
Convex Partitioning, Jaehne, Kahl, Kerner, Murrey
Institut für Informatik

Approximation of Minimum
Convex Partitioning

software project and competition 2019/20

2 / 133

Agenda
1. Introduction and Overview
2. DCEL
3. Nested Hulls
4. Single Convex Waves
5. Merged Convex Waves
6. Pass based
7. Start points
8. Solutions

3 / 133

1. Introduction and Overview

4 / 133

1. The CG Challenge 2020
● CG:SHOP = Computational Geometry - Solving Hard

Optimization Problems
● Part of the CG Week in Zurich (June 22-26)
● Open Class contest
● Opened: September 30
● Closes: February 14

5 / 133

1. The Minimum Convex Partition Problem

6 / 133

1. The Minimum Convex Partition Problem

7 / 133

1. The Minimum Convex Partition Problem
● Complexity unknown
● At start: 247 instances
● Jan 21: 99 additional instances
● 4 types:

○ uniform
○ edge
○ illumination
○ orthogonally collinear points

● Tiebreaker: Time

8 / 133

1. Workflow
● Language: Python
● Communication: Slack
● Repository: GitHub
● Team meetings every Wednesday

9 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept

10 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept

11 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
6.11.19 Initial prototype

12 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
6.11.19 Initial prototype

13 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
6.11.19 Initial prototype

Common interface specification

14 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
6.11.19 Initial prototype

Common interface specification

15 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
6.11.19 Initial prototype

Common interface specification
13.11.19 Multiple program runs

16 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
6.11.19 Initial prototype

Common interface specification
13.11.19 Multiple program runs

17 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
6.11.19 Initial prototype

Common interface specification
13.11.19 Multiple program runs
20.11.19 Baseline results

18 / 133

1. Project Roadmap
23.10.19 Algorithm conception and proof of concept
6.11.19 Initial prototype

Common interface specification
13.11.19 Multiple program runs
20.11.19 Baseline results

19 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

20 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls

21 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls

22 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation

23 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation

24 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

26 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25.12.19 Result comparison

27 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25.12.19 Result comparison

28 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25.12.19 Result comparison
8.1.20 User Interface

29 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25.12.19 Result comparison
8.1.20 User Interface

30 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25.12.19 Result comparison
8.1.20 User Interface
31.1.20 Miscellaneous improvements / alternatives

31 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25.12.19 Result comparison
8.1.20 User Interface
31.1.20 Miscellaneous improvements / alternatives

32 / 133

1. Project Roadmap
8.12.19 Alternative algorithms

● Nested convex hulls
● Removing edges from triangulation
● Linear integer programming

25.12.19 Result comparison
8.1.20 User Interface
31.1.20 Miscellaneous improvements / alternatives
15.2.20 Contingency buffer

33 / 133

2. Doubly Connected Edge List (DCEL)

34 / 133

● Most commonly used representations
for planar subdivisions

● It links together three sets of records:

➢ Vertex
➢ Edge
➢ Face

● It provides the ability of traversing the
faces of planar subdivision, visiting all
the edges around a given vertex

2. Doubly Connected Edge List (DCEL)

35 / 133

● Edges are oriented counterclockwise
inside each face

● Each edge is a border between two
faces, and is therefore represented by
two half‐edges, one for each face

2. Doubly Connected Edge List (DCEL)

36 / 133

● Each vertex entry v has a pointer that point to an
arbitrary outgoing edge called the IncidentEdge of v

● Each face entry f has a pointer that point to an
arbitrary half‐edge on its border called the
IncidentEdge of f

● Each half‐edge entry e stores pointers to:
➢ Its origin e.Origin
➢ Its twin half-edge e.Twin
➢ The face on its left e.IncidentFace
➢ The next half-edge on its incident face e.Next
➢ The previous hal-edge on its incident face

e.Previous

2. Doubly Connected Edge List (DCEL)

37 / 133

Vertex Coordinates IncidentEdge

v1 (x1,y1) e1,2

v2 (x2,y2) e2,8

...

Face Edge

f1 e8,7

f2 e4,5

... ...

Half-edge Origin Twin IncidentFace Next Previous

e6,7 v6 e7,6 f3 e7,8 e5,6

e5,8 v5 e8,5 f2 e8,2 e4,5

...

*In our implementation of DCEL we excluded the faces table, as we
did not need it.

