
Approximation of Minimum Convex Partitioning

Benjamin Kahl Abbas Mohammed Murrey Semjon Kerner
Konstantin Jaehne

March 2020

Abstract

A convex partition of a pointset consists of a planar subdivision of its convex hull so that all
faces are empty and convex. Finding a partition with the minimum amount of edges (or faces), is
still a problem of unknown complexity.

As part of the CG:SHOP 2020 competition we devised a set of four different algorithms to
compute various convex partitions for differently arranged pointsets. Here we outline the imple-
mentation of each of them in tandem with our central findings on how they perform.

1 Introduction

1.1 Problem Description

The problem given by the CG:SHOP competition reads as follows:
n points in the plane are given. We must then compute a plane graph that partitions their convex

hull into convex polygons. Notably the convex hull of the set of points is always included. Further-
more the goal is to minimize the resulting number of faces.[2]

Figure 1: Example set of points with a valid (but sub-optimal) solution.[2]

The contest provided a total of 346 different instances, 247 of which were already pub-
lished at the start of the competition. The instances can be classified as follows:

• Uniformly randomly spread points

• Based on some picture, random points on its edges

• Based on the brightness of some picture, random points

• Random points on a grid resulting in many collinear points

Each solution for an instance gets scored individually and the overall score aggregate yields
our teams total score in the competition.
Note that the goals of minimizing the number of faces and of minimizing the number of

1

edges are interchangeable, as implied by Euler’s formula. This defines a simple way to cal-
culate scores based on the worst case (any triangulation) of an instance:

score =
#edges of triangulation− #edges of solution

#edges of triangulation
(1)

Any triangulation is actually a valid solution to the problem, albeit a rather bad one, result-
ing in a score of 0. The best case, a score of 1, cannot possibly be reached as it would require
a solution consisting of zero edges. The goal, however, is to maximize the score over all
instances.

1.2 Basic Functionality

1.2.1 Doubly-Connected Edge List

The data structure we used is the Doubly-Connected Edge List (or DCEL). Commonly used to
represent plane graphs, it has the advantage of fast traversal and easy manipulation of its
edges. However, as stated above, the problem can be formulated either in terms of minimiz-
ing faces or in terms of minimizing edges, hence in early stages of development we decided
to use a simplified version that doesn’t include faces.
Its component parts remain vertices and half-edges, where each edge is represented by a
pair of half-edges and, in turn, each half-edge represents one direction of the edge. In detail
this means:

• Each vertex v has a pointer to an outgoing edge called the Incident Edge of v

• Each half-edge e has pointers to:

– its origin e.origin (a vertex)

– its twin half-edge e.twin (the other half-edge of this edge)

– the next half-edge on its incident face e.next

– the previous half-edge on its incident face e.previous

See Figure 2: The interior half-edges of a face are arranged in counter-clockwise order, in-
duced by the given e.next and e.prev pointers. For example, we get the target vertex of a
given edge e by e.next.origin.[5]

Figure 2: DCEL illustration

2

1.2.2 Orientation Test

Many of our programs functionalities are performed with the use of orientation tests. In
essence, given a line and a point v in the plane, the orientation test equates to the side of the
line the point lies on. To make this unambiguous, a line is defined to have a direction, given
by the order of two distinct points a and b on the line. Thus we can compute whether the
point is on the left of the line by considering the sign of∣∣∣∣abx avx

aby avy

∣∣∣∣
If this number is greater than 0, it means the point is located on the left, and vice versa for
the right. It is one of the core functions used by many of the other functions. For example, to
determine whether two lines intersect, we simply test if the two points of one line are located
on different sides of the other. The following pseudo code illustrates the basic functionality
of the orientation test:

re turn ((b . x − a . x) ∗ (v . y − a . y) − (b . y − a . y) ∗ (v . x − a . x)) > 0

1.3 Team Organization

To commence, we developed two simple algorithms single convex wave and nested hulls which
provided a baseline-score for our subsequent, more complex implementations to beat. We
also settled Python as our programming language of choice, for various reasons:

• All our team members were comfortable with Python.

• Possible disadvantages in terms of runtime were negligible, because the competition
didn’t include a live performance; instead we merely submitted our solutions while
the competition was ongoing, at any time of our choosing.

• The organizers of the contest provided a python library, consisting of a function that
checks if a solution is valid, which is convenient.

Our team conducted regular, weekly meetings and communicated within a private Slack
channel. The finished project is hosted on gitHub under
https://github.com/SemjonKerner/convex_polygons [1].

2 Nested Convex Hulls Approach

In this chapter we will give an overview on the functionality of the nested hulls algorithm
that provides a simple way of partitioning a convex hull. Based on the arrangement of the
instance points, this approach can bring good results in minimizing the number of generated
faces as well.

2.1 The procedures

Figure 3.(a) shows an example of a set of points in plane, the usage of the nested hulls ap-
proach for partitioning this instance can be expressed in the following steps:

1. For a set of points S, iteratively keep computing convex hulls:

(a) Compute the convex hull C of S

(b) Subtract the data points of C from S

(c) Repeat 1a and 1b until S = ∅, as in Figure 3.(b)

2. Connect each two sequential convex hulls in such a way that no edge would be added
unless if we do not do that we violate the convexity conditions, as can be seen in figure
3.(c). Listing 1 shows a possible way to do so in code.

