
© 2004 THREEPENNY SOFTWARE LLC

 PAGE 1

 Title: XML Interface to Soar (SML) Software Specification

 Written By: Douglas Pearson

doug@threepenny.net

 Client Contacts:

 Date: June 9, 2005

 File Name: Soar XML Interface Specification.doc

REVISION HISTORY

 Rev Revision Description Date Modification by:

00
 01
 02

 03
 04
 05

 06
 07
 08

ISSUED
Added ClientSML and KernelSML section
Redesigned the I/O model and WME representation to
better fit how we expect the client to use it.
Specified Connection interface
Added time tags to WMEs
Revised ElementXML and Connection interfaces. Added
MessageGenerator, <agent> and <agents>
Added SML Command language section
Added gSKI commands
Removing gSKI Commands, updating I/O commands.

7/26/2004
 8/4/2004
 8/7/2004

 8/8/2004
 8/9/2004
 8/11/2004

 8/16/2004
 8/31/2004
 10/26/2004

Douglas Pearson
Douglas Pearson
Douglas Pearson

Douglas Pearson
Douglas Pearson
Douglas Pearson

Douglas Pearson
Douglas Pearson
Douglas Pearson

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 2

XML Interface to Soar (SML)
Software Specification

ThreePenny Software, LLC

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 3

Table of Contents

1. INTRODUCTION ... 6
1.1. XML INTERFACE TO SOAR (SML) .. 6
1.2. ENVIRONMENT .. 6
1.3. GLOSSARY ... 6

2. OVERVIEW .. 7
2.1. COMMUNICATION MODELS .. 8

2.1.1. Out-of-Process Model .. 8
2.1.2. In-Process Model .. 8
2.1.3. Remote Model .. 8

2.2. XML CONTENT AND XML ELEMENT INTERFACES .. 9
3. MOTIVATIONS ... 10

3.1. COMMAND LINE INTERFACE / TCL DEBUGGER (TSI) ... 10
3.2. SUPPORT FOR LOGGING .. 10
3.3. LOOSE COUPLING BETWEEN TOOLS AND THE SOAR KERNEL ... 10
3.4. SUPPORT FOR OUT OF PROCESS AND REMOTE CONNECTIONS .. 11
3.5. LANGUAGE INDEPENDENCE / SIMPLER INTEGRATION ... 11
3.6. COMPREHENSIVE NAMING .. 12
3.7. XML WILL PROVIDE STRUCTURE .. 12

4. XML ELEMENT SPECIFICATION .. 13
4.1. INTRODUCTION AND DESIGN PRINCIPLES ... 13
4.2. XML ELEMENTS SUPPORTED .. 13
4.3. ELEMENTXML INTERFACE ... 16

4.3.1. C versus C++ ... 17
4.3.2. Memory allocation ... 19
4.3.3. Ownership and reference counting .. 19

5. XML CONTENT INTERFACE ... 20
5.1. INTRODUCTION .. 20

5.1.1. Sample SML document to send “print chunk-1” command ... 20
5.1.2. Sample SML document to send “source towers.soar” command .. 20
 Sample SML document containing “chunk-1” output .. 20
5.1.3. .. 20
5.1.4. Sample SML document containing “after decision cycle” event notification 21
5.1.5. Sample SML document containing input for agent-1 .. 21
 Sample SML document containing output ... 22
5.1.6. .. 22

5.2. GENERAL DOCUMENT STRUCTURE AND THE <SML> TAG ... 22
5.2.1. Example of this tag (if any of the examples accidentally contradict the spec, follow the spec): 22

5.3. COMMAND TAG .. 24
5.3.1. Example of this tag .. 24

5.4. ARG TAG .. 25
5.4.1. Example of this tag .. 25
5.4.2. Some common arguments ... 26

5.5. ERROR TAG ... 26
5.5.1. Example of this tag .. 26

5.6. RESULT TAG .. 27
5.6.1. Example of this tag .. 27

5.7. INPUT TAG ... 28
5.7.1. Example of this tag .. 29

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 4

5.8. OUTPUT TAG .. 29
5.9. WORKING MEMORY ELEMENT TAG .. 30

5.9.1. Example of this tag .. 30
 Definition .. 31
5.9.2. .. 31

5.10. CONDITION TAG ... 32
5.10.1. Example of this tag .. 32
5.10.2. ID test tag ... 33
5.10.3. Att-val-test tag .. 33
5.10.4. Att-test tag .. 33
5.10.5. Val-test tag ... 34
5.10.6. Test tag .. 34
5.10.7. Test Set tag .. 35
5.10.8. Symbol tag ... 35
5.10.9. Condition set tag .. 35

5.11. ACTION TAG ... 36
5.12. PRODUCTION TAG .. 36

5.12.1. Example of this tag .. 36
5.13. TAGS STILL TO DO .. 38

6. OVERVIEW OF CLIENT AND KERNEL INTERFACES ... 38
6.1. INTRODUCTION .. 38
6.2. KERNEL SML .. 38
6.3. CLIENT SML .. 39
6.4. MULTIPLE CLIENTS, MULTIPLE KERNELS .. 39

7. CLIENT SML AND KERNEL SML INTERFACES ... 40
7.1. CONNECTION INTERFACE ... 40
7.2. SAMPLE CODE FOR AN EMBEDDED CONNECTION .. 42

7.2.1. Initialization .. 42
7.2.2. Usage ... 43

7.3. SAMPLE CODE FOR A REMOTE CONNECTION ... 43
7.3.1. Initialization .. 43
7.3.2. Usage ... 43

7.4. MESSAGEGENERATOR INTERFACE (NOW FOLDED INTO CONNECTION CLASS) .. 44
8. COMMUNICATION MODELS FOR I/O .. 45

8.1. SIMPLE COMMUNICATION (SOAR NOT EXECUTING) ... 45
8.1.1. Embedded print “chunk-1” example ... 45
8.1.2. Remote print “chunk-1” example .. 46

8.2. INPUT AND OUTPUT DURING SOAR EXECUTION ... 46
8.2.1. Remote example – asynchronous model .. 47
8.2.2. Embedded example – synchronous with client in control ... 50

9. SML COMMAND LANGUAGE ... 54
9.1. AGENT COMMANDS ... 54

9.1.1. create-agent ... 54

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 5

Table of Figures

FIGURE 1 BASIC COMMUNICATION MODEL .. 7
FIGURE 2 OUT-OF-PROCESS COMMUNICATION MODEL .. 8
FIGURE 3 IN-PROCESS COMMUNICATION MODEL .. 8
FIGURE 4 CLIENTSML AND KERNELSML INTERFACES ... 38

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 6

1. Introduction

1.1. XML Interface to Soar (SML)

This specification is to define an XML interface for sending commands to and receiving information from
Soar version 8.6 or later.

1.2. Environment

The SML interface will be intended to run on the Windows, Linux, Unix and Mac platforms.

1.3. Glossary

Term Meaning

gSKI Generic Soar Kernel Interface. The new (as of Soar 8.6) interface into
the Soar kernel.

Soar Kernel The central processing part of Soar, where productions are matched,
working memory is managed and chunks are learned. In the latest
version (8.6) it should not contain any logic for interpreting commands
or generating trace output.

In process Soar and a tool are said to be “in process” if they both execute within
the same process (as defined by the operating system). In Windows,
if you run Soar and the tool you would see only one button on your
task bar.

Out of process Soar and a tool are said to be “out of process” if they execute as sepa-
rate processes. In Windows, if you run Soar and the tool you would
see two buttons on your task bar.

SML “Soar Markup Language”. The new XML interface proposed in this
document for connecting tools to Soar.

Soar Tool A tool, such as a debugger or editor, that wishes to connect to Soar.
The tool will issue commands such as “run”, “print” etc. and receive
notification of events from Soar such as “stopped-running”.

Soar Simulation A simulator, such as a flight simulator or game board, that is connect-
ed to Soar. A Soar agent will receive input from the simulation (e.g.
where another plane is located) and can send commands to the simu-
lation to take action (e.g. to land the plane).

Client Generic term used to refer to either a Soar Tool or a Soar Simulation.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 7

2. Overview

The XML interface is intended to allow tools, such as debuggers, to control Soar by sending commands
packaged in small pieces of XML and then receive output from Soar structured as an XML file. In many
ways, this resembles a SOAP interface into Soar. The interface can also be used to connect simulations to
Soar, with input being sent to Soar as an XML stream and output received from Soar as XML.

The most basic model for this communication is shown in Figure 1, although the communication between
Soar and its tools would not be limited to just this model. The tool issues a command by creating an XML
object that contains command and parameters. That object is then converted into an XML stream (a se-
quence of ASCII characters) which is then sent in some manner to the Soar process where it is converted
back into an object representing the command and the command is executed (by an appropriate call to
gSKI). The results of the command are then packaged and returned in a similar manner.

A simple example is the command “print chunk-1”. The XML generated by the tool might take the form (in
XML pseudo code):

 <Command name=”print” arg=”chunk-1” Command></Command>

and the results send back by Soar might be:

 <Production name=”chunk-1”>
<Condition>(state <s> ^object <obj>)</Condition>
<Condition>(object <obj> ^color red)</Condition>
…

</Production>

Figure 1 Basic Communication Model

It’s important to recognize that the XML interface layer would connect to Soar through gSKI and is not in-
tended to either replace gSKI or prevent tools or other users of the Soar kernel from connecting directly to
gSKI if they wish. It is instead intended to provide additional functionality that may be useful for some tools
and other users of the kernel.

