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ABSTRACT 

An experimental study was conducted to investigate the feasibility of integrating 

the cognitive architecture Soar with a robotic system to aid in the disassembly of 

electronic waste (e-waste). This study was broken up into different parts, first, to 

examine how well the different sensors and tools that composed the system worked 

before finally integrating the cognitive architecture Soar to assess how it improved the 

systems performance. Due to the increasing amounts of e-waste and the adverse 

effects it has on human health, a robotic system that can aid in the disassembly of e-

waste is essential. 

The first part in this study was to investigate the performance of three different 

models of the Microsoft Kinect sensor using the OpenNI driver from Primesense.  The 

study explored the accuracy, repeatability, and resolution of the different Kinect 

models‟ abilities to determine the distance to a planar target. An ANOVA analysis was 

performed to establish if the model of the Kinect, the operating temperature, or their 

interaction were significant factors in the Kinect‟s ability to calculate the distance to 

the target. Different sized gauge blocks were also used to test how well a Kinect could 

reconstruct precise objects. Machinist blocks were used to examine how accurately the 

Kinect could reconstruct objects set up on an angle and determine the location of the 

center of a hole. All the Kinect models could determine the location of a target with a 

low standard deviation (less than 2 mm). At close distances, the resolutions of all the 

Kinect models were 1 mm. Through the ANOVA analysis, the best performing Kinect 

at close distances was the Kinect model 1414, and at farther distances was the Kinect 

model 1473. The internal temperature of the Kinect sensor influenced the distance 



 

 

reported by the sensor. Using different correction factors, the Kinect could determine 

the volume of a gauge block and the angles machinist blocks were setup at, with under 

a 10 percent error. 

After the Kinect‟s performance was characterized, the study continued and 

investigated the performance of an automated robotic system, which used a 

combination of vision and force sensing to remove screws from the back of laptops. 

This robotic system used two webcams, one that is fixed over the robot and the other 

mounted on the robot, as well as a sensor-equipped (SE) screwdriver. Experimental 

studies were conducted to test the performance of the SE screwdriver and vision 

system. The parameters that were varied included the internal brightness settings on 

the webcams, the method in which the workspace was illuminated, and color of the 

laptop case. A localized light source and a higher brightness setting as the laptop‟s 

case became darker produced the best results. In this study, the SE screwdriver 

successfully removed 96.5% of the screws from laptops. 

Since a method to locate and remove screws from a laptop automatically, and 

guidelines to find holes based on the laptop color and camera brightness were 

established, the study continued and added the cognitive architecture language Soar to 

the system. Soar‟s long term memory module, semantic memory, was used to 

remember pieces of information regarding laptop models and screw holes.  The system 

was trained with multiple laptop models, and the method in which Soar was used to 

facilitate the removal of screw was varied to determine the best performance of the 

system. In all cases, Soar could determine the correct laptop model and in what 

orientation it was placed in the system. Remembering the locations of holes decreased 



 

 

all the trial times for all the different laptop models by at least 60%. The system 

performed the best when the amount of training trials that were used to explore circle 

locations was limited as this decreased the total trial time by over 10% for most laptop 

models and orientations.  
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PREFACE 

This dissertation is prepared using the manuscript format in accordance with 

the University of Rhode Island Graduate School Guidelines. This dissertation is 

composed of three manuscripts that have been combined to satisfy the requirements of 

the department of Mechanical, Industrial, and Systems Engineering. 

Chapter 1 provides a review of the literature that details the motivation of this 

work. Topics touched upon include e-waste and the problems that it causes as well as 

potential robotics solutions using low cost tooling and sensors, and different robotic 

learning techniques. This chapter serves to provide relevant research in the field as 

well as an introduction to the different topics presented in this dissertation. 

Chapter 2 details an experimental study that investigated the performance of 

three different Kinect sensor models. The accuracy, repeatability, and resolution of 

these different models were explored and an ANOVA analysis was performed to 

determine if the Kinect model, Kinect operating temperature, or their interaction were 

significant factors in how the Kinect measured the distance to an object. The Kinect‟s 

ability to reconstruct gauge blocks, lying flat on the ground, and machinist blocks, set 

up at various angles, were also investigated. This chapter was published in IEEE 

Sensors Journal. 

Chapter 3 outlines a novel method that combines vision and force sensing to 

automatically identify and remove screws from the backside of different laptop 

models. This chapter introduces a sensor-equipped screwdriver and the computer logic 

used to identify and remove the screws. A study was undertaken to determine what 

combination of lighting, and camera parameters would result in the robot finding and 
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removing the highest quantity of screws on the different color cases. This chapter has 

been submitted to IEEE Transactions on Automation Science and Engineering. 

Chapter 4 focuses on using the Soar cognitive architecture to improve the 

robot‟s performance when removing screws from a laptop. Using Soar‟s long term 

memory modules, more specifically semantic memory, the robot can remember 

locations that had been checked for screws leading to a decrease in the overall test 

time. This chapter has been prepared to be submitted to IEEE Transactions on 

Automation Science and Engineering. 

Chapter 5 provides a summary of the major findings on the material presented 

in this dissertation. Suggestions for future work using the Soar cognitive framework 

will also be provided. 
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CHAPTER 1  

 INTRODUCTION  

 

1.1 Electronic Waste 

 

Electronic waste (e-waste) is a problem that is quickly growing all over the world. 

While the market demand of electronic products is constantly increasing, the life 

cycles of these products are shortening, causing a build-up of e-waste that must be 

addressed. Some of the heavy metals that e-waste is composed of, (Lead (Pb), 

Mercury (Hg), Zinc (Zn), Copper (Cu), Cadmium (Cd), among others [1]), are 

detrimental to the health and well-being of both humans and the environment. It is not 

uncommon to see developing countries dispose of e-waste by burning, burying, or 

dumping it in the sea [2].  In these situations, heavy metals can be spread through the 

air as dust particles, or leach into the soil and water supplies contaminating them [3].  

The village of Guiyu, located in the Guangdong region of China, is one example 

of a village heavily invested in the recycling of e-waste. About 80% of families have 

at least one family member that is engaged in some form of e-waste recycling 

operations [4]. In Guiyu, the process in which e-waste is recycled is very crude and 

not many preventative measures are taken to protect the workers from the hazardous 

materials that they are disassembling. Workers will melt solder off circuit boards over 

makeshift grills only using fans as a precautionary measure [5].  Many studies have 

been conducted to measure the wellness of the people there and the levels of heavy 

metals found in the region [4-14]. 
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The Taizhou region of China, another area heavily invested in the recycling of e-

waste, also shows elevated levels of heavy metals in the soil which can pose a 

significant threat to human health [15-17]. Fu et al. [15] found that the soil was 

heavily contaminated with Cd, Cu, and Hg and rice had high levels of Pb and Cd. 

Liang et al. [16] measured the amount of Polybrominated diphenyl ethers (PBDEs) in 

hens and found that they contained an elevated level of Decabromodiphenyl ether 

(BDE 209), concluding that there was a possibility for the risk of the transmission of 

these toxins to humans through the food chain. Ha et al. [18] found a high level of 

heavy metals in the soil around recycling sites in Bangalore, India that were at levels 

comparable or slightly lower than those in Guiyu, China.  

The United Nations University- Institute for the Advanced Study of Sustainability 

(UNU-IAS) estimates the amount of e-waste generated globally in 2014 was 41.8 

million metric tons, and this number is expected to grow to 50 million metric tons by 

2018. In 2014, the latest year for which data is available, 7.1 million tons of e-waste 

was generated in the U.S. alone (a 630% increase compared to 1999), but only 15% 

was recycled [19]. 

 In 2009, Robinson [3] argued that the number of computers a country has is 

indicative of the e-waste that country will produce. He stated in the next 10 years, 

Eastern Europe, Latin America, and China will all become major producers of e-

waste. The above data proves there is a genuine need to recycle and recover reusable 

components from these discarded products.  

Countries have been struggling with how to regulate and adapt to this influx of 

new of e-waste. Some countries in Asia and Europe have begun to enact “take-back” 
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laws which require manufacturers of the product to be responsible for the end of life 

(EOL) disposal [2]. The United States does not currently have an all-encompassing 

federal law. However, some states, such as California, have adapted laws where the 

cost is passed as a small fee ($6-10) on to the consumer when the product is 

purchased. Maine mandates cities and towns are responsible for the collection and 

transportation of the e-waste to a consolidation facility where it is sorted according to 

manufacturers, who are then billed. Maryland requires manufacturers to pay $5,000 a 

year to sell their products in the state or pay $500 and set up their own collections 

[20]. 

The Basel Convention, the framework for regulating the international movement 

of e-waste, was endorsed by 116 nations in 1989 [21-22]. As of September 2016, 184 

countries have ratified the convention and only the United States and Haiti have 

signed but not ratified the convention [23].   However, some countries including the 

United States, Canada, and Japan still export their e-waste to developing countries.  A 

loophole in the law allows for companies to export old electronics as used goods to 

developing nations as a means to try to bridge a “digital divide.” This loophole is 

exploited as much of the e-waste exported does not work as it was never meant to be 

used by the developing country [2]. In lieu of this, China is attempting to ban all e-

waste imports from other countries. However, this is met with resistance by people 

profiting off the importing of e-waste into China and thus, the practice continues [24]. 

 E-waste is recycled by destructive, semi-destructive, and non-destructive 

disassembly methods. Destructive disassembly is when the product is destroyed in 

order to disassemble it and is suitable if the objective is to recycle materials such as 
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metals or plastics from the part. Semi-destructive disassembly will destroy parts of the 

object such as screws and snap-fits, while non-destructive disassembly is essentially 

the reverse engineering of the assembly cycle and is attractive if the goal of the 

disassembly is to reuse parts in different applications, or if the part that is being 

removed is hazardous. Manual (non-destructive) disassembly is costly and time-

consuming since most products are designed for assembly and not disassembly. As a 

result, many electronic devices are simply fed into large shredders and processed to 

extract different materials [25]. While some plastics and metals can be easily separated 

during this process, separation of different types of metals and plastics is a difficult 

task. Shredding also prevents the re-use of components in new or refurbished 

products. Currently, destructive and semi-destructive disassembly are the most 

commonly used disassembly methods. 

 

1.2 Robotics 

According to the Roadmap for U.S. Robotics Report [26], robotics is a key 

transformative technology that can revolutionize manufacturing. However, several 

issues need to be addressed in order to increase the use of robots in manufacturing 

operations such as the automated disassembly of e-waste. These issues include the 

high cost of the robotic work cell, the creation of cost-effective force sensing tooling, 

and the need for structured software that will support the robot‟s interaction with 

humans.  

The high cost of the primary robotic hardware is only a fraction of the total cost of 

creating a robotic work cell. Since most industrial robots cannot operate in 
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unstructured environments, a large amount of money is spent on designing and 

fabricating additional equipment, such as jigs and fixtures, so that parts and features 

are located at precise, pre-specified locations. If a robot could learn what tasks it needs 

to perform from using sensors and human guidance in a non-engineered environment, 

then these costs can be substantially reduced. 

 The Microsoft Kinect sensor is a low-cost sensor which integrates many 

different electrical and mechanical components. Some of these components include a 

traditional red-green-blue (RGB) camera, a depth sensor consisting of an infrared (IR) 

camera and projector, a microphone, and a geared direct current (DC) motor. This 

geared DC motor allows the base of the sensor to tilt up and down (± 27º). The Kinect 

works by projecting an IR speckle pattern on its surroundings and compares the 

pattern to a reference pattern. If an object in the scene is farther or closer than the 

reference plane, the speckles that are on the object will shift and by using a correlation 

procedure, the Kinect sensor can determine the distance to that object [27-28].   

The Microsoft Kinect sensor was originally designed to be used to control 

games on the Microsoft Xbox 360 gaming console. Players can control characters or 

menus in a game by using their hand with the Kinect sensor rather than a controller. 

Multiple libraries are available to developers that open up the potential applications of 

the Kinect sensor to fields such as computer vision [29], 3D mapping [27] [30-31], 

robotics [32-36], medicine [37-44], human tracking [45-46], as well as others. 

Examples of some of these applications include Shirwalker et al. [35] and Afthoni et 

al. [36] who used the Kinect sensor to obtain positions of an operator‟s joints to 

control a robotic arm. Alnowami et al. [38] and Tahavori et al. [39-40] used the 
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Kinect to monitor patients' respiratory breathing patterns while they are receiving 

external beam radiotherapy. It was found that the Kinect has mm-level errors at 

distances between 85 and 115 cm away from a patient and can determine various types 

of breathing patterns. Ning and Guo [43] showed that the Kinect sensor can be used to 

assess the spinal loading of the lumbosacral (L5/S1) joint which is directly associated 

with low back disorder. Yang et al. [44] assessed how the Kinect sensor performed in 

measuring the postural stability of a person. They reported that although the Kinect 

sensor needs to be calibrated by a set of linear equations, it was possible to measure a 

person‟s standing balance with the Kinect sensor comparable to standard testing 

equipment.  

Besides vision, a robot interacting with the environment needs force information to 

guide that interaction. Sensors that are currently available, such as load cells, are not 

very cost-effective. It would be advantageous to develop tooling that utilizes reliable, 

low-cost force sensors such as force sensing resistors (FSRs).  

Several researchers have investigated the design of disassembly tooling and 

grippers. Rebafka et al. [47] proposed a flexible unscrewing tool that creates its own 

acting surfaces to improve loosening. Park and Kim [48] discussed the development of 

a 6-axis force/moment sensor for an intelligent robot‟s gripper. Feldmann et al. [49] 

detailed the design of a drill driver, which can be used for three different methods of 

disassembling joining members. The drill driver could use an existing working point, 

drill to create a working point to remove a fastener, or drill to destroy the joint. Zuo et 

al. [50] presented a novel disassembly tool, wherein a screwnail is used as an end 

effector and a self-connection that results from the screwnail indentation provides a 
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reliable closure to transmit forces and torques required for various dismantling 

operations. Seliger et al. [51] presented an unscrewing tool designed to optimize 

flexibility over accuracy since different variations of models of products can exist. The 

tool consists of a modified drill bit with movable needles (grippers) that are able to 

hold objects down while the disassembly steps are performed. Peeters et al. [52] 

designed a prying tool that could pull apart housing components to remove LCD 

screens. Schumacher and Jouaneh [53-54] used force sensing resistors in order to 

create a disassembly tool that could remove snap fits and spring-loaded batteries from 

calculators. 

 

1.3 Learning 

Unlike current industrial robots, new industrial robots will depend on humans to 

learn how to operate and improve their skills. This development requires the creation 

of structured software to support such interaction and learning so robots can execute 

their tasks more effectively. A lot of research has been undertaken involving the 

interaction of leveraging learning between humans and robots [55-61].  

Learning techniques are widely used for teaching a robot how to correctly perform 

an action. Kormushev et al. [55] provided multiple examples of robots learning how to 

perform tasks in real-world environments. One robot that can flip pancakes is 

programmed by kinesthetic teaching (directly moving the robot‟s limbs) with a reward 

factor for successful flips. Another robot used a vision system for feedback to teach 

itself how to shoot a bow and arrow so that the arrow will hit the center of a target.  
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Reinforcement learning algorithms described by Peters et al. [56] and Guenter et 

al. [57] allow the robot to create its own solution if the system is not able to perform 

the appropriate task. This type of learning method would work well if the robot was 

trying to learn from autonomous trial and error. Adams et al. [58] described a method 

of learning called Mixed Initiative Control that allows for a human operator to 

collaborate with the robot while the robot performs a task. Grollman and Jenkins [59] 

introduced a method called Dogged Learning which allows the robots behavior to be 

fine-tuned as the human requirements change. Thomaz et al. [60] used a modified 

reinforcement learning technique that gives a reward function to the robot based on 

how the robot performs a task while, additionally, allowing human interaction. This 

allows for the human to change the reward that the robot is receiving. There are 

different ways that robots can know that the task that they are trying to perform is 

correct or successful.  

For a robot to make decisions based on an understanding of the parts presented to 

it, some form of intelligence should be built into the robot‟s control system. Kurup and 

Lebiere [61] showed that an algorithmic approach, where the user programs all 

possible scenarios that the robot can handle, is not efficient as the program will not be 

able to handle a scenario unless it was preprogrammed. Instead, an approach that uses 

cognition is preferred as it corresponds more with the way humans process and make 

decisions. Cognitive architectures make use of some form of high-level abstract 

reasoning to determine the next action to take and can incorporate different learning 

methods.  
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Two of the more popular cognitive architectures are Soar [62], and ACT-R [63]. 

ACT-R (current version is 7.0.11) and Soar (current version is 9.4) each have pros and 

cons associated with them. Jones et al. [64] identified that these versions of ACT-R 

and Soar have constraints that are opposites of each other in their respective low-level 

reasoning tasks. ACT-R only allows for one production rule to work at a time even if 

more rules are available. Using ACT-R, multiple passes must be made to make 

decisions, which increases computational time. Soar allows for multiple rule 

instantiations to fire at once. However, the computation time in Soar increases because 

only one type of operator rule is allowed to be selected at a time and the operators 

have to be proposed through different types of rules. 

 Hanford [65] suggested that Soar is a better choice to use for robots since it does 

not limit the access to working memory (short term), and can use all knowledge to 

figure out how to proceed with a situation. Johnson [66] also compared the two 

architectures and stated the only similarity between the two architectures is that they 

both organize control around a single-goal hierarchy. In conflict resolution, Soar tries 

to select an operator while ACT-R tries to select a rule. Soar tries to select an action 

based on all available knowledge, and if an impasse is detected, create a sub-goal. On 

the other hand, ACT-R will halt if it detects an impasse.  

The more a robot performs a task the better it should become at performing the 

task, regardless of whether a learning method or a cognitive architecture is used. 

Depending on the type of robot and task performed, use of a cognitive architecture or 

a learning method may be more appropriate. For disassembly operations, a cognitive 

architecture is a better choice since the basic premise of how to disassemble an object 
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will remain the same but the condition or layout of parts may change between models. 

This means the agent will have to reason out a disassembly plan, if a previous action 

worked, or what the next step will be. 

   Laird and Rosenbloom [67] used a robot called Robo-Soar [68], which was a 

PUMA arm that used a vision system to obtain orientation and position of objects in a 

workspace and to align these objects until a light comes on and then press a button. 

