
What is a tensor?
Tensors from physics explained in unnecessary

rigour using concepts from functional programming
¦

Simon Jacobsson

2021-09-21

1 Who is this explanation for?
The explanation I am about to give is aimed at those with some university level maths
and physics. Ideally you have

• heard of tensors before. Possibly in the context of physics, where you’ll likely
have seen Einstein’s summation convention.

• had some linear algebra courses. You are comfortable with cross and dot products.
It is good if you know what a linear space is.

• at some point programmed using some programming language.

If you google “what is a tensor”, there are already many people who have tried in
many ways to answer this question. Many of them also have strong opinions about
the subject. So please don’t think of this as the explanation of tensors, but rather one
of many ways to explain them, which if nothing else shows off some cool ideas from
programming.

This question on Quora gives a fairly good overview over how difficult tensors are
to pin down.

2 Linearity
You can skip this section if you know what a linear space is.

Even though most of these definitions are completely general, let’s for the sake of
simplicity assume every linear space that we deal with is finite-dimensional.

Many physical equations are linear. I don’t know why exactly—if it is fundamental
to nature somehow or if it’s something we as humans impose on it because it’s much

1

https://www.quora.com/Why-is-it-difficult-to-explain-tensors?

easier to deal with. If an equation isn’t linear, we often go to great lengths to construct
expansions of linear approximations. I will take it as given that linearity is fundamental
in some way.

Axiom 1. Linearity is interesting.

Axiom 1 entails both linear spaces and linear maps. If you’ve only had one course
in linear algebra, the former is probably a bit esoteric. But a linear space is basically a
set that you do linear transformations on. So let’s define things in that order.

Definition 2. Let R be a field (R and C are examples of fields). If U and V are linear
spaces over R and f : U → V , then f is linear if

1. f(u+ u′) = f(u) + f(u′) for all u, u′ ∈ U .

2. f(cu) = cf(u) for all u ∈ U and all c ∈ R.

This is pretty familiar stuff! But if we think about it for a bit, what must be true
about U for items 1 and 2 to make sense? Well, if f maps from U and f(u + u′) is
well-defined, then u+u′ should be in U . This should be true for all u and u′. Similarly,
if f(cu) is well-defined, cu should be in U for all u ∈ U and all c ∈ R. We have some
other things we generally want to be true about linear spaces, but this is basically it.

Definition 3. Let R be a field. A set V is a linear space over R if

1. For each u, v ∈ V , there is a unique element u+ v ∈ V (addition).

2. For each u ∈ V and each c ∈ R, there is a unique element cu (multiplication with
scalar).

and

3. u+ v = v + u for all u, v ∈ V .

4. (u+ v) + w = u+ (v + w) for all u, v, w ∈ V .

5. There is an element 0 ∈ V such that 0 + u = u+ 0 = u for all u ∈ V .

6. For each u ∈ V there exists an element−u ∈ V such that u+(−u) = (−u)+u = 0 .

7. a(bu) = (ab)u for all a, b ∈ R and all u ∈ V .

8. a(u+ v) + (au) + (av) for all a ∈ R and all u, v ∈ V .

9. (a+ b)u = (au) + (bu) for all a, b ∈ R and all u ∈ V .

10. 1u = u for all u ∈ V .

2

As mentioned, this is just a list of formal requirements that sets must satisfy for
it to make sense to apply linear functions to their elements. These particular kinds
of requirements lists are known in functional programming as typeclasses. A simpler
example of a typeclass is totally ordered sets, which are sets S with a some binary
operation ≤ : S × S → {True,False } satisfying

1. x ≤ x.

2. x ≤ y and y ≤ x =⇒ x = y.

3. x ≤ y and y ≤ z =⇒ x ≤ z.

4. Either x ≤ y or y ≤ x.

For all x, y, z ∈ S.
Note that, in items 1 and 2 of definition 2, the addition and multiplication with

scalar are different operators on each side of the equals sign. In the left-hand side of
item 1, +: U × U → U , while in the right-hand side +: V × V → V . Both of these
operators should of course satisfy definition 3 for U and V respectively.

Let’s also define what we mean when we say that two linear spaces are equal.

Definition 4. Two linear spaces U and V over a field R are isomorphic if there exists
some linear bijection f : U → V . f is then an isomorphism.

Two examples of linear spaces are R2 over R and C over R. These two are in fact
isomorphic, easily seen by extending the map (1, 0) 7→ 1, (0, 1) 7→ i linearly. Another
example which is not isomorphic to those two is C over C, which shows the importance
of having the field in mind.

