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Abstract

Image-to-image translation is a fundamental task in
computer vision. It transforms images from one domain
to images in another domain so that they have particular
domain-specific characteristics. Most prior works train a
generative model to learn the mapping from a source do-
main to a target domain. However, learning such mapping
between domains is challenging because data from different
domains can be highly unbalanced in terms of both quality
and quantity. To address this problem, we propose a new
approach to extract image features by learning the similar-
ities and differences of samples within the same data dis-
tribution via a novel contrastive learning framework, which
we call Auto-Contrastive-Encoder (ACE). ACE learns the
content code as the similarity between samples with the
same content information and different style perturbations.
The design of ACE enables us to achieve zero-shot image-
to-image translation with no training on image translation
tasks for the first time.

Moreover, our learning method can learn the style fea-
tures of images on different domains effectively. Conse-
quently, our model achieves competitive results on multi-
modal image translation tasks with zero-shot learning as
well. Additionally, we demonstrate the potential of our
method in transfer learning. With fine-tuning, the quality
of translated images improves in unseen domains. Even
though we use contrastive learning, all of our training can
be performed on a single GPU with the batch size of 8. Our
code is available at github.com/SihanXU/ACE.

1. Introduction

In the field of computer vision, image-to-image transla-
tion has been well-established and achieved promising re-
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Figure 1. The Main Idea of Auto-Contrastive-Encoder. When
training the ACE model, the encoder learns how to get the similar-
ity and difference from the same domain by contrastive learning.
And the decoder uses the similarity features as style and the dif-
ference as content to reconstruct the image in both training and
inference stage.

sults on various related tasks such as image colorization,
style transfer. These existing works are usually achieved
by learning the mapping between the source and target do-
main [18, 20, 23, 40]. Some new training methods have
emerged afterwards [1, 2, 7, 24, 30, 31], but they are still
trained for learning the mapping relationship, which keeps
them from focusing on the distribution of samples. How-
ever, such works are inherently fastidious in data distribu-
tions. For example, pix2pix requires the data of two do-

https://github.com/SihanXU/ACE
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Figure 2. Different kinds of image to image translation. (a) Supervised image to image translation like pix2pix [20] requires paired
datas and (b) unsupervised image to image translation like cycleGAN [40] requires paired dataset for training. (c) Few-shot [24] or Truly
unsupervised [1] image to image translation can only translate images in the training domain. Our method, (d) zero-shot image translation
is capable to translate images from unseen domains to both of training domain and unseen domains.

mains to come in pairs [20], while cycleGAN-like methods
rely on the joint distribution of two domains [18, 23, 40].
Some new methods, such as [1, 7, 24], still have strict re-
quirements for data. Meanwhile, one-shot image translation
(OST) [2] has only achieved limited breakthroughs with the
same idea of learning the mapping. On the other hand,
most other works have focused more on how to improve
the quality of generated images [30,31]. As a consequence,
they still fail to move the eyes off the mapping relations to
other approaches. Conversely, we believe that we can solve
the problem of strict data requirements if there is a training
method that can achieve the image translation task without
learning the mapping between different distributions.

In this paper, we propose a novel learning task (Sec-
tion 3) that implements image translation by learning sim-
ilar and different features of images within a data distribu-
tion (Fig. 1). We note that the features that are similar be-
fore and after image translation are precisely the features
that need to be retained, while the features that are differ-
ent under the same distribution are the features that need
to be translated. In this way, our model can recognize the
features to be retained or transformed by learning the sim-
ilarities and differences within the distribution. Moreover,
such a training method without learning the mapping rela-
tion can also translate the samples in unseen domains with-
out being trained on image translation tasks, thereby achiev-
ing zero-shot learning as Fig. 1b, Fig. 2d . Despite several
previous works claiming to attain zero-shot image transla-
tion [6,22], they merely perform style transformation within
the features in the specific domain.

Based on these ideas, we propose the Auto-Contrastive-
Encoder (ACE), an Auto-Encoder structure that incorpo-
rates contrastive learning (Section 3). Contrastive learning
provides us with the effectiveness of learning similarities
between positive samples and differences between negative
samples, which encourages our model to learn the similar

and different features in the same distribution. In this pa-
per, we use a structure similar to Simple Siamese Repre-
sentation Learning (SimSiam) [5] to keep the model simple
while allowing the model to be trained with a small batch
size (Section 4). For contrastive learning, we propose Adap-
tive Instance Augmentation and perform contrastive learn-
ing directly on the encoded image features. Proven by ex-
periments, our method is able to capture the similarity and
difference in image features effectively.

