
Report for Meme
Launchpad

Date: August 15, 2024 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com


Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Procedure of Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Software Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 DeFi Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.3 NFT Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.4 Additional Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter2Findings 5
2.1 DeFi Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Lack of state rollback for the failure of cross contract invocation . . . . . . 5
2.2 Additional Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Lack of check in function new() . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Potential centralization risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Ensure token_id is registered in ref_contract before deploying token . . 8



Report Manifest

Item Description
Client Shitzu Apes
Target Meme Launchpad

Version History

Version Date Description
1.0 August 15, 2024 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/


Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Rust
Approach Semi-automatic and manual verification

The target of this audit is the code repository of Meme Launchpad1 of Shitzu Apes. Note
that, we did NOT audit all the modules in the repository. The modules covered by this audit
report include meme-launchpad folder contract only. Specifically, the files covered in this audit
include:

1 crates/meme-token/src/lib.rs

Listing 1.1: Audit Scope for this Report

The auditing process is iterative. Specifically, we would audit the commits that fix the
discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for
the code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report.

Project Version Commit Hash
Meme Launchpad Version 1 0b4ead45a93ddad80a65fe7e85dfaf81215a7fd3

Version 2 be0fb1c94a6a6203bb5a37f34f8ec8c75b21343f

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

1https://github.com/Shitzu-Apes/meme-launchpad/tree/main/crates/meme-token

https://github.com/Shitzu-Apes/meme-launchpad/tree/main/crates/meme-token


The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the solidity language), the underlying com-
piling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.
- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarios with independent
auditors to cross-check the result.
- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

2



1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 2 and Common Weak-
ness Enumeration 3. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:
- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/


- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

4



Chapter 2 Findings

In total, we found one potential security issue. Besides, we have one recommendation and
two notes.
- Medium Risk: 1
- Recommendation: 1
- Note: 2

ID Severity Description Category Status

1 Medium Lack of state rollback for the failure of
cross contract invocation DeFi Security Fixed

2 - Lack of check in function new() Recommendation Confirmed
3 - Potential centralization risk Note -

4 -
Ensure token_id is registered in
ref_contract before deploying token Note -

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Lack of state rollback for the failure of cross contract invocation

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description In the lib.rs file, the function new() is used for initiating and configuring a token.
In this process, the function will first directly mint the corresponding amount of tokens to the
deployer and the ref_contract, and then invoke a cross-contract call to function ft_on_tran-
sfer() in the ref_contract to account for the deployer. However, if the cross-contract call fails
(e.g., the ref_contract is paused), the minted tokens will still be retained in the ref_contract
but will not be recorded in the deployer’s account. This leads to the assets being unable to be
retrieved.
31 pub fn new(
32 name: String,
33 symbol: String,
34 icon: String,
35 decimals: u8,
36 total_supply: U128,
37 ref_contract_id: AccountId,
38 pool_amount: U128,
39 ) -> Self {
40 let deployer = env::predecessor_account_id();
41 let mut this = Self {
42 name,
43 symbol,



44 icon,
45 decimals,
46 token: FungibleToken::new(b"t".to_vec()),
47 };
48
49
50 this.token.internal_register_account(&deployer);
51 this.token
52 .internal_deposit(&deployer, total_supply.0 - pool_amount.0);
53 FtMint {
54 owner_id: &deployer,
55 amount: U128(total_supply.0 - pool_amount.0),
56 memo: None,
57 }
58 .emit();
59
60
61 this.token.internal_register_account(&ref_contract_id);
62 this.token.internal_deposit(&ref_contract_id, pool_amount.0);
63 FtMint {
64 owner_id: &ref_contract_id,
65 amount: U128(pool_amount.0),
66 memo: None,
67 }
68 .emit();
69
70
71 // this simulates an ‘ft_transfer_call‘ to Ref contract for a token deposit
72 ext_ft_receiver::ext(ref_contract_id.clone())
73 .with_unused_gas_weight(1)
74 .ft_on_transfer(deployer, pool_amount, "".to_string());
75
76
77 this
78 }

Listing 2.1: lib.rs

Impact Assets deposited into the ref_contract cannot be retrieved.
Suggestion Revise the logic to ensure that the state is correctly rolled back when a cross-
contract invoke fails.