Hanford et al. [69-70] also used Soar to control mobile robots. With these robots, Soar 

used different sensor information to decide how the robot should navigate to a GPS 

location while avoiding obstacles. A robot named Rosie learned to play new games 

and perform other tasks using mixed initiative interactions through natural language 

[71-72] and visual demonstrations [73]. Rosie used semantic memory when learning 

to play a game to store all action knowledge, failure conditions, and goal states in 

order to determine a legal play 

Vongbunyong et al. [74-76] described a system that  disassembled LCD TV‟s 

using semi-destructive disassembly methods and a cognitive robotic agent. A vision 

system is used to obtain information about the product being disassembled and a 

cognitive agent using the language IndiGolog was used to determine the next 

disassembly step. The system presented here uses learning and revision primarily in 

order to eliminate redundant moves that are performed during a disassembly 

operation.  

 These issues described above are very important when considering the use of 

robots to perform disassembly of EOL electronic products. Unlike assembly 

operations on a production line, where product features and locations are known in 
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advance, a robotic disassembly system for EOL products needs to work with a large 

variety of products of unknown sizes and, possibly, with damaged or missing features.  
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Abstract 

 

This experimental study investigates the performance of three different models of the 

Microsoft Kinect sensor using the OpenNI driver from Primesense.  The accuracy, 

repeatability, and resolution of the different Kinect models‟ abilities to determine the 

distance to a planar target was explored. An ANOVA analysis was performed to 

determine if the model of the Kinect, the operating temperature, or their interaction 

were significant factors in the Kinect‟s ability to determine the distance to the target. 

Different sized gauge blocks were also used to test how well a Kinect could 

reconstruct precise objects. Machinist blocks were used to examine how well the 

Kinect could reconstruct objects setup on an angle and determine the location of the 

center of a hole. All the Kinect models were able to determine the location of a target 

with a low standard deviation (< 2 mm). At close distances, the resolutions of all the 

Kinect models were 1 mm. Through the ANOVA analysis, the best performing Kinect 

at close distances was the Kinect model 1414, and at farther distances was the Kinect 

model 1473. The internal temperature of the Kinect sensor had an effect on the 

distance reported by the sensor. Using different correction factors, the Kinect was able 

to determine the volume of a gauge block and the angles machinist blocks were setup 

at, with under a 10 percent error. 

 

Keywords: Kinect sensor, Kinect accuracy, 3-D image reconstruction, Kinect for 

Xbox, Kinect for Windows, OpenNI, depth 
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2.1 Introduction 

The Microsoft Kinect is a low-cost sensor that integrates many components. It is 

composed of a traditional RGB camera, a depth sensor consisting of an infra-red (IR) 

camera and projector, a microphone, and a built-in motor. The built-in motor allows 

the base of the Kinect sensor to tilt [1]. The Kinect sensor was originally designed to 

be used to control games on the Microsoft Xbox 360 gaming console. Using their hand 

with the Kinect sensor rather than a controller, players are able to control characters or 

menus in a game. Instead of being limited to only gaming applications, multiple 

libraries are available that open up potential applications of the Kinect sensor to fields 

involving computer vision [2], 3D mapping [3-5], robotics [6-10], medicine [11-18], 

human tracking [19, 20], as well as others.  

Examples of these applications include the work of Shirwalker et al. [9] and 

Afthoni et al. [10] who have both used the Kinect sensor to obtain gestures that an 

operator makes in order to control a robotic arm. Alnowami et al. [12] and Tahavori et 

al. [13, 14] used the Kinect to monitor patients' respiratory breathing patterns while 

they are receiving external beam radiotherapy. It was found that the Kinect performs 

quite well and can determine various types of breathing patterns compared to the 

equipment that is currently used. Ning and Guo [17] showed that the Kinect sensor can 

be used to assess the spinal loading of a person. Yang et al. [18] assess how the Kinect 

sensor performs in measuring the postural stability of a person. It was reported that 

although the Kinect sensor needs to be calibrated by a set of linear equations, it was 

able to measure a person‟s standing balance comparable to how standard testing 

equipment is able to. Obdrzálek et al. [21] used the Kinect sensor to estimate human 
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poses and compared this with other known techniques. They found that with 

controlled postures, such as standing and exercising arms, the Kinect‟s performance is 

comparable with motion capture techniques. However, the Kinect‟s estimation of 

general postures can be off by as much as 10 cm and the Kinect skeletal tracking often 

fails due to self-occlusions of body parts. 

The three main libraries that allow programmers access to the Kinect‟s camera and 

depth information are OpenKinect, the Microsoft Kinect Software Development Kit 

(SDK), and OpenNI [1]. The first library available for developers, OpenKinect , was 

released in November 2010 via the hacker community [22]. PrimeSense, creator of the 

hardware in the Kinect sensor, released the OpenNI open source SDK in December 

2010. OpenNI is a framework that uses the middleware library, NiTE, to enhance the 

Kinect sensors gesture recognition and tracking abilities. In June 2011, Microsoft 

released the Microsoft Kinect SDK [23] which allows development of applications 

using C++, C#, and Visual Basic. 

The two types of Kinect sensors available are the Kinect for Xbox 360 and the 

Kinect for Windows (K4W). The main difference between these sensors is the range at 

which the sensors can return depth values for using the Microsoft Kinect SDK. While 

the Kinect for Xbox 360 can only determine the distance of an object between 800 and 

4000 mm, the K4W possesses a near mode option allowing it to change this range to 

see objects between 400 and 3000 mm. Additionally, the Kinect for Xbox 360 has two 

common models, model 1414 and model 1473. The OpenNI drivers and the Microsoft 

Kinect SDK work with all of the sensors however; the OpenKinect libraries currently 

only support the Kinect model 1414. At the time of this writing, Microsoft has 
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released a new Kinect for Windows v2. This sensor has a full 1080p video, a higher 

depth fidelity, and can track up to 6 people. However, it is only available on Windows 

8 or 8.1 and can only interface with the Microsoft SDK V2 [24]. This new Kinect 

sensor works by using time of flight (ToF) technology [25] where a light source 

transmits a modulated light signal that travels to an object and is then reflected back to 

the sensor. The Kinect uses phase detection that measures how long it takes the light 

to travel to the object and back and can then determine the depth of an object from this 

time.  

The Kinect Sensor works by using a speckle pattern 3-D mapping [4, 26]. This is 

when the sensor projects an IR speckle pattern on the scene and compares this pattern 

to a reference pattern. If an object in the scene is farther or closer than the reference 

plane, the speckles that are on the object will shift and using a correlation procedure, 

the Kinect sensor can determine the distance of that object.  

Various researchers have attempted to characterize the Kinect sensor and 

determine the optimal range to use it. Khoshelham and Elberink [4] explained the 

mathematical model of how the Kinect sensor determines the distance of an object and 

how to align the depth and RGB images. They concluded, using the OpenKinect 

framework and the RANSAC plane fitting method with the standard deviation of the 

residuals on the point cloud data, that the optimal distance to use the Kinect sensor is 

within 1000 - 3000 mm. At greater distances, the low resolution and noise of the 

sensor will reduce the accuracy of the data. 

Alnowami et al. [12] observed a nonlinear relationship between the true depth and 

the Kinect pixel depth intensity, and they determined that the optimal performance lies 
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between 800 mm and 1500 mm using the Microsoft SDK. Molnar et al. [27] reported 

a standard deviation of less than 1 mm to up to 10 mm at close ranges and between 7 

and 50 mm at 3500 mm using OpenNI drivers. They found the optimal range of the 

Kinect sensor to be between 700 and 2000 mm. Andersen et al. [2] showed that the 

depth estimates of a pixel compared to the actual distance follow a linear relationship 

after being linearized by the OpenNI framework.  The resolution of the Kinect was 

shown to be nonlinear and continues to degrade as the distance from an object 

increases. 

 Macknojia et al. [28] compared the performance of a K4W and a Kinect for the 

Xbox 360. They used the Microsoft SDK for the K4W sensor and the OpenNI 

framework for the Xbox Kinect sensor. They found that both devices have close to the 

same quantization error (the Xbox Kinect slightly overestimates it) and the optimal 

operating range was up to 2000 mm with an error of 10 mm. They also discovered that 

both Kinect sensors could not reconstruct transparent surfaces (since glass and clear 

materials are IR transparent), but could reconstruct curves and shiny painted surfaces 

on a car. Stommel et al. [29] describe a method in which missing depth values are 

estimated to eliminate gaps in images. 

Stoyanov et al. [30] compared the Kinect against two ToF cameras (SwissRanger 

SR-4000 and Fotonic B70) to a laser range sensor (SICK LMS-200) and found that in 

short distances (< 3m), the Kinect sensor performed the closest to the laser range 

sensor.  Smisek et al. [31] also compared the Kinect to two different sensors, a 

SwissRanger SR-4000 ToF sensor and a 3.5 M pixel SLR stereo camera. They 

concluded that the Kinect was much better than the ToF camera and comparable to the 
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stereo camera. 

Mallick et al. [32] review the work that has been done on the characterization of 

the noise in the Kinect sensors depth image. They conclude that the three main types 

of noise that occur are spatial, temporal, and interference noise. Spatial noise happens 

in a single frame, temporal noise happens over multiple frames, and interference noise 

happens when two or more Kinects are looking at the same scene.  

The aim of this research is to compare the performance of different Kinect models 

using the OpenNI framework. OpenNI was chosen because the alignment of the depth 

and color images is performed automatically; it works with all the Kinect models, and 

is cross platform. In some of the tests reported in this paper, we also used the 

Microsoft Kinect SDK 1.8.  The Kinect sensor will also be used to reconstruct 3-D 

objects of known dimensions.  

The remainder of this paper is organized as follows. The next section discusses the 

methods used to characterize the different sensors. This is followed by Section 3 

which shows and discusses the results obtained. Section 4 discusses the 3-D 

reconstruction of gauge and machine blocks. 

 

2.2 Methods 

2.2.1 Accuracy, Repeatability, and Resolution 

The experimental setup is shown in Fig 1. A 254 x 254 mm target machined 

out of plastic and covered with paper to make it non IR-transparent was attached to a 

stage mounted on a 2 m DryLin linear slide (Igus). A NEMA 23 stepper motor (1.8 

deg/step, Minebea Co.) was attached to the linear slide. The stage was controlled by a 
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data acquisition card (PCIM- DAS1602/16) which moved the target back in 100 mm 

increments. The Kinect sensor was mounted on one end of the linear stage using a 

Kinect wall mount. This allowed for the model of the Kinect sensor to be interchanged 

while ensuring positional accuracy. The stepper motor and linear stage were calibrated 

by a displacement gauge (Mitutoyo) and a linear distance of 100 mm yielded an 

accuracy of +/-0.01 mm. When a test was started the stage would move towards the 

Kinect sensor to a homing position located 100 mm in front of the Kinect. The homing 

position was reached when the limit switch was triggered. Then the linear stage would 

move back in 100 mm intervals and the Kinect sensor recorded the depth of the target 

at every interval. The accuracy of each sensor was measured by constructing an area 

of 50x50 pixels in the center of the target. Twenty five images at 30 FPS were taken 

and the depth value of every pixel in the 50x50 pixel area was averaged to obtain a 

final value. For each interval, a total of 62500 pixels were used (25x50x50). The 

distance returned by the Kinect is the distance from the object to the plane of the 

Kinect‟s camera.  An area of 50 x 50 pixels was chosen so the region of interest that 

the Kinect was looking at would be at the center of the target at the closest and farthest 

positions of travel. The repeatability of each sensor was measured by the standard 

deviation of these final values. A test was completed once the limit switch opposite the 

Kinect sensor was triggered. Distances greater than 1800 mm were not considered 

because of the physical limitations of the slider used. Also, distances less than 600 mm 

were not explored because 500mm is very close to the limit of the Kinect in 

determining distances. The resolution step is the smallest increment that the Kinect 

can see at a distance. To determine the resolution of a Kinect sensor, pixels in the 
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upper left, center, and lower right portion of the target were chosen and their values 

were recorded over 5000 images. The initial pixel value was subtracted from the 

subsequent pixel values and histograms of the differences were used to determine the 

resolution step. After a Kinect was placed on the holder, the distance from each end of 

the Kinect was measured to the target to ensure the Kinect was parallel to the target. 

 

Fig. 1. Experimental setup of the linear slide used for the accuracy, 

repeatability, resolution, and ANOVA trials. 

 

2.2.2 Steady State Temperature 

To determine the amount of time it took a Kinect sensor to reach an internal 

steady state temperature, a temperature sensor (LM35) was connected to an Arduino 

Uno and interfaced to Matlab 2012a. The LM35 temperature sensor is a precision 

integrated-circuit that outputs an analog voltage proportional to the temperature in 

centigrade. This sensor does not require any external calibration and is accurate to 

±1/4°C.  The temperature sensor was attached directly above the infrared camera 

projector and LED on top of the plastic casing. This location was chosen because it 

was the location on the Kinect that heats up when the sensor is in use. The Kinect 

sensor was turned on and the OpenNI example program SimpleViewer was run for the 
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duration of the test. The results of the trials were averaged, and the time constant (τ) 

was determined to be 1500 seconds. For the system to reach temperature stability, the 

Kinect sensor has to run for 4τ or ~6000 seconds (100 minutes). Fig. 2 shows the 

temperature response of all three Kinect models. This operating temperature will be 

referred to as the high temperature in the results, while the low temperature will be 

referred to as the room temperature the Kinect is at before being powered on which for 

this experiment is ~21 - 23°C.  The Kinect sensor was set up to look at a stationary 

target 1800 mm away and images were recorded at 30 FPS over a period of 1200 

minutes. A 50 x 50 pixel area was averaged over 25 images to obtain a depth distance. 

This test was repeated using the OpenNI driver and Microsoft Kinect SDK 1.8. The 

results of Fig. 2 will be discussed in Section 2.3. 

 

Fig. 2. Temperature response of the three Kinect models. 
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2.2.3 Statistical Design 

The design used for the experiment was a full factorial design whose effects 

model is shown in (1). Here, µ is the overall mean effect,    is the effect of the ith 

level of the Kinect model and βj is the effect of the jth level of the operating 

temperature. (  )   is the interaction effect between the Kinect model and the 

operating temperature, and (    )  is the random error term.      is the distance 

returned by the Kinect sensor when the Kinect model is at the ith level, the operating 

temperature is at the jth level and it is the kth replicate. Using Minitab‟s DOE tool, a 

random run order for the experiment was generated and a total of 18 tests were 

performed.  

              (  )        (1) 

 

An ANOVA test (p= 0.05) was performed in Minitab on the response (depth 

data) of the Kinect sensor at 600 to 1800 mm in 100 mm increments. This was used to 

examine if the Kinect model, the operating temperature, and/or and the interaction 

between the Kinect model and operating temperature were significant factors that 

influence the depth data. The ANOVA model was verified using Bartlett‟s test for 

equal variance (p=0.05) and checking the normality of residuals (p=0.05). A 

comparison of the means was performed using Tukey‟s test with a 95% confidence 

interval and the final recommendations were made by looking at the interactions plot.  

 

2.2.4 3-D Image Reconstruction 

Reconstructing objects and locating holes is an important step in automated 

vision guided assembly and disassembly operations. In a disassembly operation, the 

vision system needs to be able to identify holes in order to try to remove a screw. It 
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also requires precise reconstruction of objects and holes that might not always be flat 

or completely intact. 

The Kinect model used for image reconstruction was the 1414 model which 

was mounted on a camera tripod on the top of a leveled surface 600 mm away from 

the object as shown in Fig. 3. This Kinect was chosen because it performed the best at 

close distances. Closer distances are better for applications involving precise 

reconstruction because the resolution step of the Kinect is lower (1mm). These results 

are talked about more in Section III. Thus the purpose of the work in this section is to 

investigate how well the Kinect could reconstruct and identify features on these 

objects. The intent is not to perform comparison between different Kinect models. 

 

Fig. 3. Experimental Setup for 3D image reconstruction of gauge and machinist 

blocks. 
 

The Kinect sensor was then leveled using its depth image, making sure all 

sides of the image returned the same depth value. Using the 150 x 90 pixel RGB 

image in Fig. 4 the number of pixels a 101.6 mm gauge block took up could be 
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determined by subtracting the pixels of both sides of the gauge block on the same row 

(X2 - X1 where Y1 = Y2.)  A millimeter to pixel (mm/px) resolution of 1.116 was 

calculated for this setup. Using the built in Matlab function “surf” and various sized 

gauge blocks, the Kinects sensor ability to accurately reconstruct 3D objects was 

tested. The experimental volumes of the gauge blocks were determined by separating 

the background from the gauge block using a height threshold.  

 

Fig. 4. Gauge block used for determining pixel to mm ratio. The X and Y values 

are used to determine the length of the gauge block in pixels. 
 

Gauge blocks were chosen to be the objects reconstructed by the Kinect sensor 

because they are manufactured to known dimensions and tolerances. This makes them 

ideal to test the performance of the Kinect sensor. Machinist blocks with a dimension 

of 25.4 x 50.8x 76.2 mm and containing six 12.7 mm through holes were used to test 

the Kinect sensors ability to reconstruct an angle an object was at and an object 

containing holes. The machinist blocks were angled using a height support and the 

angle was verified with a protractor. The angle of the machinist block was 

experimentally determined by using the depth image to obtain the y1, y2, z1, and z2 

points shown in Fig.5. The angle of the machinist block could then be calculated using 

trigonometric relationships. 

The Hough circle transform method (Tao Peng, Matlab Central File Exchange) 

was performed on the RGB image to obtain the location of the center of the holes for 
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each of the six holes on the machinist block. The labels of these holes are given in Fig. 

6a. Fig. 6b shows the calculation of the offset (r) between the between the center of 

the hole (A) and the center of the circle found with the circle transform algorithm (A’). 

This offset is given by (2). The offset was calculated with and without adjusting for 

the Kinect sensors position being directly above to the machinist block and a rotation 

in the X-Y plane. The theoretical locations of the center of the holes are determined by 

using the mm/px resolution, the dimensions of the machinist block, and the row of 

pixels in the RGB image that the top of the block is at. These center hole locations 

work well for a flat object but as soon as the object is at an angle, the adjacent values 

A1, A2, and A3 in Fig. 6c become a more accurate estimation of the location of the 

centers. Using similar triangle relations, the equations for the Ai values are given by 

(3) while the Hi values are found from the dimensions of the machinist block. The 

machinist block used in this setup has a hypotenuse of 7.62 mm.  

 

Fig. 5. Schematic showing how the angle of the machinist block is determined. 
 

