMinerPk”. Each constant in original scriptBytes
have SType serialized before actual data (see ConstantSerializer). During substitution each value
from newValues is checked to be an instance of the corresponding type. This means, the constants
during substitution cannot change their types.

Returns original scriptBytes array where only specified constants are replaced and all other
bytes remain exactly the same. See [substConstants]

Slot Format | #bytes | Description
script Bytes | Expr (1, *] serialized ErgoTree with ConstantSegregationFlag set to 1.
positions Expr 1, *] zero based indexes in ErgoTree.constants array which should

be replaced with new values

newValues | Expr 1, *] new values to be injected into the corresponding positions
in ErgoTree.constants array

64

C.0.69 LongToByteArray operation (OpCode 122)

Converts Long value to big-endian bytes representation. See [LongToByteArray|

Slot

Format

#bytes

Description

input

Expr

1, *]

value to convert

C.0.70 ByteArrayToBiglInt operation (OpCode 123)

Convert big-endian bytes representation (Coll[Byte]) to Biglnt value. See pyteArrayToBigInt|

Slot

Format

#bytes

Description

input

Expr

1, *]

collection of bytes in big-endian format

C.0.71 ByteArrayToLong operation (OpCode 124)

Convert big-endian bytes representation (Coll[Byte]) to Long value. See byteArrayToLong]

Slot

Format

#bytes

Description

input

Expr

1, *]

collection of bytes in big-endian format

C.0.72 Downcast operation (OpCode 125)

Cast this numeric value to a smaller type (e.g. Long to Int).

See |[downcast

Throws exception if overflow.

Slot | Format | #bytes | Description
input | Expr 1, *] value to cast
type | Type 1, *] resulting type of the cast operation

C.0.73 Upcast operation (OpCode 126)

Cast this numeric value to a bigger type (e.g. Int to Long) See jupcast

Slot | Format | #bytes | Description
input | Expr [1, *] value to cast
type | Type 1, *] resulting type of the cast operation

65

D Motivations

D.1 Type Serialization format rationale

Some operations of ErgoTree have type parameters, for which concrete types should be specified
(since ErgoTree is monomorphic IR). When the operation (such as[ExtractRegisterAs)) is serialized
those types should also be serialized as part of operation. The following encoding is designed to
minimize a number of bytes required to represent type in the serialization format of ErgoTree.

In most cases type term serialises into a single byte. In the intermediate representation of
ErgoTree each type is represented by a tree of nodes where leaves are primitive types and other
nodes are type constructors. Simple (but sub-optimal) way to serialize a type would be to give
each primitive type and each type constructor a unique type code. Then, to serialize a node, we
need to emit its code and then perform recursive descent to serialize all children. However, to save
storage space, we use special encoding schema to save bytes for the types that are used more often.

We assume the most frequently used types are:

e primitive types (Int, Byte, Boolean, BigInt, GroupElement, Box, AvlTree)

e Collections of primitive types (Coll[Byte] etc)

e Options of primitive types (Option[Int] etc.)

e Nested arrays of primitive types (Coll[Coll[Int]] etc.)

e Functions of primitive types (Box => Boolean etc.)

e First biased pair of types ((_, Int) when we know the first component is a primitive type).

e Second biased pair of types ((Int, _) when we know the second component is a primitive
type)

e Symmetric pair of types ((Int, Int) when we know both types are the same)

All the types above should be represented in an optimized way (preferable by a single byte).
For other types, we do recursive descent down the type tree as it is defined in section
D.2 Constant Segregation rationale
D.2.1 Massive script validation

Consider a transaction tx which have INPUTS collection of boxes to spend. Every input box can
have a script protecting it (propostionBytes property). This script should be executed in a context
of the current transaction. The simplest transaction have 1 input box. Thus if we want to have
a sustained block validation of 1000 transactions per second we need to be able to validate 1000
scripts per second.

For every script (of input box) the following is done in order to validate it:

1. Context is created with SELF = box

2. The script is deserialized into ErgoTree

66

3. ErgoTree is traversed to build costGraph and calcGraph, two graphs for cost estimation
function and script calculation function.