2.2 Additional Recommendation

2.2.1 Lack of check in function new()

Status Confirmed
Introduced by Version 1

Description During the initialization process, the contract directly mints all of the total_supp-
ly to the deployer, except for the amount to be transferred to the ref_contract. There is a lack

6



of validation for the size of the two parameters here. Specifically, if the pool_amount is greater
than the total_supply, an underflow error will occur.
31 pub fn new(
32 name: String,
33 symbol: String,
34 icon: String,
35 decimals: u8,
36 total_supply: U128,
37 ref_contract_id: AccountId,
38 pool_amount: U128,
39 ) -> Self {
40 let deployer = env::predecessor_account_id();
41 let mut this = Self {
42 name,
43 symbol,
44 icon,
45 decimals,
46 token: FungibleToken::new(b"t".to_vec()),
47 };
48
49
50 this.token.internal_register_account(&deployer);
51 this.token
52 .internal_deposit(&deployer, total_supply.0 - pool_amount.0);
53 FtMint {
54 owner_id: &deployer,
55 amount: U128(total_supply.0 - pool_amount.0),
56 memo: None,
57 }
58 .emit();
59
60
61 this.token.internal_register_account(&ref_contract_id);
62 this.token.internal_deposit(&ref_contract_id, pool_amount.0);
63 FtMint {
64 owner_id: &ref_contract_id,
65 amount: U128(pool_amount.0),
66 memo: None,
67 }
68 .emit();
69
70
71 // this simulates an ‘ft_transfer_call‘ to Ref contract for a token deposit
72 ext_ft_receiver::ext(ref_contract_id.clone())
73 .with_unused_gas_weight(1)
74 .ft_on_transfer(deployer, pool_amount, "".to_string());
75
76
77 this
78 }

Listing 2.2: lib.rs

7



Suggestion Add a check to ensure pool_amount is less than the total_supply.
Feedback from the project Yes this is true. However the pool_amountwill always be less than
the total_supply according to the cross contract function call by the token factory.

2.3 Notes

2.3.1 Potential centralization risk

Introduced by Version 1

Description The contract has a centralization risk, at the time of deployment, the deployer
owns the entire total_supply. Additionally, the deployer holds the account’s full access key. If
the deployer’s private key is lost or maliciously used, they could upgrade the contract, causing
losses to users.
Feedback fromtheproject No access key is created, since it’s deployed by a factory contract.
No access key exists ever for the token contracts. And this is working as intended. The factory
contract (which was not part of this audit) will be the one to deploy these token contracts. It
will keep track of all accounts which can claim their respective token share. It is not possible to
directly send all tokens to the respective users, since it would exceed the max allowed amount
of gas per transaction.

2.3.2 Ensure token_id is registered in ref_contract before deploying token

Introduced by Version 1

Description During the token initialization process, a portion of the assets is deposited into
the ref_contract, and the function ft_on_transfer() within the ref_contract records who
deposited these assets. The function ft_on_transfer() checks if the token has already been
registered in the ref_contract. Therefore, it is crucial to ensure that the function register_to-
kens() of the ref_contract has been invoked before creating the token. Otherwise, ft_on_tra-
nsfer() will not execute properly.
Feedback from the project Tokens are created through a factory contract. During the entire
creation process, the function register_tokens() of the ref_contract is invoked first, followed
by the creation of the token contract.

8




	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Lack of state rollback for the failure of cross contract invocation

	2.2 Additional Recommendation
	2.2.1 Lack of check in function new()

	2.3 Notes
	2.3.1 Potential centralization risk
	2.3.2 Ensure token_id is registered in ref_contract before deploying token



		2024-08-16T10:07:00+0800