Tool
XML

Element
XML

Element
Soar

(gSKI)
XML

Stream

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 8

2.1. Communication Models

2.1.1. Out-of-Process Model

Soar and the external tool or simulation each run in a separate process and communicate by sending an
XML stream through a socket.

Figure 2 Out-of-Process Communication Model

2.1.2. In-Process Model

Soar and the tool or simulation exist in a single process, communicating by passing objects back and forth
that represent XML nodes but without ever actually converting the objects to XML.

Figure 3 In-Process Communication Model

2.1.3. Remote Model

Soar and the external tool or simulation each run on a different machine, communicating via sockets to send
and receive an XML stream.

Tool
Or

Sim

XML
Element

Soar
(gSKI)

Tool
or

Sim

XML
Element

XML
Element

Soar
(gSKI)

XML
Stream

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 9

Figure 4 Remote Communication Model

2.2. XML Content and XML Element interfaces

The SML interface actually consists of two separate yet related software interfaces:

• XML Content Interface

• XML Element interface

The XML Content interface defines what XML documents should be sent and received between Soar and a
Soar tool or simulation. The XML Element interface goes beyond that and also defines a C level interface
for an object that represents an XML command (or piece of output) before it is converted into an actual XML
Stream.

For example:

<Command name=”print” arg=”chunk-1” Command></Command> would be part of the XML content.

Int getNumberAttributes() ; would be part of the XML Element interface.

The reason for defining the XML Element as well as the XML Content is primarily for improved efficiency. If
a tool and Soar share the same process, then it would be possible for them to transfer XML Elements with-
out converting the object into an ASCII stream (as XML) and then parsing that stream to re-create the object.

A side benefit of defining the XML Element interface is to indicate which subset of XML functionality is suffi-
cient to support the XML content. XML has grown to be a complex language with many capabilities and an
implementer may wish to know which subset of XML is sufficient for talking with Soar. They may determine
that either by reading this specification or by implementing the XML Element interface (which imposes a
source code level constraint).

Any tool is free to ignore the XML Element interface completely (even if it is “in process”) and simply gener-
ate XML content and send that as an XML stream to Soar.

Tool
Or

Sim

XML
Element

XML
Element

Soar
(gSKI)

XML
Stream

XML
Stream

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 10

3. Motivations

The reasons for proposing the XML interface are explained here. The intention is that each of these reasons
is sufficient motivation for creating the XML layer (as different motivations may be more relevant to different
user groups).

3.1. Command line interface / Tcl Debugger (TSI)

The existing Tcl Debugger interacts with Soar by sending commands (encoded as strings) and parsing the
results (also encoded as strings). To support this debugger with Soar 8.6 we need to write:

1. A command parser to convert the commands typed by the user (or otherwise sent by the Tcl inter-
faced) into calls to gSKI.

2. An output generator to convert from the gSKI representations of objects (e.g. the class representing
a Soar production) to a string version that can be shown to the user.

Note that gSKI does not include either this command line parser or any functions to generate output. Part of
the design of gSKI is that this functionality should lie outside of the kernel.

There is currently a project to write this parser and output generation code as a module called TgD. The
functionality of this component is very similar to that of the XML interface layer and the work to write either
should be similar, but the TgD effort will produce a component tied to the Tcl Debugger, while the XML inter-
face effort would produce a much more general solution that could be used by any tool, including the Tcl
Debugger.

We may decide at some point to drop support for the Tcl Debugger. However, if any tool is going to support
a command line interface then it is still worthwhile to write this SML interface layer as it provides that com-
mand line support, but in a more structured manner than a traditional command line interface based around
strings.

As a final consideration of the value of a command line interface it’s worth noting that JESS (the Java Expert
System Shell) offers an interface very similar to gSKI together with one additional function “executeCom-
mand” which accepts any valid string of JESS commands (essentially a command line interface). JESS, like
Soar, can be run either as an embedded process or standalone. This command line interface makes it pos-
sible to send the same set of commands to either an embedded system (which may be very hard to debug)
or to a standalone instance of JESS (which is much more open to interrogation). Without the command line
interface this would not be possible and embedded debugging would be much harder.

3.2. Support for logging

One desirable capability for a debugger is the ability to review output files logged from a running process
when no debugger is attached. In order to support this we would need to define a file format. The XML
interface layer gives us support for this file format and logging with minimal additional effort.

3.3. Loose coupling between tools and the Soar kernel

If a tool, such as a debugger, links directly to gSKI it will be tightly coupled to a particular version of the Soar
kernel. This is because the gSKI interface is very large and any change to the kernel is likely to require

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 11

some change to the interface. This in turn would mean that the debugger would need to be re-linked to the
new interface.

If we define an XML interface this tight coupling does not need to occur. If the Soar kernel changes, the
content sent over the XML interface will likely change but the ability to support reading and sending XML
would not change. This means it becomes possible for a tool to support multiple versions of the Soar kernel
simultaneously which could not be achieved with a direct link to gSKI.

This is a fairly subtle point but produces a very significant impact on the usefulness of a tool. The history of
Soar shows that at any given time the members of the Soar community are using a wide range of different
versions of Soar. It’s important that they not be required to upgrade to the latest version of the kernel in
order to use the latest version of the tools available for working with Soar. Also, the funding available for
working on the kernel and the tools has historically not gone in lock step. This means in many cases the
kernel may advance while the tools remain unchanged or vice versa. If the tools simply stop working when a
new release of Soar comes out this will lead users to quickly become frustrated and stop using a tool. How-
ever, if the tool continues to work correctly in 99% of cases and only has problems in the area where the
kernel was changed, users will be more likely to understand and accept that limitation and continue to use
the tool. This is only possible if the tools and the Soar kernel are not tightly coupled.

3.4. Support for out of process and remote connections

There are potentially situations where we would like to run Soar in a different process from the tool that is
connecting to it or even where Soar is running on a different machine. In order to do this it’s necessary to
define some format for the data that is sent between the tool and the Soar kernel. This can either be a bina-
ry format (producing a DCOM style solution for those familiar with Windows) or it can be a text format (such
as XML).

The XML interface should give us the ability to cross process boundaries and even machine boundaries with
little additional effort as it is only necessary to transfer the XML representation between the machines in
order to connect them. There is currently no similar capability in the existing gSKI interface so Soar is re-
quired to run in the same process as the tool connecting to it.

This motivation is less compelling than the others to me as it has so far been possible to live with this limitat-
tion when using the Tcl debugger. Out of process and remote connectivity have always been achieved by
having Soar’s I/O link send and receive data over a socket allowing the environment to be moved to being
out of process from Soar. However, if we can remove this limitation it’s an added benefit of the XML inter-
face and may make it possible to connect tools and Soar in new ways.

3.5. Language independence / simpler integration

XML is completely language independent, so tools can be written in any language and connect to Soar
through this interface. That is a minimal gain as support for C level interfaces is so wide-spread. However,
while any language can connect to a C language interface (such as gSKI offers) building and maintaining
this interface can be a significant challenge. The current gSKI header files consist of over 2,500 lines of
code which gives an indication of the size of the gSKI interface. In order to create an interface directly to
gSKI from another language (e.g. a JNI interface from Java) one would need to support this entire interface
and every change within gSKI would require a change to that cross-language interface.

By offering an XML layer, a tool builder has the choice of either integrating directly to gSKI (a simple opera-
tion if the tool is in C++) or the tool builder can choose to interface through the XML interface. In this case,
the size of the programmatic interface will be much smaller (the number of functions that need to be written
in a cross-language interface) because the bulk of the interface becomes content, making it only necessary
to support reading and writing XML which can be done in about a dozen functions.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 12

In short, the XML layer should make integration with other languages simpler and less prone to change as
the Soar kernel changes.

3.6. Comprehensive naming

A small but significant motivation for the XML interface is that it will help to ensure objects within the Soar
kernel continue to be named. Many of the names within the existing kernel are only present because of their
role in helping users refer to objects within the kernel in a principled fashion. The most obvious example is
the name of a production which has no role in the loading or firing of a production, but is clearly vital in ex-
plaining to a user which production has fired or allowing the user to indicate which production to excise.

It may seem ridiculous to imagine Soar without names, but gSKI now provides a well defined notion of main-
taining a pointer to a Soar kernel object, so it would be possible to design an interface without names and
still have it be well defined (whilst before gSKI maintaining pointers into the kernel would clearly be unsafe).

The most obvious example of how names can be lost along the way is the name of an agent. When multi-
agent capabilities were added to Soar, the Tcl interface already existed and so each agent was tied to a
unique Tcl interpreter. As a result, the agents were uniquely identified within Soar by that Tcl interpreter
pointer rather than an agent name. (There was an agent name field within the kernel but it actually con-
tained the address of this interpreter as a string). Needless to say, this implementation presented problems
when other tools wished to connect to the kernel and send commands to a particular agent.

In order to build an XML interface there will need to be some way to refer to objects within the kernel using
something other than a pointer, ensuring that naming remains as complete within the kernel as it is today.

3.7. XML will provide structure

One final consideration is whether it is necessary to provide XML communication in both directions. We
could instead send simple strings in either one or both directions. Adding an XML layer certainly adds over-
head, but there are several ways we can attempt to reduce this overhead (see below for details of passing
data in-process without conversion to XML and the support for different levels of detail in the XML content).