The other adjustment, shown in Fig. 6d is performed to offset any rotation that 

the machinist block may have undergone in the x-y plane of the image. Since the 

locations of the center  of the holes are determined by their distance from the side of 
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the block (in px), O1, O2, and O3 allow for a more accurate starting pixel point. These 

points are also determined using similar triangles relations shown in (4). The values 

for Hi are found by using the dimensions of the machinist block. Fig. 6d only shows 

this adjustment on the side of the machinist block however, the same procedure will 

work for the rotation of the top part of the machinist block.  

Using the depth image obtained from the Kinect sensor, at the location of the 

center holes, the number of pixels in a 12x12 square that have a depth value of zero 

are added up. The size of the square was determined by calculating the pixel 

equivalent of the area of a 12.7 mm hole. This can be used to tell if there are patches 

of 0 depth pixels. These patches of pixels with 0 depth values can be used to validate a 

hole at these locations. 

 

Fig. 6. a) Labeling of the holes on the Machinist Block b) Calculation of the 

offset between the hole and circle from the image c) Correction for the way the 

Kinect is positioned over the machinist block d) Correction for rotation of 

machinist block. 
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2.3 Results 

2.3.1 Accuracy and Repeatability 

Each model of the Kinect sensor was used for three trials at a high and a low 

temperature as part of the ANOVA test (Section 2.3.3).  The averaged results of all 

three Kinect models are shown in Fig. 7. This figure plots the actual distance the target 

is from the Kinect sensor vs. the distance calculated by the Kinect sensor at different 

temperatures. The standard deviations of all the points from these trials with all the 

Kinect models are very small with the greatest standard deviation being just over 2mm 

(Kinect 1414 at 1700mm). Due to the small size of the standard deviation and the 

scale of the graph these error bars are not shown. At low temperatures (~21 ºC - 

temperature when Kinect was just turned on) and close distances less than 800 mm, all 

the calculated results are close to the actual distances (within 2.1mm), but at greater 

distances than 1300 mm, the Kinect model 1473 starts to calculate distances farther 

away than the actual distance. At a high temperature (temperature after turning on the 

Kinect for more than 100 minutes), the Kinect 1473 improves the distances it reads as 

the target gets farther away while the other two Kinect models get worse and 

underestimate the depth.   
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Fig. 7. Accuracy graph of the Kinect sensor at high and low temperatures 

(Actual distance of object vs. distance returned by Kinect sensor) 
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2.3.2 Depth Resolution 

The depth resolution histogram of each Kinect sensor was obtained at different 

distances. A histogram of the resolution at 600mm with the Kinect model 1414 is 

shown in Fig. 8. This figure shows a resolution of 1 pixel. These histograms are 

summarized in Fig. 9. As the distance from a target increases, the resolution of the 

Kinect sensor for all models becomes coarser. The most accurate resolutions occur at 

the closer distances (distances < 700 mm) when the resolution of all the models are 1 

mm. At 1800 mm, the resolutions of the models are still less than 10 mm. All of the 

different Kinect models exhibit the same upward sloping graph and the same 

resolution. The results presented agree with the results presented by Andersen et al. 

[2]  and Macknojia et al. [28] at these distances. Andersen et al. [28]  reported 

approximately a 1 mm resolution at a distance of 600mm to around a 10 mm 

resolution at a distance 1800mm. Macknojia et al. [28] also reported a 1 mm 

resolution at a distance of 600 mm to 9 mm at a distance of 1800 mm. Both of these 

authors also demonstrated that at distances of around 3000mm, the resolution can be 

as poor as 30 mm. This was not explored with this setup due to the size of the linear 

slider. 

 
Fig. 8. Histogram of the resolution data from 600mm. 
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Fig. 9. Resolution of different Kinect sensors. 

 

2.3.3 ANOVA Testing 

For all of the distances, the Kinect Model and the Temperature were significant 

factors with p-values of 0.000. The p-value of the interaction between these two 

factors was a significant (p value <0.05) at all distances except for 600mm where the 

p-value was 0.089. However, since this value is close to 0.05 and can be interpreted as 

moderately significant, it was determined to treat the interaction of this distance as 

significant.  

The results for the comparison of the means test for the Kinect models are 

shown in Table 1. Since there was interaction between the Kinect Model and 

Operating Temperature was taken to be a significant factor at all the distances, the 

comparison of the means had to be performed for both the low and high temperatures. 

In Table 1, the grouping category shows how the response of the different Kinect 

models compared with each other. If the response of the Kinect models were not 

statistically different, then the letter under grouping would be the same. If the 

responses of the Kinect models were statistically different, then the letters would be 
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different. For example, at 600 mm under the Temperature Low column, the response 

of the Kinect model 1473 and K4W are not statistically different from each other, thus 

both have a grouping of “A”. The Kinect model 1414 is statistically different from 

both of the other models so it has a grouping of “B”. 

Table 1 shows that in 11 of the 26 trials all of the Kinect sensors have a 

response that is significantly different from each other. It also shows that in 7 of the 26 

trials the response of the Kinect 1414 and K4W are not significantly different while 

the response between them and the Kinect 1473 is. The Kinect 1414 and K4W are 

more likely to produce results that are not statistically different at distances when the 

target was farther away (<1200 mm) at a low temperature and (<1700 mm) at high 

temperatures.  

 Table 2 provides a summary of the Interaction plots as well as showing the 

most consistent performing Kinect model.  In the second row labeled Kinect Model 

(ANOVA), the table shows the model that performed the “best” when the target was at 

different distances from the Kinect. The row labeled Temp (ANOVA) shows at what 

temperature the Kinect performed the “best” at. The row Best Model (ANOVA) is used 

to show that the Kinect 1414 performs the best at close distances (<900mm). It also 

shows the Kinect 1473 performs best at farther distances and performs the most 

consistently over the most distances. Both the Kinect 1414 and 1473 have distances 

where they performed best at low temperature and distances where they performed 

best at high temperatures. There are two models listed under 900 mm because 

according to Table 2, there is no significant difference between these two models at a 

low temperature.  
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Table 1. Tukey Results and Comparison of the Mean of Different Kinect 

Models 

 

Temperature Low 

Distance         

(mm) 
600 700 800 900 1000 1100 1200 

Model        

1473 A A A A A A A 

1414     B    B A A    B    B    B 

K4W A     C B B C C    B 

Distance         

(mm) 
1300 1400 1500 1600 1700 1800 

 

Kinect        

1473 A A A A A A  

1414   B   B    B   B     B   B  

K4W   B   B    B     C B C  

Temperature High 

Distance         

(mm) 
600 700 800 900 1000 1100 1200 

Model        

1473 A A A A A A A 

1414   B   B   B   B A A   B 

K4W A A A     C    B    B     C 

Distance         

(mm) 
1300 1400 1500 1600 1700 1800 

 

Model        

1473 A A A A A A  

1414   B   B   B   B     B     B  

K4W     C     C     C     C B B  

        

 

Fig. 2, shows that as the temperature of the Kinect increases, the depth 

response continues to change. It also shows that the response stabilizes once the 

Kinect reaches a high steady state temperature. For all three Kinect models, the 

Microsoft Kinect SDK returned a depth distance that was farther away than the depth 

distance returned by OpenNI. The Kinect model 1414 had its depth response increase 

when using the OpenNI drivers and decrease while using the Microsoft Kinect SDK. 
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For the Kinect models 1473 and K4W, using either driver the depth response 

decreased and then reached a steady state as the Kinect‟s temperature increased and 

reached steady state. Using the OpenNI drivers, the depth response of the Kinect 1473 

changes about 20mm while the depth response of the Kinect 1414 differs about 5mm 

as the Kinect goes from a low to a high temperature. The K4Ws depth response 

changes about 6 mm from a low temperature to a high temperature but after about 350 

minutes the depth response begins to drop again. Using the Microsoft Kinect SDK the 

magnitude of the depth response change is about 10mm Kinect 1473 and is about 

3mm for the Kinect 1414. The K4W depth response changes about 10 mm and begins 

to drop again after about 250 minutes. 

Table 2. Summary of Interactions Plots 

 

Distance (mm) 600 700 800 900 1000 1100 1200 

Kinect Model 

(ANOVA) 
1414 1414 1414 1473 1473 1473 1473 

Temp (ANOVA) High Low High Low Low Low Low 

Best Model 

(ANOVA) 
1414 1414 1414 

1414/ 

1473 
1473 1473 1473 

Best Model  High 

Temp 
1414 1414 1414 1414 

1473/

1414 

1473/

1414 
1473 

Distance (mm) 1300 1400 1500 1600 1700 1800  

Kinect Model 

(ANOVA) 
1473 1473 1473 1473 1473 1473 

 

Temp (ANOVA) High Low High High High High  

Best Model 

(ANOVA) 
1473 1473 1473 1473 1473 1473 

 

Best Model High 

Temp 
1473 1473 1473 1473 1473 1473 

 

 

Since the response of the Kinect is more stable at a high steady state temperature, 

the row Best Model at High Temp in Table 2 shows which Kinect Model performs the 
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best at a high temperature. Again, the Kinect model 1414 performs the best at close 

distances while the Kinect 1473 performs the best at farther distances. All of the 

results for the distances shown in Table 1 and Table 2 satisfied the normality and 

equal variance assumption with a p-value above 0.05.  

 

2.4 3-D Reconstruction 

2.4.1 Gauge Blocks 

Fig. 10a shows a single frame of the gauge block as captured by the Kinect 

sensor which was mounted 600mm away. The figure shows that there is a distortion in 

the image. The left and right spikes shown in the image are pixels whose depth values 

are zero. Applying a correction factor improved the image (See Fig. 10b). Looking at 

the pixel depth values on the y-axis in Fig 10a, a Height Difference of around 8 mm is 

determined. On the left side of the image, the depth value is around 391 mm and on 

the right side around 399 mm (It should be noted this value has been subtracted from 

1000 in order to invert the image for viewing. The distance from the Kinect to the 

table was 600 mm). A linear function was developed to be used as a correction factor 

to flatten out the image that allows for a better estimate of the volume of the gauge 

block. This method works the best when it is possible to distinguish the background 

from the object(s) of interest. The correction formula is given by (5). In this equation, i 

represents the row of the image, and j represents the column of the image. The 

correction factor (CF) from (5) given by (6). The negative sign (-) in (6) shifts the 

depth values up to the correct height. In (6), N is the last column. In Fig. 10, 150 

columns of the image were adjusted therefore, N would be 150.   



 

42 

 

 

Fig. 10. Image of gauge block without correction factor. b. Image of gauge 

block with correction factor applied. This image was taken with the Kinect set up 

600mm away from the gauge block. 

 
      (   )       (   )       (5) 

 
 

   (
                 

 
                    )   (6) 

 

Fig 11. shows the effect different correction factors and cutoffs have on the 

percent error in estimating the volume of different sized gauge blocks. Two 

parameters are shown in the legend in the figure. The first value is the Height 

Difference (in pixels) from (5) and the second value is the Cutoff Height (in mm) used 

to determine where the background ends and the object begins for the setup used in 

this experiment. Trying to determine the volume of an object without a correction 

factor led to an underestimation of the objects volume. This is due to the fact part of 

the object would be beneath the cutoff height and the program would perceive it as 
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background. By introducing a correction factor, the ability to accurately reconstruct an 

objects volume greatly increases. The most consistent combination of Height 

Difference and Cutoff Height is 6 and 598 mm for this geometry. By using these 

values, all the percentage errors are lower than 10 percent. The percent error also 

decreased as the length of the gauge blocks increased. When the 101.6 mm gauge 

block was analyzed, the percent error of the volume was under 10 % regardless of the 

Cutoff Height and Height Difference values. Fig. 11 shows there is a genuine need to 

calibrate the Kinect‟s output in order to get meaningful data while trying to reconstruct 

a 3-D object. These correction factors show that the output from the Kinect sensor 

needs to be calibrated for fine 3D reconstruction and cannot just be used as is. 

 

Fig. 11. Percent error of volume vs. length of gauge block in gauge block 

reconstruction. 

 

2.4.2 Machinist Blocks 

2.4.2.1 Angle 

The angle the machine blocks were setup at versus the angle calculated by the 
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Kinect sensor are shown in Fig. 12. The angles are plotted with and without using a 

correction factor. All of the angles calculated just by using the depth image, are less 

than the actual angle that the machinist block was setup at. An average correction 

factor for the angle in this setup was determined to be 1.3708 (R
2
 value of .9957). This 

correction factor was determined by dividing the actual angle by the depth angle. 

Multiplying the correction factor by the previous angle greatly reduces the percent 

error between the actual angle and the angle calculated. In Fig. 12, all of the adjusted 

angles are more accurate than the unadjusted angles. These results agree with the 

results presented by Tahavori et al. [14] in which they showed the Kinect 

underestimated the angles. 

 

Fig. 12. The unadjusted and adjusted machinist block angles determined by the 

Kinect sensor 

 

2.4.2.2 Holes 

The offset of the center of the circles found with the circle detection algorithm 

from the centers of the hole in the machinist blocks are shown in Fig 13. These results 

show that correcting for the position of the Kinect sensor using (3) does not improve 
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the accuracy of this offset value. However, correcting for a rotation of the machinist 

block using (4) does improve the offset. The best combination (lowest offset) is found 

correcting for the rotation of the machinist block but not correcting for the position of 

the Kinect sensor. With these parameters, the offset between the centers of the circles 

for all of the holes are less than 10 mm. As the angle of the machinist block increases, 

the offset between the two circles also increases. This method worked for the 

machinist blocks when the angle of tilt was less than 35 degrees. When the machinist 

block was positioned at an angle greater than 35 degrees, the circle detection 

algorithm was unable to determine the circles for the holes as they become elliptical. 

The number of pixels returning a depth value of 0 at the center of the circles 

are shown in Fig 14.  This figure shows that clusters of pixels with a depth of zero are 

around all of the holes of the machinist blocks (labeled A-F). At lower angles, there is 

a higher pixel count around the holes than at higher angles which signifies that the 

Kinect is able to determine there is a hole in that location. However, this method only 

worked when the angle of the machinist block was less than 40 degrees. When the 

machinist blocks were placed at angles greater than 40 degrees, the depth images from 

the Kinect sensor were not reliable, as parts of the depth image of the machinist block 

were missing and thus had pixels with depths values of 0. 
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Fig. 13. Percent error of volume vs. length of gauge block in gauge block 

reconstruction. 
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Fig. 14. Zero depth pixel clusters around the location of holes in the machinist 

blocks. The letters A-F in the legend, correspond to hole location. 

 

 

2.5 Conclusions 

Overall, the Microsoft Kinect sensor is an inexpensive sensor that is capable of 

producing acceptable results when determining the distance of an object from the 

sensor. All of the Kinect models give very accurate results at close distances (600 mm 

to 800 mm).  At a low operating temperature, the Kinect 1473 overestimates the depth 

to an object as the distance increases. At a high operating temperature, the Kinect 

1473 performs better as the target moves farther away (towards 1800mm) while the 

other two Kinect models perform worse and underestimate the distance. The standard 

deviation of all the Kinect sensors is low (< 2.1mm) at all the distances tested which 

shows the Kinect sensor has good repeatability.  

The resolution of all the Kinect sensors are best at close ranges (<700mm) as 

the resolution at these distances is 1 mm. At a distance of 1800 mm from the sensor, 
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the resolution is still less than 10 mm. However, this may make it unattractive for 

applications requiring precise measurements.  

 From the ANOVA study, the Kinect model and the operating temperature the 

Kinect sensor is at, and their interactions are both significant factors in the depth 

response. The interaction plots show that the Kinect model 1414 is the most consistent 

model at close distances (<1100mm) while the Kinect 1473 produces the best results 

at farther distances (>1000mm). The overlap in distances of 1000 and 1100mm 

between these two Kinects are because the depth response between the two models is 

not statistically significant.  

It is also shown that the Kinect depth response changes with the temperature of 

the Kinect sensor and the software driver used. This response becomes more stable 

when the Kinect reaches a high steady state temperature. For all the Kinect models, 

the Microsoft SDK returned a depth distance at high steady state temperature that was 

further away than the depth returned by OpenNI. Therefore it may be beneficial to 

have the Kinect warm up before using it as this depth response change can be rather 

large.  

The Kinect sensor is also able to accurately reconstruct a 3D object and 

determine the objects volume. However, it was important to use a correction factor 

and correctly pick a cutoff value to separate the background from the object. It is not a 

robust solution as a change of just one pixel in the cutoff value can drastically alter the 

results and is geometry dependent. It does however show that there is a need for 

calibration of the Kinect‟s output for fine measurements.  

Using the Kinect depth image, the Kinect tends to underestimate the actual 
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angle of an object. It is also possible to account for the angle that an object was setup 

at after applying another correction factor. The Kinect sensor was able to estimate the 

offset from the center of a circle found with a circle detection algorithm to the center 

of a hole in the machinist block. The best results were obtained by adjusting for a 

rotation of the machinist block while not adjusting for the position of the Kinect 

sensor above the machinist block.  

Additionally, clusters of pixels containing a depth value of zero can also be 

used to indicate a hole at certain angles provided the angles are not too steep (< 40 

degrees). This would be important in automated computer vision applications. Both 

the RGB and depth images should be used in conjunction with each other in order to 

confirm the results and determine if a hole is actually present. 
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Abstract 

 

This paper investigates the performance of an automated robotic system, which uses a 

combination of vision and force sensing to remove screws from the back of laptops. 

This robotic system uses two webcams, one that is fixed over the robot and the other 

mounted on the robot, as well as a sensor-equipped (SE) screwdriver. Experimental 

studies were conducted to test the performance of the SE screwdriver and vision 

system. The parameters that were varied included the internal brightness settings on 

the webcams, the method in which the workspace was illuminated, and color of the 

laptop case. A localized light source and higher brightness setting as the laptop‟s case 

became darker produced the best results. In this study, the SE screwdriver was able to 

successfully remove 96.5% of the screws. 

 

Keywords: Automated Disassembly, Computer Vision, Disassembly Tooling, 

Electronic Waste, Robotic Disassembly 

 

3.1 Introduction 

Electronic waste (e-waste) is a growing concern all over the world. While 

consumer demand for electronic products continues to grow, the lifecycles of products 

are shortening, causing a stockpile of discarded e-waste that must be dealt with. E-

waste is composed of many heavy metals [1] that are harmful to both human health 

and the environment. In developing countries, common methods of e-waste disposal 

are burning, burying, or dumping it in the sea [2]. In 2014, 7.7 million metric tons of 
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e-waste was generated in the U.S., but only 15% of it was recycled. On a global scale, 

41.8 million metric tons of e-waste was generated in 2014 and this number is expected 

to keep growing to 49.8 million metric tons by 2018 [3]. 

