
Quantifying Heterogeneity in Financial Time

Series for Improved Prediction∗

Yao, Shibo
espoyao@gmail.com

Yu, Dantong
dtyu@njit.edu

Abstract

In this paper, we apply multiple machine learning models to predict
whether the machine learning enabled stock portfolio management outper-
forms the market benchmark. We first quantify the heterogeneity of time
series data using a Kullback-Leibler divergence approach to measure the
similarity between different time points in financial markets. The different
time points contain the historical data that demonstrate the same market
pattern and stock price distributions and constitute a “time regime” for
which we train individual machine learning models. During the testing
phase and the future market validation, we first evaluate its closest time
regime and then choose the designated model in the same time regime for
inference and evaluation. The new approach yields better performance
than those based on the sliding window approach.

Keywords: Financial time series, data shift, heterogeneity.

1 Introduction

Prediction in finance has been difficult due to its stochastic nature, nonlinear-
ity and heterogeneity. People deal with the first two problems using signal
processing methods and nonlinear models, which have been proved effective
along with their fast development and wide application in many fields includ-
ing finance[8][10][2]. Heterogeneity describes the property that time series data
have different statistical characteristics at different time points or within differ-
ent time segments. Data shift in machine learning[17] is another name that is
highly related to heterogeneity. This could lead to significant violations in the
initial model assumptions and therefore weak ability of model generalization.
One existing approach is sliding window[9] shown in Figure 1 which assumes
that adjacent time points are homogeneous. This corresponds to the fact in fi-
nance that many finance practitioners prefer to look at the most recent financial
information[12] as they think the most recent information contains most value
and, the market environment doesn’t change much within a certain period.

∗Presented at 6th Applied Financial Modeling Conference, New York

1

Training Testing

Training Testing

t0 t1 tn

t0 t1 tn

t8

t8

...

...

Initial
Window

Slide
1 Step

Figure 1: Sliding Window Approach

In this paper, we would like to contribute to the problem that given the
financial reports of public-listed companies, how can we predict the stock price
movement within the next period, to be more specific, whether the stocks can
outperform the market benchmark or not. Several nonlinear machine learn-
ing models are applied for classification. We propose to use Kullback-Leibler
divergence[11] to measure the similarity between time segment pairs, and find
out the most similar historical time segments and use them as the training
set given a new time segment as testing set. This is inspired by time series
segmentation and clustering[6][9].

A subproblem of such prediction is to quantify the heterogeneity. To be more
specific, given a testing set with a timestamp, choosing which portions of the
historical data can help to quantify the heterogeneity in time and yield better
performance in prediction? This corresponds to the problem in practice: given
the current financial reports, if an investor wants to make predictions on the
stock performances over the benchmark, which historical financial reports should
he or she look at to build the model? Such concerns also have explanation in
finance. People could have different behavior patterns (e.g. risk aversion-loving)
in different market settings. Thus, it seems necessary to train different models
under different market settings, where each model should be based on the set
of most similar time series segments.

We address the problem of data shift in machine learning taking financial
time series prediction as an example. Data shift has been considered a major
obstacle in machine learning and data mining as it leads to violations of model
assumptions on data distribution. There are three types of data shift, the prior
shift, the covariate shift and the concept shift.

In this paper, we propose to use Kullback-Leibler divergence[11] to measure
the similarity between time segment pairs, and find out the most similar histor-
ical time segments. During the training step, we create one model for each new
time segment by training with the data from all of its similar time segments first.
During the testing phase, we first identify the time segment and its associated
model that was already pre-trained, and use it for inference.

2

Section 2 details the problem of data shift in machine learning and section 3
proposes a KL-divergence based similarity approach. We review the principles
of Naive Bayes, Logistic Regression, Support Vector Machine (SVM), Random
Forest and Adaptive Boosting Tree in section 4 and describe the experiments
and data in Section 5. After that, we offer the results, conclusion and the future
works.