Sending XML instead of simple strings allows both the command sender and the output parser to be less
brittle and less sensitive to the exact format of output or commands.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 13

4. XML Element Specification

4.1. Introduction and Design Principles

This section defines the C-level interface to an object that represents an element in an XML document. See
Section 2.2 for an overview of this interface and motivation for its creation.

The design of this interface is intended to be:

1. Sufficient to meet the needs of the XML Content interface

2. As simple as possible while still meeting the needs of the XML Content interface.

By keeping the interface simple it will make integration with other tools and languages as easy as possible.

4.2. XML Elements Supported

We’ll start by defining the types of XML elements that will be supported by the interface and then define the
interface to provide those capabilities. To help make the definition more concrete, consider this example of
an XML document:

<Production name=”chunk-1”>
<Condition>(state <s> ^object <obj>)</Condition>
<Condition>

<![CDATA[(object <obj> ^color red)]]>
</Condition>

</Production>

XML Feature Supported Description

Element Simple tagged component. An XML document con-
sists of exactly one element (which then contains
other elements as children).

<Production>…</Production> is an example of an
element.

Children An element can contain an arbitrary number of chil-
dren.

In the examples, the <Condition>…</Condition>
elements are the children.

Tag name The name of the tag within an element.

In the example, Production is a tag name. Tag
names are case sensitive. Tag names consists of

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 14

letters, numbers and “.” “_” or “-“.

Attribute Attributes are name-value pairs where the value is
always a string.

In the example, name = “chunk-1” is an attribute.

Character data The contents of an element that lies between its start
and end tag.

In the example, “state <s> ^object <obj>” is
the character data for the first Condition element.

Special characters < Less-than “<”

> Greater-than “>”

& Ampersand “&”

" Double quotation marks – “

' Apostrophe or single quotation mark – ‘

The first condition shows an example of using these
escape sequences.

CDATA Section A CDATA section is used to wrap complex character
strings (such as occur within a Soar production).
Values within a CDATA section are not interpreted
by an XML parser so there is no need to use the
special characters > etc.

A CDATA section starts with <!CDATA and ends
with]]>

For the SML subset of XML we will require that
character data is either a single CDATA section or
does not contain any CDATA sections. (So CDATA
there will not be multiple CDATA sections and regu-
lar character data will not be interleaved with CDATA
sections).

<![CDATA[(object <obj> ^color red)]]> shows an
example of using a CDATA section within the char-
acter data for the second Condition.

There is much more allowed by XML than this small subset but these are not required by SML and so are
not required in the XML Object interface. They include:

• Processing instructions

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 15

• Comments

• Document Type Definitions (DTDs)

• Support for non-UTF8 character encodings

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 16

4.3. ElementXML Interface

Function Description

ElementXML() ;

~ElementXML() ;

Default constructor for the element.

Destructor for the element. This is private. Call re-
leaseRef() instead.

int addRef() ;

int releaseRef() ;

Add a new reference to the object. Returns new ref
count.

Release a reference from the object. If ref count
reaches 0 the object is deleted. Returns new ref
count.

Static bool isValidID(char const* str) ; Returns true if the string only contains letters, num-
bers, “.”, “-“ and “_”.

setTagName(char* tagName) ;

char const* getTagName() ;

Set the tag name for the element. Tag name can
only contain letters, numbers, “.” “-“ and “_”. Tag
names are case sensitive.

Get the tag name for the element.

Void addChild(ElementXML* child) ;

int getNumberChildren() ;

ElementXML const* getChild(int index) ;

Adds a child to the list of children of this element.

Returns the number of children of this element.

Returns the n-th child of this element. The caller
should not delete this element or attach it to other
objects etc.

Void addAttribute(char* atttributeName, char*
attributeValue);

int getNumberAttributes() ;

const char* getAttributeName(int index) ;

const char* getAttributeValue(int index) ;

const char* getAttribute(const char* attName) ;

Adds an attribute name-value pair. Attribute name
can only contain letters, numbers, “.” “-“ and “_”.
Attribute names are case sensitive.

Get the number of attributes attached to this element.

Get the name of the n-th attribute of this element.

Get the value of the n-th attribute of this element.

Get the value of the named attribute (or null if this
attribute doesn’t exist).

Void setCharacterData(char* characterData) ;

Get and set the character data for this element.

The character data passed in should *not* replace
special characters such as “<” and “&” with the XML

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 17

char const* getCharacterData() ;

escape sequences < etc. These values will be
converted when the XML stream is created.

Returns the character data for this element. This can
return null if the element has no character data.

Void setBinaryCharacterData(char* buffer, int
length) ;

IsCharacterDataBinary() ;

Int getCharacterDataLength() ;

Stores character data that can contain embedded
nulls. The length is the length of the buffer.

Returns true if character data was stored through a
call to setBinaryCharacterData().

If the character data is a binary buffer, this returns the
size of that buffer. If the data is a string, this returns
the length of the string + 1 (to include the trailing null).

Void setUseCData(boolean useCData) ; Setting this value to true indicates that this element’s
character data should be stored in a CDATA section.

By default this value will be false.

Static void deleteString(char* string) ; Utility function to release memory allocated by this
element and returned to the caller.

Static char* allocateString(int length) ;

static char* copyString(const char* original);

static char* copyBuffer(char* original, int length)

Utility function to allocate memory that will then be
passed to the ElementXML functions.

The length is the number of characters in the string,
so length+1 bytes will be allocated (so that a trailing
null is always included). Thus passing length 0 is
valid and will allocate a single byte.

copyString performs an allocation and then copies
the contents of the passed in string to the newly allo-
cated string.

Allocates a new buffer of size “length” and copies
exactly that many bytes from original to the new
buffer. This function is for use with binary character
data (a rare situation).

4.3.1. C versus C++

Although the above interface is defined in C++ terms, it is likely that it will make more sense to define a C
interface rather than a C++ interface. In that case the actual list of exported functions will be those shown
below. The “ElementXML” type is just an integer which is passed to every function and should be treated by
the client as a handle (i.e. an opaque reference to an object).

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 18

C Function definitions

typedef int ElementXML ;

ElementXML newElementXML() ;

ElementXML newElementXMLCopy(boolean copyStrings) ;

void deleteElementXML(ElementXML element) ;

setTagName(ElementXML element, char* tagName) ;

char const* getTagName(ElementXML element) ;

void addChild(ElementXML element, ElementXML child) ;

int getNumberChildren(ElementXML element) ;

ElementXML getChild(ElementXML element, int index) ;

void addAttribute(ElementXML element, char* atttributeName, char* attributeValue);

int getNumberAttributes(ElementXML element) ;

const char* getAttributeName(ElementXML element, int index) ;

const char* getAttributeValue(ElementXML element , int index) ;

const char* getAttribute(ElementXML element , const char* attName) ;

void setCharacterData(ElementXML element , char* characterData) ;

char const* getCharacterData(ElementXML element) ;

void setUseCData(ElementXML element , boolean useCData) ;

void deleteString(char* string) ;

char* allocateString(int length) ;

char* copyString(const char* original);

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 19

4.3.2. Memory allocation

The methods setTagName(), addAttribute() and setCharacterData() offer a range of options to do with own-
ership of the strings passed in. These forms allow a number of optimizations which can all be safely ignored
by a casual user. However, if you are interested in the potential optimizations read on.

Each function is implemented as a series of C++ functions. E.g. for setTagName() we have:

 setTagName(char* pName, bool copyName = true) ;

 setTagName(char const* pName) ;

 setTagNameFast(char const* pName) ;

In the first function, if copyName is true then pName will be copied by ElementXML. This is safe and the
default behavior. If copyName is false, then ElementXML takes ownership of the pName string and will call
deleteString() on this string when the ElementXML object is deleted. So if the caller passes “copyName =
false” it must have allocated the string with either allocateString() or copyString() and must not delete it once
passed in. The reason for allowing this, is that a smart client that is building up a string can do so with a call
to allocateString() (e.g. while parsing XML) and then just pass that string into this class without an additional
allocation and copy. For large strings this can be significant in both memory and time.

The second function is just a convenience. If a constant string is passed in, it must be copied (deleting a
constant string is a bad idea). It simply calls “setTagName(CopyString(pName), false)”.

The third function exists, but is protected because it is must be used with care (note it’s name is also differ-
ent, so accidentally use will not occur). This function requires that the constant string passed in remains in
scope for the life of the ElementXML object. In practice, this usually means the constant is a static constant.
The string is neither copied nor deleted. In SML there are many such constants (e.g. tag names, attribute
names) but one cannot programmatically distinguish what the life of such a string will be, so the developer
needs to use this one with care (which is why it’s not part of the public interface). To use it, you subclass
from ElementXML.

4.3.3. Ownership and reference counting

The ElementXML objects will use a reference counting system, so when either the kernel or client has fin-
ished with an object it can call deleteElementXML() and the underlying object will in fact only be deleted if
there are no other existing references to the object. Thus the normal use of an ElementXML object will be:

a) Create the ElementXML object

b) Call SendMessage to pass to another process

c) Delete the ElementXML object

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 20

5. XML Content Interface

5.1. Introduction

This section defines the XML documents that will be sent to and from the Soar kernel through the SML inter-
face. Refer to section 4.2 for a list of the types of XML constructs used within the interface.