E-waste is recycled by destructive, semi-destructive, and non-destructive 

methods.  Destructive methods are suitable if the aim of the disassembly process is to 

recycle materials from the part, however, the part will be destroyed. Semi-destructive 

disassembly will destroy parts of the object such as screws and snap fits. Non-

destructive disassembly aims to reverse engineer the assembly cycle. Non-destructive 

disassembly is appealing if the goal is to reuse parts in a different product or if the 

disassembled part is hazardous. Manual (non-destructive) disassembly is costly and 

time-consuming since most products are designed for assembly not disassembly. 

Robotics is a technology that can revolutionize manufacturing. However, several 

issues need to be addressed in order to increase the use of robots in manufacturing 

operations such as the automated disassembly of e-waste. Issues include the high cost 

of robotic work cells, creation of cost-effective force sensing tooling, and the ability to 

work in an unstructured environment [4].  

The high cost of the primary robotic hardware is only a fraction of the total 

cost of creating a robotic work cell. Since most industrial robots cannot operate in 

unstructured environments, large amounts of money are spent designing and 

fabricating additional equipment, so that parts and features are located at precise pre-

specified locations. If a robot was able to learn what tasks it needs to perform from 

sensors in a non-engineered environment, these expenses can be substantially reduced. 

A robot needs force information to guide interactions with an environment. It would 
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be advantageous to develop tooling that utilizes reliable, low-cost force sensors such 

as force-sensing resistors (FSR) [5-9] since current sensors such as load cells are 

expensive. 

Several researchers have investigated the design of disassembly tooling and 

grippers. Rebafka et al. [10] proposed a flexible unscrewing tool that could create its 

own acting surfaces to improve loosening. Park and Kim [11] discussed the 

development of a 6-axis force-moment sensor for an intelligent robot‟s gripper. 

Feldmann et al. [12] detailed the design of a drill driver, which could use or create a 

working point to transmit torque to remove a fastener, or drill to destroy the fastener. 

Zuo et al. [13] presented a screwnail that could create an indentation in a product and 

attach to transmit forces and torques required for dismantling operations. Seliger et al. 

[14] presented an unscrewing tool consisting of a modified drill bit with movable 

needles to hold objects down while disassembly steps were performed. This tool was 

designed for flexibility over accuracy since different variations of products can exist. 

Peeters et al. [15] designed a prying tool that could pull apart housing components to 

remove LCD screens.  

This paper builds upon previous work performed by Schumacher and Jouaneh 

[5][16] where a disassembly tool was created that used FSRs to remove snap fits and 

spring-loaded batteries from calculators. The tool used two FSRs to detect horizontal 

forces and one FSR to detect vertical forces on the tool tip. The force applied to the 

snap-fit was monitored with the FSRs in order to fully depress but not damage it. 

OpenCV‟s template-matching algorithms were used to identify the type of device and 

its orientation in the workspace. After a match was determined, the x-y position of the 
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snap-fit was retrieved from a lookup table and robot would begin the disassembly 

process. Using feedback from the FSRs, the system would first remove the battery 

cover and then the batteries from the device. The use of a Kinect sensor helped make 

the system more robust due to minor variations that could occur loading the device. 

The current work extends the previous work to products that it has no prior 

information on. This means that if a product placed in a workspace was missing a 

battery cover or had some other physical defect, the system would still be able to 

perform disassembly operations. 

Disassembly of products is a difficult task because of the uncertainty regarding 

their physical structure and conditions. Tian et al. described a probability analysis 

method of disassembly cost with a new evaluation parameter, cost disassemblability 

degree, [17] and chance constrained programming models [18] in order to determine 

an efficient disassembly sequence. Tang and Zhou [19] presented an extended 

disassembly petri net to help develop the best disassembly sequence for a product. 

Kim et al. [20] developed a partly automated disassembly system capable of  

generating and adapting disassembly plans based on the product, as well as 

determining whether the disassembly step should be performed manually or by an 

automated process. Guo et al. [21] introduced a model using petri nets to determine 

the disassembly sequence for large scale products which was optimized for 

disassembly operators and tools. 

The motivation for this work was to create a robotic system that could recycle 

e-waste and minimize the need for a human operator. This work presents a novel 

approach to finding and removing screws that combines vision and force sensing. This 
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approach can later be augmented with a cognitive architecture and using information 

learned from these methods, that will facilitate the disassembly process. 

The rest of this paper is organized as follows. The next section discusses the 

overall setup of the automated system. Section 3.3 goes into further detail about the 

two main components, the cameras and sensor-equipped (SE) screwdriver. The testing 

methodology and an overview and explanation of the logic of the system are given in 

Section 3.4 while the results of the testing are detailed in Section 3.5. Concluding 

remarks and a short discussion are given in the final section. 

 

3.2 Overall System Setup 

The robotic platform used was an ENCore 2s System (MRSI North Billerica, 

MA) modified to be controlled by a Galil DMC-2143 controller. This controller was 

interfaced with Matlab and a graphical user interface (GUI) was designed to control 

the system. A wooden frame to hold panels of black fabric was constructed around the 

robot and is shown in Fig. 1. The fabric allows for the ambient fluorescent light to be 

eliminated and a uniform lighting to illuminate the workspace. The black fabric is 

attached to the frame by Velcro which allows the panels to be removed for 

maintenance. The workspace platform is constructed out of an aluminum sheet 

covered with black felt to absorb the IR beam emitted from the Microsoft Kinect 

sensor.  The felt also aids parts in sliding when they are clamped to the edge of the 

workspace. There is a cutout that allows a checkerboard to be placed level to the 

surface to set the origin for the camera system. Two linear actuators were added to the 

workspace to provide automated clamping capability. The SE screwdriver and 
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webcam were mounted on the robot and are shown in Fig. 2. A second webcam was 

mounted above the robot allowing it to see the entire workspace. In the following 

section, each of the components will be explained in greater detail.  

 

Fig. 1 a) View of disassembly module with the front panel removed.  b)Top 

down view of the workspace. 

 

 

Fig. 2. Disassembly module consisting of the SE screwdriver tool, webcam, and 

localized lighting 

 

3.3 System Components 

3.3.1 Camera System 

The robot uses two different cameras in order to identify laptop features. The 

first camera is an overhead camera that can view the entire workspace and is used to 

find circles on the laptop that may contain screws. The second camera is mounted on 

b) a) 
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Localized 

Lighting 

SE 
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the robot and used to find and center screw holes. Both cameras are the Microsoft 

Lifecam 3000-HD which was chosen because it can capture images in high definition 

(1280x720 pixels) as opposed to the Kinect sensor which has a lower resolution 

(640x480 pixels). A webcam calibration process was used to remove lens distortion, 

which is greatest near the edges of an image, from the overhead camera. The 

calibration process consisted of using a 7x9 checkerboard pattern (8.5mm square) and 

the Camera Calibrator App in Matlab. The checkerboard is moved around the 

workspace and images are taken with it at different angles in order to calculate the 

camera‟s intrinsic matrix parameters listed in Table 1. 

Table 1. Intrinsic Properties for the Microsoft Lifecam 3000HD 

Symbol Properties Values 

cx Optical center x 654.4 px 

cy Optical center y 367.7 px
 

fx Focal length x 1129.5 px 

fy Focal length y 1129.5 px 

s Skew coefficient 2.1673 

 

 

After calibration, the location of an object (in mm) in the workspace is given by 

solving (1) for X and Y. In this equation, fx and fy are the focal length of the camera in 

pixels, s be the skew coefficient, and cx and cy are the optical center in pixels of the 

length and width. R and T are the rotation and translation values of how the world is 

transformed relative to the camera (extrinsic matrix) while x and y are the pixel‟s 

locations. The extrinsic matrix is calculated by the location of the checkerboard and 

the world coordinates origin.  
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Finally, using the transformation matrix   
 , the coordinate system is 

transformed from the edge of the checkerboard to the corner of the workspace as 

shown in Fig. 3. Using (2) - (4), it is possible to take the location of an object and 

transform its coordinates from the camera coordinates to world coordinates. Solving 

(4) yields a 4x1 matrix containing the X and Y locations of the object with respect to 

the world origin. 

 

Fig. 3. Coordinate transformation from the camera coordinates to the world 

coordinate workspace. 
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The overhead camera‟s resolution (~0.5 mm/px) is not high enough to place 

the SE screwdriver on the head of a screw. When determining the circle‟s center, an 

error of a few pixels could result in an error in the placement of the SE screwdriver of 

a few millimeters. A camera mounted on the robot‟s head needs to be used to center 

the SE screwdriver with respect to a hole. Since the distance from the center of the 

robot camera to the tip of the SE screwdriver is known, once the screw is centered 

with the robot camera, the robot can be moved by this offset and place the SE 

screwdriver directly on the screw head. This camera does not need to go through the 

same calibration process because the center of a lens does not have distortion. The 

robot camera was removed from the plastic housing and a plano-convex optical lens 

(10mm diameter, 50mm focal length Edmunds Optics) was used to make the camera 

focus on the laptop at short range. A lighting fixture consisting of four white LEDs 

with a large viewing angle (> 100 degrees) was attached to the outside of the webcam. 

 

3.3.2 Sensor Equipped Screwdriver 

The motivation behind this tool was to create a screwdriver capable of probing 

and removing Philips head screws from a laptop in a non-destructive manner. The 

screwdriver needed to be able to determine if a screw was located at a position 

identified by the vision system and when the screw had been completely removed 

from the hole. The SE screwdriver, shown in Fig. 4, consists of an inner and an outer 

shell, connected by a low friction linear slide that allows the shells to move relative to 

one another. A small extrusion on the top of the inner shell triggers a FSR when the tip 

of the SE screwdriver makes contact with a surface. A pneumatic cylinder connected 
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to the outer shell allows the tool to keep a constant pressure on a screw when it is 

trying to remove it and to retract above the product when the robot needs to move. 

An accelerometer on top of the outer shell is used to determine when a screw 

has been completely loosened from a screw hole. Due to the geometry of a screw 

thread, when a screw thread ends and continues to rotate, it will fall downward every 

complete rotation, creating an acceleration along the axis of the screw which can be 

picked up by the accelerometer. The signal from the accelerometer is amplified and 

sent through a set-reset latch circuit on a custom Arduino shield, which makes sure 

two pulses from the accelerometer are detected before it signals the screw has been 

loosened. The driving force of the SE screwdriver is a dc motor controlled by an 

Arduino Motorshield R3 which allows for the motor‟s current to be easily monitored. 

If the SE screwdriver is engaged with a screw, the current will increase as the motor 

stalls out. The SE screwdriver also has an electromagnet that surrounds the tip and 

when energized, magnetizes it allowing the SE screwdriver to remove the screw from 

the hole. 

 

Fig. 4. a) Sketch of screwdriver. b) Prototype of screwdriver (Linear slider is 

hidden behind shell). 
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3.4 Testing Methodology 

3.4.1 Sensor Equipped Screwdriver Tests 

The SE screwdriver follows the state transition diagram shown in Fig. 5 

starting in the state „XY Move‟ where it moves to a desired position. After the SE 

screwdriver has reached that position, the state changes to „Mate‟, the pneumatic 

cylinder extends, and the screwdriver lowers towards the part. When the tip of the 

screwdriver makes contact with the part002C the pressure supplied by the pneumatic 

cylinder will keep the outer shell in place which allows the inner shell to move upward 

and trigger the FSR. The state will change to „Tighten‟ and the SE screwdriver will 

check to see if a screw is present by either having the accelerometer trigger 

(screwdriver motion akin to stripping a screw) or the motor current increase (motor 

stalled out). If neither of these conditions are met, and a timeout value is exceeded, 

then no screw is present and the state will move to „Retract‟. If a screw is found, the 

state will change to „Loosen‟ where the screwdriver will loosen the screw until the 

accelerometer triggers (screw removed) or a timeout value is exceeded. This process 

will repeat for all of the screws that are found. 

An aluminum block (50 x 70 x 25.4 mm) containing six rows for different 

screw types (#10-32 [¾”, ½”, ¼”], #10-24 [¾”, ½”, ¼”], #8-32 [½”, ¼”], #6-32 [½”, 

¼”], #4-40 [¼”], #2-56 [¼”]) with four holes each was used to test how well the SE 

screwdriver could remove screws. The holes in the block not containing screws were 

used to test how well the SE screwdriver could distinguish between holes with and 

without screws. Five trials were performed (120 holes) in which the screw removal 

order was defined, and three trials (72 holes) were performed in which the order was 
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randomized. The locations of the center of the holes were preprogrammed into the 

system for these tests. 

 

Fig. 5. SE screwdriver state transition diagram 

 

 

3.4.2 Computer Vision Algorithm 

The computer vision algorithm used to find the holes is shown in Fig. 6. An 

image is taken and a 5x5 Gaussian blur (standard deviation [std] = 5) and Prewitt edge 

detection (sensitivity threshold value [stv] = 0.75) are applied. The edges are dilated, 

any enclosed regions filled in, and all clusters touching the borders are removed. A 

structured diamond element is used to erode the image and find any connected 

components. The original image and results of these steps are shown in Fig. 7. If no 

connected components are found, then the stv is decreased by 0.03 and the process 

repeats. If the stv reaches 0, it is reset to 0.75 and std value is increased by 2. If the std 

reaches 15 and a hole is still not found, the std is reset to 2, the stv is reset to 0.75, and 

the algorithm will repeat the previous steps again but use a disk structured element to 

close any contours in the image. When a connected component is found, its area and 

length-width ratios are checked to ensure they are within certain bounds. If so, the 
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centroid is used to center the hole with the robot webcam. The values of these 

parameters were determined by experimentation and were chosen to be sensitive 

enough to detect small changes in the image as they were varied, but also to limit the 

time of a test. 

 
Fig. 6. Computer vision logic. 

 

 

 
Fig. 7. Computer vision results at different stages in the screw hole detection 

process. 

 

3.4.2 Laptop Screw Removal Tests 

 

 A set of 36 trials were performed that varied the type of lighting, the cameras 

brightness levels, and the color of laptop cases. The overhead camera brightness level 

1.Dilated edge detection 2. Enclosed circle filled in

3. Clusters connected to
 border cleared

4. Eroded Image and Blob Detection 
showing screw hole

Original image
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was varied at 30, 90, and 150, and the robot camera brightness level was varied at 30 

and 90. The two types of lighting tested were overhead lights mounted in the frame 

and the localized lighting fixture around the robot camera. Three different laptops 

models were used and consisted of light, medium and dark cases all of which used 

Phillips head screws.  

A flow chart detailing the disassembly process is shown in Fig. 8. An 

initialization process homes the robot and the laptop is clamped. Then a snapshot of 

the workspace is taken, the image is undistorted, and circles are located on the laptop 

using a Hough circle transform (Tao Peng, Matlab Central). The program moves the 

robot camera over every circle and attempts to detect a hole. The distance from the 

center of the camera to the center of the centroid is calculated, and the robot is moved 

to offset this error until the error is less than 0.5 mm. After the hole has been centered, 

the SE screwdriver is moved over the hole to check for a screw. If a screw was found, 

then other circles within a certain distance (10 mm) are discarded. This entire process 

is repeated for all remaining holes. A visual of the robot performing these steps is 

shown in Fig. 9. 

 
 

Fig. 8. Flow chart of automated disassembly process 
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Fig. 9. a) The robot homes itself and finds circles in the workspace. b) The robot 

moves the camera with localized lighting over the circle to center a hole. c) The 

robot moves the SE screwdriver over the hole. d) The SE screwdriver is lowered 

into the hole and removes the screw. e) The SE screwdriver removes the screw 

from the hole. 

 

3.5 Results 

3.5.1 SE screwdriver Testing Results 

A summary of how well and with which method the SE screwdriver was able to 

determine if a screw was present is shown in Table 2. When the screw removal order 

was preset, the SE screwdriver was able to correctly determine if a screw was present 

in all 120 cases. In 60 cases there was no screw in where a screw was present, the 

accelerometer was used to determine the screw presence 56 times (93.3%), while 

current monitoring was used four times (6.7%). When the removal order was random, 

it was correct in all 72 cases and 19 (52.8%) times it used the accelerometer, and 17 

times (47.2%) it used current monitoring to determine the screw presence. 

b) a) 

c) d) e) 
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The time the SE screwdriver took to unscrew the different lengths and types of 

screws is shown in Fig. 10. There is a positive linear relationship between the length 

of the screw and the time that it takes to unscrew it as well as a positive relationship in  

the number of threads per inch that a screw has and the amount of time it takes to 

unscrew it. 

Table 2. Summary of method used to find Screws. 

 

 Method used to determine screw presence 

Test Percentage No Screw Accelerometer Motor Current 

Set 

Removal 

Order 

100 60 56 4 

Random 

Removal 

Order 

100 26 19 17 

 

 

Fig. 10. The amount of time taken to remove screws of different lengths and 

threads. 

 

 

 

 

0.25 0.5 0.75

4

6

8

10

12

T
im

e 
(s

)

Length of screw (in)

 

 

#2-56

#4-40

#8-32

#6-32

#10-24

#10-32



 

70 

 

3.5.2 Automated Laptop Screw Removal 

The results of the automated screw removal test are shown in Table 3, where 

the first four columns list the parameters varied and the next four present the results. 

The number of circles, located by the overhead camera, are listed in the column “Total 

Number of Circles Found”. These circles include screw holes on the laptop, in 

addition to shapes or geometries perceived as circles. Every circle represents a 

location that the SE screwdriver has to move to and check during a test. The number 

of screw holes that were correctly identified by the overhead camera are listed in the 

column “Total Number of Screw Holes Found”. The column “Total Number of Screw 

Holes in Workspace” lists the number of screw holes that are present in the reachable 

workspace on the laptop. The column “Percentage of Screw Holes Found” is the 

“Total Number of Screw Holes Found” divided by “Total Number of Screw Holes in 

Workspace”. Finally, the row labeled “Total” shows cumulative statistics for all of the 

trials for each model of laptop. 

The results show the localized lighting helps when the laptop case is darker as 

the average number of screws found goes from 16.7% to 30.8%. For the dark laptop, 

the best combination is when the overhead camera brightness is 150, robot camera 

brightness is 90, and localized lighting is used. The localized lighting eliminates 

shadows cast by the robot as it illuminates the laptop from under the robot. The results 

for varying the lighting and brightness parameters of the robot camera are presented in 

Fig. 11 and show a combination of using the localized lighting and higher robot 

camera brightness increases the system‟s ability to find a hole. Table 3 shows the 
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results were best for each laptop model for all the trials when localized lighting was 

used and the robot camera brightness was 90. 

