
Experience Report: Kandria - A Game in Common Lisp

Nicolas “Shinmera” Hafner
shinmera@tymoon.eu

Shirakumo.org

Zürich, Switzerland

ABSTRACT
In this paper we outline the experience we’ve gathered while devel-
oping Kandria using Common Lisp. Kandria is a video game in the
“action RPG” genre and has been developed for Windows and Linux
with the SBCL implementation. Being a video game, the project
touches a unique combination of disciplines within computer sci-
ence, and as such provides an in-depth and comprehensive view of
the development process of a large-scale project in Lisp, and the
general language ecosystem.

CCS CONCEPTS
• Computing methodologies→ Computer graphics; • Computer
systems organization → Real-time system architecture; • Soft-
ware and its engineering→Application specific development
environments; Object oriented development; Error handling and
recovery; Software development methods.

KEYWORDS
Common Lisp, Games, Video Games, Computer Graphics, Experi-
ence Report

ACM Reference Format:

Nicolas “Shinmera” Hafner. 2023. Experience Report: Kandria - A Game
in Common Lisp. In Proceedings of the 16th European Lisp Symposium
(ELS’23). ACM, New York, NY, USA, 7 pages. https://doi.org/10.5281/zenodo.
7816871

1 INTRODUCTION
Kandria is a video game in the “action RPG” genre that was released
worldwide on the Valve Steam platform for Windows and Linux
in January of 2023, receiving very positive reviews. The game was
developed using the Trial engine and thus relies almost entirely
upon code and libraries written in Common Lisp – to our knowledge
the first commercial game like this to be released.

Games lie at an intersection of many different computer science dis-
ciplines such as audio, graphics, interfaces, soft real-time, artificial
intelligence, and more. As such games provide a unique challenge

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’23, Apr 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.7816871

Figure 1: A screenshot of Kandria

in combining all of these disciplines together into one product, and
ultimately shipping this product to paying customers.

In this paper we will outline the challenges we faced in realising
Kandria as related to Common Lisp, discuss advantages of our ap-
proach, and take a look at the work still ahead of us in expanding
the capabilities of our engine to better address the requirements
of even more complex games we would like to develop in the fu-
ture.

In particular we will note our own experiences with a few common
Boogeymen, such as the overhead of CLOS dispatch, the pause
times of GC, the maturity of the library ecosystem, and the stability
and size of deployed binaries.

Since this is an experience report, we cannot present any specific
figures on performance characteristics, statistics on used projects,
or some sort of unified thesis. Instead we hope that this insight
will be valuable for readers to gain a better understanding of the
complexities involved, the benefits we have identified with Lisp
over other ecosystems, and, most importantly, the areas in which
work still needs to be done.

All of the work we’ve done, including Trial[15], and even Kan-
dria[10], is open source and available on our GitHub[6], in the
hopes that it will inspire others to create new projects based upon
them.

2 RELATEDWORK
In [20] we discussed many similar points that this paper touches
upon in a format more suitable for people unfamiliar with the
intricacies of lisp and especially Common Lisp.

Strandh[24] proposes a new approach to improve the performance
characteristics of generic function dispatch. Since we make heavy
use of CLOS in our game, such improvements are very relevant.

https://doi.org/10.5281/zenodo.7816871
https://doi.org/10.5281/zenodo.7816871
https://kandria.com/steam
https://doi.org/10.5281/zenodo.7816871


ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Nicolas “Shinmera” Hafner

Patton[23] are working on a new parallelisation of the SBCL[13]
garbage collector to allow for faster collection and thus reduced
pause times. GC pause times are a frequently reported issue in
games, as they can cause unexpected latency, and thus lead to
drops in the framerate.

Mäkelä[21] describe their experience in developing a game using
the open source game engine Godot[8] with C# in their BSc. thesis.
Godot is currently the leading open source game engine, and is
striving to be a viable alternative to commercial products like Unity
and Unreal.