3. While in connecting step we ensure that no edge added can be deleted "those marked
orange in figure 3.(c)", however in step 1 we compute each convex hull separately, and
we don’t know if the edges added in this step are still needed after the connecting step.
Thus, except for the most outer convex hull, for each convex hull computed in step 1
we need to iterate over all its edges, and check if any of them can be deleted. As can
be seen in figure 3.(d) all doted edges are not needed and therefore can be removed.

3

https://github.com/SemjonKerner/convex_polygons

Figure 3: Nested convex hulls example

A possible pseudo-code of connecting two nested convex hulls could look like this:

Listing 1 ConnectingTwoNestedConvexHulls

1: Initialization:
2: in_f← the most right point of the inner hull
3: in_l← next point to in_f in clockwise direction
4: out_f← the most bottom right point to in_f from outer hull
5: out_l← next point to out_f in clockwise direction
6: procedure CONNECTING
7: while in_f, in_l and in_l.next are collinear do
8: in_l← in_l.next // in clockwise direction

9: if out_f is on left of line going from in_f to in_l then
10: while out_l is on left of line going from in_f to in_l do
11: out_f← out_l
12: out_l← out_l.next // in clockwise direction

13: if in_l and out_f are already connected then
14: terminate!
15: else
16: connect in_l to out_f
17: in_f← in_l
18: in_l← in_l.next // in clockwise direction

19: else
20: if in_f and out_l are already connected then
21: terminate!
22: else
23: connect in_f to out_l
24: out_f← out_l
25: out_l← out_l.next // in clockwise direction

26: goto 7

Some exceptional cases of the pseudo-code proposed in listing 1, would arise when the
inner hull is incomplete.

In this case, when only two points are left, the same procedure can handle this case by
replacing lines 17 and 18 by just swapping between in_f & in_l. And in the case of only one
point, we need just to add at least two and at most three edges in order to connect one point
inside a convex hull to its boundary points and still preserving the convexity conditions.

4

2.2 Analysing produced edges

Let V be the number of given points in plane, and E be the number of edges that could be
added by the algorithm when partitioning, then we have the following observations:

• From step 1 when computing the convex hulls iteratively, we add at least V − 1 and at
most V edges.

• And when connecting each two sequential nested convex hulls in step 2, each point of
the inner hull could be connected to at least none and at most two points of the outer
hull, except for the case when the most inner hull is not complete. If the most inner
hull is of size one, then that point need to be connected to at least two and at most
three points of the outer hull, and in the case when only two points were left as the
most inner hull, each one of these two points needs to be connected to at least one and
at most two points of the outer hull. So the number of edges that could be added at
most in this step would be in the case when the most outer hull is of size three and the
most inner hull is of size one, then we need to add at most 2(V − 3) + 1 edges.

• In step 3 when deleting the unneeded edges of each nested convex hull separately, we
were not able to analyze exactly how many edges are going to be removed. Thus, we
naively assume that no edges would be eligible to be deleted in this step.

Therefore, the overall number of edges that could be added at most is then
E = V + 2(V − 3) + 1 = 3V − 5 edges. In fact this is also the number of edges in a simple
triangulated mesh.
Although practically we were not able to formulate an example for which the algorithm
returns a simple triangulation when a better solution is possible, we also were not able to
prove theoretically that such a case cannot happen.
However in practice and for the all instances that we got for the competition and also based
on the structure of distribution of the data points in plane, the algorithm performed produc-
ing roughly E = 2V− ∼ 20% ≈ 8

5 V edges.

2.3 Runtime complexity

Based on the implementation, each part of the procedures in section 2.1 could have a differ-
ent category of time complexity. And in our implementation they are categorized as follow:

1. Iteratively computing convex hulls: We first begin with sorting the set S by x-
coordinates and subsequently by y-coordinates using a built-in sorting algorithm. Based
on its documentation it has an amortized worst case of O(n log n). Then, for each sin-
gle convex hull, we iterate over all points in S twice by computing the upper half and
the lower half of the convex hull, which then takes T(n) = 2n for each single convex
hull. The smallest convex hull can be of size three, meaning the worst case would
be to decrease the size of S by only three points in each iteration. This would take
T(n) = T(n− 3) + 2n to compute all nested convex hulls. Assuming that |S|%3 = 0, it
can be shown1 that the previous recursion will take T(n) = 1

3 n2 + n ≈ O(n2) until we
get S = ∅.

2. Connecting each pair of sequential convex hulls: For each convex hull Ci we iterate
over all its data points twice, once when connecting it with Ci−1 and a second time
when connecting Ci+1 to it. For the most outer and the most inner hulls, we iterate
over their points only once. Assuming that the most outer and the most inner hulls are
of size three, then the connecting step will take T(n) = 2n− 6 ≈ O(n).

