
Convex Partitioning, Jaehne, Kahl, Kerner, Murrey
Institut für Informatik

Approximation of Minimum 
Convex Partitioning

software project and competition 2019/20



2 / 133

Agenda
1. Introduction and Overview
2. DCEL
3. Nested Hulls
4. Single Convex Waves
5. Merged Convex Waves
6. Pass based
7. Start points
8. Solutions



3 / 133

1. Introduction and Overview



4 / 133

1. The CG Challenge 2020
● CG:SHOP = Computational Geometry - Solving Hard 

Optimization Problems
● Part of the CG Week in Zurich (June 22-26)
● Open Class contest
● Opened: September 30
● Closes: February 14
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1. The Minimum Convex Partition Problem
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1. The Minimum Convex Partition Problem
● Complexity unknown
● At start: 247 instances
● Jan 21: 99 additional instances
● 4 types:

○ uniform
○ edge
○ illumination
○ orthogonally collinear points

● Tiebreaker: Time
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1. Workflow
● Language: Python
● Communication: Slack
● Repository: GitHub
● Team meetings every Wednesday
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1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
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1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25.12.19 Result comparison
8.1.20 User Interface
31.1.20 Miscellaneous improvements / alternatives
15.2.20 Contingency buffer
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2. Doubly Connected Edge List (DCEL)
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● Most commonly used representations 
for planar subdivisions

● It links together three sets of records:

➢ Vertex
➢ Edge
➢ Face

●  It provides the ability of traversing the 
faces of planar subdivision, visiting all 
the edges around a given vertex

2. Doubly Connected Edge List (DCEL)
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● Edges are oriented counterclockwise 
inside each face

● Each edge is a border between two 
faces, and is therefore represented by 
two half‐edges, one for each face

2. Doubly Connected Edge List (DCEL)
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● Each vertex entry v has a pointer that point to an 
arbitrary outgoing edge called the IncidentEdge of v 

● Each face entry f has a pointer that point to an 
arbitrary half‐edge on its border called the 
IncidentEdge of f

● Each half‐edge entry e stores pointers to:
➢ Its origin e.Origin
➢ Its twin half-edge e.Twin
➢ The face on its left e.IncidentFace
➢ The next half-edge on its incident face e.Next
➢ The previous hal-edge on its incident face 

e.Previous

2. Doubly Connected Edge List (DCEL)
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Vertex Coordinates IncidentEdge

v1 (x1,y1) e1,2

v2 (x2,y2) e2,8

... ... ...

Face Edge

f1 e8,7

f2 e4,5

... ...

Half-edge Origin Twin IncidentFace Next Previous

e6,7 v6 e7,6 f3 e7,8 e5,6

e5,8 v5 e8,5 f2 e8,2 e4,5

... ... ... ... ... ...

*In our implementation of DCEL we excluded the faces table, as we 
did not need it.

2. Doubly Connected Edge List (DCEL)



38 / 133

3. Nested Convex-Hulls Approach
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1. Iteratively keep computing c-hulls:
1. Compute the c-hull of all points in the data set

2. Subtract data points of the computed c-hull from the data set

3. Repeat 1.1 & 1.2 until we get an empty data set

2. Connect each two sequential c-hulls in such a way that none of 

the added edges can be removed, unless we violate the convexity 

conditions

3. Except for the most outer c-hull, for each c-hull check for each 

edge if it can be removed

3. Nested Convex-Hulls Approach
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3. Nested Convex-Hulls, An Example  “stars-0000020”
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3. Example: Constructing C-Hulls
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3. Example: Connecting Sequential Hulls
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3. Example: Connecting Sequential Hulls
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3. Example: Removing Unneeded Edges
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3. Example: Removing Unneeded Edges
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20 Vertices, 30 Edges & 11 Faces

3. Example: Final Result
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For V to be the number of vertices, we have:

● When constructing nested c-hulls, we add at most V edges
● When connecting two c-hulls, we connect each vertex of the inner hull to at most 2 vertices of 

the outer hull, except when only one vertex left as last c-hull, which need to be connected to at 
most 3 vertices of the outer hull, so the worst case would be:

● If the most outer hull is of size 3 and the most inner hull is of size 1, then for connecting 
hulls we add at most  2*(V-3) +1 edges

● Suppose in the deletion step no edge was eligible to be deleted
Then the max number of edges that can be added is V + 2*(V-3)+1 = 3V-5 edges