Craighead et al.[18] cover a case study of using Unity[16], a pro-
prietary game engine, to build a small game. Unity is currently
most-used game engine for small to mid-sized games.

Nurminen[22] describe their experience developing and deploying
a Common Lisp application to users.

3 LIBRARY ECOSYSTEM
In this section we will outline our general experience working in
the Common Lisp ecosystem, and particularly the contributions
we’ve made to it in order to implement Kandria.

Out of the 110 libraries Kandria depends upon, 54 were written by
us. This does mean that we’ve spent a rather significant amount of
time “yak shaving” and creating libraries to fulfil a variety of needs
that were, prior to their creation, either completely unfulfilled, or
unsatisfactorily so. We will go into detail on some of the more
important ones in the following subsections.

While this is undeniably a lot of work, it has been done now and
is available to others. Furthermore, of the other half of libraries
that we were not authors of, the vast majority have been extremely
stable. We only needed to supply extremely minimal patches to
a select few libraries, most of which were reviewed and accepted
relatively swiftly.

Among this we also count the SBCL implementation itself. While
we strive to write implementation independent code in our separate
libraries, for Kandria itself we decided to only focus on SBCL in
order to reduce the development overhead. SBCL offers great native
code performance and is available for all platform configurations
that we require. And, perhaps most importantly, it is very actively
maintained. Most of the issues we’ve encountered in releases were
usually fixed within a few weeks, if not days.

We are also actively investigating the possibility of porting SBCL
and Kandria to the proprietary Nintendo Switch platform, though
due to non-disclosure agreements we are unfortunately not at lib-
erty to speak of the specifics involved in that at this time.

Overall while we certainly had to create a lot of libraries to fulfil
our needs, and those libraries presented a significant amount of
effort to implement, we remain convinced that we were only able
to implement these systems in a respectable amount of time due to
the convenience factors that Lisp offers us.

We’ll now touch on a few specific areas that we developed libraries
for. This is by no means exhaustive, but we consider these to be the
most relevant to the general community.

3.1 Math Libraries
While there is no shortage of math libraries available to Common
Lisp, especially linear algebra implementations, most of those li-
braries focus on large scale scientific computing, often by integrat-
ing with foreign libraries such as BLAS and LAPACK. For basic
computer graphics and especially games, this is overkill. Most of
the linear algebra stays within the confines of 2 × 2, 3 × 3, 4 × 4
matrices, and 2, 3, and 4 element vectors.

It is more important to provide a very convenient interface that
allows us to perform computations on these elements with adequate
speed. Back when Trial started out, no linear algebra libraries with
such a limited focus existed, and as such the 3d-Vectors and 3d-
Matrices libraries were born. We have since extended this set of
libraries to include 3d-Quaternions for common operations with
rotations, and 3d-Transforms, for the convenient encapsulation of
a “transform gizmo” that can represent rotation, translation, and
scaling without gimbal Lock.

All of these libraries rely very heavily on macros to reduce code
duplication and automatically generate code for loop unrolling and
other common tactics in linear algebra code. The current versions
of these libraries all work by emitting an etypecase for every
operation, which then handles dispatch based on the provided
argument types. The operation functions are inlined, such that the
compiler can eliminate the dispatch altogether if the argument types
are locally known. This allows us to provide a generic interface to
the user that’s quite convenient, while still staying competitive in
performance critical sections.

Unfortunately this approach, while portable, is also riddled with
issues: since every operation is inlined, this leads to explosive code
growth for the compiler before it can reduce the code back down
again by eliminating superfluous dispatch etypecases. Type in-
ference is also much more complicated, and stack allocation is
usually only possible via careful manual rewriting of the opera-
tions involved. The libraries are also limited to a single float type,
meaning you can by default only create vectors with single-floats
as elements.

In this case the lack of static typing facilities and lack of portable
compiler hooks for integrating with type inference really hurts the
compile speed, implementation clarity, and ultimate performance
of the resulting code.