Table 3. Summary of Identifying Screw Holes in Laptops with Different 

Parameters 

Laptop 

Model 

Localized 

Lighting 

Robot 

Camera 
Brightness 

Overhead 

Camera 

Brightness 

Total 

Number 

of 

Circles 

Found 

Total 

Number 

of 

Screw 

Holes 

Found 

Total 

Number of 

Screw 

Holes in 

Workspace 

Percentage 

of Screw 

Holes 

Found 

Light  No 30 30 50  12 15 80.0 

90 70 11 15 73.3 

150 82 11 15 73.3 

90 30 53 11 15 73.3 

90 65 7 15 46.7 

150 69 7 15 46.7 

Yes 30 30 53 10 15 66.7 

90 68 13 15 86.7 

150 71 11 15 73.3 

90 30 57 11 15 73.3 

90 69 7 15 46.7 

150 63 8 15 53.3 

Total 119 180 66.1 

Medium  No 30 30 60 8 13 61.5 

90 59 8 13 61.5 

150 77 7 13 53.8 

90 30 52 10 13 76.9 

90 50 10 13 76.9 

150 84 9 13 69.2 

Yes 30 30 60 7 13 53.8 

90 52 9 13 69.2 

150 72 9 13 69.2 

90 30 60 9 13 69.2 

90 59 7 13 53.8 

150 79 11 13 84.6 

Total 104 156 66.7 

Dark  No 30 30 58 4 13 30.8 

90 54 2 13 15.4 

150 62 2 13 15.4 

90 30 45 2 13 15.4 

90 48 2 13 15.4 

150 67 1 13 7.7 

Yes 30 30 53 4 13 30.8 

90 43 3 13 23.1 

150 60 2 13 15.4 

90 30 60 3 13 23.1 

90 59 5 13 38.5 

150 79 7 13 53.8 

Total 37 156 23.7 
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The number of circles located, is dependent on the overhead camera 

brightness. Fig. 12 shows the overhead brightness has a positive linear relationship on 

the number of circles found, which, up to a certain point, increases the chance that 

more screw holes will be found. The lighter the case, the faster this point will occur as 

the entire image will eventually turn white. A tradeoff for allowing more circles to be 

found is that the time of the test increases. As the laptop case color gets darker, the 

system‟s ability to locate holes increases as the overhead camera brightness increases.  

Fig. 13 shows an image summary of the results for the laptops with different 

color cases. The reachable region of the workspace is shown by the enclosed area of 

the rectangle. A „‟ represents a screw was found and removed at that location. An 

„X‟ indicates the computer vision system found a circle, but a screw was not found 

when probed by the SE screwdriver. A „+‟ indicates the circle found was discarded 

because it was within 10 mm of a screw hole and a „‟ shows that the computer 

vision system was not able to find a circle. The „‟ also means the computer vision 

system did not find a screw at that particular circle location, however, at this location, 

the robot made at least one movement.  

The time statistics for the tests are summarized in Table 4. These results show 

that the clamping time is not significant as it is an order of magnitude smaller than the 

robot movement time and screw removal time (srt), and two orders of magnitude 

smaller than the computer vision time (cvt). cvt is the greatest due to the number of 

circles that need to be explored and the various parameters associated with the 

computer vision algorithm. It should be noted that the srt time for the dark laptop is 

significantly lower because there were fewer holes detected.  
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Fig. 11. The percentage of screw holes successfully found vs. the robot camera’s 

brightness setting and the color of laptop case. 

 

 
Fig. 12. Number of circles that are found versus the overhead cameras 

brightness level. 
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Fig. 13. a) Results for the laptop with a light case. b) Results for the laptop with 

the medium case. c) Results for laptop with a dark case. Circles mean that the 

screwdriver was able to determine a screw while X's mean that the screwdriver 

was not able to determine a screw.  Plus signs indicate the screw hole was 

discarded due to proximity to a screw that was found and triangles and squares 

mean the computer vision algorithm was not able to determine a hole. 
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The performance of the SE screwdriver does not depend on how well the computer 

vision system worked or even the model of the laptop used. In order to not penalize 

the SE screwdriver for “missing” holes that the computer vision module was not able 

to find, the performance of the SE screwdriver is defined as the „screws found‟ divided 

by total „screw holes that the computer vision found‟. The SE screwdriver performed 

well and correctly removed 251/260 (96.5%) of screws in screw holes. In 27 of the 36 

trials, the SE screwdriver determined if a screw was in the hole correctly 100% of the 

time. Even when the SE screwdriver missed a hole on a laptop, it never missed more 

than one. 

Table 4. Timing Results for Automated Screw Removal Test 

Laptop 

Model 

  

Clamping 

Time (s) 

 Robot 

Movement 

Time (s) 

Computer 

Vision Time 

(s) 

Screwdriver 

Time (s) 

Avg. Std. Avg. Std. Avg. Std. Avg. Std. 

Light 11.2 0.8 337.8 60.0 2671.7 967.9 166.2 36.4 

Medium 8.8 0.4 357.4 55.2 2654.8 509.3 139.8 31.0 

Dark 10.1 0.4 294.7 43.1 3013.3 332.2 55.3 26.0 

 

 

3.6 Conclusion 

This paper presented a new method that combines vision and force sensing in 

order to automatically find and remove screws from a laptop without preprogramming 

their locations. This method would be the first step in disassembling laptops or other 

products with a plastic casing covering internal electronics. The results presented in 

this paper show that this is a viable strategy for removing screws from laptops and 

could be incorporated into a system that uses a cognitive architecture to facilitate a 

disassembly process to recycle and reuse materials from e-waste. 
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 A significant challenge is trying to automatically locate screw holes on the 

laptop. The results show this is composed of two tasks. The first involves finding 

holes with a computer vision module and the second involves probing the hole with a 

SE screwdriver. The lighting and the brightness of the cameras are the two major 

parameters that need to be adjusted and are dependent on how dark the laptop case is.  

The darker the laptop case is, the higher the brightness the cameras should use. 

The higher the brightness in the overhead camera, the more circles will be found and 

the greater chance that all of the screws will be found. A greater brightness with the 

robot camera creates a higher contrast with a hole making it easier to find. The best 

results occurred when using the localized lighting as it was able to light the workspace 

from underneath the robot, eliminating shadows that would occur if the robot was lit 

from above. A screwdriver tool was also introduced that was able to tell if a screw was 

present and when that screw had been completely loosened by using an accelerometer.  

A current drawback of this system is the length of time it takes to complete a 

test. Next, the cognitive architecture Soar will be added to the robot and will allow it 

to remember the locations of the holes to reduce the time. Soar [22] will be able to use 

the methods presented in this paper to find screws and will be used in order to select 

the hole to remove a screw from. The time will be reduced because if a circle has 

already been explored and a screw was not found, that location will not need to be 

explored again. Optimization of different image parameters such as the brightness 

levels for the different laptops or parameters governing the Hough circle transform, 

the number of screws that are found on each laptop could be improved. 
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Abstract 

 

This paper investigates an approach that uses the cognitive architecture Soar to 

improve the performance of an automated robotic system which uses a combination of 

vision and force sensing to remove screws from laptop cases. Soar‟s long term 

memory module, semantic memory, was used to remember pieces of information 

regarding laptop models and screw holes.  The system was trained with multiple 

laptop models and the method in which Soar was used to facilitate the removal of 

screws was varied to determine the best performance of the system. In all cases, Soar 

could determine the correct laptop model and in what orientation it was placed in the 

system. Soar was also used to remember what circle locations that were explored 

contained screws and what circles did not. Remembering the locations of the holes 

decreased a trial time by over 60%. The system performed the best when the number 

of training trials used to explore circle locations was limited, as this decreased the total 

trial time by over 10% for most of the laptop models and orientations.  

 

Keywords: Automated Disassembly, Cognitive Architecture, Disassembly Tooling, 

Electronic waste, Robotic Disassembly, Soar Cognitive Architecture. 

 

4.1 Introduction 

Electronic waste (e-waste) is a growing concern in the world today as the 

number of electronics used in everyday life continues to grow while the lifespan of 

electronics continues to shrink [1]. In developing countries, the most prevalent ways 

of discarding e-waste are through burning, burying, or dumping it in the sea [2]. In 
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areas of developing countries such as Guiyu China, where entire villages are heavily 

invested in the recycling of e-waste, the methods in which e-waste is recycled are 

crude and not many preventative measures are taken to protect the workers from the 

hazardous materials that they are disassembling.  This is a concern because many of 

the heavy metals found in e-waste are very toxic to both humans and the environment. 

Due to this, many studies have been conducted to measure the wellness of the people 

and the levels of heavy metals found in the region [3–5]. 

Currently the methods that are used to disassemble e-waste are destructive, 

semi-destructive, and non-destructive disassembly.  Destructive methods are used 

when the aim of the disassembly process is to recover materials such as metals and 

plastics from the waste. Typically, with destructive methods, the e-waste is fed into 

large shredders and then processed to retrieve different types of metals [6]. Semi-

destructive methods of recovering e-waste involve cutting screws or wires in an 

attempt to disassemble the product, while non-destructive disassembly methods 

attempt to reverse engineer the assembly process. Non-destructive disassembly is an 

attractive option when the goal of the recycling operation is to be able to reuse the 

product for different applications. Although manual non-destructive methods can yield 

the highest amount of recycled product, manual disassembly is time consuming and if 

the proper working conditions are not met, dangerous for the workers performing the 

operation [7]. 

Schumacher and Jouaneh [8] created a disassembly tool that utilized low-cost 

force-sensing resistors (FSRs) and could remove snap-fits and batteries from 

calculators. This snap-fit removal tool was placed on a robotic system that used a 
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Microsoft Kinect and a Visual Basic program to control an EnCore 2s robot [9]. This 

system used a database that contained the preprogrammed locations of the batteries for 

different orientations of the calculator. The Kinect was used to make the system more 

robust against minor variations that may have occurred when the device was loaded in 

the workspace. DiFilippo and Jouaneh [10] extended the system to work with a variety 

of laptops that the system had never seen before. A webcam with an overview of the 

entire workspace was used to determine locations of features on the laptop, and a 

sensor-equipped (SE) screwdriver tool was developed that would go and explore those 

locations to determine if a screw was present or not. The drawback of this system, 

which this work aims to address, was that the system did not remember the locations 

of the screws. Therefore, for every trial, every circle that was previously located 

needed to be checked again which lead to relatively long trial times ranging from 40-

60 minutes. 

For a robot to make decisions based on an understanding of the parts and 

situations presented to it, some form of intelligence should be built into the robot‟s 

control system. Bannat et al. [11] detailed the evolution of production, planning, and 

cognition systems and their growth in the future as they pertain to flexible, adaptive 

production systems for manufacturing. Stenmark et al. [12] presented a knowledge 

based method that leverages cloud computing to extend the capabilities of a robotic 

system in a manufacturing setting. Kurup and Lebiere [13] showed that an algorithmic 

approach, where the user programs all possible scenarios that the robot can handle, is 

not efficient as the program will not be able to handle a scenario unless it was 

preprogrammed. Instead, an approach that uses cognition is preferred, as it 
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corresponds more with the way that humans process and make decisions. Cognitive 

architectures make use of some form of high-level abstract reasoning to determine the 

next action to take and can incorporate different learning methods.  

Popular cognitive agents include Soar [14], ACT-R [15], and EPIC [16-17]. 

ACT-R (current version 7.0.11) and Soar (current version 9.4) each have pros and 

cons associated with them. Jones et al. [18] identified that ACT-R and Soar have 

constraints that are opposites of each other in their respective low-level reasoning 

tasks. ACT-R only allows for one production rule to work at a time even if more rules 

are available. Using ACT-R, multiple passes must be made in order to make decisions, 

which increases computational time. Soar allows for multiple rule instantiations to fire 

at once. However, the computation time in Soar increases because only one type of 

operator rule is allowed to be selected at a time and the operators must be proposed 

through different types of rules. Hanford [19] suggested that Soar is a better choice to 

use for robots since it does not limit the access to working memory, and can use all 

knowledge to figure out how to proceed with a situation. Johnson [20] also compared 

the two architectures and stated the only similarity between the two is that they both 

organize control around a single goal hierarchy. In conflict resolution, Soar tries to 

select an action based on all available knowledge, and if an impasse occurs, create a 

sub-goal to solve the problem while ACT-R will halt if it detects an impasse.  

 Laird and Rosenbloom [21] used a robot called Robo-Soar [22], which was a 

PUMA arm, that used a vision system to obtain the orientation and position of objects 

in a workspace. The goal of Robo-Soar was to align these objects until a light came on 

and then press a button. Hanford et al. [23-24] used Soar to control mobile robots. 
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With these robots, Soar used different sensor information to decide how the robot 

should navigate to a GPS location while avoiding obstacles. One drawback in these 

robotic applications is that Soar‟s long-term memory is not used, so when the agent is 

initiated it cannot draw from its previous experiences. A Soar agent named Rosie 

learned to play new games and perform other tasks using mixed initiative interactions 

through natural language [25-26], and visual demonstrations [27]. Rosie used semantic 

memory when learning to play a game to store all action knowledge, failure 

conditions, and goal states to determine a legal play. Another system called LUCIA 

[28] was developed that works in conjunction with Rosie and uses grammatical rules 

to turn sentences into operations that Rosie can use in order to pick up or move 

objects. Mininger and Laird [29] developed a mobile robot that uses Soar to perform 

tasks and search for an object even if it cannot see the object it is looking for. 

Vongbunyong et al. [30–32] described a system to perform semi-destructive 

disassembly of LCD TV‟s where a cognitive robotic agent is used. This cognitive 

agent used the language IndiGolog to determine the next disassembly step. A vision 

system is used to obtain information about the product being disassembled. The 

system presented used learning and revision to eliminate redundant moves performed 

during the disassembly operation.  

 These issues described above are very important when considering the use of 

robots to perform disassembly of end-of-life (EOL) electronic products. Unlike 

assembly operations on a production line, where product features and locations are 

known in advance, a robotic disassembly system for EOL products needs to work with 
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a large variety of products of unknown sizes and, possibly, with damaged or missing 

features.  

The rest of this paper is organized as follows; the section 4.2 will give a brief 

introduction to Soar and how Soar works. It will also discuss the procedure used to 

train Soar‟s semantic memory with the different laptop models and holes. Section 4.3 

will discuss the results obtained during the trials, and Section 4.4 will contain 

concluding remarks. 

 

4.2 Methods 

4.2.1 Soar Cognitive Architecture 

Soar is a general cognitive architecture developed by John Laird, Allen 

Newell, and Paul Rosenbloom at Carnegie Mellon University in 1983 [33].  Soar 

works by using productions (rules) to test, propose, and select operators (rules) that are 

in working memory to try to obtain a specified goal state.  Working memory is a 

representation of how Soar views the workspace in its current configuration and is part 

of Soar‟s short term memory module. Soar stores information as working memory 

elements (WME) consisting of an identifier, attribute (preceded by a „^‟), and value. 

The value can either be a terminal node comprising of a constant (string or numerical 

value) or a non-terminal node which links to another identifier. Fig. 1 shows a 

graphical representation of WMEs of Soar‟s memory structure that is created the first 

time a Soar agent is started. All the WMEs are connected back to the state S1 which is 

always the name of the top-level state.  The state S1 always has three attributes, 

^superstate, ^type, and ^io.  The attribute ^superstate has a constant value of nil, ^type 
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has a constant value of state, and ^io has a value of another identifier I1, which in turn 

has two attributes which also link to more identifiers. 

 

Fig. 1. Soar Initial State. 

 

The decision cycle that Soar goes through is shown in Fig. 2 and consists of an 

input phase, a state elaboration/propose operators phase, a select operators phase, an 

apply operator phase, and an output phase. During the input phase, Soar checks to see 

if any new information has been placed on its input-link through sensors or external 

environments. The next phase is when Soar elaborates the working memory elements 

and proposes different operators. Here, the operators are fired and retracted in parallel 

and the firing of one operator could lead to the firing or retraction of other operators. 

Once there are no more rules left to fire, the system has reached a state of quiescence 

and proceeds to the select operators phase. In this phase, Soar uses the rule preferences 

that it knows to select one operator among a possibility of multiple operators. In the 

apply operator phase, Soar will execute the selected operator as well as make changes 

to working memory and in the output phase, put any appropriate information on the 

output link. The information placed on the output-link can be taken and used by an 

external environment. 
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Fig. 2. Soar Decision Cycle. 

 

While working memory represents short term memory, Soar also has the 

ability to use long-term memory modules to improve its performance in performing a 

task. The three types of long-term memory modules Soar can currently use are 

procedural memory, episodic memory, and semantic memory. Procedural memory 

uses a reward function and reinforcement learning to change how an operator is 

selected. Semantic memory is where previous knowledge about the workspace is 

stored, and episodic memory is used to remember past experiences as snapshots of the 

workspace This allows Soar to move through these snapshots in an attempt to find the 

best match [34-35]. 

In order to communicate with various programming languages, Soar uses the 

Soar Markup Language (SML) which allows for information to be taken off and put 

on the input and output links very easily. This project communicates with Soar using 

Python and makes use of the long-term semantic memory module. 

 

4.2.2 Workspace Setup 

The experimental setup consists of an EnCore 2s System (MRSI North 

Billerica, MA) that has been modified to be controlled with a Galil DMC-2413 four-

axis digital motion controller. The robot was enclosed in a wooden frame to control 

the lighting needed for the computer vision modules.  
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  A Matlab R2014a client and a Python server are connected and communicate 

via TCP/IP protocols. The Python script interfaces with Soar and its semantic memory 

module utilizing the Soar Markup Language (SML), while Matlab is used to 

communicate with the positioning, vision, and tooling systems. The linear actuators 

(Midwest Motion) used for clamping are connected to an Arduino R3 and Arduino 

Motorshield R3. The Sensor-Equipped (SE) screwdriver is connected to a second 

Arduino R3, Motorshield R3, and a custom shield designed to interface with the SE 

screwdriver accelerometer. A Microsoft Kinect was placed above the workspace to 

make depth measurements and a Microsoft HD-3000 webcam was placed over the 

workspace to determine screw holes on the laptop. Another Microsoft HD-3000 

webcam was placed on the head of the robot and is used to make the fine movement 

adjustments when the robot is centering a screw.  A complete overview of the 

connections of the different systems can be seen in Fig. 3. 