2 Data Shift

Data shift is a class of problems in machine learning where the distribution of
training, testing and real data varies significantly, which renders the trained
model is irrelevant for testing and production deployment. It is already con-
firmed in [13][17] that direct inference by the model is problematic. Tradi-
tional statistical models usually make strict assumptions on data distribution,
for example, the data should be independent and identically distributed (i.i.d.).
Although machine learning models make less strict assumptions on data, the
distribution can still significantly affect model performance. Data shift can be
categorized into three types, Prior Probability Shift, Covariate Shift and Con-
cept Shift.

2.1 Prior Probability Shift

Prior Probability Shift refers to the situation where the target variable distri-
bution varies in training set and testing set, p(y)train 6= p(y)test. In the most
simple case, binary classification, the target variable falls into a Bernoulli dis-
tribution. However, it is possible that the training set is balanced and the
testing set is unbalanced, which means there are approximately equal number
of positive instances and negative instances in training set yet in testing set
there are much more of one class than the other, or the other way around. The
model trained on a balanced set can have unrealistic performance given a new
unbalanced testing set.

In this paper, we construct labels based on excess returns of stocks. Hence
the data is always balanced and the prior distribution stays unchanged.

2.2 Covariate Shift

Covariate Shift refers to the situation where feature value distribution varies,
p(~xtrain) 6= p(~xtest). This is another common problem in machine learning. For
example, peers from computer vision always need to take care of the illumi-
nation changes. Normalization and standardization can be applied to quantify
covariate shift.

In this paper, we first convert feature values into ordinal and then apply
normalization.

3

2.3 Concept Shift

Concept shift refers to the situation where the joint distribution of target vari-
able and features vary in training set and testing set. p(~x, y)train 6= p(~x, y)test
This can be caused by environment changes, for example, a financial participa-
tor can have different opinions toward similar financial reports in bull and bear
markets respectively. Prior shift and covariate shift are quantifiable over data
transformation whereas concept shift is much more difficult to process.

The main idea of quantifying the concept shift is to find out the most simi-
lar historical data regarding the probabilistic distribution and proceed to learn
with the retrieved historical data. Some people refer to this approach as “ac-
tive learning” [3][15] that means actively selecting relevant data to improve the
quality of a model. Here we use the Kullback-Leibler Divergence to measure
the similarity between two distributions at two different time segments. The
smaller divergence, the more similarity between them. We depict how to use
the KL-Divergence to mitigate the concept drift in the following section.

3 The Kullback-Leibler Divergence Based Sim-
ilarity

The KL-divergence measures how much one statistical distribution diverges from
another one[11]. Therefore, the larger the divergence is, the less similarity there
would be. In continuous cases, the KL-divergence is given by

DKL(P ||Q) = −
∫ ∞
−∞

p(x)log
p(x)

q(x)
dx

where P and Q denote two probability distributions and p(x) and q(x) are their
probability density functions. In information theory, DKL(P ||Q) is called the
KL-divergence from Q to P where P is the true probability distribution and Q
is an approximated distribution. One good property of KL-divergence is that it
is a one-way measurement, usually DKL(P ||Q) 6= DKL(Q||P), which complies
with the property of time series. Thus, in our case P represents the distribution
of historical time points for training and Q represents the new incoming time
points for testing.

We cannot apply KL-divergence to measure the joint distribution distance
between training set and testing set as the ground truth of testing would not be
available in practice. Thus we propose to use market benchmark daily trading
data before financial report publishing days to model the market similarity. Such
market similarity can be an indicator of the joint distribution similarity. In other
words, the financial participators’ behaviour pattern toward financial reports
can be influenced by the market environment. And such market environment is
a strong reason for data shift. One model assumption is necessary, that is the
4-price daily returns of market benchmark fit multivariate-Gaussian,

f(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

4

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0

25

50

75

100

125

150

175

200

1000 1500 2000 2500
0

10

20

30

40

50

60

Figure 2: Benchmark Daily Return Distribution v.s. Benchmark Daily Price
Distribution

Training

Testing

t0 t1 tnt8 ...

Divergence-based
Similarity

Figure 3: KL-divergence Similarity Approach

where x ∈ R4 as the 4-price (open, high, low, close) data are used for modeling
the similarity. The reason daily returns instead of original daily prices are
employed for measuring market similarity is that return is more Gaussian-like
as shown in Figure 2.