We have started work on a full rewrite of all libraries that take a
fundamentally different approach: instead of emitting etypecases
and relying on inlining, we create a sort of “template mechanism”
by which we can generate all possible permutations of a singular
function for all involved argument types.This gives us very tiny, but
perfectly optimised base functions for all required operations. We
then create a dispatcher function on top which falls back to emitting
an etypecase on other implementations, but will hook into SBCL’s
deftransform and similar facilities to better handle expansion and
type propagation. Finally we create variadic functions on top of the
dispatchers which transform any possible variadic call into calls
to dispatched two-argument operation functions, while retaining
proper type propagation.



Experience Report: Kandria - A Game in Common Lisp ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

Ultimately this results in much more easily understandable and per-
forming code. However, it still comes at a cost: because we cannot
know ahead of time which type combinations and operations the
user will actually need, we must generate all possible combinations
ahead of time. This potentially results in thousands of functions be-
ing generated that are never used. We would like a compiler facility
that allows us to hook into the expansion process of a function call
to generate the required permutations on-demand.

While such a facility is conceivable, and making it work for un-
known runtime types by delayed compilation is, too, we currently
have no plans to implement such an advanced strategy. More im-
portantly, we hope that at some point in the future implementors
can come to some kind of consensus that would allow a portability
library to expose a similar mechanism to SBCL’s deftransform
for faster, more convenient, type-inference-informed call expan-
sion.

3.2 User Interfaces
When Trial initially began its development in 2016 it was directly in-
tegrated with the Qt4 UI toolkit (via CommonQt / Qtools). Since Qt4
is a rather large dependency that not only increases the deployed
package size, but also invites a lot of C and C++ interoperation that
can cause hard to debug issues, and has not been maintained in
many years, it was quickly abandoned, however. These days Trial
does not depend on a UI toolkit directly, or even a specific backend
for its OpenGL use.

Aside from CommonQt, the options for a user interface in Common
Lisp were, and remain, limited: GTK runs the same issues as Qt,
though with even worse deployment and support aspects, LTK is
far too limited and cannot integrate with OpenGL at all, McCLIM
similarly does not possess an OpenGL backend or method of inte-
gration and is still very limited in its theming capabilities, and the
newly established CLOG requires a browser to be shipped, which
is far too heavyweight.

As a result we decided to implement our own toolkit, called Alloy.
Alloy is separated into different protocols, with the core being
completely independent of any rendering or input method, instead
only handling the layout decisions, the input handling via a generic
event protocol, and a system to dynamically react to changes in the
represented data.

How visual elements can be rendered is then offloaded to several
other protocols: the “Simple Rendering Protocol” which provides
a basic text and shape rendering API, the “Presentations Proto-
col” which allows users to describe how to compose the look of
a visual element via the basic shapes from the Simple protocol,
and the “Animations Protocol” which allows users to describe
how shapes change over time as properties of a visual element
are changed.

Finally, the Simple protocol needs to be implemented by a backend,
such as the “OpenGL Renderer” to actually provide a way to draw
the shapes in some way, the Core protocol needs to receive input
events from the surrounding context to actually react to user input,
and some method of rendering and layouting text needs to be

provided. Text in particular is separated out as it is a very complex
topic in its own right.

This separation of concerns via protocols implemented in CLOS
allows us to make Alloy far more amenable to being ported to
different backends. In particular, it allows us to use Alloy in contexts
that are otherwise rather unusual for UI toolkits, such as within a
game where the actual operating system interaction and rendering
logic cannot be directly controlled by the toolkit itself, but is instead
handled by the game engine.

Usual desktop UI toolkits are rather cumbersome to style effectively,
as most desktop applications are expected to present themselves in
a “native look and feel”, while games are expected to have rather
elaborately customised and animated interfaces. Alloy’s presenta-
tions protocol allows us to style the UI quite extensively. Thanks to
macros we can present the user with a declarative style interface
to define these behaviours with relative ease.

This protocol separation would not be possible to implement with-
out the high degree of flexibility CLOS offers us in combining
behaviours, and even without advanced techniques such as shadow
mixins and metaclasses.