Let’s start with some examples of SML documents and then follow it with a more precise specification:

5.1.1. Sample SML document to send “print chunk-1” command

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.4.2” id=”1234” >
<command name=”print”>
 <arg param=”agent”>agent-1</arg>
 <arg type=”string” param=”name”>chunk-1</arg>
</command>
</sml>

This is a request sent from a tool to the Soar kernel asking for the production named “chunk-1” to be printed.
This command specifically indicates it is intended for “agent-1” (specifying the intended agent is optional).

5.1.2. Sample SML document to send “source towers.soar” command

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.4.2” id=”1234” >
<command name=”cmdline” output=”raw”>
 <arg param=”agent”>test-agent</arg>
 <arg param=”line”>source towers.soar</arg>
</command>
</sml>

This is a command to load a set of productions from the file “towers.soar”. This command uses the com-
mand line interface, so the command is “source towers.soar” which is then parsed by the command line
interpreter. This uses the same format as a user could type at the command prompt for Soar and allows a
great number of commands to be sent easily.

5.1.3. Sample SML document containing “chunk-1” output

<sml smlversion=”1.0” doctype=”response” soarVersion=”8.4.2” id=”1275” ack=”1234”>
<result output=”structured”>
<production name=”chunk-1”>
 <condition><!CDATA[(state <s> ^problem-space <p>)]]></condition>
 <condition><!CDATA[(<p> ^name blocks-world)]]></condition>
</production>
</output>
</sml>

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 21

This is output generated from the kernel showing a production with two conditions (the rest are omitted for
simplicity). Note that the ack field matches the id of the originating command. The original production was:

sp {chunk-1
 (state <s> ^problem-space <p>)
 (<p> ^name blocks-world)
}

5.1.4. Sample SML document containing “after decision cycle” event noti-
fication

<sml smlversion=”1.0” doctype=”notify” soarVersion=”8.4.2” id=”1248”>
<command name=”event”>
 <arg param=”agent”>test</arg>
 <arg param=”eventid”>18</arg>
 <arg param=”phase”>4</arg>
</command>
</sml>

This is a notification that is sent from the kernel to notify a tool that Soar has completed a decision cycle.
That this is an “after decision cycle” event is determined by the eventide. The “phase” in this case indicates
where in the decision cycle Soar was when this event was fired.

5.1.5. Sample SML document containing input for agent-1

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.4.2” id=”1234”>
<command name=”input”>

<arg param=”agent”>agent-1<.arg>
<wme action=”add” att=”plane” id=”i1” tag=”-5” type=”id” value=”a4”></wme>
<wme action=”add” att=”name” id=”a4” tag=”-6” type=”string” value=”plane1”></wme>
<wme action=”add” att=”speed” id=”a4” tag=”-7” type=”int” value=”225”></wme>

 <wme action=”add” att=”position” id=”a4” tag=”-8” type=”id” value=”a5”></wme>
<wme action=”add” att=”x” id=”a5” tag=”-9” type=”int” value=”65”></wme>

 <wme action=”add” att=”self” id=”a4” tag=”-10” type=”id” value=”a4”></wme> ; Note – same value
as id
</command>
</sml>

This represents: (I1 ^plane P4) (P4 ^name plane1 ^speed 225 ^position P5 ^self P4) (P5 ^x 65). For input,
lower-case IDs (e.g. “a4”) are used to refer to objects created by the client which have yet to have actual
Soar IDs assigned to them. Upper-case IDs (e.g. “I1”) are used to refer to objects that already exist within
the kernel. Similarly, negative time tags (e.g. “-3”) are used to refer to objects created by the client, while
positive time tags (e.g. “5”) are used to refer to objects created by the kernel. Time tags are used to identify
wme’s when we’re removing values from working memory.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 22

5.1.6. Sample SML document containing output

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.4.2” id=”1234”>
<command name=”output”>
 <arg param=”agent”>agent-1</arg>

<wme action=”add” att=”turn” id=”O1” tag=”7” type=”id” value=”T1”></wme>
<wme action=”add” att=”heading” id=”T1” tag=”6” type=”int” value=”045”></wme>
<wme action=”add” att=”speed” id=”T1” tag=”12” type=”int” value=”225”></wme>

</command>
</sml>

This represents: (O1 ^turn T1) (T1 ^heading 045 ^speed 225).

5.2. General document structure and the <sml> tag

Each XML command sent to Soar and each piece of XML output sent from Soar will be a valid XML docu-
ment. Each valid SML document will always start with an <sml> element.. The children of this element will
specify the details of the content being sent. (This specification is intended to be descriptive rather than
proscriptive).

5.2.1. Example of this tag (if any of the examples accidentally contradict
the spec, follow the spec):

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.4.2” id=”1234”>
 [body of message goes here]
</sml>

SML Element Description

Tag: sml

Required in a valid SML document.

Tag for SML node.

Has no parent node in the document.

Attribute: smlversion=”n.n” (n is one or more
digits)

Required in a valid sml tag.

Defines the version of SML used in this document.

This version number should usually not be changed
if there are additions made to the SML spec, only if
something is removed or modified.

Changes to the Soar version number do not require
a change to the SML version number.

Attribute: soarversion=”n.n.n” (n is one or more
digits)

Required.

Messages from the kernel will always include the
current kernel’s version in this field. Messages from
a tool will include the latest version of Soar that the
tool was designed for.

This field allows either side of the communication to

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 23

be smart in supporting older versions. A kernel that’s
version 8.5 might decide to accept 8.4 print com-
mands that were formatted slightly differently than in
8.5. Similarly a tool built to support the 8.6 version of
the kernel might accept output generated by the 8.5
kernel.

Different SML documents could validly contain differ-
ent soarversion fields (where one side essentially
pretends it is a different version than it really is) alt-
hough it’ll be best to avoid this.

Attribute: doctype=”call” | “response”

Required.

Indicates the general nature of this document.

“call” : The sender is issuing a command to the re-
ceiver. Generally calls will be from tools to the kernel
but are not limited to this. The kernel could issue a
command to a tool or a tool might send a command
to another tool.

“response”: Result from a previous call being re-
turned to original sender. Generally, responses will
be from the kernel to the tools although again not
limited to this.

Calls are always matched to a response. The re-
sponse may contain nothing beyond the header
(indicating ‘message received’ and no more). Also,
someone making a call is not required to wait for the
response before continuing execution, so both syn-
chronous and asynchronous message passing is
possible.

Attribute: id=<id-string> (any string is valid)

Required.

This string is a unique id for the message sender
within a given session (a session being the life of the
sending process).

Attribute: ack=<id-string>

Required for “response” messages. Not al-
lowed in others.

This string is used to indicate that this message is a
response to another message. The value must
equal the ID of the original message that is being
responded to.

Children The following tags can be children of the sml node:

<command>,<result>

Others may be added in future.

Character Data Currently none.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 24

5.3. Command tag

SML documents can contain one or more command element. Commands consist of a name followed by a
series of arguments.

An SML document can only contain a single command. If you wish to send multiple commands, send multi-
ple SML messages one after another. (We may wish to allow a tool to send multiple messages in a single
string over a remote connection, thus ensuring that all commands are executed at the same time).

5.3.1. Example of this tag

<command name=”print”>
 <arg param=”agent”>test</arg>
 <arg type=”string” param=”name”>chunk-1</arg>
</command>

Command Element Description

Tag: command

Optional in an SML document.

Tag for command node.

Has sml node as its parent.

Attribute: name=<command-name>

Required in a valid command tag.

Specifies the command that is to be executed by the
recipient.

Attribute: output=”raw” | “structured”

Optional.

Specifies how the output from this command should
be structured. “raw” indicates that the output should
be returned using a raw XML node which will contain
a single block of data. “structured” is the default,
where the output is returned as a series of XML
nodes.

For example, when printing a production it could be
returned as a single XML structure (with the entire
production as a large string within the object) or as a
series of <condition> elements which themselves
contains <att> elements etc.

The content of the output in each case is equivalent,
but the ability to request different levels of structure in
the output can allow the caller to be more efficient
and can reduce the overhead in the communication.

If the client has no interest in parsing the output, but
just intends to display it to the user, then requesting
raw output will make the client code much simpler as
it won’t need to know how to convert an arbitrary
SML document back into text to display to the user.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 25

Instead, it will only need to know how to do that for a
few tags (raw, error etc.)

The precise details of the content of the raw node
depend on the command being executed.

Children <arg> nodes can be children.

Some commands may use other nodes as children.
For example, a “send-production” command might
include a <production> object as a child.

Character Data Currently none.

5.4. Arg tag

An arg element is used to specify an argument for a command.

5.4.1. Example of this tag

<command name=”print”>
 <arg param=”agent”>agent-1</arg>
 <arg type=”string” param=”name”>chunk-1</arg>
</command>

Arg Element Description

Tag: arg

Optional in an SML command

Tag for arg node.

Has command node as its parent.

Attribute: param=<parameter-name>

Required.

Specifies which parameter this is within the com-
mand.

Attribute: type=”string” | “int” | “double” |
“char” | “boolean” | “id”

Optional

Specifies how the value should be interpreted. Op-
tional because the recipient must already know how
to interpret the argument (and presumably we don’t
define an API with multiple types in a single slot).

Note that the value is always a string within the XML
document, this just indicates how to parse it.

Children Currently none.

Character Data The value of this parameter.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 26

Required

5.4.2. Some common arguments

1. Agent

<arg param=”agent”>agent-3</arg>

This argument is used to pass the name of an agent.

2. Eventid

<arg param=”eventide”>18</arg>

This argument is used to pass notification of a specific event for an “event” command.