2. Doubly Connected Edge List (DCEL)

38 / 133

3. Nested Convex-Hulls Approach

39 / 133

1. Iteratively keep computing c-hulls:
1. Compute the c-hull of all points in the data set

2. Subtract data points of the computed c-hull from the data set

3. Repeat 1.1 & 1.2 until we get an empty data set

2. Connect each two sequential c-hulls in such a way that none of

the added edges can be removed, unless we violate the convexity

conditions

3. Except for the most outer c-hull, for each c-hull check for each

edge if it can be removed

3. Nested Convex-Hulls Approach

40 / 133

3. Nested Convex-Hulls, An Example “stars-0000020”

41 / 133

3. Example: Constructing C-Hulls

42 / 133

3. Example: Connecting Sequential Hulls

43 / 133

3. Example: Connecting Sequential Hulls

44 / 133

3. Example: Connecting Sequential Hulls

45 / 133

3. Example: Connecting Sequential Hulls

46 / 133

3. Example: Connecting Sequential Hulls

47 / 133

3. Example: Connecting Sequential Hulls

48 / 133

3. Example: Connecting Sequential Hulls

49 / 133

3. Example: Connecting Sequential Hulls

50 / 133

3. Example: Connecting Sequential Hulls

51 / 133

3. Example: Connecting Sequential Hulls

52 / 133

3. Example: Connecting Sequential Hulls

53 / 133

3. Example: Connecting Sequential Hulls

54 / 133

3. Example: Connecting Sequential Hulls

55 / 133

3. Example: Connecting Sequential Hulls

56 / 133

3. Example: Connecting Sequential Hulls

57 / 133

3. Example: Removing Unneeded Edges

58 / 133

3. Example: Removing Unneeded Edges

59 / 133

3. Example: Removing Unneeded Edges

60 / 133

3. Example: Removing Unneeded Edges

61 / 133

3. Example: Removing Unneeded Edges

62 / 133

3. Example: Removing Unneeded Edges

63 / 133

3. Example: Removing Unneeded Edges

64 / 133

3. Example: Removing Unneeded Edges

65 / 133

3. Example: Removing Unneeded Edges

66 / 133

3. Example: Removing Unneeded Edges

67 / 133

3. Example: Removing Unneeded Edges

68 / 133

3. Example: Removing Unneeded Edges

69 / 133

3. Example: Removing Unneeded Edges

70 / 133

3. Example: Removing Unneeded Edges

71 / 133

20 Vertices, 30 Edges & 11 Faces

3. Example: Final Result

72 / 133

For V to be the number of vertices, we have:

● When constructing nested c-hulls, we add at most V edges
● When connecting two c-hulls, we connect each vertex of the inner hull to at most 2 vertices of

the outer hull, except when only one vertex left as last c-hull, which need to be connected to at
most 3 vertices of the outer hull, so the worst case would be:

● If the most outer hull is of size 3 and the most inner hull is of size 1, then for connecting
hulls we add at most 2*(V-3) +1 edges

● Suppose in the deletion step no edge was eligible to be deleted
Then the max number of edges that can be added is V + 2*(V-3)+1 = 3V-5 edges

 *In practice: 2V - ~ 20% “ 20% of 2V”

3. Nested Convex-Hulls, An Upper Bound

73 / 133

Sorting:

Constructing Convex-Hulls :

Connecting Convex-Hulls :

Deleting Edges:

Overall Run-Time:

3. Nested Convex-Hulls, Run-Time

74 / 133

4. Convex Waves

75 / 133

4. Convex Waves

76 / 133

4. Convex Waves

77 / 133

4. Convex Waves

78 / 133

4. Convex Waves

79 / 133

4. Convex Waves

80 / 133

4. Convex Waves

81 / 133

4. Convex Waves

82 / 133

4. Convex Waves

83 / 133

4. Convex Waves

84 / 133

5. Merged Convex Waves
● Perform a convex wave for each startpoint

● Merge two waves on collision

85 / 133

5. Merged Convex Waves

86 / 133

5. Merged Convex Waves

87 / 133

5. Merged Convex Waves

88 / 133

5. Merged Convex Waves

89 / 133

5. Merged Convex Waves

90 / 133

5. Merged Convex Waves

91 / 133

5. Merged Convex Waves

92 / 133

5. Merged Convex Waves

93 / 133

5. Merged Convex Waves

94 / 133

5. Merged Convex Waves

95 / 133

5. Merged Convex Waves

96 / 133

5. Merged Convex Waves

97 / 133

5. Merged Convex Waves

98 / 133

5. Merged Convex Waves

99 / 133

5. Merged Convex Waves

100 / 133

5. Merged Convex Waves

101 / 133

5. Merged Convex Waves
● Good results in starting areas, poor results everywhere else

● Merged instances lead to stretched polygons and long edges

● Convex hulls broken during merge need to be triangulated

● Produces more edges than other algorithms on almost all instances

 Approach discarded

102 / 133

6. Pass-Based Algorithm

103 / 133

6. Pass-Based Algorithm
● Perform a set of independent passes

● Prioritize areas around startpoints

● No complex merging step required

● Waves constrained to a single convex polygon

104 / 133

6. Pass-Based Algorithm
First Pass: Secure startpoints

● Start a convex wave at each startpoint

● Better startpoints have higher priority

● Only add a point if...