3.3 Audio Processing
Of the entire system, audio processing is where the toughest con-
straints apply, as audio is very sensitive to latency. We cannot
process audio in large buffers to smooth over processing hiccups,
as then sound effects would be desynchronised from their visual
counterparts. Audio processing can also often be very computation
intensive, and benefits greatly from vectorisation.

For these reasons we have decided to write the main bulk of our
processing as a C library, rather than Common Lisp, as at the time
it was the fastest way for us to get the kinds of performance con-
straints met and the kinds of capabilities we needed. Now with the
advent of the sb-simd contrib, writing a competitive alternative
(albeit constrained to SBCL) may be feasible.

In any case, our library, libmixed, follows a very strict C style and
is extensible and interoperable from Lisp. You can write “segments”
that process audio from Lisp as well, and integrate with the rest of
the processing system neatly.

This allows us to write the more hairy parts such as audio format
decoding, and audio playback in Lisp, instead, without sacrificing
the performance gains in the bulk of the processing. Libmixed then
takes care of unpacking and decoding audio streams, applying a
variety of effects, mixing multiple audio streams together, and even
resampling everything to fit into the expected, and often differing,
sample rates at the input and output points.

Libmixed also includes a full introspection API, allowing us to
not only put the audio processing pipeline together from Lisp, but
also to interactively inspect the state of the processing segments
and modify them at runtime. We can also use the extensibility to
prototype new effects from Lisp before lowering them down to C
should the performance requirements be strict enough.



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Nicolas “Shinmera” Hafner

On the Lisp side we have also crafted a higher-level system called
Harmony, which makes it trivial to put together these processing
pipelines, and interactively play music and sound effects back. In
Kandria we use these pipelines for a variety of effects such as cross
fading multiple music layers (called “horizontal mixing”), ducking
the audio with a low pass filter when the player is underwater,
and slowing down audio playback when the player enters a slow
motion segment.

3.4 Operating System Interaction
In order to output sound and graphics, process input, and receive
user information we need to interact with the surrounding operat-
ing system. On all three targets we care about, this is done via calls
to a C API of some sort. Thanks to CFFI it is usually unnecessary
to actually rely on an external C library to do so, and we can in-
stead code the interaction directly in Lisp, retaining the interactive
implementation and debugging.

Despite this though, the interaction still involves C and the usual
memory safety perils, and depending on the interface the documen-
tation often leaves things to be desired, especially on MacOS. So
while our implementation definitely benefits from a much faster
retry cycle, it is still a very arduous process to write these OS
interoperation libraries.

Particularly we had to write libraries to do the following:

(1) Input handling for game controllers. This is rather involved,
especially on Windows, where multiple APIs need to be sup-
ported simultaneously.[1]

(2) Audio output. We’ve implemented several different output APIs
on both Linux and Windows, as both systems can differ on
their supported output interfaces depending on version and
setup.[11][2][9]

(3) Native dialog boxes. In order to show emergency error boxes
or prompt the user for files.[12][4]

(4) Font discovery. To search the available fonts for a matching set
we need to query operating system APIs.[5]

(5) Language querying. To ensure the game launches with the
user’s language (if supported of course), we again need to query
the environment for the preferred localisation.[14]

For graphics output and general window interaction we currently
rely on the GLFW[7] C library, as it has proven extremely stable and
portable. It is conceivable that we will replace this at some point to
reduce C dependencies, but given that we’ve had zero issues arising
from its use, this is rather low priority for us.

3.5 Service Integration
In order to publish a game on the Steam platform, you must inte-
grate with their SteamWorks SDK. The actually required amount
of integration is very minimal, and merely involves loading their
shared library and calling a single function. However, the Steam-
Works SDK offers a lot of other functionality that games can make
use of, like social networking features, user generated content shar-
ing, multiplayer systems, and more.