1

1 2 3 4 . . . n
3

T(n) = 2n + 2(n− 3) + 2(n− 6) + 2(n− 9) + . . . + 2(n− (n− 3))
= 2n + 2n− 2 ∗ 3 + 2n− 2 ∗ 6 + 2n− 2 ∗ 9 + . . . + 2n− 2(n− 3)

1 2 3 4 . . . (n
3 − 1)

T(n) = n
3 ∗ 2n− 2 ∗ 3 ∗ 1− 2 ∗ 3 ∗ 2− 2 ∗ 3 ∗ 3− 2 ∗ 3 ∗ 4− . . .− 2 ∗ 3 ∗ (n

3 − 1)

= 2
3 n2 − 2 ∗ 3(1 + 2 + 3 + 4 + + (n

3 − 1))

= 2
3 n2 − 6 ∑

n
3 −1
i=1 i , replacing n by (n

3 − 1) in summation formula ∑n
i=1 i = n(n+1)

2 we get:

T(n) = 2
3 n2 − 6 (n

3 −1)(n
3 −1+1)
2 = 1

3 n2 + n

5

3. Removing unneeded edges: Except for the most outer convex hull, we examine all
edges of each hull Ci, assuming that the most outer hull is of size three and the most
inner hull is complete, then we have at most |S| − 3 edges to examine, which also takes
O(n).

From the all above three procedures we can conclude that the overall time complexity is then
bounded by O(n2) when computing nested convex hulls iteratively.

3 Convex Waves

In this chapter we give insight into the single convex wave algorithm. This first approach
we developed at the beginning of the competition is a distance-based sweep algorithm that
propagates in the form of an outward-growing circle, starting from a given location.

3.1 Algorithm

In this Algorithm each iteration proceeds in accordance with the following loop-invariant:
Given a starting point s, pointset P and loop-index i, all points pj in P with |pj − s| ≤ |pi − s|

are convexly partitioned.
In other words, all vertices within the current propagation radius are correctly parti-

tioned and those outside are not.
As can be observed in Listing 2, the convex hull of the partition is maintained as a sep-

arate list (in this case H) at all times. This allows us to efficiently ascertain the exact edge-
sequence visible to an exterior point. These edges are the only ones that the integration of
said point may impact.

Listing 2 Convex Wave with pointset P and starting point s

1: Initialization:
2: Q← Sort P by euclidean distance to s
3: H← Arrange the first three points in Q into a triangle
4: Partitioning:
5: For each point qi in {q4, ...qn}:
6: a) hl ← Calculate the leftmost point in H from qi
7: b) hr ← Calculate the rightmost point in H from qi with r > l
8: c) Connect qi to all points hx with l ≤ x ≤ r
9: d) Remove any redundant edges (hx, hx+1) with l ≤ x < r

10: e) Remove any redundant edges (hx, qi) with l ≤ x ≤ r
11: f) H← Replace all points hx with l < x < r in H with qi

The vertices are processed in order of their distance to the chosen starting point, hence
the radial loop-invariant.

A new vertex is integrated into the partition by connecting it to all vertices on the hull that
are visible to it (two vertices are mutually visible if no edges lie in-between them) (steps a-c).
Subsequently, the hulls edges are tested for redundancy, then removed or kept respectively
(step d). Additionally, the presence of collinear points on the hull may permit the removal
of some edges created in step c (step e). Lastly, the separately maintained convex hull is
updated to accommodate the newly annexed vertex (step f).

A concrete example of these steps is illustrated in figure 4.

3.2 Complexity

Visible bounds on a convex polygon (steps a and b) can be computed in logarithmic time,
thus, the resulting algorithm provides a convex partition of exclusively non-redundant edges
with a worst-case complexity of O(n log n).

If the input set consists of n randomly chosen points, then the expected size of their convex
hull equates to n

1
3 [4], implying an expected runtime of O(n log n

1
3).

In practice, the considerably low complexity of this algorithm manifested itself in the
form of minuscule computation times, even when running the competitions largest prob-
lems (n=1000000) on consumer-grade hardware.

6

Figure 4: Convex wave iteration procedure as described in Listing 2 with starting point N
and new vertex O. Note that vertices A, B and C are collinear.

Figure 5: Convex wave on the euro-night-15 instance with chosen starting point S.

3.3 Parellization / Multiple runs

For large inputs, the results provided by single convex wave are typically sub-optimal, but can
vary in correlation of the chosen starting point. This trait enabled us to rerun the algorithm
on a single input with varying, randomly chosen starting points, whilst only preserving the
best solution.

Based on our results, we found that after a few passes, the algorithm converged with
the smallest achievable amount of generated edges, which was only a slight improvement
compared to the very first solution.

In comparison to the nested hulls approach, a single convex wave would occasionally
perform better and usually yield a mildly improved result after multiple runs. In sets of
many collinear points nested hulls consistently outperformed single convex wave.

7

3.4 Drawbacks

Figure 6 portrays the result provided by single convex wave for a set of 500 points with the
start-location chosen at the top-center.

Notably so, the immediate vicinity of the starting-location produces quite uniform faces
that are stretched out evenly. On the other hand, faces that are further away from that loca-
tion have a tendency to be stretched in a single direction. This pattern of arranging longer
edges to be in parallel to the starting point becomes more pronounced in relation to the
increasing distance.

We identified this trait as a primary weakness of the convex wave algorithm and set
about to ameliorate its effects in the next step.

Figure 6: Convex wave result of the euro-night-500 instance. The vertices’ color indicates
their degree.