It is worth noting that ACE is a framework applicable
to any model instead of a specific model. Our model in
this article uses the VGG [32] model for the encoder, while
our decoder is a convolutional network (CNN) [29] using
ResNet [16]. We perform zero-shot image translation and
achieve satisfactory results on the Summer⇔Winter [18],
Orange⇔Apple [8] and Animal Face [24] datasets. Fur-
thermore, our experiment on Animal Face [24] shows that
our method also has the potential for transfer learning by
pre-training on large datasets. The experiments in this pa-
per can all be completed on a single GPU with batchsize of
8.

2. Related Work
Image-to-image translation. Image-to-image transla-

tion, a prevalent problem for computer vision, aims to con-
vert an input image into another output image. It has
been applied to style transfer [11, 12, 21], image denois-
ing [10,34,37], and colorization [26,38,39]. Many methods
for image translation tasks have been proposed since [20].
However, these methods are largely limited to learning the
mapping between images and rely on the pairs of data in
datasets for training [1, 7, 18, 23, 24, 30, 40], and thus can
never realize zero-shot learning. Although there is similar
research [6, 22] about zero-shot learning methods before,
they only do translations in the same domain rather than
implement real image translation.
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Figure 3. Assumption of zero-shot translation. (a) For the exam-
ples in the same domain, they should have same style but different
content. The similarity should be style and the difference should
be the content. (b) For the paired examples before and after trans-
lated, they should have same content with different style. Thus,
the difference is their style and the similarity is their content.

This paper presents a new method of image transla-
tion by learning the similarities and differences of samples
within the same distribution. Our ACE approach demon-
strates the feasibility of this idea. Our method is not only
able to achieve competitive results on zero-shot image-to-
image translation but also applicable to various image trans-
lation tasks like multimodal translation task. Furthermore,
our model has the potential for transfer learning to improve
the quality of image translation tasks by pretrain and fine-
tune.

Contrastive learning Contrastive learning is an efficient
method for unsupervised learning. Its key idea is to learn
similar features between positive samples and different fea-
tures between negative samples [36]. Based on this idea,
several subsequent works with great influence have come
into being, such as [3–5, 14, 15]. There are some meth-
ods like [3,5,14] can learn similar features between positive
samples even without negative samples.

We use a similar structure to SimSiam [5] in this paper,
but the difference is that we augment the features of images
instead of augmenting the image itself. We first use adap-
tive instance augmentation to augment the features of the
images and implement contrastive learning subsequently.
Unlike SimSiam [5], we also include a predictor in the pro-
cess of using the encoder. Experiments demonstrate that
our method is effective in learning similarities and differ-
ence within a distribution.

3. Method
3.1. Assumption

Fig. 3 shows the fundamental assumption of our method.
Based on the effect of in-domain contrast and cross-domain
contrast, we can model the content information as the in-
domain difference and cross-domain similarity, and the

Figure 4. Image translation task. In order to realize the image
translation, content code need to be obtained from the pixel space
of domain A. And then the output, which is in the pixel space of
domain B, should be generated from the content. Additionally,
style code is required for multimodal image translation tasks.

style information as the in-domain similarity and cross-
domain difference. Then, we can follow the assumption in
MUNIT [18] like Fig. 4 that each image xi ∈ Xi is gener-
ated from a content latent code c ∈ C that is shared by both
domains, and a style latent code si ∈ Si that is specific to
the individual domain. For each image, our objective is to
find a pair of underlying encoders Es and Ec to disentangle
the two latent codes and a generator G to reconstruct images
with these two types of codes. Suppose we have a pair of
image (x1, x2). We are able to generate a translated image
x1→2 by applying the encoders and the generator, namely
x1→2 = G (Ec(x1), Es(x2)). Note that now x1→2 is also
a sample in domain X2 with the same content as x1. Then,
since the content encoder generates domain-invariant rep-
resentations, ideally we have Ec(x1) = Ec(x1→2). Simi-
larly, considering x1→2 and x2 are from the same domain,
the constraint Es(x2) = Es(x1→2) should also hold.

3.2. Model

Fig. 5 is an overview of our model, which is similar to
MUNIT [18]. Our model consists of the encoder, content
encoder, style encoder, and decoder. The content encoder
contains residual blocks [16] and a predictor, forming a con-
trastive learning framework. In the process of training (Fig.
5a), first, we obtain the content and style features respec-
tively through content encoder and style encoder. Finally,
the image can be restored by the decoder. In the fine-tuning
and inference process (Fig. 5b), the encoder obtains fea-
tures of style and content images so that the style and con-
tent images can be learned by the content encoder and style
encoder. After these steps, we use the decoder to restore the
desired image.