 

4.2.3 Laptop Selection and Orientation using Soar 

A clamping system composed of two linear actuators was used to push the 

laptop against the walls at the edge of the workspace. By utilizing the potentiometer 

feedback from the linear actuators, and calibrating its output of the distance from the 

wall to the edge of the clamp, it was possible to obtain the length and width of the 

laptop after it has been clamped in the workspace. The average thickness of the laptop 

was determined using a Microsoft Kinect sensor located above the workspace. From 

previous work [36], the Kinect was placed approximately 720 mm above the 

workspace plate. This distance was as close as the Kinect could be mounted to see the 
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entire workspace and not interfere with the overhead camera used to obtain screw 

coordinates.  

 

 

Fig. 3. Overview of the systems connection and communication 

 

 

Using the Microsoft Kinect, a background image of the workspace was taken 

with the linear actuators fully retracted. In Fig 4., the region that is enclosed in the box 

is the region of interest (ROI) that the pixel distances were calculated. This ROI 

slightly extends past the railing on the left and bottom sides to accommodate laptops 

taller than the railing. Five readings were taken at each pixel to minimize noise, saved 

to a CSV file, and averaged using Matlab. Once a laptop was placed on the surface, 

another measurement was taken with the Kinect. Due to the fact the Kinect gives a 

measurement with respect to how far an object is from it, the distance will be greater 

when there is no laptop in the workspace. Since the only change in the ROI is the 
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laptop, these two measurements can be subtracted from each other at a pixel-by-pixel 

basis.  

 

Fig. 4. Background image of workspace without laptop. b) Second image 

of workspace taken with the laptop. 

 

Algorithm 1 shows how the average thickness of a laptop was obtained. The 

average thickness of a laptop was used because the cover of laptops can slant, 

resulting in a non-uniform thickness across the width of the laptop. In this algorithm, 

the thickness difference is the absolute value of the difference between the background 

thickness and the laptop thickness. These pixel values are only counted towards the 

total thickness if they are between 10 and 100 mm. If they are less than 10 mm, they 

can be disregarded as noise and if they are more than 100 mm, that means one of the 

pixels had a depth that the Kinect was unable to determine and was 0.  

Since the geometries of many laptops are not just rectangular prisms and 

contain curved features and contours, it is possible that when a laptop is inserted into 

the workspace at one orientation, different parts of the laptop may become the points 

of contact between the clamp and the wall than when it is inserted at a different 

orientation. To account for this, the length, width, and thickness are measured for a 

laptop when it is in both a “0-degree” and “180-degree” orientation. The current 
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workspace setup only allows the laptop to be placed in these two orientations rather 

than at four orientations every 90 degrees. 

Algorithm 1. Determine Average Thickness of Laptop from Microsoft Kinect 

 

Thickness Difference = ABS (background thickness-laptop thickness) 

FOR number of pixels in ROI 

 IF Thickness Difference > 10 AND Thickness Difference < 100 THEN 

  Increment counter by 1 

  Add Thickness Difference to the Total Thickness  

 ENDIF 

ENDFOR 

Average Thickness = Total Thickness / Counter 

 

Soar‟s semantic memory can be used to store the different laptop models and 

the parameters that define these laptops. Soar was trained with the dimensions of eight 

different laptop models and then used to determine which of the laptop models was 

placed in the workspace and in which orientation. This was repeated 10 times for each 

laptop with a random run order; five times, the model was placed in a “0-degree” 

orientation, and the other five times the model was rotated and placed in a “180-

degree” orientation. For each trial, the length, width, and thickness of the laptop was 

recorded as well as the successful query number, and laptop identifier that Soar 

determined. Fig. 5 shows the data structure used to store each of the laptops attributes 

and how it can be extended to hold a m-number of attributes. In Soar, the „@‟ sign 

symbolizes a long-term identifier (LTI) indicating that the specified identifier resides 

in the long-term memory module. 
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Fig. 5 Soar Semantic Memory 

 

The logic employed by Soar to determine if a laptop is already in the database 

is shown in Fig. 6. The first step is to obtain the length, width, and thickness of the 

laptop from the linear actuators and the Kinect. Next, a query is performed on the 

database and these dimensional values are compared to the laptops “0-degree” 

attributes to determine if the laptop model is already in the database. To perform a 

query in Soar with semantic memory, the command “<s> 

^smem.command.query.<attribute> <value>” needs to be used (In Soar, the dot   (.) 

notation is a short-hand way of connecting multiple attributes which only link 

identifiers). If <attribute> is “name”, then the command translates to “on the main 

state conduct a semantic memory query that matches any LTI with any name”. This 

command needs to be augmented with a math-query to restrict the attributes that are 

being compared to within an upper and lower bound. The command for a math-query 

is “math-query.<attribute>.<condition> <value>” where <attribute> is the attribute 

that you are comparing and <condition> can either be greater-or-equal, less-or-equal 

among a few others which are listed in the Soar manual [37]. Examples of both these 

commands within the Soar syntax can be found in Fig. 7. 
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Fig. 6. Soar logic for retrieving laptop from memory 

 

 

 sp {apply-check-database 

     (state <s> ^name smemory    ^smem <sm>   

          ^operator <o>    ^memory-process.laptop <laptop> 

      (<laptop> ^query <q>) 

      (<sm> ^command <cmd>) 

      (<o> ^name check-database*laptop*q1    ^length <length-

bounds> 

               ^width <width-bounds>   ^thickness <thick-bounds>)  

      (<length-bounds> ^upper <length-upper>   ^lower <length-

lower>) 

      (<thick-bounds> ^upper <thick-upper>   ^lower <thick-lower>) 

      (<width-bounds> ^upper <width-upper>      ^lower <width-

lower>) 

--> 

      (<laptop> ^query <q> -) 

      (<laptop> ^query (+ 1 <q>)) 

      (<cmd> ^math-query <mq>    ^query.name <any-name>) 

      (<mq> ^length <mql>   ^width <mqw>   ^thickness <mqt>) 

      (<mqt> ^less-or-equal <thick-upper>    ^greater-or-equal 

<thick-lower>) 

      (<mqw> ^less-or-equal <width-upper>    ^greater-or-equal 

<width-lower>) 

      (<mql> ^less-or-equal <length-upper>     ^greater-or-equal 

<length-lower>)}  

 

      

Fig. 7. Example Soar code that checks the data base for laptop 
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If the first query is successful, an image template matching algorithm must be 

performed since it is not possible to tell what orientation the laptop is in.  If the query 

is unsuccessful, then the database is queried again, and compared to the laptop‟s 

attributes in the „180-degree‟ orientation.  If the second query is successful, then the 

laptop is in the „180-degree‟ orientation. If the query fails, then the laptop needs to be 

added to the database, so the clamps will unclamp and the laptop will need to be 

rotated to obtain the dimensional parameters of the other orientation. 

When a laptop is added to memory, a template image must be created for the 

laptop in both orientations. The steps taken to find and create the template image are 

shown in Fig. 8. Fig. 8a) shows the result once the image with the laptop in the 

workspace is subtracted from the image without the laptop in the workspace. In these 

images, the only change is the laptop so when the images are subtracted from each 

other, only the laptop is left and the rest of the image is black. Next, Fig. 8b) shows 

the same image after a Prewitt edge detection filter is performed, and Fig. 8c) shows 

the image after the lines have been dilated. Finally, in Fig. 8d), the contours are closed 

over the laptops area, and the size and location of the laptop in the image is 

determined. Since the location of the laptop is now known, the laptop‟s image can be 

extracted from the main image and saved as a template for both orientations of the 

laptop. These template file names are added to semantic memory as attributes of that 

laptop. 
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Fig. 8. Creating a template from the laptop placed in the workspace. a) 

Background subtraction of the image with a laptop and the image without a 

laptop. b) After performing edge detection using the Prewitt method. c) Dilation 

of the lines found with edge detection. d) filling in contours and determining the 

region of the image containing the laptop 

 

The template matching algorithm used is the sum of absolute difference (SAD) 

shown in (1) [38]. In this equation, let I1 be the template image, I2 be the target image, 

and x and y be the size of the template image. In SAD, the template is moved over the 

target image, the pixel values are subtracted pixel-by-pixel, and the sum of these 

values give the score for the current region. The best match therefore becomes the 

region with the lowest score. 

 

   (   )  ∑ ∑ |  (   )    (       )|

     

    

     

    

 (1) 

 

  

a) b) 

c) d) 

Edge Detection

dilated gradient mask
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4.2.4 Laptop Hole Removal Using Soar 

Soar‟s semantic memory was also used to evaluate how well the systems 

performance could improve while removing screws from the backside of a laptop. 

Previously [10], every time the system ran a test on a laptop, every circle location 

obtained from the overhead camera had to be explored to determine if a screw was 

present or not. Using semantic memory will cut down on the trial times as circles that 

have had their location already explored will not have to be explored again. Soar will 

be able to ignore circles that do not have a screw in them and only focus on the circles 

that have not yet been explored or have had screws found.  

To test how Soar improves the robot‟s performance in removing screws from 

laptops, the disassembly program was run on a laptop until the length of a test 

converged. The testing was performed with two methods. The first method was when 

circles were identified with the overhead camera during every trial. The second 

method was when circles were only identified during the first training run, and the 

locations of the screws were retrieved from memory after the first run. 

The eight laptop models were placed in the workspace a total of 10 times each. 

For five of the trials the laptop was placed in the “0-degree” configuration and for the 

other five trials, the laptop was placed in the “180-degree” configuration. For all of 

these trials, circles were identified with the overhead camera, and the length of a test 

as well as the number of screws that were correctly determined and removed were 

recorded. An additional three trials were performed where Soar did not identify circles 

from the overhead camera and just removed screws by retrieving their locations from 

semantic memory. 
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Due to how semantic memory is currently constructed within the Soar 

framework, it is not possible to use dot notation to explore levels that are not directly 

under the LTI as it leads to increasingly complex queries. Instead, this work proposes 

that each hole can be treated as its own LTI and can be linked to a specific laptop by 

having its own attribute that consists of the laptops ^name value. By linking the LTIs 

of the laptop model and the holes in the laptop via the attribute ^name when queried, 

all subsequent queries will only select LTIs that pertain to the laptop in the workspace. 

This is shown in Fig. 9 where the laptops have LTIs of @L1 and @L2 and the holes 

have LTIs of @H1-@H5. The LTI @L1 has an attribute ^name “laptop1”. When this 

laptop is chosen as the laptop that is in the workspace, only the holes that also have an 

attribute ^name laptop1 will be returned. In Fig. 9, LTIs that are linked between the 

holes and laptops are visually shown with the same shade in their identifier.

 

Fig. 9. Semantic memory incorporating circles 

 

It also becomes easier to bring the LTI elements into working memory and 

compare their contents in short term memory rather than continually querying and 
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comparing with semantic memory. The general logic flow used with Soar is shown in 

Fig. 10. When the program is started, the database will be checked for a laptop. While 

the details of checking for a laptop are shown in Fig. 6, the result is the laptop is 

already in the database, or the laptop is not in the database and needs to be added. 

Next, the locations of all the circles that were found by the overhead camera in 

Matlab, as well as the current position of the end effector, are put on the input-link and 

transferred to Soar‟s working memory. Then all the holes in Soar‟s long term memory 

are queried and brought to working memory one-by-one until the query fails. When 

the query fails, it means that there are no more holes in semantic memory left to bring 

to working memory. If laptop is not already in the database, the failure will occur after 

the first attempt. Next, a circle that was from the input link is picked and its x,y 

coordinates are compared to the upper and lower bounds of all of the holes in memory.  

In case of multiple matches, preference is given to circles that are closer to the current 

position of the robot, and circles that contain a screw. Once a hole has been chosen 

there are three possibilities: 

1) The circle location is not already in the database and must be explored- When 

a circle is explored it uses the same procedure as described in [88] with minor 

variations in order to speed up segments of a test. First, before the initial movement 

adjustment, the image used to center a screw is slightly smaller (350 x 400 px 

compared to 600 x 800 px). If the robot makes a movement adjustment, the image 

becomes even smaller (300 x 300 px) as the screw should be close to the center of 

the webcam. Since the image is now smaller, the algorithm no longer attempts to 

close contours, but does attempt to locate a hole by toggling the localized lighting 
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module; First by checking the hole with the light on and then with the light off. The 

different lighting methods combined with both the laptop color and the depth of the 

screw holes can result in higher contrast levels. If a screw is removed, the program 

remembers the computer vision constraints used to find the hole and the coordinates 

at which the hole is actually at. The program also transposes the coordinates of the 

hole so it can be found on the laptop when the laptop is placed in the other 

orientation. After a screw has been centered, the SE screwdriver is used to check 

the area for a screw. Attributes are added to the LTI of the hole to save the 

information determined by the computer vision, robot, and screwdriver and is 

placed in Soar‟s semantic memory. 

2) The circle is already in the database and contains no screw or is not a screw 

hole- When the circle from the input-link matches the circle in working memory 

and there is no screw, then the robot is told to wait and Soar proceeds to its next 

decision cycle. 

3) The circle is already in the database and contains a screw- When the circle from 

the input-link matches the circle in working memory and there is a screw at that 

location, then the robot is moved to the x,y location and attempts to center and 

remove the screw. To speed up the computer vision while it is locating and 

centering a screw, the ROI is reduced (300 x 300 px) and the computer vision 

parameters it uses are retrieved from the hole‟s semantic memory attributes.  
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Fig. 10. Logic of using Soar to determine if a hole has a screw. 

 

When Soar decides to explore the circle location with the SE screwdriver, it is 

assigning a reward based on if the screw is found or not. This model assumes that a 

score of a 1.0 means a screw is present and a 0.0 means a screw is not present and 

each hole starts with a score of 0.5. If the screw is not found, then that location is 

marked with a „no‟ when the LTI is modified (-0.5). However, if a screw is found, 

then that location is marked with a „yes‟ (+0.5).  

 

4.3 Results and Discussion 

4.3.1 Laptop Thickness 

The average thicknesses of the laptops, as calculated by the Kinect sensor, are 

shown in Fig. 11. The triangle that is pointed upward shows the maximum thickness 

that was measured on laptop and the triangle that is pointed downward shows the 

minimum thickness measured on the laptop. The thickness that was computed by the 

Kinect is shown as a circle with error bars indicating one standard deviation. The 
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results show that the Kinect can compute an average thickness that falls between the 

minimum and maximum thickness. The measurements taken by the Kinect are also 

extremely repeatable as the standard deviation of the thickness is low with the highest 

standard deviation being 0.324 mm for Laptop 3. Laptop 4 was equipped with an 

extended life battery explaining why the maximum thickness of that laptop is so high. 

The average thickness is much closer to the minimum thickness of the laptop because 

the extended battery only covered a small area of the back of the laptop. 

 

Fig. 11. Average Thickness of a Laptop 

 

The results when Soar was used to determine the orientation and model of a 

laptop are shown in Table 1. The „Orientation‟ column in Table 1 identifies whether 

the laptop was placed in a „0-degree‟ or a „180-degree‟ orientation. The column 

„Query‟ displays whether the first or second query was the successful query when the 

laptop was compared to values in semantic memory. If query 1 was the successful 

query, the template matching procedure had to be implemented since the program 

would be unable to determine what orientation the laptop was in. The highest standard 
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deviation (std) of length, width, and thickness is 0.321 mm thus, four stds (99.9% of 

population) is 1.3 mm. This can be seen with laptop models 3, 7, and 8, as all these 

parameters are less than 1.3 mm of the corresponding parameter in the other 

orientation. For all the other laptop models that were determined by query 1 when the 

laptop was placed in the “0-degree” orientation, and query 2 when the laptop was 

placed in the “180-degree” configuration, at least one of their parameters was higher 

than 1.3 mm of the corresponding parameter in the other orientation. However, if 

query 2 was the successful query, then by the process of elimination, the laptop is in 

the “180-degree” configuration. In this experiment, Soar could determine the correct 

laptop and orientation 80 out of 80 times. The “Length”, “Width”, and “Thickness” 

columns are the experimental results obtained from the two linear actuators, and the 

Kinect sensor. The ± values in these columns represent one std of the measured 

quantity. All measurements have low standard deviations demonstrating that the 

measurement methods are repeatable. 

 

4.3.2 Holes 

 The number of trials it takes for the time of a disassembly routine to converge 

is shown in Fig. 12. The first disassembly trial for a laptop always takes the longest 

amount of time because all the circles located by the overhead camera need to be 

explored. For all the different runs, by the second trial, the trial time has decreased by 

~60% or more. The system performs better when the circles are only explored during 

the initial training trial rather than every trial. With this method, the system reaches its 
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best performance time during the second trial and the test times stay consistent 

throughout all the trials.  

Table 1. Results for the Laptop Selection Test 

 

Laptop 
Orientation 

(degree) 
Query 

Success 

Rate (%) 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

1 0 1 
100 307.48 ± 

0.012 

266.11 ± 

0.036 

43.06 ± 

0.157 

1 180 2 
100 307.32 ± 

0.019 

261.13 ± 

0.228 

43.46 ± 

0.045 

2 0 1 
100 332.41 ± 

0.010 

274.11 ± 

0.006  

31.60 ± 

0.047 

2 180 2 
100 332.43 ± 

0.038 

270.23 ± 

0.321 

31.87 ± 

0.094 

3 0 1 
100 354.80 ± 

0.010 

254.12 ± 

0.012 

34.04 ± 

0.137 

3 180 1 
100 355.16 ± 

0.010   

253.86 ± 

0.063 

33.42 ± 

0.027 

4 0 1 
100 343.39 ± 

0.022 

279.80 ± 

0.207 

35.24 ± 

0.010  

4 180 2 
100 343.26 ± 

0.004 

283.38 ± 

0.022 

35.32 ± 

0.009 

5 0 1 
100 290.72 ± 

0.086 

242.51 ± 

0.016 

30.06 ± 

0.154 

5 180 2 
100 289.93 ± 

0.128 

245.16 ± 

0.021 

30.32 ± 

0.041 

6 0 1 
100 359.49 ± 

0.074 

264.43 ± 

0.031 

35.45 ± 

0.032 

6 180 2 
100 359.07 ± 

0.020 

261.75 ± 

0.013 

35.52 ± 

0.139 

7 0 1 
100 292.65 ± 

0.124 

234.74 ± 

0.021 

32.15 ± 

0.196 

7 180 1 
100 292.86 ± 

0.006 

234.91 ± 

0.007 

32.11 ± 

0.222 

8 0 1 
100 356.11 ± 

0.024 

262.36 ± 

0.022 

34.69 ± 

0.221 

8 180 1 100 
356.41 ± 

0.062 

262.04 ± 

0.011 

35.07 ± 

0.171 

 

If the circles are located and explored during every trial, then a comparable 

trial time doesn‟t start to occur until at least the third trial. Fig.13 shows the visual 
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results of the circles that the system explored for the 2nd run shown in Fig 12. with the 

„‟ data marker. In Fig. 13, a „‟ means the computer vision system was unable to 

determine a screw, a „X‟ means the SE screwdriver was unable to find and remove a 

screw, and a green circle means that the screw was successfully removed. As the 

number of trials progress, the number of circles that are explored continue to decrease 

until none or only a couple of circles are explored during the trial. 