4 Merged Convex Waves

In an attempt to break up the inauspicious pattern produced by single convex wave, we de-
vised a variant consisting of multiple wave-instances running in tandem. Whenever two of
these collide, the instances are merged into one.

The intent was to maximize the desirable results single convex wave produced in the vicin-
ity of their starting points whilst curtailing the aforementioned circular expansion.

In this chapter we illustrate this approach and discuss the surprisingly weak results.

4.1 Merging algorithm

Our applied procedure to merge two single convex wave instances conforms to following steps
(see figure 7):

• Calculate visible bounds: Compute the outermost, mutually visible vertices on each
hull.

• Query for intermediate points: Using the foregoing visible bounds, find all vertices
that lie in-between both hulls which remain unclaimed by either.

• Break up occluding hulls: If any of these vertices are occupied by other wave-instances,
they are cleared of all their connected edges.

• Repair broken instances: If any vertices were cleared in the last step, recalculate the
convex hulls of the instances they belonged to and triangulate ruptures caused by the
previous step.

8

• Allocate intermediate points: The points in-between both instances are divided into
two domains by a line and correspondingly allocated to the respective instance.

• Integrate intermediate points: In accordance of the foregoing allocation, each inter-
mediate vertex is integrated into their respective hull using the regular convex wave
iterative procedure.

• Connect instances: By advancing along the mutually visible bounds, both hulls are
connected.

Figure 7: Steps to merge two convex wave instances

In practice, the implementation of a fully functional merging algorithm proved more
challenging than anticipated. Two or more instances can be arranged in a plethora of un-
usual predicaments that are left unhandled by the above given steps. (For instance, an in-
termediate, occluding instance may span across both visible boundaries, leading to it being
split into two parts.)

Such edge cases had to be dealt with on an individual basis. A few still remain unhandled
in our final program, because early testing revealed that the merged convex waves approach
was not worthy of any further pursuit.

4.2 Drawbacks

As the previous paragraph may suggest, the drawbacks of this particular algorithm are in-
deed manifold. Our central findings were that it produced on average 10% more edges than
the best solutions computed by a single convex wave. In addition, optimization possibilities
were scarce, making it not only our worst performing but also our slowest algorithm.

The causes of this lousy performance can be observed in figure 8. The merging steps pro-
duce non-circular instances. As a result, the loop invariant of the convex wave is no longer
true and the effective radius of the instance is stiltedly stretched, putting subsequently inte-
grated points into a disadvantageous predicament.

Our final program allows the execution of this algorithm, although none of our submitted
solutions were computed by it.

5 Pass based Algorithm

In light of the foregoing, we made the decision to avert the complications of a merging step
by opting instead for a pass based variant.

This approach performs a series of sequential procedures where the output of a previous
step is used as input for the next. In order for this pipeline to function correctly, the input
and output of each pass must conform to a strict specification, which we accomplish by
employing several intermediate passes.

9

Figure 8: Iterations of the merged convex waves algorithm on a 500 point instance.

5.1 Pass description and specification

5.1.1 First Pass: Secure largest faces

Figure 9: First pass after processing 15 (left) and 250 (right) starting points.

Input: Set of vertices without any edges and a set of starting points
Output: Amalgamate of stray and connected vertices

The first pass will attempt to build a simple, convex polygon around each starting point.
Each polygon is grown as large as possible without causing polygon-intersections and hav-
ing no stray vertices on their interior. (Example: No vertices can be added to the polygons
in figure 9 (left) without causing intersections or leaving vertices on the polygons interior.)

The expansion of the polygons operates in much the same way as a regular single convex
wave iteration. Although in this case only a convex hull is maintained and points which are
occluded by other polygons or can see more than one edge are skipped.

Since the starting points are processed in the order they are provided, it is advised to sort
them in the order of their favorability.

5.1.2 Second Pass: Gather stray points

Input: Amalgamate of stray and connected vertices
Output: Convex hull of the pointset with its interior partitioned exclusively into simple polygons
(without any intersecting edges or holes). Stray points are allowed in small numbers

The bulk of the second pass performs exactly the same steps as the first one, but rather
than a list of explicitly given starting points, polygons are grown for all vertices that are
not yet connected to anything. This step is meant to gather any remaining stray points into
smaller polygons and incorporate them into a single network.

In rare occasions, where the pass fails to create a triangle at a starting-vertex due to po-
tentially intersecting edges, some stray points can still remain. These are typically quite few
and will be processed separately at a later step.

There is a natural balance between the first and second pass: The more polygons are
formed in the first, the fewer the second will have to create and vice-versa. Given that the

10

Figure 10: Second pass after gathering stray points (left) as well as incorporating the systems
convex hull and integrating islands (right). The integration of an island can be observed in
the top left (2000|6000).

first pass operates on a set of heuristically chosen starting points, it can generally be assumed
that these will produce a better yield than leaving the first pass empty. However, having an
excess of starting points in the first pass would lead to large amount of wasted computation
time, as most of them would not even be able to provide a commencing triangle.

Through trial-and-error we assessed that utilizing roughly 10%-33% of available starting
points (equating to an amount of approximately 25%-90% of n) gave the best results, though
values closer to 10% also ran significantly faster.