Since we aim at training different models under different market settings,
where each model should be based on the set of most similar time series seg-
ments, the objective function can be formed as

arg min
J

∑
j∈J

DKL(pj(x)||pt(x))

s.t. j < t ∀j ∈ J,
|J | ≤ C,
pj ∼ N (µj ,Σj),

pt ∼ N (µt,Σt)

(1)

where pt(x) is the probability distribution at the testing timestamp, pj(x) de-
notes the timestamps where we would like to form a dataset for training, J is
the result set, |J | is the cardinality of the set and C is a hyperparameter that
restrict the cardinality of the result set, the constraint j < t enforces that only
historical data can be used for training and prevents future information leak.

5

Given two mutivariate-Gaussian distributions with same dimensionality,N0(µ0,Σ0)
and N1(µ1,Σ1), the KL-divergence from N1 to N0[4] is described by

DKL(N0||N1) =

1

2
(tr(Σ−11 Σ0) + (µ1 − µ0)TΣ−11 (µ1 − µ0)− k + ln(

|Σ1|
|Σ0|

))

(2)

Since we would also like to compare the results given by KL-divergence
similarity and sliding window, the sliding window can be embedded in the ob-
jective. Recall that sliding window always encourages the most recent adjacent
time segments fall into the same training set. The exponential decay function

I(t2) = I(t1)e−λ(t2−t1)

can be used for describing this process. The mixed objective function is

arg min
J

∑
j∈J

DKL(pj(x)||pt(x))− βe−λ(t−j)

s.t. j < t∀j ∈ J,
|J | ≤ C,
pj ∼ N (µj ,Σj),

pt ∼ N (µt,Σt),

β > 0,

λ > 0

(3)

where λ controls the speed at which information decays, β controls the trade-
off between KL-divergence similarity and sliding window. When β approaches
very large, the objective function describes sliding window process; when β
approaches zero, the objective describes KL-divergence similarity process; when
β is in the middle, the objective describes a mixed approach. We can fix other
hyperparameters and vary β to see how well the proposed method performs over
sliding window.

4 Classification Models

The prediction is eventually a binary classification problem.

~x = (x1, x2, ..., xn)T → Y ,

where ~x represents the financial factors that are represented by a scalar value
and retrieved from financial reports, n is the number of the factors and Y is the
label that denotes whether a specific stock outperforms the market benchmark,
for example S&P index. We list some representative financial factors and their
meaning in Table 1.

6

Table 1: Representative Financial Factors
Bloomberg Code Description

EPS GROWTH earnings per share report-to-report growth
EARN FOR COMMON net income available to common shareholders

HISTORICAL MARKET CAP historical market capitalization
SALES REV TURN sales-revenue turnover rate

CF CASH FROM OPER cashflow from operating activities
FNCL LVRG financial leverage

VOLATILITY 30D 30-day volatility

4.1 Naive Bayes

Based on Bayes Theorem and the assumption of conditional independence,
Naive Bayes uses each feature as evidence to maximize the posterior proba-
bility. Bayes Theorem tells us that

p(A|B) · p(B) = p(B|A) · p(A)

, which can be written as

p(A|B) =
p(B|A) · p(B)

p(A)

. In the classification case, it can be written as

p(Ck|~x) =
p(Ck) · p(~x|Ck)

p(~x)

where Ck is class label k, ~x = (x1, x2, ..., xn) is the feature vector. We can apply
the chain rule to expand this formula,

p(Ck|~x) =
p(Ck) · p(x1, x2, ..., xn|Ck)

p(~x)

Naive Bayes makes conditional independence assumption on class label and
feature values, which means

p(x1, x2, ..., xn|Ck) =

n∏
i=1

p(xi|Ck)

Therefore

p(Ck|~x) =
p(Ck) ·

∏n
i=1 p(xi|Ck)

p(~x)
.

Since p(~x) is fixed given the input feature vector, the Naive Bayes method can
be represented as

p(Ck|~x) ∝ p(Ck) ·
n∏
i=1

p(xi|Ck).

7

And we would like to maximize the posterior to construct the classifier,

ŷ = argmaxk∈1,2,...,Kp(Ck)

n∏
i=1

p(xi|Ck).