A useful notion in linear algebra is the dual space.

Definition 5. Let V be a linear space over R. The dual space V ∗ to V is the set of
linear maps : V → R.

If 〈·, ·〉 is the natural inner product on Rn, then an example of a dual space is

(Rn)∗ = { 〈v, ·〉 s.th. v ∈ Rn } .

Proposition 6. V ∗ is a linear space.

Proposition 7. V ∗∗ = V .

I won’t prove these two propositions here. If you want to prove them yourself, note
that proposition 7 is not generally true if V is infinite-dimensional.

3

3 Einstein’s summation convention
Index notation, primarily used in relativistic physics, builds on Einstein’s summation
convention. Allegedly, this was one of the discoveries that Einstein was most thrilled
about: that when writing out the components in linear algebraic expressions, repeated
indices are always summed over. So if v ∈ V is a vector with components vα in an
orthonormal basis B and L : V → V is a linear map with components Lαβ in B, then
L(v) has components ∑

α

Lαβvα,

or, with Einstein’s summation convention,

Lαβvα.

In this text, I will use something similar but different: abstract indices. In abstract
index notation, indices no longer denote components but the actual tensors themselves.
If va ∈ V is a vector and Lab : V → V is a linear map, then the action of Lab on va is
still written

Labva,

but the repeated index does not mean summation anymore. It just means action.
In this context, a repeated index is called a contraction.

4 Partial application
In the more well-known programming languages like Java, Python, C, etc., the usual
procedure is to define some variables and then modify those until you get them to the
state that you want them to be in. Consider for example the short Python program
below and its output,

L = [1, 4, 3, 2]
L.sort()
print(L)

out: [1, 2, 3, 4]

Note that using the method sort() changes the state of L.
In contrast, with functional programming like Haskell, you can’t modify variables

once they’re defined. All you can do is to write down all of the variables you want
to use and then apply functions to them. I use the word “function” here in its strict
mathematical sense: A function (or map) f from a set A to a set B is a rule that assigns,
to each a ∈ A, a unique b ∈ B. We often write f : a 7→ b or f(a) = b. Importantly, this
means that

4

1. a function does not alter any state—there’s no function for switching your clock
from winter time to summer time.

2. for a given argument a, a function always returns the same element b.

It may seem that this is very limiting, but it actually turns out that writing code
this feels much more like doing maths than the other type of coding! Since everything
that you can use are functions, you get very intimate with the properties of functions
when programming functionally.

One important concept is partial application, or currying. Consider a function f
that takes two arguments. Maybe it looks like this: f : A×B → C. What if you know
that the first argument you’ll be supplying is a ∈ A? Then for all intents and purposes,
you have a new function g : B → C defined by g(b) = f(a, b). But you will also have a
different such function for each a. So you can think of f really as a function f̂ : A→ BC

where BC denotes the set of functions from B to C.
Are f and f̂ really so different then? In many cases, I would like to be agnostic about

the amount of arguments that I’m about to supply for f . In functional programming,
f and f̂ are the same object! It is written

f : A→ B → C.

The function f̂ : a 7→ g is called a partial application of f to a.
As an example, consider the following Haskell program,

bool2Int True = 1
bool2Int False = 0
heaviside = bool2Int . (> 0)

which defines the Heaviside step function

H(x) =

{
0, x < 0

1, x > 0
.

Writing (> 0) means we partially apply the comparison < : R×R→ {True,False } to
0. The dot on the third line just means composition, we compose the function (> 0)
: R→ {True,False } with bool2Int : {True,False } → R.

5 Defining tensors as multilinear maps
A multilinear map is a function that takes several arguments and is linear in each one.
Cross products are an example since

(~a+~b)× ~c = ~a× ~c+~b× ~c,
(r~a)×~b = r(~a×~b),

~a× (~b+ ~c) = ~a×~b+ ~a× ~c,
~a× (r~b) = r(~a×~b).

5

Another example is scalar products for similar reasons. Yet another example is the
(signed) volume of a parallelepiped. If you have three vectors ~a, ~b, and ~c in R3, then
they define a parallelepiped by figure 1. Look closely at the figure and try to see why
each vector contributes linearly to the volume.

~a

~b

~c

Figure 1: If ~a, ~b, and ~c are positively oriented according to the right-hand rule, then the
volume is positive.