5.5. Error tag

An error element is used to report problems with the execution of a command. There will either be one error
tag or the command is assumed to have completed successfully (in which case there may also be a result
tag, although that is not required).

5.5.1. Example of this tag

<sml smlversion=”1.0” doctype=”response” soarVersion=”8.4.2” id=”id-1234”>
 <error code=”32” name=”not-implemented” source=”print-gds”>The print-gds command is not im-
plemented in this version of Soar</error>
</sml>

Error Element Description

Tag: error

Optional in an SML document

Tag for error node.

Has sml node as its parent.

Attribute: name=”not-implemented” | “invalid-
arg” | “invalid-version” | “aborted” | “failed”

Optional.

The class of error. “Failed” is a catch-all and the
default value.

This list may be extended later.

Attribute: source=<name>

Optional

A description of the source of this error. For exam-
ple, if an argument is invalid this could be used to
report which argument was invalid.

Attribute: code=n

Optional

A numeric code to identify the error. A particular
command can define a series of error codes which it
may return. The reason to define these is to allow
the caller to make programmatic decisions based on
the error (e.g. if file-not-found is “1” for a particular
command, then the client can test this and decide it
needs to create the missing file). The character data

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 27

should never be used to control behavior (that’s just
a message to show to the user).

Children Currently none.

Character Data

Required

A description of the error.

5.6. Result tag

Result is used to report the results of a command. If a <result> tag is included, an <error> tag should not
usually be included, so <result> is used to report successful output. A <result> tag is not required (so a
successful command could return an empty <sml …></sml> message).

5.6.1. Example of this tag

<sml smlversion=”1.0” doctype=”response” soarVersion=”8.4.2” id=”id-1234”>
<result output=”raw”>
 [Result goes here]
</result>
</sml>

Result Element Description

Tag: result

Optional in an SML document

Tag for result node.

Has sml node as its parent.

Attribute: output=”raw” | “structured”

Optional.

Specifies how the output from this command should
be structured. “raw” indicates that the output should
be returned using a raw XML node which will contain
a single block of data. “structured” is the default,
where the output is returned as a series of XML
nodes.

For example, when printing a production it could be
returned as a single XML structure (with the entire
production as a large string within the object) or as a
series of <condition> elements which themselves
contains <att> elements etc.

The content of the output in each case is equivalent,
but the ability to request different levels of structure in
the output can allow the caller to be more efficient
and can reduce the overhead in the communication.

If the client has no interest in parsing the output, but
just intends to display it to the user, then requesting

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 28

raw output will make the client code much simpler as
it won’t need to know how to convert an arbitrary
SML document back into text to display to the user.
Instead, it will only need to know how to do that for a
few tags (raw, error etc.)

The precise details of the content of the raw node
depend on the command being executed.

Children Depending on command

Character Data Depending on command

5.7. Input tag

This element is used to describe a change to the input-link. The change can either be a complete copy of
the input-link or it can be just the values that have changed since the last input message was sent. If the
change is not a delta, the graph of WMEs sent must always start at the input-link. If the change is a delta,
then the children are a list of WMEs that include the “action” attribute (to indicate if they are additions or dele-
tions).

The input tag is a parameter to an “input” command.

IDs are values assigned by Soar to objects (e.g. “O4” is an ID). The client cannot know in advance what ID
will be assigned by Soar. So when adding an object to the input link, this field is usually not specified by the
client. Soar will assign the new WME an ID and maintain a record of the mapping between the client’s ID
and the Kernel’s ID.

E.g.

<wme action=”add” att=”plane” id=”i1” tag=”-5” type=”id” value=”a4”></wme>
<wme action=”add” att=”name” id=”a4” tag=”-6” type=”string” value=”plane1”></wme>
<wme action=”add” att=”speed” id=”a4” tag=”-7” type=”int” value=”225”></wme>

Could be used to create (I1 ^plane P4) (P4 ^name plane1) (P4 ^speed 225), with Soar establishing a map-
ping from a4 to P4.

The client should attach time tags to the objects being added, so they can be removed like this:

<wme action=”remove” tag=”-5”></wme>
The client should use negative values for its time tags, so it’s clear which type of tag is being used. Soar’s
time tags are always positive.

Note that Soar allows input to be added to both the input-link and the output-link. For example, additions to
the output-link might be used to indicate when a command has completed or that it executed with an error.
An “input” commands is used in either case.

Note: We need to include a command to let the kernel request a full input-link dump be sent over.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 29

5.7.1. Example of this tag

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.4.2” id=”1234”>
<command name=”input”>

<arg param=”agent”>agent-1<.arg>
<wme action=”add” att=”plane” id=”i1” tag=”-5” type=”id” value=”a4”></wme>
<wme action=”add” att=”name” id=”a4” tag=”-6” type=”string” value=”plane1”></wme>
<wme action=”add” att=”speed” id=”a4” tag=”-7” type=”int” value=”225”></wme>

 <wme action=”add” att=”position” id=”a4” tag=”-8” type=”id” value=”a5”></wme>
<wme action=”add” att=”x” id=”a5” tag=”-9” type=”int” value=”65”></wme>

 <wme action=”add” att=”self” id=”a4” tag=”-10” type=”id” value=”a4”></wme> ; Note – same value
as id
</command>
</sml>

Input Element Description

Tag: input

Optional in an SML document

Tag for input node.

Has sml node as its parent.

Attribute: update=”full | delta”

Optional

Whether the WM description is a complete descrip-
tion of the input-link or how it should be modified from
its current state. Defaults to “delta” if not specificied.

This flag is not yet in use (all messages are deltas).

Children List of WMEs to add or remove.

For a full update, the WMEs must start at the input-
link.

Character Data None.

5.8. Output tag

This element is used to describe a change to the output-link and follows the same format as the input com-
mand.

The output tag is a parameter to an “output” command.

<sml smlversion=”1.0” doctype=”call” soarVersion=”8.4.2” id=”1234”>
<command name=”output”>
 <arg param=”agent”>agent-1</arg>

<wme action=”add” att=”turn” id=”O1” tag=”7” type=”id” value=”T1”></wme>
<wme action=”add” att=”heading” id=”T1” tag=”6” type=”int” value=”045”></wme>
<wme action=”add” att=”speed” id=”T1” tag=”12” type=”int” value=”225”></wme>

</command>

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 30

</sml>

An output command informs the client that the Soar agent has added new structure to the output link. The
client will then examine that new structure and determine what action the agent has taken and how to
change the environment accordingly. Each output command reports just the changes to the output-link
since the last time output was sent.

Output Element Description

Tag: output

Optional in an SML document

Tag for output node.

Has sml node as its parent.

Attribute: update=”full | delta”

Optional.

Whether the WM description is a complete descrip-
tion of the output-link or how it has just changed.

Children List of WMEs that have just been added or removed
by the Soar agent.

For a full update, the WMEs must start at the output-
link.

Character Data None.

5.9. Working Memory Element tag

This element is used to describe working memory elements, for example as output from a print command.
A WME is represented as a triplet: (identifier, attribute, value) together with a time tag (a unique number for
this specific working memory element).

5.9.1. Example of this tag

<wme action=”add” att=”plane” id=”i1” tag=”-5” type=”id” value=”a4”></wme>
<wme action=”add” att=”name” id=”a4” tag=”-6” type=”string” value=”plane1”></wme>
<wme action=”add” att=”speed” id=”a4” tag=”-7” type=”int” value=”225”></wme>

 <wme action=”add” att=”position” id=”a4” tag=”-8” type=”id” value=”a5”></wme>
<wme action=”add” att=”x” id=”a5” tag=”-9” type=”int” value=”65”></wme>
<wme action=”add” att=”self” id=”a4” tag=”-10” type=”id” value=”a4”></wme> ; Note – same value

as id

This example represents: (I1 ^plane P4) (P4 ^name plane1 ^speed 225 ^position P5 ^self P4) (P5 ^x 65).
Note that the IDs created in Soar’s working memory are different from those assigned by the client (“a4”-
>”P4”), but the structure is maintained correctly.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 31

5.9.2. Definition

wme Element Description

Tag: wme Tag for wme node.

Attribute:id=<id of parent>

Required (unless referencing an existing wme
by time tag)

The ID for the parent of this WME.

Attribute: att=<attribute-name>

Required (unless referencing an existing wme
by time tag)

The attribute name of this wme.

Attribute: tag=<n> where n is a number.

Required if adding a wme to working memory.

Used to report Soar’s internal time tag for this WME.
The time tag is sufficient to uniquely identify this
WME to Soar and so may be more efficient to use in
some situations.

A positive value is a time tag that has meaning to the
kernel. A negative value is a time tag that only has
meaning to the client.

Attribute: type=”string” | “int” | “double” | “id”

Optional. Defaults to string.

Specifies how the value should be interpreted.

Attribute: value=<value>

Required.

The value for this wme. If the value is an identifier
then if the identifier was created by the client it will
start with a lower case letter (e.g. “g3”). If the identi-
fier was created by the kernel, it will start with an
upper case letter (e.g. “K3”).

Attribute: action=”add | remove”

Optional.

Only relevant when used in a command that chang-
es working memory.

Add is the default and indicates that this WME should
be added.

Remove indicates that this WME should be removed.
For a remove command, only the time tag is re-
quired. (Specifying a unique WME through (id, at-
tribute, value) is not possible as multiple wmes might
share these same values, so the time tag must be
used).