In practice, Naive Bayes works quite well in predicting market trend.

4.2 Logistic Regression

Logistic Regression originates from linear regression and regresses on the log-
arithm of the odd being true or false. It uses the sigmoid function to convert
the regression result to the probability of a binary label. The sigmoid function
maps a real-number input to a value between zero and one.

σ(t) =
1

1 + e−1

In simple linear regression, we have the model assumption

y = β0 + β1 · x1 + ...+ βn · xn + ε

. If we replace the t in the denominator part in the sigmoid function with a
linear combination of different attributes, we have the form of logistic regression,

y =
1

1 + e−(β0+β1·x1+...+βn·xn)

.

4.3 Support Vector Machine (SVM)

The SVM is a classification method that obtains a hyperplane to separate the
data points of different labels[7] with the largest margin. The tuning process
is to maximize the hyperplane margin, and at the same time to have as few
mis-classifications as possible. The objective function for SVM is described as
follows:

arg min
w, β

1

2
||w||2 + C

N∑
i=1

ξi

subject to ξi ≥ 0,

yi(x
T
i w + β) ≥ 1− ξi ∀i

where w is the correlation coefficient vector, β is the intercept term, C is a
hyper-parameter that controls the trade-off between fitting the data and max-
imizing the margin, N denotes the number of samples for training, xi is the
feature vector, yi is the corresponding label, ξi is the slack variable for con-
structing the soft margin.

8

To deal with nonlinear situations, kernel SVM can be employed. The trick is
to find out a kernel that can map the data points from the original space into a
high-dimensional feature space so that the inseparable cases become separable.
The kernel employed in this report is (Gaussian) Radius Basis Function (RBF)
kernel,

K(x, x
′
) = exp(−||x− x

′ ||2

2σ2
) ,

where x and x
′

are two feature vectors in the original space, || · || denotes l2
norm, σ is a hyper parameter.

4.4 Random Forest

Random Forest[16] is an ensemble machine learning algorithm based on decision
tree. The mechanism of decision tree classifier follows the top-down approach
to separate the data points into different subsets until all data points in each
subsets are correctly labeled or certain criteria is reached. Each node in the tree
corresponds to a feature from the original data and each leaf at the bottom of
the tree corresponds to a class. In a node m, representing a region Rm with Nm
observations, let

pmk =
1

Nm

∑
xk∈Rm

I(yi = k) ,

the portion of class k observations in node m. The observations in node m are
classified to class

k(m) = argmaxkpmk ,

the majority class in node m. In this report, Gini Impurity,
∑K
k=1 pmk(1−pmk),

is used for growing the tree. Random Forest is such a classifier that consists
of many trees where each tree is built on a randomly-selected portion of the
training data. Given a new instance, the predicted label would be the majority
vote of the trees. And since this report focuses on two-class problem, K = 2.
The key of Random Forests is to ensemble multiple learners and vote for the
final learning result. It has the advantage of minimal overfitting and excellent
generalization capability in the new dataset.

4.5 Adaptive Boosting Tree

Boosting is an another ensemble model based on a series of weak learners and of
the form FT (x) =

∑T
t=1 ft(x), where FT is the final classifier, ft is the classifier

built at the t step and T denotes there are T steps in total. The weak learners
in Boosting Tree are shallow trees or leaves.

Adaptive Boosting Tree is a specific type of Boosting Tree method which
has the form [5]

Ft(x) = Ft−1(x) + αtht(x),

9

where Ft(x) is the classifier at t step, Ft−1(x) is the classifier at t−1 step, ht(x) is
the weak learner that minimizes εt, the weighted sum error of misclassifications

εt =

n∑
i=1,ht(xi) 6=yi

wi,t

and

αt =
1

2
ln

1− εt
εt

.

The weight for each data point is updated

wi,t+1 = wi,te
−yiαiht(xi)

and re-normalized in each iteration such that they sum up to 1. All these
models are well developed and already implemented in Scikit-learn[14]. Adap-
tive Boosting Tree fits with the general practice of risk-aversion where investors
identify those error-prone difficult instances and increase their weights so that
these stances will get special attention during the next round optimization.