 

Fig. 12. Number of trials it takes for the testing time to remove screws from a 

laptop using Soar to converge. 

 

The results showing the percentage of correct holes found by the overhead 

camera and the percentage of screws that were successfully removed from the laptop 

by the SE screwdriver are shown in Table 2. These results are an improvement over 

the previous findings [10] as the parameters governing the Hough circle transform 

such as the radius size of a circle were relaxed. The results are broken up based on the 

orientation the laptop was placed in the workspace. The column „New Circles 

Explored by the Robot‟, lists the number of new circles that the robot went and 
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explored with the robot camera and SE screwdriver. As the trial number increased for 

each laptop in every orientation, the number of holes that needed to be explored 

decreased, until a trial would yield a few holes that needed to be explored. The screws 

that had been previously found and saved in semantic memory were still removed 

without needing to be explored. The column „Possible Screws that could be removed‟ 

lists how many screws could be found after adjusting for if a screw had been missed 

and that circle had incorrectly been placed in memory as not containing a screw. The 

column „Holes Found‟ lists the percentage of the screw holes that were successfully 

found by the computer vision system based on the total number of screw holes that 

could possibly be found for that trial. Finally, the column „Screws removed‟ indicates 

how many of the screws were successfully removed based on how many holes 

containing screws were found by the computer vision system.  

Entries that are italicized indicate that a screw that was on the laptop was 

missed the first time a screw hole was discovered. This would occur by either the 

vision system not being able to determine the screw hole or the SE screwdriver hitting 

an obstruction on the laptop or the workspace and not being able to remove a screw.  

The number in the parenthesis denotes the number of screws that were missed and had 

their positions incorrectly placed in semantic memory as not containing a screw. The 

column the parentheses are in indicates whether the error occurred with the computer 

vision system („Holes Found‟) or the SE screwdriver („Screws Removed‟).  This is 

also reflected in the „Possible screws that could be removed’ column. For example, 

with laptop 2, there are 14 circles that contain screws and during the first trial, two of 

these holes were not found by the computer vision system and placed in memory as 
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not containing a screw. During the next trial, since those two circles were in memory 

as not containing a screw, there were only 12 possible screws that the system would be 

able to remove. Adding up the errors in both orientations, six errors occurred via the 

vision system where the robot camera was unable to find the screw and six errors 

occurred via the SE screwdriver. Of the six errors with the SE screwdriver, four 

occurred because the screwdriver was not able to fully mate with the screw because of 

a collision with a feature on the laptop or with the clamp. 

Due to the setup of the tools on the robot, the entire laptop cannot be reached 

by the robot when it is placed in the workspace. The reachable region of the 

workspace is shown as the rectangle that is on the laptops in Fig. 13. This means that 

the entire laptop is not explored when the laptop is introduced in its initial 180-degree 

orientation. This results in a higher number of circles that need to be explored during 

the first trial for both orientations of the laptop since when the laptop is turned around 

there is a portion of the laptop that is being analyzed for the first time. 

The results of the tests broken up by different testing time categories are shown 

in Fig. 14 and Fig 15. The main testing time categories are: the parameter time, 

computer vision time, robot movement time, and the screwdriver removal time. The 

parameter time for these tests was defined as the amount of time it takes the system to 

clamp the laptop in the workspace, take measurements of the length, width, and 

thickness, and find circles with the overhead camera. The parameter time always took 

the most time when a laptop was placed in the workspace and was not in memory. 

When a laptop needed to be added to memory, the laptop would then have to be 

unclamped, rotated, and re-clamped. These trials are always the first trial when the 
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laptop was placed in the „180-degree‟ orientation. When a laptop was placed in the „0-

degree‟ orientation and a test was run the parameter time is always less, even during 

the first trial, because the laptop had already been added to memory. 

 
Fig. 13. Visual results for the convergence test for laptop model 1. The numbers 

over the laptop indicate the corresponding trial number in Fig 12. (2nd run). The 

‘’ indicates that a screw was found and successfully removed, a ‘X’ indicates 

the screwdriver did not find a screw, and the ‘’ indicates that the computer 

vision did not find a screw. 
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Table 2. Results on how well the system could find circles and remove screws 

from the laptop. 

Laptop 

180-degree orientation 

Trial New 

Circles 

Explored 

by Robot 

Possible 

Screws that 

could be 

removed 

Holes 

Found 

By Vision 

(%) 

Screws 

Removed 

(%) 

1 1 46 6 100 100 

2 1 6 100 100 

3 1 6 100 100 

4 0 6 100 100 

5 0 6 100 100 

2 1 61 14 85.7 (2) 100 

2 12 12 91.7 100 

3 4 12 100 100 

4 2 12 100 91.7 

5 2 12 91.7 90.9 

3 1 89 13 92.3 100 

2 10 13 84.6 100 

3 2 13 84.6 100 

4 9 13 92.3 91.7 

5 4 13 92.3 100 

4 1 60 15 93.3 100 

2 1 15 93.3 92.9 

3 1 15 93.3 100 

4 0 15 93.3 100 

5 1 15 93.3 100 

5 1 41 9 100 100 

2 20 9 100 88.9 

3 5 9 100 100 

4 4 9 88.9 88.9 

5 4 9 88.9 100 

6 1 66 11 100 100 

2 5 11 100 90.9 

3 7 11 100 100 

4 3 11 100 100 

5 4 11 100 100 

7 1 34 11 63.6 (3) 100 

2 7 8 87.5 100 

3 2 8 87.5 100 

4 1 8 87.5 100 

5 2 8 87.5 100 

8 1 60 16 100 100 

2 4 16 100 100 

3 0 16 93.8 100 

4 0 16 93.8 100 

5 0 16 93.8 100 
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Laptop 

0-degree orientation 

Trial New 

Circles 

Explored 

by Robot 

Possible 

Screws that 

could be 

removed 

Holes 

Found 

By Vision 

(%) 

Screws Removed 

(%) 

1 1 35 7 100 100 

2 11 7 100 100 

3 3 7 100 100 

4 2 7 100 100 

5 1 7 100 100 

2 1 47 12 91.7 (1) 100 

2 5 11 90.9 100 

3 2 11 90.9 90.9 

4 5 11 90.9 100 

5 2 11 100 100 

3 1 86 16 75  85.7 (2) 

2 15 14 85.7 100 

3 16 14 78.6 100 

4 5 14 71.4 100 

5 2 14 92.9 100 

4 1 29 19 94.7 100 

2 2 19 94.7 100 

3 0 19 94.7 100 

4 2 19 94.7 100 

5 3 19 94.7 100 

5 1 52 8 100 87.5 (1) 

2 5 7 100 100 

3 4 7 100 100 

4 3 7 100 100 

5 2 7 100 100 

6 1 38 11 100 90.9 (1) 

2 14 10 100 100 

3 5 10 90 100 

4 2 10 100 100 

5 1 10 90 100 

7 1 22 7 85.7 83.3 (1) 

2 6 6 83.3 100 

3 0 6 100 100 

4 0 6 100 100 

5 2 6 83.3 100 

8 1 34 14 85.7 92.3 (1) 

2 3 13 92.3 100 

3 1 13 92.3 100 

4 0 13 92.3 100 

5 1 13 92.3 100 
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The robot movement time was the time it took the robot to move from circle to 

circle and the computer vision time was the amount of time that that system spent 

trying to identify and centering screw holes. Both the robot movement time and the 

computer vision time were the greatest in the first trial because the system had to 

explore every hole. The correlation between these two time variables has an r-score > 

0.97 for every laptop model indicating there is a strong positive correlation. The screw 

removal time was the length of time the disassembly sequence was actively trying to 

remove the screw with the SE screwdriver. The other time was the amount of time that 

the program either spent in Soar trying to determine the next hole to remove, or time 

spent waiting for a response between Matlab and the hardware during a 

communication timeout. When the computer vision system identified a large cluster of 

holes, or when there were many holes in the database, the computational time Soar 

required to make a hole selection increased. 

Fig. 14 shows the results for when circles were found and explored every trial, 

and Fig. 15 shows the results when the circles were only explored during the initial 

trial. Fig. 15 shows improvement over the trials in Fig. 14 as the time of a trial is faster 

and more consistent. When circles were only found during the initial trial, the 

computer vision time is only the amount of time that the system spends trying to 

center a screw while the computer vision time for Fig. 14 is spent both exploring and 

centering screws. The results in Table 3 show the performance between the two 

methods used to remove the screws from laptops. In this table the method where 

circles are located during every trial is referred to as „Method 1‟ and the method where 

circles are only found during the second trial is referred to as „Method 2’. For every 
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laptop model, finding circles with „Method 2’ decreased the overall time of a trial, and 

for 15 out of 16 laptops and orientations decreased the trial run time by over 10%. The 

± values in these columns represent one std of the measured quantity and shows that 

„Method 2‟ is much more repeatable than „Method 1‟ due to the fact the time of 

„Method 1‟ can greatly increase by exploring new circles.   The column „Difference‟ 

shows that that for some laptops, it is possible for „Method 1‟ to save over a minute of 

testing time during a trial.  The average time that was reported for each orientation and 

method was calculated by averaging the time of the trials with five or less new circles 

explored from Table 2. 

Using the results of trials where the circles were only explored for the first trial 

(Method 2), data revealing the best run conditions could be calculated and is displayed 

in Table 4. All this data is broken up by the orientation that the laptop was placed in 

the workspace. The column „Average screw removal time‟ is the average disassembly 

trial time for three runs after the training run. The column „Number of Screws 

Removed‟ lists the most number of screws that were removed from the laptop model 

during a trial. The column labeled „Screw Removal Time Limit‟ is the fastest time that 

the laptop could be disassembled while being adjusted for the screws that the system 

missed. To calculate this limit, the average parameter time was used for each model of 

laptop. This accounts for the fact that laptops could have different dimensions and so 

the clamping time could vary. The robot movement time was calculated by measuring 

the distance between holes that were closest to each other on the back of the laptop, 

for all the holes in the reachable workspace. Additional distances that the laptop 

moved such as switching from the robot camera to the SE screwdriver as well as 
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moving up and down were also added in to the total distance. This total distance was 

divided by the speed the robot was traveling at to obtain the optimal robot movement 

time.  

 

Fig. 14. Results showing the length of a trial broken up by category when 

circles were found and explored during every trial. 
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Fig. 15. Results showing the length of a trial broken up by category when 

circles were only found and explored during the first trial. 
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Table 3. Results showing improvement from when circles were found and 

explored during every trial (method 1) and when circles were only found during 

1st trial (Method 2). 

180-degree orientation 

Laptop 

Model 

Method 1 

Average (s) 

Method 2 

Average (s) 

Difference 

(s) 

Percent 

Decrease 

1 208.17 ± 23.20 164.33 ± 5.79 43.84 21.06 

2 377.30 ± 37.80 289.28 ± 5.10 88.02 23.33 

3 554.60 ± 76.99 296.96 ± 4.54 257.64 46.46 

4 361.06 ± 19.72 346.29 ± 8.63 14.76 4.09 

5 328.69 ± 15.91 230.86 ± 4.50 97.83 29.76 

6 414.85 ± 26.80 275.60 ±14.61 139.25 33.57 

7 276.26 ± 3.88 216.63 ± 5.34 59.63 21.58 

8 402.31 ± 62.03 360.97 ± 2.52 41.34 10.27 

0-degree orientation 

Laptop 

Model 

Method 1 

Average (s) 

Method 2 

Average (s) 

Difference 

(s) 

Percent 

Decrease 

1 296.60 ± 51.58 199.39 ± 1.10 97.21 32.77 

2 350.48 ± 1.72 257.19 ± 3.50 93.29 26.62 

3 478.13 ± 72.99 302.34 ± 23.50 175.79 36.77 

4 483.56 ± 41.03 426.04 ± 12.27 57.52 11.90 

5 299.49 ± 16.21 187.77 ± 8.23 111.72 37.30 

6 329.22 ± 3.39 257.60 ± 4.00 71.62 21.75 

7 219.45 ± 20.64 184.45 ± 3.31 34.99 15.95 

8 345.51 ± 41.42 280.4 ± 14.19 65.12 18.88 

 

The fastest computer vision time that was produced by a trial was 6.5 seconds 

per hole. This time was used for all laptops and multiplied by how many holes were in 

the reachable workspace to get an optimal computer vision time. Finally, for every 

laptop, the fastest screwdriver removal time was used which was between 7.0 and 8.2 

seconds. The screw removal times for individual laptops were used because the screws 

used on the different laptops could vary in type and size.  

The backs of different laptop models have different number of screws on them 

so it is tough to compare the total disassembly times of laptop models. However, if the 

disassembly time is normalized to a „per screw‟ basis, it is possible to compare how 
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well the system could remove the screws from the different laptop models.  The 

column „Screwdriver Removal Time per Screw‟ shows the average time the SE 

screwdriver was trying to remove an individual screw per test, and for all the tests, this 

time was between 6.95 and 9.56 seconds per screw. The column „Average Screw 

Removal Time per Screw‟, accounts for the robot movement and computer vision time 

as well as the screw removal time. These time categories are added together and 

divided by the number of screws in the reachable workspace. This means the average 

time to travel to, center, and remove a screw takes between 22.78 and 30.95 seconds 

per screw for the different laptops. For all columns, the ± represent one std of the 

measured quantity and show that Method 1 is very repeatable on a „per screw‟ basis. 

Ideally, the „Average Screw Removal Time‟ divided by the „Number of Screws‟ should 

match the time in the column „Average Screw Removal Time per Screw‟. If these two 

times do not match, then it means the computer vision system or the screwdriver was 

unsuccessful in removing a screw in at least one of the trials with that laptop model.   

 

4.4 Conclusions 

This paper presented the results of incorporating the cognitive architecture 

Soar, to an automated system capable of determining the locations of screw holes on a 

laptop. The locations of these screw holes were not preprogrammed and were found 

by combining force and vision sensing. The semantic memory of Soar was used to 

remember the location of circles that contained screws and the locations that did not 

contain screws.  
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Table 4. Results for removing screws when the circles were only explored for the 

first trial. 

180-degree orientation 

Laptop 

Model 

Average 

Screw 

Removal 

Time (s) 

Number 

of Screws 

Removed 

Screw 

Removal 

Time 

Limit (s) 

Screwdriver 

Removal 

Time per 

Screw (s) 

Average Screw 

Removal Time per 

Screw (s) 

1 164.33 ± 5.79 6 144.6 7.15 ± 0.31 27.39 ± 0.97 

2 289.28 ± 5.10 12 253.1 8.20 ± 0.04 24.11 ± 0.43 

3 296.96 ± 4.54 12 255.9 7.38 ± 0.71 24.21 ± 2.14 

4 346.29 ± 8.63 14 303.8 9.05 ± 0.20 24.74 ± 0.62 

5 230.86 ± 4.50 9 209.2 7.94 ± 0.12 25.65 ± 0.50 

6 275.60 ±14.61 11 222.5 7.95 ± 0.82 26.54 ± 0.56 

7 216.63 ± 5.34 7 179.2 9.56 ± 0.52 30.95 ± 0.76 

8 360.97 ± 2.52 16 322.3 7.34 ± 0.04 22.78 ± 0.16 

0-degree orientation 

Laptop 

Model 

Average Screw 

Removal  

Time (s) 

Number 

of Screws 

Removed 

Screw 

Removal 

Time  

Limit (s) 

Screwdriver 

Removal 

Time per 

Screw (s) 

Average Screw 

Removal Time per 

Screw (s) 

1 199.39 ± 1.10 7 170.7 7.61 ± 0.08 28.48 ± 0.16 

2 257.19 ± 3.50 10 238.6 7.62 ± 0.24 25.72 ± 0.35  

3 302.34 ± 23.50 13 259.3 6.95 ± 0.25 24.54 ± 0.44 

4 426.04 ± 12.27 18 371.2 8.98 ± 0.67 23.67 ± 0.68   

5 187.77 ± 8.23 7 173.4 8.49 ± 0.20 26.82 ±1.17 

6 257.60 ± 4.00 10 233.2 8.30 ± 0.69 25.76 ± 0.40 

7 184.45 ± 3.31 6 155.4 9.26 ± 0.51 30.84 ± 0.55 

8 280.4 ± 14.19 12 252.8 8.84 ± 0.82 24.80 ± 0.16 

 

Overall, the results show that it is possible to integrate a cognitive architecture 

such as Soar to aid in a disassembly sequence. Soar is a good cognitive system to 

choose for work like this as it has a good framework in place to easily accept input 

from sensors and different languages and give output commands. Its long-term 

memory module, semantic memory, is well suited for remembering information about 

specific LTI such as laptop models and holes. One limitation to using Soar in this 

fashion is if when the database starts to grow very large (around 150 holes), Soar 

begins to take a long time (order of seconds instead of milliseconds) to decide about 
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what hole is next due to all the proposal rules and elaboration rules between the 

different hole identifiers. This delay only occurs when Soar looks for new circles 

during every trial and does not occur when Soar is only trained during the first trial as 

only the holes that have screws are proposed. 

Using Soar, the run times of the different laptop models could be cut down. 

The system could further increase its speed by eliminating the need for computer 

vision after a screw has been found. To do this, the exact location of the screw must be 

saved to semantic memory. The location must be found and coordinates saved for both 

orientations of the laptop as the transposition of coordinates from one orientation to 

the other are not perfect. Although this will increase the training time of the laptop, it 

will cut out over a minute for some of the laptop models and further reduce the 

disassembly time to 2-3 minutes when the system is removing the screws.  

The system presented in this paper performs the best and has the fastest run 

times when the trials that it can explore circles are limited to one training run. While 

exploring circles in every trial gives the system the greatest chance to find a screw it 

might have missed, it results in longer run times. The number of trials that the system 

performs when it is exploring screws can be adjusted so there is a tradeoff between the 

fastest trial times and its accuracy in finding screws. The reward factor the system 

currently gives is +0.5 if a screw is found or -0.5 if a screw is not found. These reward 

scores could also be modified to change the systems behavior when it is training. By 

changing the scores, it would mean that the system would have to find a screw or not 

find a screw multiple times before that location was saved as containing a screw or not 

thus improving the confidence that the system has found all the screws it can remove. 