After gathering the stray points, the resulting vertex network may still contain nested
polygons (holes/islands) and does not necessarily span the whole of the convex hull (see
figure 10). To rectify these issues in accordance to the output specification, we employ a se-
ries of two intermediate passes:

Intermediate Pass: Convex Hull

To ensure a fully encapsuled system, we incorporate the sets convex hull by performing
a regular Graham scan and instantiating the respective edges.

Intermediate Pass: Integrate Islands

To finalize the second pass, we must take care of any holes - or islands - present in the cur-
rent partition. These are detected by performing a rudimentary DFS traversal on any point
lying on the convex hull which marks all vertices connected to it. Any non-stray vertices that
remain unmarked must be part of an island and are thus integrated into their surrounding
face.

To identify the face an island is located in, we employ a ray casting algorithm (also known
as the even-odd rule): If a ray originating from a vertex on the island intersects a polygon
an uneven number of times, the vertex, and by extension the island, is contained by that
polygon.

Since we do not require directional rays for this task, we simply aver a horizontal ray
each time, which massively simplifies the task of computing intersection points. Given an
island-vertex v and a potentially containing polygon P, then E1 is the set of edges in P that
cross a horizontal line through v:

E1 = {e ∈ P | (e.origin.y < v.y) 6= (e.next.origin.y < v.y)} (2)

A regular orientation test then yields the set E2 of edges in P that cross a horizontal line
through v and lie to the left of v:

E2 = {e ∈ E1 | (e.origin.y < v.y ∧ v is to the right of e)∨
(e.next.origin.y < v.y ∧ v is to the left of e)} (3)

E2 now corresponds to the set of edges in P that are intersected by a horizontal, left-
bound ray originating from v. Consequently, if the size of E2 is not divisible by 2, then v is
fully contained by P.

11

Figure 11: The Even-Odd rule: If a ray originating from a vertex intersects a polygon an
uneven amount of times, the polygon surrounds that vertex (and by extension island).

Once the corresponding face to each island has been found, we iterate over its boundaries
and the islands respective boundaries until two mutually visible vertices are found, which
are subsequently connected, concluding the integration.

Once this intermediate pass is concluded, the solution consists exclusively of simple,
non-intersecting polygons which are all connected by a network. To conclude the partition-
ing, any remaining non-convex vertices (henceforth inflex points) need to be processed in the
next pass.

5.1.3 Third Pass: Resolve inflexes

Figure 12: Left: Third pass input (output of second pass). Right: Third pass after resolving
inflex points, leaving only convex faces and the stray points from the input.

Input: Convexly enclosed vertex network consisting exclusively of simple, non-intersecting poly-
gons. (In some cases: a few remaining stray points)
Output: Fully realized convex partition of the underlying pointset with some redundant edges.

Inflex points are resolved on a face-by-face basis. However, since our basic DCEL data
structure does not actively maintain a list of faces, these have to be aggregated manually at
this point in the algorithm. We do this by simply traversing the bounding edges of each face
individually (by means of the ’edge.next’ pointer), saving them as a list and marking them.
This process is repeated until no more unmarked edges remain.

Once a set of all faces has been established, we resolve the respective inflex points by per-
forming a raycast along its bisection line. Whichever edge the ray collides with is classified
as the opposing edge AB.

Figure 13 portrays examples of the cases handled in order of their priority:

• a) If either A or B is visible from the inflex vertex and lies inside of the bisection-angle,
then the inflex is resolved by simply connecting to that respective vertex.

• b) If A and B are both visible, but do lie outside of the bisection angle, the inflex vertex
is connected to both.

• c) If either A or B is obstructed, then there are still other unresolved inflexes in the
currently processed face. We append this inflex to the back of the queue and resolve
all other inflexes first, before attempting to resolve this one again.

12

Figure 13: Possibilities of an inflex-bisection in order of their beneficiality (left-to-right).

• d) Almost all inflexes fall into one of the previous three categories. However, there is
the possibility of a deadlock scenario (see figure 13 d). Albeit quite rare, here a number
of inflex vertices will continuously queue up waiting for each other to be resolved.
To break up this deadlock we simply connect any of the inflex vertices to any other
vertex on the face that is visible, effectively dividing the polygon into two, which are
processed individually.

Once the inflex resolution has concluded, only convex faces will remain. This signifi-
cantly simplifies the task of integrating any stray points that may have endured from the
first two passes:

Intermediate Pass: Integrate stray points

Figure 14: Close-up example of a stray point integrated into its surrounding face.

Working under the assumption that all remaining faces are convex makes the task of
finding a surrounding face to a stray point trivial. Similarly, the integration procedure can
also be performed in a single edge-loop, connecting only to the furthest vertices within a 180
degree angle of the previous.

5.1.4 Fourth Pass: Cleaning Pass

Figure 15: Fourth pass input and output (final result). Note in particular the high amount of
red vertices turned yellow (vertices of degree 4 or higher to degree 3).

13

Input: Convex partition
Output: Convex partition with no redundant edges

In order to remove any unnecessary edges produced by the previous passes we iterate
once over each edge and test it for redundancy.

This step allows for the introduction of a back-tracking algorithm to maximize the amount
of removed edges, yet from our assessment this would strongly impact runtime and only
produce a low yield of improvement. Thus we process the edges once in the arbitrary order
they are stored in.