5 Experiment Settings

For classification, quarterly financial reports issued by 87 public-listed compa-
nies which are also S&P500 components are retrieved from Bloomberg terminal.
The period spreads from 2012-08-01 to 2017-05-01. There are 83 financial fac-
tors used as features and they remain the same for all stocks and all timestamps.
The stocks, features and period are decided jointly to avoid missing values.

The dataset is cross-sectional formatted. Let m be the number of stocks, T
be the number of time points and n be the number of factors, we can use

xi,t,j i = 1, 2, ...,m; t = 1, 2, ..., T ; j = 1, 2, ..., n

to represent the scalar value stored in the element i, t, j in the 3-dimensional
array.

Data preprocessing steps are crucial to the subsequent machine learning
algorithms. Firstly, we modify the extreme values in the factor vectors in the
stock dimension. For a given factor at a certain time point, we denote x̃i,t as the
median value across all financial factors (xi,t,1, xi,t,2, ..., xi,t,n). We normalize the
financial factors by subtracting the median value from the original vector and
attain a new median vector (xi,t,1 − x̃i,t, xi,t,2 − x̃i,t, ..., xi,t,n − x̃i,t). The final
preprocessed value depends on a hyper-parameter, named d. We use empirical
method to get the optimal value of the hyper-parameter. We use the following
equation to replace the extreme values:

x
(1)
i,t,j =

{
x̃i,t − d · ˜xi,t,j − x̃i,t, if xi,t,j < x̃i,t − d · ˜xi,t,j − x̃i,t
x̃i,t + d · ˜xi,t,j − x̃i,t, if xi,t,j > x̃i,t + d · ˜xi,t,j − x̃i,t

10

Secondly, we take out the market sector signal and market capitalization in-
fluences on the factors, by regressing factors against market sector dummy vari-
ables S = (s1, s2, ..., sk)T , k = 9, and logarithm of stock market values log(vi,t).
Taking logarithm of large-scale variables is a commonly-used transformation for
rescaling financial data.

x
(1)
i,t,j = β0i +BTi · Si + βk+1i · log(vi,t) + εi,t,j

where Bi = (β1, β2, ..., βk)T is the coefficient vector of the dummy variables.
Now we take the residuals εi,t,j as the processed factor values to carry on.

x
(2)
i,t,j = εi,t,j

Thirdly, the factor values at each time point are rescaled to a uniform dis-

tribution on (0, 1] by reordering them in an increasing manner (x
(2)
[i],t,j , where [i]

is the new order) and dividing their orders by m which is the total number of
stocks. This can help to quantify covariate shift in data.

x
(3)
i,t,j =

[i]

m

As for constructing labels for the patterns, we first calculate the rate of
return in such way:

ri,t =
∆PCi,t

PCi,t

where ri,t is the rate of return of stock i within in period t, PCi,t is the closing
price of stock i at the beginning of time period t, ∆PCi,t is the closing price
change of stock i within time period t.

Then, we take the excess return r
′

i,t, which is the difference between stock
price and mean return of selected stock pool,

r
′

i,t = ri,t −
1

m

m∑
i=1

ri,t

and give each stock at each time point a label Li,t, which is analogous to Y ,

L(xi,t) =

{
1, if r

′

i,t ≥ 0

0, if r
′

i,t < 0

. Note that label L(xi,t) corresponds to pattern vector xi,t = (xi,t,1, xi,t,2, ..., xi,t,n)T .
By using the label based on excess return, we can quantify the prior shift in
data.

As we use excess stock returns as target, this unavoidably enforces that
the targets must be constructed within the same periods. In other words, the
stock returns need to be compared with each other within the same periods for
calculating the excess returns. Some flexibility in terms of target construction
is sacrificed in exchange of solving prior shift. Therefore, we need to determine

11

Cut-off
Date

Report Period

Target
/Label

Market
Environment

Figure 4: Financial Reports Density

some cut-off dates based on the density of financial reports. According to the
data, most of the publicly listed companies disclose their financial reports four
times a year, in December or January for the first one, in March or April for the
second one, in June or July for the third one and in September or October for
the forth one respectively. Thus, the targets are calculated based on the stock
excess returns in May, in August, in November and in February correspondingly.
Only in this way can we make sure the target labels are exactly in between of
two report periods, which means the target variable is controlled by the prior
financial report and not affected by future information.