The magic is admittedly a bit lost if you know that the signed volume of the paral-
lelepiped is ~a · (~b × ~c). But there are examples of multilinear maps that are not cross
or dot products. The outer product of two vectors is

(

u1u2
u3

 ,
v1v2
v3

) 7→
u1u2
u3

 [v1 v2 v3
]
=

u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

 . (1)

So these are a few examples of multilinear maps. Now let’s make the definition that
you came here to for.

Definition 8. Let V be a linear space over a field R. A valence (k, l) tensor is multi-
linear map

f : V × · · · × V︸ ︷︷ ︸
×l

→ V × · · · × V︸ ︷︷ ︸
×k

.

Or, equivalently, a tensor is a multilinear map

f : V × · · · × V︸ ︷︷ ︸
×l

×V ∗ → V × · · · × V︸ ︷︷ ︸
×(k−1)

or a multilinear map

f : V × · · · × V︸ ︷︷ ︸
×(l−1)

→ V ∗ × V × · · · × V︸ ︷︷ ︸
×k

etc.

6

To see the isomorphism between these sets of multilinear maps, we will use partial
application, along with proposition 7. For the special case of a map f : V → V , the
argument goes like this. Map f : V → V to the multilinear f ′ : V × V ∗ → R by
f ′(v, u∗) = u∗(f(v)). Then map f ′ : V × V ∗ → R to f ′′ : V → (V ∗)∗ by f ′′(v) = f ′(v, ·).
But since (V ∗)∗ = V , f ′′ : V → V . The kernels of each of the two maps f 7→ f ′

and f ′ 7→ f ′′ are clearly 0 and they are both clearly linear, so each of them must
be an isomorphism1. It is not hard to extend this argument to all different kinds of
combinations of V and V ∗.

The preceding paragraph is fairly dense and contains some plausible-sounding but
non-obvious things. Read it slowly. In essence, it proves that we can write tensors as
multilinear maps

f : V → · · · → V︸ ︷︷ ︸
×l

→ V ∗ → · · · → V ∗︸ ︷︷ ︸
×k

→ R.

6 Contractions
With index notation, we can consicely show the valence of a tensor. f : V → V →
V ∗ → V ∗ → V ∗ → R may profitably be written as fabcde. But writing indices in
this way also helps us denote partial applications in a way that uniquely tells us which
partial applications are made.

Here’s the bridge between tensors as multilinear maps and tensors as indexed ob-
jects: contractions are partial applications. As an example, consider a valence (2, 1)
tensor

Xab
c : V → V → V ∗ → R

and a valence (0, 2) tensor

Y ab : V ∗ → V ∗ → R.

Now, one way of viewing these tensors is to view Xab
c as a map : V × V → V and Y ab

as an element in V × V . Then we can of course act on Y ab with Xab
c, which is written

Xab
cY ab

and yields a valence (1, 0) tensor (vector in V). But Xa
bc can also be seen as a map

: V → V V . Then, applying Xa
bc : V → V V to the first part of Y ab, written

Xa
bcY

cd,

yields a valence (2, 1) tensor.
1There are three statements here that must be motivated: ker(f 7→ f ′) = 0, ker(f ′ 7→ f ′′) = 0, and

that f 7→ f ′′ is an isomorphism. Remember that V is finite-dimensional.

7

The relation between this definition of contraction and the “repeated indices are
summed over”-one is that they’re the same thing if we do contraction explicitly in an
orthogonal basis for V . Remember that in my notation Xa

bc is the tensor while in
regular index notation Xa

bc is its components in some given basis. So now is a pretty
good time to reflect a bit on what we have actually done. For I didn’t need to mention
any basis until this paragraph, so everything we have done thus far is totally basis-
independent!

7 Tensor product
You could stop reading here and still get away with a pretty solid understanding of
what a tensor is, but if you’re interested, we could talk a bit about the symbol ⊗ that
you may have seen in relation to tensors.

Definition 9. Let U1, . . . , Un be vector spaces over a field R. Then U1 ⊗ · · · ⊗ Un is
a linear space equipped with a multilinear map π : U1 × · · · × Un → U1 ⊗ · · · ⊗ Un such
that for any multilinear map f : U1 × · · · × Un → R there exists a unique linear map
g : U1 ⊗ · · · ⊗ Un → R such that f = g ◦ π.