○ ...it can only see a single edge

○ ...it is not occluded by other points

or edges

105 / 133

6. Pass-Based Algorithm
First Pass: Secure startpoints

● Start a convex wave at each startpoint

● Better startpoints have higher priority

● Only add a point if...

○ ...it can only see a single edge

○ ...it is not occluded by other points

or edges

106 / 133

6. Pass-Based Algorithm
First Pass: Secure startpoints

● Start a convex wave at each startpoint

● Better startpoints have higher priority

● Only add a point if...

○ ...it can only see a single edge

○ ...it is not occluded by other points

or edges

107 / 133

6. Pass-Based Algorithm
First Pass: Secure startpoints

● Start a convex wave at each startpoint

● Better startpoints have higher priority

● Only add a point if...

○ ...it can only see a single edge

○ ...it is not occluded by other points

or edges

108 / 133

6. Pass-Based Algorithm
First Pass: Secure startpoints

● Start a convex wave at each startpoint

● Better startpoints have higher priority

● Only add a point if...

○ ...it can only see a single edge

○ ...it is not occluded by other points

or edges

109 / 133

6. Pass-Based Algorithm
Second Pass: Gather stray points

● Start a convex wave at each

remaining stray vertex

110 / 133

6. Pass-Based Algorithm
Intermediate Pass: Convex Hull

● Incorporate convex hull

111 / 133

6. Pass-Based Algorithm
Intermediate Pass: Integrate islands

● Find islands via DFS on leftmost vertex

● Connect each to their surrounding face

112 / 133

6. Pass-Based Algorithm
Intermediate Pass: Integrate islands

● Find islands via DFS on leftmost vertex

● Connect each to their surrounding face

113 / 133

6. Pass-Based Algorithm
Third Pass: Resolve inflexes

● Find all inflex vertices

● Resolve these by connecting them to

1-2 opposing vertices

114 / 133

6. Pass-Based Algorithm
Third Pass: Resolve inflexes

● Find all inflex vertices

● Resolve these by connecting them to

1-2 opposing vertices

●

115 / 133

6. Pass-Based Algorithm
Intermediate Pass: Integrate stray points

● Find any remaining stray points as well

as their respective convex face

● Incorporate them by iterating around

the surrounding face

116 / 133

6. Pass-Based Algorithm
Intermediate Pass: Integrate stray points

● Find any remaining stray points as well

as their respective convex face

● Incorporate them by iterating around

the surrounding face

●

117 / 133

6. Pass-Based Algorithm
Fourth Pass: Clean

● Iterate over all edges and verify that

they are required

● Remove the ones that are not

118 / 133

6. Pass-Based Algorithm
Fourth Pass: Clean

● Iterate over all edges and verify that

they are required

● Remove the ones that are not

 How do we chose adequate startpoints?

119 / 133

7. Startpoints

120 / 133

7. Startpoints - What are Good Start Points?

starting within clusters starting in empty spaces

121 / 133

clustering with kmeans empty spaces with fixed-distance grid

7. Startpoints - Dropped Concepts

122 / 133

7. Startpoints - Promising Concepts

triangulation edge length max area triangle max spanning triangle

123 / 133

7. Startpoints - Distribution

triangulation edge length max area triangle max spanning triangle

124 / 133

7. Startpoints - Was It Worth It?

triangulation edge length
1254 edges in solution

2082 start points

max area triangle
1250 edges in solution

1383 start points

max spanning triangle
1253 edges in solution

1383 start points

random
1242 edges in solution

4 start points

125 / 133

8. Solutions

126 / 133

8. Solutions - Comparing the Algorithms

Solved Instances by Algorithm Quantity of Points solved by Algorithm

127 / 133

8. Solutions - Score

● T ≙ #edges in triangulation
● A ≙ #edges in solution
● 0 < score < 1
● % of deleted edges from triangulation
● bigger score is better

128 / 133

8. Solutions - Plotting the Algorithms
#points: 500, Triangulation #edges: 1480

single convex waves (927 edges)
score: 0.37

nested hulls (918 edges)
score: 0.38

pass based (879 edges)
score: 0.41

129 / 133

single convex waves (463 edges)
score: 0.5

nested hulls (403 edges)
score: 0.57

pass based (438 edges)
score: 0.53

8. Solutions - Many Collinear Points
#points: 326, Triangulation #edges: 932

130 / 133

8. Solution

Single Convex Waves
first Batch

Single Convex Waves
second Batch

Nested Hulls
both Batches

Pass Based
both Batches

bugfixesbug fixesbugfixes

Final score: 155.432 - Instances: 346 - deleted Edges: 44,9%

131 / 133

8. Solutions - Score Distribution

132 / 133

8. Solutions - Score (Many Collinear Points)

133 / 133

Thank You For Your Attention