For market similarity modeling, one month daily OHLC(open-high-low-close)
prices of market benchmark before financial report publishing days are used for
estimating the mean vectors and covariance matrices of Gaussian distributions,
where the price of market benchmark is the summation of all stocks being ana-
lyzed in the market. As shown in Figure 4, the blue curve represents the density
or the counts of financial reports published, the cut-off dates are the endings of
report periods, the labels are constructed based on the one-month stock excess
returns, and the market similarity is based on the one-month benchmark daily
trading data.

Accuracy and back-test performance are used for measuring the goodness
of the model. To be more specific, portfolios are constructed based on the
prediction. The portfolios always buy in those stocks with an outperform label
and hold the positions for 1 month. The back-test performance is presented in
both simple cumulative return

radd = ΣTt=1

1

S
ΣSs=1rs,t

and compound cumulative return

rexp =

T∏
t=1

1

S
ΣSs=1(1 + rs,t)− 1

, where S is the total number of stocks being back-tested and T is the back-test
time duration.

12

Table 2: AUC of Lift Curves on Testing set
KL SW

Naive Bayes 1.076 1.064
LR 1.056 1.022

SVM 1.027 1.027
Random Forest 1.068 1.060

AdaBoost 1.054 1.034

In financial investment problems, it is usually unnecessary to adopt the result
on the whole testing set. Instead, people often look at those most reliable
predictions and make decisions accordingly. By most reliable predictions, it
usually means those predictions that come with the highest scores given by
machine learning models, e.g. the instances that are furthest away from hyper-
plane in SVM and the instances with largest posterior in Naive Bayes. In
this paper, we also apply post-selection on the predictions to keep those most
reliable predictions and dispose of the unreliable ones. Consequently, lift curve
is an appropriate performance visualization tool. The lift curve being presented
in the paper is the average of the positive instances correctly labeled divided
by the positive base rate and the negative instances correctly labeled divided
by negative base rate given different threshold α. In here, α corresponds to
the top proportion and the bottom proportion being selected. For example,
α = 0.4 means we select top 40% of the predictions as positives and the bottom
40% as negatives. We also look at the Area Under Lift Curve to compare the
performance.

We use 10-fold cross validation and grid search and compare the accuracy
scores to determine the hyper-parameter values of machine learning models.

6 Results and Discussion

In the initial experiment, we set the the size of training dataset to be 6, i.e.,
for each time stamp as a testing set, we obtain six historical time stamps that
have the closest market environment and pattern based on KL-divergence. The
lift curves are significantly above the reference line y = 1 of random guess and
indicates that the models work much better than random guess (Figure 5). We
also observed that the Support Vector Machine combined with KL approach
(SVM+KL) does not have noticeable improvement over the SVM model based
on the sliding window. One potential reason is that the SVM creates its decision
boundary only based on some representatives of the dataset (a.k.a, support
vectors) even our KL-divergence approach produces more samples for training
than does the sliding window. The resultant support vectors between the KL-
divergence and sliding-window remain the same and thereby define the same
decision boundary with comparable performance.

During the experiment, we noticed that the Naive Bayes model has the
largest score for Area-Under-Curse (AUC) and yields the best performance.