Children None

Character Data None

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 32

5.10. Condition tag

This element represents a condition in a production (for example (state <s> ^super-state <ss>)). It can be
used to represent either a single condition or a series of conditions that share the same ID (e.g. state <s>
^name top ^color red).

5.10.1. Example of this tag

<production name=”chunk-1”>
<condition-set negated=”false”>
 <condition negated=”false”>
 <id-test> <test>
 <symbol type=”variable”><s></symbol> [id is test for <s>]
 </test> </id-test>
 <att-val-test>
 <att-test> <test>
 <symbol type=”string”>name</symbol> [att is ^name]
 </test> </att-test>
 <val-test> <test>
 <symbol type=”string”>Top-State</symbol> [value is |Top-State|]
 </test> </val-test>
 </att-val-test>
 <att-val-test>
 <att-test> <test>
 <symbol type=”string”>height</symbol> [att is ^height]
 </test> </att-test>
 <val-test> <test-set>

<test>
 <symbol type=”int”>52</symbol> [value is 52]
 </test>

<test>
 <symbol type=”int”>55</symbol> [or value is 55]
 </test>

</test-set> </val-test>
 </att-val-test>

</condition>
 [More conditions go here]
</condition-set>
</production>

This condition represents (<s> ^name |Top-State| ^height << 52 55 >>). Productions are complicated
beasts, so there is a lot of structure here to cover the different possibilities.

Condition Element Description

Tag: condition Tag for condition node.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 33

Attribute: negated=”true” | “false”

Optional

Indicates if this is a negated condition or not.

If omitted the condition is not negated.

Children

Required

One <id-test> and series of <att-val-test> nodes

Character Data None

5.10.2. ID test tag

This tag represents the test for the identifier in a condition (e.g. <s> in (<s> ^name top-state)).

Id-test Element Description

Tag: id-test Tag for the id-test node.

Has a condition element as its parent.

Children

Required

Either <test> or <test-set> node.

Character Data None

5.10.3. Att-val-test tag

This tag represents the test for an attribute and value in a condition (e.g. ^name top-state).

Att-val-test Element Description

Tag: att-val-test Tag for the att-val-test node.

Has an id-test element as its parent.

Children

Required

One <att-test> node and one <val-test> node. The
first is for the attribute, the second for the value.

Character Data None

5.10.4. Att-test tag

This tag represents the test for the attribute in a condition (e.g. name in (<s> ^name top-state)).

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 34

Id-test Element Description

Tag: att-test Tag for the att-test node.

Has an att-val-test element as its parent.

Children

Required

Either <test> or <test-set> node.

Character Data None

5.10.5. Val-test tag

This tag represents the test for the value in a condition (e.g. top-state in (<s> ^name top-state).

Id-test Element Description

Tag: val-test Tag for the val-test node.

Has an att-val-test element as its parent.

Children

Required

Either <test> or <test-set> node.

Character Data None

5.10.6. Test tag

This element represents a test in a condition.

Test Element Description

Tag: test Tag for the test node.

Has either an id-test or an att-val-test as its parent (or
possibly a test-set).

Attribute: type=”eq” | “gt” | “lt” | “gte” | “lte” |
“ne” | “dis” | “con”

Optional

Equal, greater than, less than, greater than or equal,
less than or equal, not equal, disjunction, conjunc-
tion.

If the field is omitted the test type is “eq”.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 35

Children

Required

A <symbol> node that represents the value being
tested against.

Character Data None

5.10.7. Test Set tag

A single test in a condition can actually be a test against a set of values (e.g. ^name << a b >>).

Test-set Element Description

Tag: test-set Tag for the test-set node.

Has either an id-test or an att-val-test as its parent (or
possibly a test or test-set).

Children

Required

A series of <test> nodes (or I believe even <test-set>
nodes are possibly valid).

Character Data None

5.10.8. Symbol tag

This element represents a single symbol (an integer, a variable name etc.).

symbol Element Description

Tag: symbol Tag for the symbol node.

Has a test element as its parent.

Attribute: type=”string” | “int” | “double” |
“char” | “boolean” | “id” | “variable”

Optional

The type of this symbol.

If this field is omitted the type is “string”.

Children None

Character Data The value

5.10.9. Condition set tag

This element represents a grouped set of conditions. Productions can contain negated sets of conditions
that are logically grouped together.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 36

Condition-set Element Description

Tag: condition-set Tag for the condition-set node.

Attribute: negated=”true” | “false”

Optional

Indicates if this set of conditions are negated or not.

If omitted the set of conditions is not negated.

Children

Required

A series of <condition> nodes (or I believe <condi-
tion-set> nodes are also valid).

Character Data None

5.11. Action tag

TODO: Need to specify similar things to the condition side.

5.12. Production tag

This element is used to represent a production. Interestingly, this XML structure exposes the Soar parser
quite nicely. You could send a production as a raw string to Soar and get this back as output—a fully parsed
and structured version of a Soar production.

Need to add the “state” symbol.

5.12.1. Example of this tag

<production name=”chunk-1” source=”c:\test\prods.soar” docs=”My first production” type=”chunk”>
<condition-set negated=”false”>
 <condition negated=”false”>
 <id-test> <test>
 <symbol type=”variable”><s></symbol> [id is test for <s>]
 </test> </id-test>
 <att-val-test>
 <att-test> <test>
 <symbol type=”string”>name</symbol> [att is ^name]
 </test> </att-test>
 <val-test> <test>
 <symbol type=”string”>Top-State</symbol> [value is |Top-State|]
 </test> </val-test>
 </att-val-test>
 <att-val-test>
 <att-test> <test>
 <symbol type=”string”>height</symbol> [att is ^height]
 </test> </att-test>
 <val-test> <test-set>

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 37

<test>
 <symbol type=”int”>52</symbol> [value is 52]
 </test>

<test>
 <symbol type=”int”>55</symbol> [or value is 55]
 </test>

</test-set> </val-test>
 </att-val-test>

</condition>
 [More conditions go here]
</condition-set>
<action-set>
 [Actions go here]
</action-set>
</production>

The condition represented here is (<s> ^name |Top-State| ^height << 52 55 >>).

Production Element Description

Tag: production Tag for the production node.

Attribute: name=<production-name>

Required

The name of the production

Attribute: type=”user” | “chunk” | “justification”
| “default”

Required

What type of production this is.

Attribute: docs=<documentation-string>

Optional

The user’s documentation of this production.

Attribute: source=<file-path>

Optional

Path to the file from which this production was load-
ed.

Children

Required

A <condition-set> node and an <action-set> node.

Character Data None

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 38

5.13. Tags still to do

Need to support output from some functions such as matches, find etc. that return list of production names
or match condition information etc. We’ll probably end up defining these as we work through the command
set. Once we have the basic structure, it should be simple enough to build up from it for these commands.

6. Overview of Client and Kernel Interfaces

6.1. Introduction

So far this spec has focused on the question of what will be communicated between a client (tool or simula-
tion) and the Soar kernel at the XML level. To build a complete system, we also need to define the higher
level interface that manages this communication on either the Soar kernel or client side. This interface is
responsible for managing sockets, sending commands, receiving notifications, registering for events etc.

The basic structure for this higher level interface is shown below in Figure 4.

Figure 4 ClientSML and KernelSML interfaces

6.2. Kernel SML

The KernelSML component is responsible for:

• converting incoming commands into calls to the Soar kernel (gSKI)

• converting output from the Soar kernel into calls to the client

• accepting input wmes for Soar’s input-link and sending output-link commands to the client

• allowing the client to register and un-register for events that occur in the kernel and sending that in-
formation to the client when the event occurs.

• supporting socket connections; synchronous and asynchronous calls and in-process communica-
tion

XML
Element

XML
Stream

Client
SML

Kernel
SML

XML
Element

Client
(Tool/
Sim)

Soar
(gSKI)

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 39

All of the information passed to and from Kernel SML will be encoded as SML messages and all SML mes-
sages sent to Soar will be interpreted by this layer. KernelSML will be a shared library (a DLL on Windows)
and will be linked directly to a particular version of gSKI and Soar. The interface to this library should not
change over time as Soar changes and evolves, making it possible for a tool to be designed to work with
many different versions of Soar.

6.3. Client SML

The ClientSML component is a layer that clients may choose to use to make them simpler. However, it is
not a requirement of the system that a client uses the ClientSML library and some tools or simulations may
find it more convenient to simply generate XML directly or use the ElementXML library directly.

The ClientSML component is responsible for:

• sending input WMEs to Soar (via SML and the KernelSML layer) that are then attached to the input-
link

• responding to output commands from Soar that are generated from the output-link

• supporting socket connections; synchronous and asynchronous calls and in-process communica-
tion

• providing some useful classes for constructing SML messages

The ClientSML library will be much smaller than the KernelSML library as it will not need to interpret the
range of commands that can be sent and received by SML. The client itself is responsible for handling those
messages in a manner that makes sense for the particular application.

Over time we will want to provide ClientSML implementations in a number of languages, notably C++ and
Java and possibly others.

6.4. Multiple Clients, Multiple Kernels

While the base model shows a single client talking to a single kernel, in general we want to allow multiple
clients to talk to a single kernel (e.g. Visual Soar and a Debugger might both wish to send information to an
instance of Soar) and a single client to talk to multiple kernels (e.g. in a distributed setting we might run mul-
tiple instances of Soar on different machines and wish to control them all from a single control panel).