 *In practice: 2V - ~ 20%     “ 20% of 2V”

3. Nested Convex-Hulls, An Upper Bound
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Sorting:  

Constructing Convex-Hulls :

Connecting Convex-Hulls :

Deleting Edges:  

    

Overall Run-Time:

3. Nested Convex-Hulls, Run-Time
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4. Convex Waves
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4. Convex Waves
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5. Merged Convex Waves
● Perform a convex wave for each startpoint

● Merge two waves on collision
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5. Merged Convex Waves
● Good results in starting areas, poor results everywhere else

● Merged instances lead to stretched polygons and long edges

● Convex hulls broken during merge need to be triangulated

● Produces more edges than other algorithms on almost all instances

     Approach discarded
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6. Pass-Based Algorithm
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6. Pass-Based Algorithm
● Perform a set of independent passes

● Prioritize areas around startpoints

● No complex merging step required

● Waves constrained to a single convex polygon
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6. Pass-Based Algorithm
First Pass: Secure startpoints

● Start a convex wave at each startpoint

● Better startpoints have higher priority

● Only add a point if...

○ ...it can only see a single edge

○ ...it is not occluded by other points

or edges
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6. Pass-Based Algorithm
Second Pass: Gather stray points

● Start a convex wave at each 

remaining stray vertex
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6. Pass-Based Algorithm
Intermediate Pass: Convex Hull

● Incorporate convex hull
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Intermediate Pass: Integrate islands

● Find islands via DFS on leftmost vertex

● Connect each to their surrounding face
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6. Pass-Based Algorithm
Third Pass: Resolve inflexes

● Find all inflex vertices

● Resolve these by connecting them to

1-2 opposing vertices
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6. Pass-Based Algorithm
Third Pass: Resolve inflexes

● Find all inflex vertices

● Resolve these by connecting them to

1-2 opposing vertices

●
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6. Pass-Based Algorithm
Intermediate Pass: Integrate stray points

● Find any remaining stray points as well

as their respective convex face

● Incorporate them by iterating around

the surrounding face
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6. Pass-Based Algorithm
Intermediate Pass: Integrate stray points

● Find any remaining stray points as well

as their respective convex face

● Incorporate them by iterating around

the surrounding face

●
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6. Pass-Based Algorithm
Fourth Pass: Clean

● Iterate over all edges and verify that

they are required

● Remove the ones that are not
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6. Pass-Based Algorithm
Fourth Pass: Clean

● Iterate over all edges and verify that

they are required

● Remove the ones that are not

      How do we chose adequate startpoints?
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7. Startpoints
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7. Startpoints - What are Good Start Points?

starting within clusters starting in empty spaces
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clustering with kmeans empty spaces with fixed-distance grid

7. Startpoints - Dropped Concepts
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7. Startpoints - Promising Concepts

triangulation edge length max area triangle max spanning triangle
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7. Startpoints - Distribution

triangulation edge length max area triangle max spanning triangle
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7. Startpoints - Was It Worth It?

triangulation edge length
1254 edges in solution

2082 start points

max area triangle
1250 edges in solution

1383 start points

max spanning triangle
1253 edges in solution

1383 start points

random
1242 edges in solution

4 start points
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8. Solutions
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8. Solutions - Comparing the Algorithms

Solved Instances by Algorithm Quantity of Points solved by Algorithm
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8. Solutions - Score

● T ≙ #edges in triangulation
● A ≙ #edges in solution
● 0 < score < 1
● % of deleted edges from triangulation
● bigger score is better
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8. Solutions - Plotting the Algorithms
#points: 500, Triangulation #edges: 1480

single convex waves (927 edges)
score: 0.37

nested hulls (918 edges)
score: 0.38

pass based (879 edges)
score: 0.41
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single convex waves (463 edges)
score: 0.5

nested hulls (403 edges)
score: 0.57

pass based (438 edges)
score: 0.53

8. Solutions - Many Collinear Points
#points: 326, Triangulation #edges: 932
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8. Solution

Single Convex Waves
first Batch

Single Convex Waves
second Batch

Nested Hulls
both Batches

Pass Based
both Batches

bugfixesbug fixesbugfixes

Final score: 155.432  -  Instances: 346  -  deleted Edges: 44,9%
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8. Solutions - Score Distribution
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8. Solutions - Score (Many Collinear Points)
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Thank You For Your Attention