13

0.0 0.2 0.4 0.6 0.8 1.00.85

0.95

1.05

1.15

1.25

1.35

1.45
NB+KL
NB+SW

0.0 0.2 0.4 0.6 0.8 1.00.85

0.95

1.05

1.15

1.25

1.35

1.45 LR+KL
LR+SW

0.0 0.2 0.4 0.6 0.8 1.0
0.85

0.95

1.05

1.15

1.25

1.35

1.45
SVM+KL
SVM+SW

0.0 0.2 0.4 0.6 0.8 1.00.85

0.95

1.05

1.15

1.25

1.35

1.45
RF+KL
RF+SW

0.0 0.2 0.4 0.6 0.8 1.00.85

0.95

1.05

1.15

1.25

1.35

1.45
Ada+KL
Ada+SW

Figure 5: Model Lift Curves Based on KL-divergence v.s. Sliding Window

14

0.0 0.2 0.4 0.6 0.8 1.00.95

1.05

1.15

1.25 NB+KL(4)
NB+SW(4)

0.0 0.2 0.4 0.6 0.8 1.00.95

1.05

1.15

1.25 NB+KL(2)
NB+SW(2)

Figure 6: Naive Bayes Lift Curves Given Different Training Set Size

Table 3: Naive Bayes Accuracy on Testing Set
α KL(6) SW(6) KL(4) SW(4) KL(2) SW(2)

0.5 53.48% 53.84% 54.69% 52.87% 52.75% 52.75%
0.4 54.54% 53.85% 54.69% 53.70% 54.23% 53.17%
0.3 55.31% 54.02% 55.11% 54.82% 55.11% 54.22%
0.2 54.89% 55.03% 55.34% 55.19% 54.89% 55.33%
0.1 56.34% 55.10% 59.44% 57.59% 58.20% 56.97%

Moreover, Naive Bayes dominates other models in terms of training time (several
minutes versus up to several hours on a personal computer). We did thorough
experiments to confirm its robustness. Figure 6 shows the robustness of the
Naive Bayes model that is trained with the training datasets of different sizes.
The AUCs scores by KL and SW are 1.080 and 1.070 for the training size 4, and
1.074 and 1.060 for the training size 2 respectively. These results are consistent
with the initial experiments. We developed a portfolio management strategy
that uses the prediction result to make trading decision and did back-test based
on this trading strategy. The S&P500 index has a simple addition return of
24.51% within the same back-test period and the benchmark (stock pool) has
27.29% within in the same period. They have the compound returns of 30.68%
and 35.32% within the same period respectively. Most of our trading strategies
based on prediction outperform S&P500 and the stock pool (Table 5), especially
for the KL-divergence approach and those selected predictions. Apparently, the
post-selection is effective in applying machine learning in selecting stocks in
financial market because the smaller the α is, the larger the accuracy and back-
test return we will obtain.

In terms of accuracy and back-test performance, KL-divergence mostly dom-
inates sliding window. The area-under-lift-curve given by KL is always larger
than or equal to sliding window although the curves are indeed rough and some
parts of KL lift curve are under the corresponding parts of sliding window.
This is partially due to the relatively small size of the data set. In addition,
as stated in the beginning, financial time series prediction has always been a
difficult problem not only because of its heterogeneity, but also the noise and

15

Table 4: Naive Bayes Back-test Performance on Testing Set (simple addition)
α KL(6) SW(6) KL(4) SW(4) KL(2) SW(2)

0.5 29.09% 29.27% 30.49% 26.08% 29.30% 27.63%
0.4 30.99% 30.87% 31.89% 28.67% 30.97% 29.40%
0.3 32.91% 34.29% 35.05% 30.43% 34.77% 31.95%
0.2 34.58% 32.91% 35.52% 32.01% 35.43% 33.08%
0.1 38.58% 34.71% 42.67% 33.11% 36.29% 44.60%

Table 5: Naive Bayes Back-test Performance on Testing Set (compound cumu-
lative)

α KL(6) SW(6) KL(4) SW(4) KL(2) SW(2)
0.5 34.60% 34.88% 36.31% 30.64% 35.46% 32.52%
0.4 36.57% 36.31% 38.15% 33.33% 36.31% 33.70%
0.3 39.72% 41.72% 42.98% 35.56% 41.09% 37.48%
0.2 41.82% 39.97% 44.49% 39.04% 42.70% 39.83%
0.1 46.84% 42.94% 54.19% 39.04% 45.74% 56.73%

human factors–in many situations we are not even confident about the signals
or the signals could be completely fake.

As a supplementary to the back-test return, we also use the prediction to
construct a portfolio and combine with the historical price to recover the return
trend of S&P500, the stock pool and the portfolio (Figure 7, training set size
of 4 and α = 0.3). The KL portfolio significantly outperforms the rest while
the SW portfolio couldn’t beat the stock pool. It is interesting to see that KL
portfolio rises up remarkably in the second half of the back-test period. One
possible explanation is that in the beginning, there is barely anything to select
for KL. This leads to the fact that the training set of KL is quite similar to the
training set of SW in the beginning and only when the time goes further there
appears difference.