Furthermore, it would be good to allow, at the communication level, clients to talk to each other (e.g. one tool
to another or a tool to a simulation) and to allow kernels to communicate with each other (e.g. to support
inter-agent communication). This form of inter-kernel communication or inter-tool communication would
require different SML message content than has been defined in this spec but that should be all.

One more complexity here is that to be truly general, we should allow Soar to be embedded in one tool and
yet accessible by another tool through a socket. We won’t focus on supporting this capability at the start, but
by keeping it in mind I expect we can achieve it without extra effort if we’re careful in the design.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 40

7. Client SML and Kernel SML Interfaces

This section still needs to be updated to match the latest method definitions.

7.1. Connection Interface

This interface describes the connection between a client (tool or simulation) and the Soar kernel. Both Cli-
entSML and KernelSML will use this connection interface to communicate with each other.

The functions here are described from the client’s perspective and would be completely symmetrical in Ker-
nelSML from the kernel’s perspective.

Function Description

Connection* CreateEmbeddedConnection() Creates a connection to the Soar kernel that is em-
bedded within the same process as the client.

Connection* CreateRemoteConnection(char
const* pIPaddress, int port)

Creates a connection to a different process. This
could be on the same machine or on a different ma-
chine.

If memory serves, the IP address to connect on the
same machine should be 127.0.0.1. Need to confirm
that. We’ll allow the user to pass NULL for the ad-
dress to indicate it’s a local connection.

ListenerConnection* CreateListener(int port,
ListenerCallback callback, void* pUserData) ;

Allows an external process to connect to us on the
specified port. When a connection is made, the
callback function is called and passed the user data.

void CloseConnection(Connection
*pConnection)

Shutdown this connection.

void SendMessage(ElementXML* pMsg) Send a message to the kernel (usually a command
or input message).

The connection records information about who we
are talking to (what socket etc.). This should allow a
client to talk to multiple kernels and we should cer-
tainly support clients talking to other clients.

The error code that is returned indicates whether the
command was successfully sent, not whether the
command was interpreted successfully by Soar.

void ReceiveMessages(bool allMessages) Retrieve any commands, notifications, responses
etc. from the kernel. If “allMessages” is false pro-
cesses at most one message.

Messages that are received are routed to callback

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 41

functions in the client for processing.

This call never blocks.

In an embedded situation this does nothing as mes-
sages from the kernel are sent directly to the callback
functions.

In a remote situation, the client must call this function
periodically.

We use a callback model (rather than retrieving each
message in turn here) so that the embedded model
and the remote model look the same to the client.

ElementXML* GetResponse(char const* pID,
bool wait)

Retrieve the result of the last command sent.

In an embedded situation this result is always imme-
diately available and the “wait” parameter it ignored.

In a remote situation if “wait” is true, this call will block
waiting for the response (and will eventually timeout if
no response comes in). If “wait” is false, the call
returns NULL if the response is not available imme-
diately.

The ID is only required in the situation where the
client is remote, sends a series of commands and
then asks for the result of the last one. Without the
ID it could not discriminate among the series of re-
sponses.

This function will return NULL if called a second time
for the same ID (i.e. the message can only be re-
trieved once) which just allows us to improve perfor-
mance (by not keeping a message around longer
than necessary).

The client is not required to call to get the result of a
command it has sent.

The implementation of GetResponse() will call Re-
ceiveMessages() to get messages one at a time and
process them. Thus callbacks may be invoked while
the client is blocked waiting for the particular re-
sponse they requested.

A response that is returned to the client through
GetResponse() will not be passed to a callback func-
tion registered for response messages. This allows a
client to register a general function to check for any
error messages and yet retrieve specific responses

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 42

to calls that it is particularly interested in.

void RegisterCallback(Function *pFunc, void*
pUserData, char const* pType, bool addToEnd)

Function type accepts an ElementXML* and
returns an ElementXML*.

Register a callback function for a given type of mes-
sage.

When a message is received of the given type
(based on the doctype attribute in the SML node) the
callback function is called.

If a message is returned by the callback it will be sent
back to the kernel (and must be a “response”).

We will maintain a list of callbacks for a given type of
SML document and call each in turn. The first
callback which returns a non-NULL response will be
sent back to the kernel and no further callbacks will
be called for that message. This ensures that only
one response is generated for each incoming mes-
sage.

If “addToEnd” is true then the callback is added to
the end of this list (i.e. will be called after all existing
callbacks). If false, the callback is added to the front
of the list.

The user data parameter is passed to the callback
function, allowing the caller to maintain context within
the callback.

void UnregisterCallback(Function *pFunc, char
const* pType)

Removes an existing callback from the list of
callbacks.

If pFunc is NULL remove all callbacks for this type of
message.

ErrorCode GetLastError() ;

Reports any errors in the last function call made to
this class. 0 indicates no errors. A user displayable
error message can be had from GetErrorDescrip-
tion(ErrorCode n) ;

I think KernelSML can be completely symmetric with ClientSML as regards message passing.

7.2. Sample code for an embedded connection

7.2.1. Initialization

First, create the connection object:

ErrorCode error = 0 ;
Connection* pConnection = Connection::CreateEmbeddedConnection(&error) ;

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 43

This example assumes that the client is interested in receiving notifications of events from the kernel, so it
registers a notification callback. The callback function must itself be static, but for C++ code we’ll typically
want to handle the call within an object. To do this we register the function and pass in the “this” pointer:

pConnection->RegisterCallback(Notify1, this, sml_Names::kDocType_Notify, true) ;

Then the callback function looks like this:

static ElementXML* Notify1(Connection* pConn, ElementXML* pMsg, void* pUserData)
{
 // Switch from a static callback into one local to the sending object
 ClientClass* pMe = (ClientClass*)pUserData ;
 pMe->Notify(pConn, pMsg) ;

 // Since this is a notification, we always return NULL
 return NULL ;
}

void Notify(Connection* pConnection, ElementXML* pIncoming)
{
 // This is where we really handle the notification.
}

7.2.2. Usage

Commands are sent like this:

pConnection->SendMessage(pSML) ;

The response to a command is retrieved like this:

ElementXML* pResponse = pConnection->GetResponse(pSML->getID(), true) ;

Notifications of events occurring on the kernel (e.g. when Soar is interrupted for some reason or watch out-
put while Soar is running) are received by the Notify function being called.

7.3. Sample code for a remote connection

7.3.1. Initialization

The only difference from the embedded example during initialization is how the Connection is created:

ErrorCode error = 0 ;
Connection* pConnection = Connection::CreateRemoteConnection(“152.12.52.1”, 572,
&error) ;

The methods for registering a callback are the same as for the embedded connection.

7.3.2. Usage

The only difference from the embedded example is that ReceiveMessages() must be called periodically.

So we have:

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 44

Commands are sent like this:

pConnection->SendMessage(pSML) ;

The response to a command is retrieved like this:

ElementXML* pResponse = pConnection->GetResponse(pSML->getID(), true) ;

Notifications of events occurring on the kernel (e.g. when Soar is interrupted for some reason or watch out-
put while Soar is running) are received by the Notify function being called which will only happen as a result
of either the GetResponse() call above or as a result of calling:

pConnection->ReceiveMessages(true) ;

7.4. MessageGenerator Interface (now folded into Connection class)

This class provides helper functions for creating SML messages. The client is not required to use these
functions and can create ElementXML objects directly through that interface, but usually these will be help-
ful. The Connection class derives from the MessageGenerator class, so a Connection is always a Mes-
sageGenerator.

Function Description

Int GenerateID() Generates a new ID that is unique over the life of this
generator.

ElementXML* CreateSMLMessage(char const*
pType)

Creates an SML message with id, docType, smlVer-
sion, soarVersion attributes defined. The type
passed in should currently be one of “call”, “re-
sponse” or “notify”.

ElementXML* CreateSMLCommand(char const*
pAgent, char const* pCommandName, bool
rawOutput) ;

Creates an SML message containing <agent> and
<command> tags. After creating this object, you
should add parameters to the command.

If rawOutput is true then the result of the command
will be a string wrapped in a <raw> tag, rather than
full structured XML. (See the <raw> tag for more on
this).

void AddParameterToSMLCommand (Ele-
mentXML* pCommand, char const* pName, char
const* pValue, char const* pValueType) ;

Adds a parameter to an SML message that contains
a single command object.

ErrorCode GetLastError() ;

Reports any errors in the last function call made to
this class. 0 indicates no errors. A user displayable
error message can be had from GetErrorDescrip-
tion(ErrorCode n) ;

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 45

8. Communication Models for I/O

This whole section was useful during development, but is probably just confusing now. It should come out
and be replaced by a simpler description of the different types of connections.

8.1. Simple Communication (Soar not executing)

When Soar is not executing, commands can be sent from the client to the kernel and the results are passed
back, making for a simple communication model.

8.1.1. Embedded print “chunk-1” example

Here’s an example showing the sequence of calls for an embedded client calling to the kernel to print a
chunk.

Client Client SML Kernel SML Notes

User command: print
chunk-1

Build SML command
msg1 type=”command”

à SendMessage(msg1) This is a function call that
will not return until kernel
responds.

 à Call gSKI to get chunk-1
representation

 Convert production to SML
msg2 type=”response”

 Return msg2 as result of
“SendMessage”

This result is cached brief-
ly until the GetResponse().

 ClientSMLretrieves
result with

GetResponse(msg1)

ß This call is just to maintain
symmetry with the remote
model (where a result is
not immediately available).