4. Cost estimation is computed by evaluating costGraph with current context data

5. If cost and data size limits are not exceeded, calcGraph is evaluated using context data to

obtain sigma proposition (see [SigmaProp))

6. Verification procedure is executed

D.2.2 Potential for Script processing optimization

Before an ErgoTree contract can be stored in a blockchain it should be first compiled from its
source text into ErgoTree and then serialized into byte array.

Because the language is purely functional and IR is graph-based, the compilation process has
an effect of normalization/unification. This means that different original scripts may have identical
ErgoTrees and as the result identical serialized bytes.

Because of normalization, and also because of script reusability, the number of conceptually (or
logically) different scripts is much less than the number of individual scripts in a blockchain. For
example we may have 1000s of different scripts in a blockchain with millions of boxes.

The average reusability ratio is 1000 in this case. And even those different scripts may have dif-
ferent usage frequency. Having big reusability ratio we can optimize script evaluation by performing
steps 1 - 4 only once per unique script.

The compiled calcGraph can be cached in Map[Array[Byte]l, Context => SigmaBoolean].
Every script extracted from an input box can be used as a key in this map to obtain ready to
execute graph.

However, we have a problem with constants embedded in contracts. There is one obstacle to
the optimization by caching. In many cases it is very natural to embed constants in the script
body, most notable scenario is when public keys are embedded. As result two functionally identical
scripts may serialize to different byte arrays because they have different embedded constants.

D.2.3 Constant-less ErgoTree

The solution to the problem with embedded constants is simple, we don’t need to embed con-
stants. Each constant in the body of ErgoTree can be replaced with indexed placeholder (see
[ConstantPlaceholder|). Each placeholder have an index field. The index of the placeholder is
assigned by breadth-first topological order of the graph traversal.

The transformation is part of compilation and is performed ahead of time. Each ErgoTree have
an array of all the constants extracted from its body. Each placeholder refers to the constant by
the constant’s index in the array.

Thus the format of serialized script is shown in Figure [I3] which contains:

1. number of constants
2. constants collection

3. script expression with placeholders

67

The constants collection contains serialized constant data (using ConstantSerializer) one after
another. The script expression is a serialized ErgoTree with placeholders.

Using this new script format we can use script expression part as a key in the cache. An
observation is that after the constants are extracted, what remains is a template. Thus instead of
applying steps 1-4 to constant-full scripts we can apply them to constant-less templates. Before
applying steps 4 and 5 we need to bind placeholders with actual values taken from the cconstants

collection.

68

E Compressed encoding of integer values

E.1 VLQ encoding

public final void putULong(long value) {
while (true) {

if ((value & "0x7FL) == 0) {
buffer[position++] = (byte) value;
return;

} else {
buffer[positiont++] = (byte) (((int) value & 0x7F) | 0x80);
value >>>= 7;

E.2 ZigZag encoding

Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers into values that can be
efficiently encoded with varint. (Otherwise, negative values must be sign-extended to 64 bits to be
varint encoded, thus always taking 10 bytes in the buffer.

Parameter n is a signed 64-bit integer. This Java method returns an unsigned 64-bit integer,
stored in a signed int because Java has no explicit unsigned support.

public static long encodeZigZag64(final long n) {
// Note: the right-shift must be arithmetic
return (n << 1) " (n >> 63);

}

69

	Introduction
	Language
	Typing
	Evaluation Semantics
	Serialization
	Type Serialization
	Data Serialization
	Constant Serialization
	Expression Serialization
	ErgoTree serialization
	Constant Segregation

	The Graph
	Costing
	Predefined types
	Boolean type
	Byte type
	Short type
	Int type
	Long type
	BigInt type
	GroupElement type
	SigmaProp type
	Box type
	[basicstyle=]AvlTree type
	Header type
	PreHeader type
	Context type
	Global type
	Coll type
	Option type

	Predefined global functions
	Serialization format of ErgoTree nodes
	Motivations
	Type Serialization format rationale
	Constant Segregation rationale

	Compressed encoding of integer values
	VLQ encoding
	ZigZag encoding