Unlike the prior OS interfaces, the default expected interaction
mode with the SteamWorks SDK is via C++, which is quite difficult
to talk with directly via CFFI. Fortunately, they also offer a raw C
API, but this API is not fully documented and fraught with strange
gotchas. The SDK does ship a “machine readable” description of
the endpoints, structures, and types in the form of a JSON file,
but as we have found this file is both incomplete and partially
incorrect.

In our implementation we analyse the JSON file along with a manu-
ally supplied file with the lacking data, and a couple of the shipped
static headers to automatically generate the CFFI wrapper data
structures, types, constants, and functions. Since the analysis of
these files is rather involved however, we have chosen not to use
macroexpansion, but rather provide a separate system which emits
Lisp code to a new file.

In addition to this generated interface, we also had to supply a
minimal “shim” C library that handles a few select API calls that
rely on structure-by-value passing, a feature which is not natively
supported on most Lisp implementations at this point. Another
workaround would be to use libffi, but libffi comes with its own
issue, and would be another C library to depend on anyhow, so we
opted for the much simpler and easier to understand alternative of
writing our own minimal shim library.

In Kandria we make use of the extended services to present the user
with an on-screen keyboard when they are using a controller, to
read out the username for default save file naming, and to integrate
with the Steam platform’s “achievements” system, which players
have come to expect.

4 COMMON LISP OBJECT SYSTEM
In both Trial and Kandria we make rather extensive use of CLOS,
both its basic features of classes, multiple dispatch, and deep hier-
archies via mixins, and the advanced features of metaclasses. For
instance, our entire event handling system is simply a singular
function (handle event receiver) which we define methods on
to receive events. A central “event loop” object then just calls the
handle function for every event it receives on every receiver it has
in its internal list.

As described in our prior paper [19] we use metaclasses to attach
“shader fragments” (code that is executed on the GPU during ren-
dering) to classes and inherit the behaviour of these fragments
together, allowing composition of rendering behaviour through
inheritance as well.

Overall the use of classes as an organisational structure lends itself
extremely well to games, especially in the presence of multiple
inheritance and mixins. We also often use this to introduce “marker
classes” that contain no behaviour or data of their own, but act as
type information that other parts of the system use, such as whether
a class can be instantiated by the editor, resized, should be treated
as solid during collision, should not be deleted when loading a prior
save state, etc.



Experience Report: Kandria - A Game in Common Lisp ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

We make use of structures over standard objects only in very se-
lect cases where the impact of the increased verbosity can be con-
tained, and the performance requirements actually indicated that
we needed to optimise. Specifically this is for the hit information
during collision resolution, for the node graph that powers the
pathing AI, and the glyph information used for text layouting and
rendering. In those cases the initial class approach produced too
much overhead with repeated slot access dispatch, so we switched
to a few specific structures.

Especially with regards to propagating type information CLOS can
be a hindrance, as you are prevented from declaring the argument
and return types. Structures give us the advantage of fixing a return
type on their accessors, propagating type information more easily
and thus leading to better performing code at their call sites. There
are projects that allow inlining method dispatch as well, eliminating
some of the type ambiguity, but we have not seriously investigated
these approaches yet.

Overall the dispatch overhead of CLOS has never been a real prob-
lem for us. Even with thousands of objects that receive events
through our handle function, hundreds of methods attached to it,
and tens of events every frame, not to mention all the other parts
in the game that use CLOS, we still manage to easily hit a steady
120 frames per second on a ten year old machine.

5 PERFORMANCE & GARBAGE
COLLECTION

Overall we have needed to do surprisingly little actual performance
analysis and optimisation work to make Kandria run well. This is
definitely in large part thanks to SBCL’s quite good native code
compiler and type inference systems, and the prior work we’ve
done to design critical libraries to not be completely obscene in
terms of their performance characteristics.

We have done larger scale rewrites of several subsystems in Trial,
which have provided uswith general performance increases, though
these rewrites were primarily done to increase the code clarity and
usability, with the performance being a nice bonus.

As usual, far more important than constant factor improvements
like those has been reducing the asymptotic behaviour. Introducing
a Bounding Volume Hierarchy to speed up spatial queries and
especially collision detection from a primitive linear search per
object down to a logarithmic one has definitely provided the most
significant performance improvement.