5.2 Performance

Our pass based algorithm follows a complex set of steps and procedures, making it signif-
icantly slower than single convex wave or nested hulls. Yet, due to its promising results we
applied a plethora of optimizations that vastly improved its effective runtime.

These include optimizations to datastructures, heuristic information like circle-
intersections in the first two passes, arbitrary cut-off points and some multi-threading. This
dramatically reduced computation time by several orders of magnitude, allowing us to run
the algorithm for all instances of the competition within a reasonable timeframe. (Example:
a 5000 large instance would drop from 2 hours to under 2 minutes of runtime on the same
hardware)

In terms of produced edges, it significantly outperformed both single convex wave and
nested hulls on most instances also producing the most evenly spread out partitions of any of
our algorithms.

6 Generating better starting points

In this chapter we will first discuss the generation of starting points to initialize the previ-
ously discussed algorithms.

We have implemented five of the most promising approaches that we considered for
comparison. We will outline two of these which were excluded at an early stage. Subse-
quently, we will discuss the functionality of the more elaborate approaches. Finally, we give
an overview of the effectiveness of each approach using the above described pass based algo-
rithm.

6.1 Can specific starting points improve the solutions?

The emergence of the possibility to start our algorithms at various locations gave rise to the
question of whether if it is advantageous to start at specific points.

For this chapter we distinguish between instance points, which describe the points given
for an instance and are part of the solution, and the starting points, which are generated in
a separate step before the actual algorithm. These starting points are used to initialize the
merged convex wave and pass based algorithms, but are not part of the solutions.

6.2 Dismissed Approaches

We initially considered two ideas. For one, starting points in large open spaces may be
preferred, and for another, starting points within clusters of instance points might provide
better results. To explore these ideas we explored the following algorithms to improve our
understanding of the starting point distribution.

6.2.1 Clustering

In a clustering approach, polygons would be created within clusters first instead of large
areas. A general estimate on the number of edges of a polygon is difficult to make. Most
likely, the number of edges per starting polygon will not be minimized by this method.
However, this could be useful when using a merge function as in merged convex waves, since
the boundaries of neighboring polygons are reached quickly and thus have to be merged
earlier, which should be advantageous for our implementation of the merge. This estimation
is speculative as we have not done any detailed studies using merged convex waves.

We have researched various known algorithms for clustering points, including k-means.
This algorithm had the advantage of existing as a library function and of converging on its
own, thus being executable unattended on many instances.

14

Unfortunately, k-means always converged rapidly and generated less than ten starting
points on instances with several thousand instance points. Even after tweaking the parame-
ters unreasonably the problem persisted.

Figure 16: Too many starting points
in heatgrid

Figure 17: Not enough starting
points in heatgrid

6.2.2 Heat-grid

The generation in open spaces should have the advantage that large polygons are generated
first, both in area and in the number of edges. However, our initial experiments in merged
convex wave have shown that merging large polygons has a large administrative overhead
and leads to poor results. Consequently, we originally assumed that this approach is prefer-
able for the pass based algorithm.

In order to find large free areas and create starting points in them we experimented with
heat-grids by creating these in different ways. The area covered by the instance points is
initialized with starting points equally spaced horizontally and vertically at the intersections
of an imaginary grid. The algorithm deletes those starting points from the grid which are
too close to an instance point.

Unfortunately, it turned out immediately that both parameters, distance of grid intersec-
tions and distance to instance points, are strongly dependent on the instance. After several
attempts we could not find a good method to calculate these parameters automatically. Re-
sulting problems are illustrated in figures 16 and 17. Moreover, the results for very large
instances could no longer be evaluated with plots, which led to a certain skepticism about
practical results based on the experience gained on small instances.

6.3 Triangulation

In our more advanced approaches, we based the algorithms on a Delaunay triangulation,
which we computed using a publicly available library function that produced deterministic
results, easing their comparison. The computation of a Delaunay triangulation is doable
in a runtime of O(n log n). Below we provide three possibilities to generate the starting
points using this triangulation. Afterwards we will compare these methods in runtime and
distribution of the starting points.

The first two algorithms place starting points in the centroids of the triangles obtained
from the Delaunay triangulation. These two algorithms differ only in the metrics used to
prioritize the starting points. The prioritization results in an order of execution in which
supposedly better starting points are used first. The centroid is calculated by the arithmetic
mean of the vectors to the vertices of each triangle. This function was compiled by a just in
time compiler and could be accelerated significantly. The used compiler, Numba, optimizes
the Python bytecode right before the first execution of the function and compiles it into ma-
chine code. Each subsequent execution of this function is then executed with this compiled
version. It is very efficient on frequently used math functions, but does not provide support
for complex datatypes, hence why it is only sparsely used in our project.

6.3.1 Triangle Area

The triangle area is a metric where the starting points in the centroids of the triangles are
prioritized by area of the triangle.

Since the triangles are generated by the library function of the Delaunay triangulation,
this algorithm does not require significant additional effort. The area of each triangle is
calculated by half of the determinant of two edges of a triangle. This is again a simple

15

mathematical function on the triangle’s coordinates, which could be optimized with the just
in time compiler. Finally, the starting points were sorted according to the corresponding
triangle area.