Client is passed SML
description of chunk-1

ß

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 46

8.1.2. Remote print “chunk-1” example

Here’s an example showing the sequence of calls for a remote client calling to the kernel to print a chunk
through a socket.

Client Client SML Kernel SML Notes

User command: print
chunk-1

Build SML command
msg1 type=”command”

à SendMessage(msg1) This function returns as
soon as the message has
been sent over the kernel.

 GetResponse(msg1) Blocks waiting for kernel

 ReceiveMessages()

Calls to callback for han-
dling commands.

 Call gSKI to get chunk-1
representation

 Convert production to SML
msg2 type=”response”

 SendMessage(msg2) This function returns as
soon as the message has
been dispatched.

 GetResponse(msg1) This call now unblocks
and receives the re-
sponse.

Client is passed SML
description of chunk-1

ß

8.2. Input and Output during Soar execution

When Soar is executing together with a simulation, the relationship can be much more complex. These are
the models I can see that we might wish to support:

 Embedded Remote

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 47

Synchronous controlled by Soar

Soar generates output which changes
the environment which is then sent to
Soar as input. Environment only up-
dates when Soar issues a command.

Soar is the executable and the envi-
ronment is loaded as a library in this
case.

It is not clear that this
mode is very important or
that we would ever load
the environment as a li-
brary into Soar.

Synchronous controlled by Client

Simulation runs Soar for a fixed amount
of time during which Soar may receive
input and generate output. Soar may
issue multiple outputs or none during a
given period and environment may
update independently of Soar’s actions
(although not while Soar is reasoning).

The simulation is the executable and
Soar is loaded as a library in this case.

This is the mode currently
used in most simulations in
either embedded form or
remote form.

This is the mode currently used
in most simulations in either
embedded form or remote form.

Asynchronous

Both run as independent processes.
Input is sent to Soar from the simula-
tion whenever the environment chang-
es.

Output is sent from Soar to the simula-
tion whenever Soar decides to act.

Any synchronization will occur within
the agent as it waits for events to hap-
pen before it takes action.

Both Soar and the simulation are exe-
cutables in this case.

We do not plan to support
asynchronous behavior for
embedded processes. In
order to do this, the envi-
ronment and Soar would
need to run in separate
threads.

If a user wishes to do this,
they could use the remote
model to send data over a
socket between the two
threads.

This is another popular mode for
large scale simulations where
Soar is just one of many actors
in the environment.

8.2.1. Remote example – asynchronous model

Here’s an example showing the sequence of calls to send over the current state from a simulation to the
kernel and run for a while (processing I/O along the way). In this example, both processes run independent-
ly and communicate asynchronously. This model is appropriate when there are multiple agents in the world
and each act in “real time” in the simulation.

Client Client SML Kernel SML Notes

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 48

Build SML command
msg1 type=”input”

 We’ll have functions to
help hide the details of the
SML (so the client can
work in turns of WMEs).

 SendMessage(msg1) Returns immediately.

Simulation continues
executing.

In this model, may regis-
ter a callback for re-
sponses and use that to
check that the input
message was handled
correctly.

 Assume Soar is not running
at this point.

ReceiveMessages()

We’ll poll ReceiveMes-
sages() periodically when
Soar is not running.

 Convert msg1 into WMEs
and add them to the input-
link

For this example we’ll
ignore the caching issues
and deciding what to add.

 Create response msg2 to
indicate success.

 SendMessage(msg2) Because this is a re-
sponse message, there is
no reply to it, so we can’t
get stuck in an infinite
sequence of responses to
each other.

Now run <n> decisions
to let Soar process the
input.

Build msg3: run <n>
decisions.

SendMessage(msg3)

 This command can be
sent before Soar has pro-
cessed the input com-
mand. That’s not a prob-
lem. It returns immediate-
ly.

 ReceiveMessages()

 Create response (msg4) to
let simulation know call to
run Soar succeeded.

SendMessage(msg4)

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 49

 Start running Soar.

 Soar generates output.
Create msg5 containing
output actions.

 SendMessage(msg5) Returns immediately.

 ReceiveMessages()

(called periodically)

Soar continues executing.

Simulation updates to
reflect agent’s actions.

Processes action from
msg5.

Let’s assume this action
will take a long time to
execute.

Create response msg6
to indicate action was
received and is now
executing.

SendMessage(msg6)

 ReceiveMessages() called.
Soar is now aware that the
output actions were suc-
cessfully received by the
simulation.

Response could be just
“got your actions, thanks”
or contain an <output> tag
which is used to add, e.g.
^status executing to the
output-link.

Action completes. Create output com-
mand msg7 to indicate
action completed (and
succeeded or failed)

SendMessage(msg7)

 ReceiveMessages() to get
msg7. During output-phase,
Soar adds the result of the
action to the output-link.

Details of what are added
depend on what client
sends in msg7. This is
defined by the simulation,
not by SML.

At some later point, the
simulation will decide to
send new input to Soar.

Build new input state,
msg8.

 SendMessage(msg8)

 Simulation keeps run-
ning.

ReceiveMessages() called
during input-phase.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 50

 Result of output command
is now known and used to
update output-link with re-
sult.

 New input received and
updates the input-link

 Create response msg9 to
indicate success for adding
input.

SendMessage(msg9)

 Soar keeps executing.

8.2.2. Embedded example – synchronous with client in control

Here’s an example showing the sequence of calls to send over the current state from a simulation to the
kernel and run for a while (processing I/O along the way).

Note: We are using a method here where the environment pushes the current state over to the kernel once
before executing Soar for n-decisions. Thus the environment is not given the opportunity to update until
Soar stops running. The feeling is that this is usually the correct model for these synchronous simulations.
In order to have the environment update more rapidly, the client can choose to run Soar for just 1 decision at
a time, in which case Soar ends up checking for changes in the environment every decision (rather than
every n’th decision).

Client Client SML Kernel SML Notes

Build SML command
msg1 type=”input”

 We’ll have functions to
help hide the details of the
SML (so the client can
work in turns of WMEs).

à SendMessage(msg1) This function doesn’t re-
turn until Soar has pro-
cessed and responded to
the message.

 à Convert msg1 into WMEs
and add them to the input-
link

For this example we’ll
ignore the caching issues
and deciding what to add.

 Create response msg2 to
indicate success.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 51

 Return msg2 as result of
“SendMessage”

 GetResponse(msg1) ß This call is just to maintain
symmetry with the remote
model (where a result is
not immediately available).

Simulation has added
initial input.

ß

Now run <n> decisions
to let Soar process the
input.

 We should let the client
run Soar any way they
like:

Run <d> decisions

Run <t> seconds

Run to next output or <d>
decisions which is less

Run forever etc.

Build SML command
msg3 “run <n> deci-
sions”

à SendMessage(msg3) This function won’t return
until Soar stops running.
This means that all of the
message handling code
must be fully re-entrant (no
statics etc.).

 à Start running Soar.

 Soar generates output.
Create msg4 containing
output commands.

 SendMessage(msg4) This function will block
until after the simulation
has sent new input back to
us.

 Callback to client
through output
callback function.

ß

Simulation updates to
reflect agent’s actions.

ß

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 52

This creates new input
which should be returned
to the agent.

Build new input state:
msg5

 SendMessage(msg5)

 à New input received and will
update the input-link in next
input phase.

Changes cached until
input phase.

 Create response msg6 to
indicate success.

 Return msg6 as result of
“SendMessage”

 GetResponse(msg6) ß Check that input succeed-
ed

Simulation has sent
input. Can now return
from initial output call
from kernel.

ß

 Create response msg7
to indicate success of
output call (msg4)

 If the action will not com-
plete immediately, msg7
could indicate this and
then on a later call to the
environment it would send
an output message to
signal that the action has
now completed. This
model is probably less
common in situations
where the simulation and
Soar are running synchro-
nously but it is still sup-
ported.

 Return msg7 as result
of “SendMessage”

 à Soar has completed the output
phase and now continues
running. It will receive the
input from msg5 on the next
input phase.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 53

This method ends up looking a lot like the embedded model where Soar is in control. I think the only differ-
ence is how long to run Soar for. If you run it forever, then this is the “Soar in control model”. If you run it for
a fixed amount of time then it returns control to the simulation on a regular basis, which can then update
independently of the Soar agent. Seems like this is the only difference.

© 2004 THREEPENNY SOFTWARE LLC

 PAGE 54

9. SML Command Language

Up to this point, this spec has detailed the way information is passed between a client and the kernel. In this
section, we will define the details of commands that can be sent to the kernel and the output it will generate.

1) All commands will be enclosed in a <command> tag.

2) All responses will either be enclosed in a <result> tag or an <error> tag will be returned. In the de-
scriptions below these tags will usually be omitted to save space. If no failure condition is explicitly
defined, then an error will just return an <error></error> tag.

3) The tags are shown to indicate the structure of the command or response. The tags themselves will
often contain attributes or character data that is defined above (where the tag is defined). Those
details are omitted here for simplicity.

This list needs to be completely updated as it used to refer to gSKI commands and those have all been re-
placed.

9.1. Agent Commands

9.1.1. create-agent

Type Definition Notes

Command “create-agent” Used to create a new agent.

Parameters name=<agent-name> (req)

Success <result><name>agent-name</name></result>

The name of the newly created
agent is returned.

Error <error>Why this call failed</error> Explanation for why. We’ll omit
this field in most command
definitions unless unusual error
values are supported.

Description Creates a new agent.