While asymptotic behaviour improvements will be applicable for
projects in any language, with SBCL we’ve had the definite advan-
tage of being able to rely on the statistical profiler to determine hot
spots in the code. This is especially advantageous in Lisp as we can
turn the profiler on and off at any time, to capture exact segments
that we are interested in, rather than having to capture the full run
of a program and then massaging the data manually.

Newly developed tools to better visualise the data gathered by the
statistical profiler, such as the “flamegraph” visualiser developed
by Jan Moringen have also been invaluable in gaining a better un-
derstanding of the performance characteristics of the code.

As outlined in subsection 3.1 above, there are still areas in which
Lisp struggles to be truly competitive, largely in part due to its very
dynamic typing, an aspect that is otherwise very advantageous
for development. We’ve also encountered issues in eliminating
superfluous consing, as many convenient styles of writing code
will prevent stack allocation and other garbage elimination.

We have managed to keep our garbage production down largely
with two tricks:

• Pooling and preallocation. By storing objects in a pool and
manually allocating and freeing them we can avoid allocating
them at runtime, leaving less work for the GC to deal with. Since
the objects are long lived, they will also be quickly promoted to
later generations, lessening the work to scan other generations.
The obvious downside is that we lose automatic freeing andmay
introduce double-use cases, but for many cases the lifetimes
of the objects can be predetermined and managed relatively
painlessly.

• Using load-time-value in lieu of stack allocation. With this
trick we can allocate a “local object” that will be modified at
runtime rather than allocated fresh. The downside of this ap-
proach is that whichever function provides the load-time-value
object cannot be called concurrently, and the programmer must
be vigilant in tracking the lifetime of the load-time-value object
should it escape the dynamic extent of the function.

We are also very interested in a recent proposal to add memory
arenas to SBCL, which would allow us to capture all of the objects
allocated within a dynamic extent and free them immediately on
exit, further lessening the burden of the global GC in cases where
we know the exact lifetimes.

Aside from memory arenas, we’re also very interested in recent
work by Hayley Patton to parallelise SBCL’s garbage collector,
though it is currently unknown when this feature will become
mature and be merged into mainline SBCL.

In general we have not felt that we’ve had to do a lot of work to
keep garbage production down. On a usual system the GC seems to
trigger every ten seconds or so, with no noticeable stutters caused
by the pause time. We have been made aware of some rare systems
on which the GC pause does cause visible stutters, but have not
been able to identify why that should happen or what to do about
it. Completely eliminating all runtime garbage production does not
seem like an effective way to spend our time, however.

6 DEPLOYMENT
Finally we would like to talk about our experience actually deliver-
ing Kandria to users and the process we have developed for doing
so.

The first step in the deployment pipeline is the build of the ac-
tual game binary, for which we use the ASDF build system and
the Deploy[3] library. With these all game code is compiled fresh,
dumped into an executable suitable for the local platform, and bun-
dled together with the depended-upon shared libraries, producing
an executable ready for deployment to target machines.



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Nicolas “Shinmera” Hafner

However, since the build does not happen from scratch via a plat-
form independent compiler, we have to ensure that we use an SBCL
version that has been compiled on our minimal target platform
version. For instance, we build the SBCL we use for deployment in
a virtual machine on an old Linux version to ensure that internal
symbol version dependencies in glibc can be satisfied on target ma-
chines. We have to take similar care for all required shared libraries
that are shipped. Once this version has been compiled however, we
can simply invoke it on any Linux version we like to use, and don’t
have to build the entire system inside a VM.

We can also directly buildWindows version of the game on Linux by
using WINE[17]. This has worked flawlessly for us, and we imagine
that it would also be possible to do the inverse on Windows by
using the Windows Subsystem for Linux to build Linux versions of
the games. We’ve also investigated the possibility of using Darling
to build MacOS versions. Unfortunately Darling is not able to run
SBCL as of the writing of this paper.