We use VGG [32] as the encoder of the model as in the
previous works [17, 18, 24]. Fig. 5c presents the learning
process of content code. After acquiring the features of in-
put images, we augment the image features with the Adap-
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Figure 5. Model overview. In training, we use (a) auto-encoder and (c) contrastive learning to reconstruct images from the training domain.
In inference (b), we use two-stream like architecture to encode content and style, and AdaIn decoder to reconstruct the image.

tive Instance Augmentation. Subsequently, we use a Sim-
Siam similar structure [5] to implement contrastive learning
and obtain the images’ content features. Our style encoder
is a single layer CNN with Adaptive Pooling [25], which
is able to preserve the global feature information of the im-
ages. Following MUNIT [18], we use an MLP to learn the
AdaIN parameters from the style codes.

The content encoder includes two parts as shown in Fig.
5c. The residual blocks are CNN with skip connection [16]
and BatchNorm [19]. And the predictor is a 2-layer-MLP
with a bottleneck, and it has BatchNorm between hidden
layers. We don’t use the BatchNorm at the output layer.

Our decoder is composed of residual networks and a con-
volutional network [29] with adaptive instance normaliza-
tion [17]. As stated in [18], instance normalization [35] and
batch normalization would destroy the style features of the
image. Therefore, we exclude these two types of normal-
ization in our decoder.

3.3. Adaptive Instance Augmentation

According to the experimental results of using the same
adaptive instance normalization (AdaIN) [17], the instance
norm would affect the style of images. Following this, [18]
proposes to use MLP to dynamically produce the param-
eters for Instance Normalization layers from style codes.
Inspired by these practices, we propose Adaptive Instance
Augmentation, where we replace the parameters of AdaIN
with Gaussian noises:

AdaIN(z, γ, β) = γ

(
z − µ(z)

σ(z)

)
+ β, (1)

γ, β ∼ N (0, 1) (2)

Note that this is an augmentation in the latent space. The
procedure to augment a sample x is

Aug(x) = Gγ,β(Ec(x)), (3)

where Gγ,β means that instead of using style encoder, we
use the variables γ and β for the AdaIN layers. We first map
x into its content code and then use the randomized AdaIN
decoder to reconstruct the augmented sample. This method
enables us to modify the style of images while ensuring the
same image content. Based on this feature augmentation,
our contrastive learning method can make the content en-
coder insensitive to style features, so that the content feature
can be effectively preserved.

3.4. Loss Function

Originating from our assumptions, we first design our
loss function to capture the similarity between the content
codes with different style features. Let c1 and c2 be two
latent codes extracted by content encoder and augmented
with Adaptive Instance Augmentation. We define the loss
for contrastive learning as the SimSiam loss from [5]:

Lcontrast(c1, c2) = ContrastiveLoss(p(c1), stopgrad(c2))
(4)

where p is the predictor layer and ContrastiveLoss can be
any distance measurement such as negative consine simi-
larity. The content consistency is also forced by minimizing
the distance between content codes extracted from each pair
of original sample x and reconstructed sample x′:

Lc
consist(x) = ∥Ec(x)− Ec(x

′)∥1. (5)



Figure 6. Visualization of content code on two domains. The
content code only contains the information of the location of ani-
mal’s eyes, which is the difference between the in-domain exam-
ples. And the content encoder is also capable to encode the content
from the unseen domain.

Similarly, for style codes we have

Ls
consist(x) = ∥Es(x)− Es(x

′)∥1. (6)

Next, to train the auto-encoder, we adopt a reconstruc-
tion loss and a GAN loss to ensure that the reconstructed
images follow the distribution of target domain.

Lrecon(x) = ∥x− x′∥1 (7)

LGAN = ∥D(x)− 1∥22 + ∥D(x′)∥22 (8)

We train our model with the total objective as the weighted
sum of all loss functions mentioned above.

3.5. Stop gradient

Since Auto-Encoder updates encoder in the training, it
will greatly influence the effect of contrastive learning.
Therefore, when we are training the Auto-Encoder, we
freeze the content encoder. Which means

x′ = G(stopgrad(Ec(x)), Es(x)) (9)

3.6. Discriminator

We use an approach similar to Generative Adversarial
Network (GAN) [13] to train our ACE to improve the qual-
ity of the images. In our experiments, we use a loss function
similar to [27] to make the training more stable; and use
SpectralNorm [28] to enable the model to generate images
with higher quality.

4. Experiments
4.1. Implementation Details

Our framework is comprised of a VGG encoder, a con-
tent encoder, a style encoder and a decoder. The content
encoder consists of four residual blocks and the style en-
coder contains a global pooling layer and a fully connected

Figure 7. Translation results on Yosemite summer⇔winter and
Apple⇔Orange.