7 Conclusion and Future Work

In this paper, we demonstrate that the commonly used machine learning mod-
els are effective in predicting the trend of financial time series and ensuring the
investment strategies based on the prediction results to be profitable. We dis-
cussed an essential problem in financial market prediction, i.e., the heterogene-
ity caused by the stochastic nature of stock movement and market environment
will invalidate any machine learning that claims to capture the patterns over
an extended period. On the other hand, the market has cyclic patterns, which
motivates our KL-divergence-based similarity to measure the relevance between
two time points and identify the time regime with similar market behavior. Ex-
periments confirm that the proposed approach integrates all historical values of
multiple time points and trains machine learning models with sufficient signal.

16

0 50 100 150 200 250 300 350 400
trading day

0

10

20

30

40
cu

m
ul

at
iv

e
re

tu
rn

 %

NB+KL
NB+SW
StockPool
SP500

Figure 7: Back Test Cumulative Return

In particular, our approach has a better generalization performance than those
based sliding window. The portfolio based on our prediction algorithm outper-
forms the stock pool benchmark by up to 20% and S&P500 index by up to 25%.
In addition, we discovered that a simple Naive Bayes model is effective, robust
and fast during training and inference comparing to other relatively complex
models.

We envision our future work will incorporate active learning and transfer
learning to quantify the data shift problem and include more statistical dis-
tributions (student t-distribution and Laplace distribution) to model the stock
return that often does not fit Gaussian distribution very well because the em-
pirical stock return distribution usually has a tall peak in the middle and heavy
tail. Rescaled student t-distribution may describe stock returns[1] better than
the standard Gaussian model.

References

[1] Argimiro Arratia. Atlantis Studies in Computational Finance and Financial
Engineering. Springer, 2014.

[2] Michel Ballings, Dirk Van den Poel, Nathalie Hespeels, and Ruben Gryp.
Deep neural networks, gradient-boosted trees, random forests: Statistical
arbitrage on the s&p 500. Expert Systems with Applications, 42:7046–7056,
2015.

[3] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning
with statistical models. Journal of artificial intelligence research, 4:129–
145, 1996.

17

[4] John Duchi. Derivations for linear algebra and optimization. Berkeley,
Califonia, 2007.

[5] Yoav Freund and Robert E. Schapire. A short introduction to boosting. In
In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 1401–1406. Morgan Kaufmann, 1999.

[6] David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec. Toeplitz in-
verse covariance-based clustering of multivariate time series data. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017.

[7] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York Inc.,
New York, NY, USA, 2001.

[8] Wei Huang, Yoshiteru Nakamori, and Shou-Yang Wang. Forecasting stock
market movement direction with support vector machine. Computers &
Operations Research, 32(10):2513–2522, 2005.

[9] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online
algorithm for segmenting time series. In Data Mining, 2001. ICDM 2001,
Proceedings IEEE International Conference on. IEEE, 2001.

[10] Christopher Krauss, Xuan Anh Do, and Nicolas Huck. Evaluating mul-
tiple classifiers for stock price direction prediction. European Journal of
Operational Research, 259:689–702, 2017.

[11] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.
Statist., 22(1):79–86, 1951.

[12] Tim Loughran and Bill McDonald. Information decay and financial disclo-
sures. working paper, 2014.

[13] Jose G Moreno-Torres, Troy Raeder, RoćıO Alaiz-RodŕıGuez, Nitesh V
Chawla, and Francisco Herrera. A unifying view on dataset shift in classi-
fication. Pattern Recognition, 45(1):521–530, 2012.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[15] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 6(1):1–114, 2012.

[16] Leo Breiman Statistics and Leo Breiman. Random forests. In Machine
Learning, pages 5–32, 2001.

18

[17] Masashi Sugiyama, Neil D Lawrence, Anton Schwaighofer, et al. Dataset
shift in machine learning. The MIT Press, 2017.

19