For all generated binaries we also make use of SBCL’s core com-
pression to reduce the binary size to about 35MB per platform. The
newly introduced support for zstd also brings improved compres-
sion rates and startup speeds over the older zlib. This binary size
is more than acceptable to us and is completely dwarfed by the
resource files for sound and graphics.

We also make use of hooks in the Deploy library to extract these
resource files from their source directory and bundle them alongside
the binary when building. Paths to resource files are resolved at
runtime in the engine, and are thus trivial to redirect to binary-
relative paths when deployed.

Finally we have created a release system that invokes the necessary
SBCL subprocesses to kick off a build, prunes out unnecessary files
from the generated release, then bundles it all into a ZIP for easy
delivery to testers.The system can also upload the release directly to
a variety of distribution platforms including Steam, Itch.io, Keygen,
and generic HTTP or FTP servers. Ultimately this allows us to
compile, bundle, package, and upload new builds with a single
command, drastically reducing the time and complexity involved
in supplying testers and users with bugfixes.

Another aspect that is advantageous to Lisp’s dynamic nature is
that when an unhandled condition occurs on a target system we
can, in almost all cases, still use the system well enough to gather
telemetry and submit an automated crash report. This has been
invaluable for us to detect rare bugs, especially ones related to
uncommon system configurations that we would otherwise never
have been able to catch.

7 CONCLUSION
Overall the biggest hurdle we have had in our development of
Kandria has nothing to do with the language itself, but rather with
the general lack of manpower behind the community. We have
had to spend large amounts of time implementing, testing, and
documenting auxiliary systems that have often close to nothing
to do with the core process of implementing a game. This is also
why we have been extremely light on topics that concern the actual
game implementation process in this paper.

On the other hand, it is very clear to us that interactive development
is an immense boon to the development of a game. Being able to
redefine game behaviour at runtime to quickly iterate on the game
content and feel is invaluable. So much so that almost every engine
in use will have some form of scripting language available for game
logic specifically, such that designers can iterate quickly. However,
having the full stack of code available, debuggable, and performing
just as well as any other part of the system is undeniably far more
convenient.

We also fully recognise that while Kandria is a full game project, it
is by its nature rather limited in the required processing capabilities.
A lot more work is needed to support more complex games, which
we intend on focusing on in the near future. However, we do not
at present see any deal-breakers that would make it unfeasible to
create such games using Common Lisp and the base ecosystem we
have helped establish so far.

If anything the recent advances in SBCL’s capabilities show us a
very promising future and we are excited to make use of them to
further improve the situation, and with much of the “grunt work”
now done we should be able to focus our efforts onto problems
more directly associated with game development instead.

8 FURTHERWORK
Currently a sizable amount of work in Kandria has not been back-
ported into Trial for more general purpose use. We would like to
extract a few of the systems and generalise them to make them
available for other users.

We are also working on implementing several new subsystems in
Trial to allow creating 3D games, as well. A skeletal animation sys-
tem has been completed, and we’re currently working on a physics
subsystem. Also needed will be several spatial query structures
to speed up collision testing, along with a more unified rendering
subsystem to support Physics Based Rendering pipelines.

Finally we are also exploring the possibility of porting the engine
to work on closed platforms such as the Nintendo Switch. This
presents several challenges that we unfortunately cannot elaborate
on here due to non-disclosure agreements.

9 ACKNOWLEDGEMENTS
Wewould like to thank the various contributors to all of the projects
that have made it possible to make Kandria in the first place, and
we would like to thank you for being beautiful and nice.

Kandria was funded in part by the Pro Helvetia Interactive Me-
dia Grant and the KPT Poland Prize Digital Dragons Accelera-
tor.