The space U⊗V is called the tensor product space of U and V . Definition 9 is fairly
dense, but what it says is basically that for every function bilinear on U × V , there is
a function that is linear on U ⊗ V . So we have yet another way of writing definition 8:
a tensor is a linear map

f : V ⊗ · · · ⊗ V︸ ︷︷ ︸
×l

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
×k

→ R.

This looks somewhat familiar thought. Recalling definition 5, we can rewrite the
set of valence (k, l) tensors as

{ f s.th. f is a valence (k, l) tensor }
= { f : V ⊗ · · · ⊗ V︸ ︷︷ ︸

×l

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
×k

→ R s.th. f is linear }

=
(
V ⊗ · · · ⊗ V︸ ︷︷ ︸

×l

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
×k

)∗
= V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸

×l

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
×k

.

The last step is that taking the dual space distributes over tensor products. It is not
hard to believe, and it is not difficult to prove2. Hence we can make one last very neat
reformulation of definition 8: A tensor is an element of

V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
×l

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
×k

.

2The idea is that φ : V ∗⊗W ∗ → (V ⊗W)
∗ defined by φ(f⊗g)(v⊗w) = f(v)g(w) is an isomorphism.

8

8 Krönecker product
This is all very elegant, but it is at the same time very abstract, and it would be useful
to see how these concepts look in the wild. Enter the Krönecker product, which is a
tensor product. You can use it for finite-dimensional spaces for which you have a basis.

Definition 10. Let

A =

A11 . . . A1n
...

Am1 . . . Amn


and

B =

B11 . . . B1q
...
Bp1 . . . Bpq


be two matrices with entries in a field R. The Krönecker product of A and B is

π(A,B) =



A11

B11 . . . B1q
...
Bp1 . . . Bpq

 . . . A1n

B11 . . . B1q
...
Bp1 . . . Bpq


...

Am1

B11 . . . B1q
...
Bp1 . . . Bpq

 . . . Amn

B11 . . . B1q
...
Bp1 . . . Bpq




.

So π(A,B) is amp×mq matrix and an is element of the tensor product space Rmn⊗Rpq.
π(A,B) is denoted A⊗B.

The tensor product space Rmn ⊗ Rpq = Rmp×mq is much larger than the Carte-
sian product space R(m+p)×(n+q), which reflects the fact that it less restrictive to be
multilinear than to be linear.

We had an example earlier, (1), of a multilinear map. We can see now that this is
just ~u⊗ ~v. Hence, for each bilinear function that f takes two real 3-vectors, there is a
linear function g that takes one real 3× 3-matrix such that f(~u,~v) = g(~u⊗ ~v).

9 How to transform like a tensor
What about the physics professor’s definition of a tensor? Well, let’s think about what
happens to the components of a tensor T ij : V → V ∗ → R when we make a coordinate
change to V . If v is a vector in V whose components transform as vi 7→ Aj

ivj by

9

a change of coordinates, and if v∗ = 〈v, ·〉 ∈ V ∗, then the components of v∗ should
transform as (v∗)i 7→ (A−1)j i(v

∗)j. The reason for this is that |v|2 = v∗v is invariant
under coordinate changes, and

v∗v = vi(v∗)i

7→ vjAj
i(A−1)ki(v

∗)k

= vjδj
k(v∗)k

= v∗v

shows that this is satisfied. So with some abuse of notation, let’s write down how
T (v, v∗) transforms:

T i
j
(
vi, (v∗)j

)
7→ T

(
Ak

ivk, (A−1)lj(v
∗)l
)

= Ak
i(A−1)ljT i

j
(
vk, (v∗)l

)
.

Hence the components of T ij transform as

T i
j 7→ Ak

i(A−1)ljT i
j. (2)

In physics you often deal with tensor fields. Now I don’t use “field” as in R or C
anymore but as in a function from the space or spacetime manifold M to the space
of tensors. Then V is often the tangent space to M . If we make a coordinate change
x 7→ x̂ on M , then that induces a coordinate change Aij = ∂x̂i/∂xj of the tangent
space. But just substituting this into (2) and using (∂x̂i/∂xj)

−1 = ∂xi/∂x̂j gives

T i
j 7→ ∂x̂k

∂xi

∂xj
∂x̂l

T i
j.

This is the transformation law that physicists mean when they say something transforms
as a tensor. It generalizes in the obvious way for higher valence tensors.

10

	Who is this explanation for?
	Linearity
	Einstein's summation convention
	Partial application
	Defining tensors as multilinear maps
	Contractions
	Tensor product
	Krönecker product
	How to transform like a tensor