Figure 8. Multimodal Translation results on bigcat⇔cat and
dog⇔cat.

layer. For the decoder, we have several residual blocks,
each followed by up-sampling layers. We also use Adap-
tive Instance Normalization layers to dynamically generate
parameters of Instance Normalization. However, to accel-
erate the convergence of style encoder, we propose to use
two different style codes to respectively represent the global
style in the domain and the individual style of each sample.
The domain style code is a learnable tensor which is shared
by all data in the pretrain domain, while the individual style
code is output by the style encoder. Then we sum these two
style codes up before applying them to the AdaIN layers.

4.2. Datasets

We conduct the evaluation on the same datasets as [18,
40]. Our method achieves satisfying results on Yosemite
summer⇔winter, apple⇔orange and Animal face transla-
tion (including data of bigcats, cats and dogs).



Figure 9. Comparison of zero-shot translation results with one-shot [2], few-shot [24] and unsupervised [18] methods.

4.3. Visualization

To better understand whether our designed models work
as we expect, we adopt some tools of visualization for our
extracted content codes. Fig. 6 shows the information in
the content codes from the pretrain domain and the unseen
domain. Both representations indicate the animal’s eyes. It
verifies that our contrastive learning based encoder is able
to extract similar content codes regardless of the domains.

4.4. Effectiveness of Zero-shot Learning

Our experiment covers the zero-shot learning on datasets
Summer⇔Winter [18] and Orange⇔Apple [8]. The final
results are shown in Fig. 7.

At the same time, we conduct multimodal translation
on the Animal Image Translation Dataset [24]. We trained
our model on cat dataset and applied to bigcat2cat task and
dog2cat task. With the images in Fig. 8, we can see that our
method translates images to different styles while maintain-
ing the original content features.

The focus of our work is not about producing high qual-
ity images. For this reason, we only compare our method
with OST [2], FUNIT [24], MUNIT [18]. During training,
our model shares the same settings as MUNIT, while OST
and FUNIT keep their settings as mentioned in OST and
FUNIT. The comparison is presented in Fig. 9. It is ap-
parent that our framework obtains outstanding translating
results in a zero-shot manner.

4.5. Transfer Learning

Figure 10. Fine-tune result. Even though ACE is capable of do-
ing the zero-shot translation to an unseen target domain, but the
translation result contains some features from the pretrain domain
and thus affects the translation image’s quality. After fine-tuning
on the target domain, ACE can achieve better translation results,
which shows the potential of ACE model in transfer learning.

Here we discuss whether our model is suitable for trans-
fer learning. We pre-train our model on a specific domain
and test on one or two unseen domains. If we are able to get
the training data of the test domains, we can conduct fine-
tuning to improve the generated image quality. The pro-
cess of fine-tuning is quite similar to the pre-training. We
use the images in the source domain to generate the content
codes and use target domain to get style codes. The fine-



tuning loss will be consisted of the latent consistency losses
Lc
consist,Ls

consist and the GAN loss LGAN . We don’t use
the contrastive loss in fine-tuning.

As shown in Fig. 10, in experiments of multimodal im-
age translation, we pre-train our model on the cat domain
and it achieves satisfactory performance when applied to
the task of dog2cat translation. Next, our model still per-
forms well if we change the target domain to the bigcats.
Therefore, we believe with pre-training, our model is ca-
pable of translating the images from one unseen domain to
another unseen domain. If we continue to fine-tune on the
dataset of bigcats, we can see that there is much room for
improvement of generated image quality. As a result, we
believe our model has a great potential for transfer learning
based on large datasets like ImageNet [8].

4.6. Failure Cases

Our method fails on some cases where the context is
complicated such as Fig 11. For instance, on the dataset
of horse2zebra, our model sometimes erroneously puts the
zebra’s stripes on the background.

Figure 11. Failure Cases. The context is so complicated that our
model cannot integrate style and content information well.

5. Discussion

The method proposed in this paper has achieved satis-
factory results in the task of image-to-image translation, but
we have not conducted experiments on other types of trans-
lation tasks. For example, we believe our method can work
on language processing as well. Furthermore, due to lim-
ited resources, we only tested the potential of our method
on transfer learning with small datasets. If we can pre-train
on a larger data set, our model may be able to achieve bet-
ter results in image translation. In this article, we just use a
very simple model structure, but our approach is also appli-
cable to other models, such as ResNet [16], Vision Trans-
former [9] and Diffusion Model [33]. We believe that better
results can be achieved if our methods are combined with
these further efforts.

6. Conclusions
In order to conquer the challenge coming from learn-

ing the mapping relationship in image-to-image translation,
we propose a new objective, which is to translate images
by learning the similarities and differences without learn-
ing any mappings or joint distributions. Additionally, we
propose a simple model structure called Auto-Contrastive-
Encoder to solve this problem, and it has achieved satisfac-
tory results. We have also shown the potential of our model
in transfer learning. It is promising that our method can
make the task of image-to-image translation move forward.
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