This method produces a good distribution of the starting points in open spaces. Clusters
are given low priority, but this method still allows for a sparse distribution within crowded
areas. As mentioned before, in this way larger polygons by area and number of edges should
be generated first.

Figure 18: Starting point distribu-
tion by triangle area

Figure 19: Starting point distribu-
tion by triangle span

6.3.2 Triangle Spanning

The span of a triangle is a metric where the longest altitude on the sides of the triangle is
preferred. The idea is that this will avoid elongated border areas between polygons (resp.
convex graphs) by first creating polygons (resp. convex graphs) within these areas. From
the experience with our merged convex wave algorithms we know that these areas give worse
results when the starting point to a convex graph is wither far away or merging becomes
necessary, because in both cases many elongated edges are generated.

To avoid the additional computational effort to determine the altitude vector, we initially
chose to approximate it from the known centroid to the most distant triangle vertex. After
examining the results, however, we found this method to be poorly adjustable and rejected it.
Nevertheless, we were able to develop the following algorithm based on these experiences:

6.3.3 Topology Starting Points

Conclusively, the final algorithm with which we calculated the starting points for all in-
stances, is also based on the same Delaunay triangulation, in this called instance point trian-
gulation (IPT). In this metric the starting points are located at the midpoint of each edge of
the IPT.

These starting points – at the midpoints of the IPT – are then prioritized as follows: A sec-
ond Delaunay triangulation is generated between those starting points, in this called starting
point triangulation (SPT) (see figure 20), which consequently connects the midpoints of neigh-
bouring edges of the IPT. The SPT is then transformed into a directional graph in which the
edges are directed from the corresponding longer edge to the shorter edge of the IPT. Then
the starting points at the centers of the edges of the IPT are sorted by the degree of outgoing
edges in the directional topology graph, so that the starting points with the most outgoing
edges are preferred. Meaning, that midpoints of longer edges are preferred as starting points
over midpoints on neighbouring, shorter edges in the IPT. This is illustrated by an example
in figure 23, showing a decent distribution both in open spaces as well as inside of clusters.

We decided on the naming of this algorithm from the fact that the outgoing edges can be
represented in the third dimension (as in figure 21 and 22), thus spanning a three-dimensional
topological curve in which the locally preferred starting points can be identified as peaks.

16

Figure 20: Instance point triangula-
tion (blue) and starting point trian-
gulation (red)

Figure 21: Best 6 starting points by
edge degree (on z axis) in starting
point triangulation

Figure 22: Topological curve based
on starting point triangulation

Figure 23: Starting point distribu-
tion by topo start

6.4 Results for pass based algorithm

The intentions of the experiments with starting points had been carefully considered, there-
fore we expected a noticeable improvement by these algorithms. Unfortunately, our high
expectations were tempered by a strong measure of disappointment.

Comparing the results from running the pass based algorithm with our complex topology
against using just four randomly chosen starting points, only a slight improvement was
observable, and only if less than a third of the available starting points were utilized. This
can be explained by the pass based algorithm itself, since in the second pass (see 5.1.2) –
when there are still a lot of points unconnected, but no more available starting points – the
remaining instance points are used in the given sort order to start further polygons at this
point. It appears that this procedure was already quite efficient and only a few polygons can
be calculated more efficiently with well selected starting points. A comparison with the area
and span metrics did not show any noticeable improvements.

In this respect, the significant, preceding computational overhead in conjunction with
the pass based algorithm can be rated as very cost-intensive.

17

7 Result comparison

The charts in figure 24 portray the number of instances solved by each of the three algorithms
in our final submission. Note that in the case of two equally good solutions, the left one is
kept. As a result, the amount of solutions provided by single convex wave may be somewhat
over-represented.

Figure 24: Solutions by algorithms compared by number of instances and by number of
instance points. The peak in single convex wave in instance points is explained by it solving
the 1,000,000 points instance best.

7.1 Strengths and Weaknesses

7.1.1 Random Pointsets

When confronted with inputs based on isotropically spread points as well as image- or
brightness-based, our pass based algorithm proved to be an indispensable benefit to our over-
all performance. It vastly outperformed both other algorithms, albeit at a significantly higher
computational cost.

Figure 25: Example results for an instance of 500 randomly spread points (1480 triangulation
edges)

7.1.2 Orthogonal Pointsets

For artificially assembled instances of mostly collinear points, the nested hulls algorithm
proved highly invaluable. To the naked eye, figure 26 may initially appear as a victory
for passed-based, but this is mostly due to the areas being stretched out more evenly. The
nested hulls approach produces longer squares by combining multiple vertices into a single
chain.

18

Figure 26: Example results for an instance of 326 points arranged on orthogonal lines (932
triangulation edges)

7.1.3 Computation Time

The single convex wave algorithm was the fastest and acted as a useful fallback for the few
cases that pass based was unable to provide a solution for. The growth of computation time
can be observed in figure 27.

Figure 27: Computation time for euro-night instances of various sizes. (All performed on an
AMD R1700)

Figure 28: Our solutions to all orthogonal (diamond shape) and regular instances (plus
shape)

19

Figure 28 shows our overall distribution of solutions. As can be observed, the pass based
algorithm dominates throughout most of the larger instances. When it comes to instances
with many collinear points (at the top) nested hulls and pass based are mostly at an impasse,
with nested hulls scoring the majority of solutions.