REFERENCES
[1] A library to handle gamepad input devices, . URL https://shirakumo.org/projects/

cl-gamepad.
[2] A library for audio processing and output, . URL https://shirakumo.org/projects/

cl-mixed.
[3] A library to ease the deployment of common lisp binaries. URL https://github.

com/shinmera/deploy.
[4] A library for file selection dialogs. URL https://github.com/shinmera/file-select.
[5] A library to search and query system fonts. URL https://github.com/shinmera/

font-discovery.

https://shirakumo.org/projects/cl-gamepad
https://shirakumo.org/projects/cl-gamepad
https://shirakumo.org/projects/cl-mixed
https://shirakumo.org/projects/cl-mixed
https://github.com/shinmera/deploy
https://github.com/shinmera/deploy
https://github.com/shinmera/file-select
https://github.com/shinmera/font-discovery
https://github.com/shinmera/font-discovery


Experience Report: Kandria - A Game in Common Lisp ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

Figure 2: A flamegraph of the game’s main thread. Due to the high nesting not much is visible at this scale. We’ve identified two specific
blocks belonging to collision resolution and rendering. The graph of a release build would look slightly different, as several things are
optimised away for a release build.

[6] Shirakumo github. URL https://github.com/shirakumo.
[7] The glfw opengl portability library. URL https://glfw.org.
[8] The godot game engine. URL https://godotengine.org.
[9] A high-level audio processing server. URL https://shirakumo.org/projects/

harmony.
[10] Kandria, an open world action rpg. URL https://shirakumo.org/projects/kandria.
[11] A c library for audio processing pipelines. URL https://shirakumo.org/projects/

libmixed.
[12] A library for native message box display. URL https://github.com/shinmera/

messagebox.
[13] The steel bank common lisp implementation. URL https://sbcl.org.
[14] A library to query the system for locale information. URL https://github.com/

shinmera/system-locale.
[15] The trial game engine. URL https://shirakumo.org/projects/trial.
[16] The unity game engine. URL https://unity.com.
[17] The wine project. URL https://winehq.org.
[18] Jeff Craighead, Jennifer Burke, and Robin Murphy. Using the unity game engine

to develop sarge: a aase study. In Proceedings of the 2008 Simulation Workshop at
the International Conference on Intelligent Robots and Systems (IROS 2008), volume
4552, 2008.

[19] Nicolas Hafner. Object oriented shader composition using clos. In ELS, pages
80–83. Shirakumo.org, 2018.

[20] Nicolas Hafner. Using a highly dynamic language for development. 2021.
URL https://github.com/Shinmera/talks/blob/master/gic2021-highly-dynamic/
paper.pdf.

[21] Henri Mäkelä. Development of a 3d mahjong video game in godot engine. 2021.
[22] Jukka K Nurminen. Rft design system-experiences in the development and

deployment of a lisp application. In Proceedings of the First European Conference
on the Practical Application of Lisp, 1990.

[23] Hayley Patton. Parallel garbage collection for SBCL. 2023.
[24] Robert Strandh. Fast generic dispatch for common lisp. In Proceedings of ILC

2014 on 8th International Lisp Conference, pages 89–96, 2014.

https://github.com/shirakumo
https://glfw.org
https://godotengine.org
https://shirakumo.org/projects/harmony
https://shirakumo.org/projects/harmony
https://shirakumo.org/projects/kandria
https://shirakumo.org/projects/libmixed
https://shirakumo.org/projects/libmixed
https://github.com/shinmera/messagebox
https://github.com/shinmera/messagebox
https://sbcl.org
https://github.com/shinmera/system-locale
https://github.com/shinmera/system-locale
https://shirakumo.org/projects/trial
https://unity.com
https://winehq.org
https://github.com/Shinmera/talks/blob/master/gic2021-highly-dynamic/paper.pdf
https://github.com/Shinmera/talks/blob/master/gic2021-highly-dynamic/paper.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Library Ecosystem
	3.1 Math Libraries
	3.2 User Interfaces
	3.3 Audio Processing
	3.4 Operating System Interaction
	3.5 Service Integration

	4 Common Lisp Object System
	5 Performance & Garbage Collection
	6 Deployment
	7 Conclusion
	8 Further Work
	9 Acknowledgements
	References