7.2 Further Considerations

In addition to the four algorithms presented in this document, we also gave consideration
to a number of alternative methods. Amongst these were:

• Flipping and deleting edges from a triangulation: On paper we developed a flipping
edges algorithm utilizing depth first search and backtracking, which is able to find op-
timal solutions. However, since the number of possible triangulations is O(59nn−6)
[3], backtracking is not better than brute force and consequently we did not consider
flipping and deleting algorithms at all. In the end of this project we explored another
flipping edges algorithm which starts at a random triangle and then searches for the
best local option by deleting the most edges from this triangle and all adjacent tri-
angles. Given that we found this algorithm near the end of the contest, we did not
implement this approach.

• Game Theory: We considered game theory for a flipping edges algorithm as well and
discussed following approach: Players are assigned a polygon of a triangulation and
they are allowed some actions flipping, placing or deleting edges that belong to this
polygon. The player would then move to an adjacent polygon, until all Polygons have
been tried by at least one player once. A polygons visited state is reset when it is
changed without a player standing in it (by changing an adjacent polygon). Introduc-
ing resources per round and specific costs to actions could allow further tweaking of a
players strategy. Players intend must be to delete as many edges as possible, though
by placing edges it might enable other players to delete more edges than got placed.
However, inventing a set of rules to generate a reasonable competition between players
seemed too extensive to further explore this approach.

• Competing Neural Networks: Due to their novelty and well provided python-
implementation, we considered using neural networks (NN) to tackle the previous
problem.

In our approach a NN would take the actions and rules as explained in the last chapter.
That way different strategies would be developed automatically and could be studied
by examining the behaviour of the NNs.

• Attacking the checker: Since we had insight into both the C++ and python libraries’
source code, which were used for the checker software, we considered attacking the
checker itself. In this case we would try and find and exploit a flaw or bug in the
checker to achieve extreme good results with malicious solutions. This idea rose after
we found, fixed and reported a bug in the checker software. However, even though
we expect bugs of some usable nature in the checker we did not follow up on this
idea. We only discussed possible procedures and decided it makes sense to hand in
such malicious solutions only minutes before the end of the contest to avoid the jury
finding and fixing any exploits with the help of these solutions. Anyway, we expected
this approach not to be accepted by the jury and abandoned the idea.

20

7.3 Verdict

Figure 29: Milestones of the project and corresponding score

Overall our group achieved place 15 of 25 in the competition. With a score of 156 and
the best teams having 175. Compared to other teams our results on instances with many
collinear points were significantly better than those with uniformly distributed instance
points.

Evidently better approaches are available when the goal is only to minimize edges. Un-
fortunately we have no further information on the runtimes of other teams algorithms com-
pared to ours.

References

[1] B. KAHL, S. KERNER, K. JAEHNE, A. MURREY, Github repository of implementation,
2019/20. URL: https://github.com/SemjonKerner/convex_polygons.git.

[2] ERIK DEMAINE, SÁNDOR FEKETE, PHILLIP KELDENICH, DOMINIK KRUPKE, JOE
MITCHELL, Competition website, 2019/20. URL: https://cgshop.ibr.cs.tu-bs.
de/competition/cg-shop-2020/.

[3] R. S. FRANCISCO SANTOS, A better upper bound on the number of triangulations of a planar
point set, N/A, 102, Issue 1 (2003), pp. 186–193. URL: https://www.sciencedirect.
com/science/article/pii/S0097316503000025.

[4] S. HAR-PELED, On the expected complexity of random convex hulls, N/A, (2011). URL:
https://arxiv.org/abs/1111.5340.

[5] M. V. K. M. O. MARK DE BERG, OTFRIED CHEONG, Computational Geometry: Algorithms
and Applications, vol. 3rd edition, Springer, 04 2008.

21

https://github.com/SemjonKerner/convex_polygons.git
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2020/
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2020/
https://www.sciencedirect.com/science/article/pii/S0097316503000025
https://www.sciencedirect.com/science/article/pii/S0097316503000025
https://arxiv.org/abs/1111.5340

	Introduction
	Problem Description
	Basic Functionality
	Doubly-Connected Edge List
	Orientation Test

	Team Organization

	Nested Convex Hulls Approach
	The procedures
	Analysing produced edges
	Runtime complexity

	Convex Waves
	Algorithm
	Complexity
	Parellization / Multiple runs
	Drawbacks

	Merged Convex Waves
	Merging algorithm
	Drawbacks

	Pass based Algorithm
	Pass description and specification
	First Pass: Secure largest faces
	Second Pass: Gather stray points
	Third Pass: Resolve inflexes
	Fourth Pass: Cleaning Pass

	Performance

	Generating better starting points
	Can specific starting points improve the solutions?
	Dismissed Approaches
	Clustering
	Heat-grid

	Triangulation
	Triangle Area
	Triangle Spanning
	Topology Starting Points

	Results for pass based algorithm

	Result comparison
	Strengths and Weaknesses
	Random Pointsets
	Orthogonal Pointsets
	Computation Time

	Further Considerations
	Verdict