 

118 

 

 The role that Soar plays in the disassembly process could also be extended to 

control the different systems connected to the robot and not just selecting the next hole 

to remove a screw from. For example, it may be possible to use a different module in 

Soar‟s long term memory, such as episodic memory, to remember the disassembly 

steps and order for the different models of laptops. Soar could also be used to control 

different disassembly tools that are created by using sub goals to organize and manage 

the different states and operators rules that Soar would be able to choose.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

 

The main goal of this dissertation was to investigate how well the Soar cognitive 

architecture could be integrated with a robotic agent to help it automatically 

disassemble e-waste. This was broken up into smaller studies that first characterized 

how accurately different Microsoft Kinect models could determine the distance to an 

object. An ANOVA test was performed to establish if the operating temperature, the 

model of Kinect, or their interactions were significant factors in determining the 

distance to an object. The Kinect sensor was also used to reconstruct gauge blocks and 

objects on machinists blocks set up on an angle. 

All the different Kinect models give very accurate results when they are placed 

between 600 and 800 mm away from the target. At all the distances tested, the 

standard deviation of all the Kinect models is lower than 2.1 mm, which shows the 

sensor has good repeatability. At distances up to 700 mm, the resolution of all the 

models is also very good at 1 mm. At 1800 mm, the farthest distance that the sensor 

was tested; the resolution of the Kinect was 9 mm which shows that the Kinect may 

not be suitable at that distance for applications requiring precise measurements.  

The operating temperature, the model of the Kinect used, and the interactions 

of the two are all significant factors when the Kinect is determining the distance to a 

target. Until the temperature reaches a high steady state operating temperature, the 

output from the Kinect continues to change. Therefore, it is advised to wait until the 
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Kinect has reached a high steady state temperature, which takes approximately 100 

minutes, before using it for applications that require precise measurements. The Kinect 

sensor is also able to accurately reconstruct 3D objects and determine the angle that an 

object is at, however calibration is needed for both these parameters before the 

Kinect‟s output is accurate. From overhead, the Kinect was also able to determine the 

holes in the machinists block provided that the angle is not too steep - less than 40 

degrees. 

 A significant challenge in the automated disassembly process is automatically 

locating the holes that contain screws. After characterizing the Kinect, a method was 

created that could automatically find and remove screws from the backside of laptops. 

This approach used two cameras; one that was mounted over the workspace (overhead 

camera) and another that was mounted on and moved with the robot (robot camera). 

The overhead camera would identify possible screw locations on the laptop and the 

robot camera would center the hole for the screwdriver. A SE screwdriver was 

designed and could go and explore locations on the laptops that were identified by the 

overhead camera. The screwdriver could probe an area to determine if a screw was 

present or not. The SE screwdriver used two low cost sensors, a FSR and an 

accelerometer to determine when the SE screwdriver had made contact with a surface 

and when a screw had been completely loosened respectively. 

 Trials were conducted that varied camera parameters and the color of the laptop to 

determine which combinations helped the system find and remove the most screws. 

The results show that the lighting used to illuminate the surface and the brightness of 

the cameras are two major parameters that need to be adjusted and are dependent on 
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the darkness of the laptop case. The darker the case, the higher the brightness level of 

the cameras should be. The brightness of the overhead camera will affect how many 

circles will be found over the surface of the laptop and up to a certain point, the higher 

the brightness, the more circles will be found on the laptop, thus increasing the chance 

that all the circles will be found on a laptop. As the laptop case gets darker, the robot 

camera‟s brightness level must increase as it creates a higher contrast between the hole 

and laptop case making it easier to find and center the hole. 

One drawback to the method described above is that without a way to remember 

the location of the holes, the time of the test will take between 40 to 60 minutes. To 

improve on the systems performance, Soar was incorporated into the robotic system 

and used to determine what model of laptop was placed in the workspace and what 

circles locations on the laptop contained screws and what locations did not. Using 

Soar the trial time decreased by approximately 60% for all the laptop models tested. 

Soar was run on the different laptop models using two different methods. The first 

method allowed Soar to continually train itself with circle locations every trial while 

the second method limited the number of these training trials to just the first trial. The 

second method was faster than the first method and decreased the time of a test by at 

least 10% for 17 out of the 18 laptops. 

Overall, the system presented in this dissertation shows that it can automatically 

locate and remove screws from the backside of laptops. Removing screws is one of the 

first steps in the complex operation of recycling e-waste. The Soar cognitive architecture 

improved the speed that the system could remove screws and showed that a cognitive 

architecture can be beneficial in creating disassembly plans. Sub-goals and the ability to 

keep Soar organized are going to become even more important as more sub-systems are 
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integrated with the robotic system and the disassembly operations performed become 

more advanced. Soar‟s ability to automatically move into a sub-goal makes it a strong 

platform to solve the problem when an impasse occurs. The introduction of new sub-

systems will introduce a large amount of input from various sensors which Soar can 

handle well since it uses all working memory to decide on what operator to choose next. 

Additionally, it is very easy to interface with Soar from different programming languages 

using the SML as all the hard work to put information to and get information from the 

input-link and the output-link has been taken care of.  

A drawback of using Soar is that as the number of circles the overhead camera 

locates increases, the number of holes that are moved from semantic memory into 

working memory also increases. Therefore, once they are in short term memory, Soar 

will need more time to elaborate the state and perform state preferences between all 

the potential operators that represent the different holes.  The time it takes to sort these 

proposals out is typically on the order of seconds instead of milliseconds and speeds 

up as more and more of the circles have been chosen and there are fewer holes to 

perform these preferences between. This slowdown is more prominent when the 

number of holes gets to around 150 for an individual laptop, or when there are clusters 

of circles found within a small region of a laptop. This problem is minimized when 

Soar only selects circles that contain screws to remove. Since there are typically less 

than 20 screws on the backside of the laptop, the next hole is selected quickly because 

not that many operators need to be proposed. 

Another limitation of Soar is that the syntax used to create Soar productions is 

quite complicated, which leads to a very steep learning curve when trying to write a 

Soar agent. There are a couple of tools that are included with any distribution of Soar, 



 

126 

 

Visual Soar and the Soar debugger, that aim to help in the debugging and writing of 

Soar agents. Visual Soar is an editing program that provides internal support for 

debugging Soar programs such as checking Soar specific syntax. The Soar debugger 

allows you to step through code and pause whenever you want during a decision cycle 

to see what working memory looks like at that moment. However, sometimes it is 

more convenient to register for print events using the SML and print them like debug 

statements in other languages. A more detailed explanation of Soar productions and 

operators as well as the SML are given in Appendix – A.  

 

5.2 Future Work 

 In the work presented in this dissertation, the Soar cognitive architecture was 

used to determine which laptop model was placed in the workspace. It was also used 

to decide which hole to select next during the disassembly process since it could 

remember if there was in a screw in that location or not. If there was a screw in that 

hole, the screwdriver would go to remove it and if there was not a screw in the hole 

then the robot would move on to the next hole. If the hole was not in memory because 

it had not been explored yet, then the screwdriver would go and explore that hole to 

find out if a screw was present or not.  

 Instead of just using Soar to remember the locations of circles found by the 

overhead camera and if they contain screws or not, the role of Soar can be expanded to 

control the other systems connected to the robot. Currently, the SE screwdriver is 

controlled by a state transition diagram, however, this logic can be migrated to Soar. 

This is also true for other systems, such as the clamping system or any other tools that 
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may be developed in the future. In order to keep track of these different systems, Soar 

would have to implement a framework where it uses sub-goals to manage and 

organize the states needed. An example of how the different states can be managed is 

shown in Fig. 1. 

 

Fig. 1. Sub-goal diagram for Soar   

 

When using Soar, every circle on the diagram is a different sub-goal and state that 

Soar can move into when trying to solve a problem. By moving into these new states, 

different sub-goals and states become available to Soar that were not accessible under 

the original state. For example, if the process was started in the state „Disassembly‟, 

there are two different states it could choose: „Screwdriver’ or „Clamp’. Both of these 

states have sub-goals that are not accessible from the other state. If the screwdriver 

state is chosen, then it can lead to sub-goals such as wait, remove, or explore. If the 

clamp state is chosen, it can lead to goals such as home or clamp. These goals can lead 
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to further sub-goals and this can continue until the output is a low-level command that 

can control a motor or other piece of hardware.  

 The role of Soar can also be expanded by using different long term memory 

modules, since only semantic memory is currently used. The other long term memory 

modules that Soar supports are episodic memory, which uses past experiences of the 

workspace to help the system learn, and procedural memory which uses a reward 

function through the use of reinforcement learning to change how an operator is 

selected. While semantic memory could still be used to determine which laptop has 

been placed in the workspace, episodic memory could store the specific disassembly 

routines for each of the laptop models. For example, instead of unscrewing all of the 

screws on the laptop at once, it may be more efficient to only unscrew certain screws 

in a specific region of a laptop and then use another tool to perform a different action 

in the disassembly sequence.  

A drawback of using the current memory logic is if the screwdriver or vision 

system is unsuccessful in finding a screw when a screw is actually in that location, that 

location will be saved in semantic memory as not containing a screw and subsequently 

ignored in the future. One way to fix this problem would be to adjust the way the 

system is trained and require some interaction with a human operator. After the system 

has attempted to find the holes with the overhead camera during training, the human 

operator could mark any holes that it had missed. 

 Another way to address this problem is to modify the reward factor given 

when determining if a location contains a hole or does not contain a hole. The reward 

factor the system currently gives is +0.5 if a screw is found or -0.5 if a screw is not found. 

Since the system starts with of score 0.5 and this score can range from 0.0 (no screw 
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present) to 1.0 (screw present), after one trial the system reaches of the range limits. By 

changing the reward, it would mean that the system would have to find a screw or not find 

a screw multiple times before that location was saved as containing a screw or not thus 

improving the confidence that the system has found all the screws it can remove. These 

scores can also have different values as so finding a screw might have more weight than 

not finding a screw. The tradeoff for changing the rewards to a less aggressive factor is 

that the number of training trials would have to go up and ultimately, the amount of time 

of a test would increase. 
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APPENDICES 

 

APPENDIX A – Description of Soar code and syntax 

 

Soar is a general cognitive architecture developed by John Laird, Allen 

Newell, and Paul Rosenbloom at Carnegie Mellon University in 1983. Soar works by 

using productions to test, propose, and select operators (rules) that are in working 

memory to try to obtain a specified goal state. Working memory is a representation of 

how Soar views the workspace in its current configuration and is part of Soar‟s short 

term memory module. Soar stores information as working memory elements (WME) 

consisting of an identifier, an attribute (preceded by a „^‟), and a value. The value can 

either be a terminal node consisting of a constant (string or numerical value) or a non-

terminal node which links to another identifier. Figure 1 shows a graphical 

representation of WMEs of Soar‟s working memory structure that is created the first 

time a Soar agent is started. All of the WMEs are connected back to the state S1 which 

is always the name of the top-level state. The state S1 always has three attributes, 

^superstate, ^type, and ^io. The attribute ^superstate has a constant value of nil, ^type 

has a constant value of state, and ^io has a value of another identifier I1, that in turn 

has two attributes which also link to more identifiers.  

 
Figure 1. Soar Initial State 
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When using Soar, there is a shortcut notation known as “dot notation” which 

adds a dot (.) in between multiple attributes that only link identifiers. This dot notation 

can be used for an arbitrary number of levels in Soars working memory and is useful 

for shortening and making the rules written for Soar easier to read. A general rule of 

thumb is to use dot notation unless you need to get information off of a certain state or 

a state has two attributes that you need to access. Looking at Figure 1, the state I3 can 

be represented in two different ways. The first is with the conventional notation that 

uses variables to link states. In Soar, anything that is enclosed by < > is considered a 

variable. A variable can be used to store a value that needs to be tested later and can be 

placed either as an attribute or a value of a WME.  

 (state <s> ^io <io>) 

 (<io> ^input-link <il>)     

 

 

The second way to represent the state I3 uses the more compact dot notation which 

shortens the rule: 

  

 

 (state <s> ^io.input-link <il>)  

 

 

The decision cycle that Soar goes through is shown in Figure 2. This cycle is 

repeated until either a goal state is reached or an impasse occurs that prevents Soar 

from making progress in solving the problem. The first phase is the input phase and is 

where Soar checks to see if there has been any new information that has been placed 

on its input link via sensors or external environments. In order to put information on 

the input-link, different programming languages must communicate with Soar using 

the Soar Markup Language (SML). After Soar has checked its input-link, it will move 

to the „elaborate and propose‟ operator phase. Here, Soar proposal operators are fired 



 

132 

 

in parallel and the firing of one operator could lead to the firing or retraction of other 

operators. Once there are no more operators left to fire, the system has reached a state 

of quiescence and proceeds to the next phase, which is the „select operators‟ phase. In 

this phase, Soar uses the rules preferences that it has been given in order to select a 

single operator. In the „apply operator‟ phase, Soar will execute the selected operator 

and make changes to working memory. When Soar gets to the output phase, Soar will 

put any appropriate information on the output-link. Once the information is on the 

output-link, the different programming language can again access it by using the SML. 

 

 
Figure 2. Soar decision cycle 

 

In Soar, the rules that are written are called productions, (which is why every rule 

starts with „sp‟ or „Soar production‟) and two of the main types of productions are the 

proposal and apply operators. During the proposal sequence of a Soar decision cycle, 

all of the different proposal operators that match the current conditions of the 

workspace are fired and eventually only one is chosen. A rule in Soar can essentially 

be broken up like an IF-THEN statement. Soar separates these rules with the „-->‟ 

symbol. Everything that is above this arrow symbol can be construed as the IF part of 

the statement and everything below this symbol can be taken as the THEN part of the 

statement. Typically, proposal and apply operators are written together as shown in 

Figure 3. Here, this particular rule is the first rule that is fired after a Soar agent is 

started and the working memory shown in Figure 1 is created. All Soar rules start with 
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„state <s>‟ referring to the identifier S1, although <s> is technically just a variable and 

can be any combination of letters, it is good convention to keep it a „<s>‟ 

The proposal rule (propose*initialize*smemory) tests that the Soar agent exists 

and Soar is running (<s> ^superstate nil) and that there is no attribute in Soar memory 

directly connected to S1 called „name‟ (this is a test for negation). If both of these 

conditions are true, Soar then puts a preference operator with the ^name initialize-

smemory on the main state. The plus sign next to the operator means that this operator 

is a proposal operator. Since this is the only rule that matches in working memory, this 

operator (apply*initialize*smemory) will be selected and applied. First, the rule 

checks to make sure that the operator with the attribute ^name initialize-smemory is 

selected. If this is true then it sets up WMEs in Soar. This process is shown in Figure 

4. During the next decision cycle, since there is now a “^name” on state S1, this 

operator does not match anymore and is removed from memory. 

 #Proposal Rule 

sp {propose*initialize-smemory 

   (state <s> ^superstate nil 

                   -^name)  

--> 

   (<s> ^operator <o> +) 

   (<o> ^name initialize-smemory)} 

 

#Operator Apply Rule 

sp {apply*initialize-smemory 

   (state <s> ^operator <op>) 

   (<op> ^name initialize-smemory) 

--> 

   (<s> ^name smemory 

        ^laptop-info <li> 

        ^smem-holes <smem-holes> 

        ^memory-process <mp>) 

   (<mp> ^laptop <laptop> 

         ^memory <memory>) 

   (<laptop> ^query 0)} 

 

Figure 3. Soar example showing a proposal and apply operator. 
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Figure 4. Soar Memory a) an operator is selected. B) an operator is applied. c) 

an operator is removed and the WMEs created persist. 

 

Persistence of Memory Elements 

 

 The two different types of WMEs that can be added to memory are rules that 

are operator supported (o-support) and rules that are instantiation supported (i-

support). The important distinction between these two types of rules is that the 

changes made to working memory by o-supported rules persist even after the operator 

that makes the changes has been removed from working memory. The example in 

Figure 4 shows an example of these o-supported rules. Even after initialize-smemory 

has been applied and removed from working memory, the WMEs it added stayed in 

working memory. If a WME is i-supported, it means that when the rule that created 

a) 

b) 

c) 
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them is no longer in working memory, the WME is removed. The rules that have i-

support are operator proposal rules, operator preference rules, elaborations, or state 

elaboration rules. Since WMEs that are o-supported will remain in working memory 

even after the rule that created them is removed, they must be explicitly told to be 

removed from working memory. An example of removing a WME is shown in  

Figure 5. In this example, a semantic memory query is removed from working 

memory with the minus (-) sign. 

 

 #Example of removing an element from working memory 

sp {apply-clean-up-query 

   (state <s> ^name smemory 

                    ^operator <o> 

                    ^smem.command <cmd>) 

   (<cmd> ^<q> <query>) 

   (<o> ^name clean-up-query 

            ^<q> <query>) 

--> 

   (<cmd> ^<q> <query> -)} 

 

 

Figure 5. Soar example showing how to remove an WME from working 

memory. 

 

Soar Elaborations 

 

 Elaborations are a type of Soar rule that create new WMEs. Elaborations 

rules don‟t need to be chosen with a proposal rule as they fire during every decision 

cycle when their IF part of the rules matches working memory. Elaborations create 

WMEs that have i-support, so if an elaboration is removed from working memory, all 

of their changes are also removed. In the example in Figure 6, the rule checks to make 

sure that the name of the state is smemory and that there are dimensions for the length 

and width on the input link. In this rule, the { } are used to group the alternative 

attributes that are acceptable in between the double angle brackets (<< >>) and save 

them to the variable <type>. Now <type> will match both the „length‟ and „width‟, 
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and create attributes for both under laptop-info. Both „length‟ and „width‟ will contain 

the upper and lower bounds of the value plus and minus 2. A visual of what the state 

looks like before and after this rule is shown in Figure 7 (the output link and parts of 

the state that are not tested in this rule have been omitted). If the length and the width 

of the laptop were to change during a test, then new bounds would be automatically 

computed. 

 #Example with elaboration 

sp {compute-bounds-on-laptop-input 

   (state <s> ^name smemory 

              ^io.input-link.laptop.dimensions <d> 

              ^laptop-info <li>) 

   (<d> ^{<< length width >> <type>} <value>) 

--> 

   (<li> ^<type> <lit>) 

   (<lit> ^upper (+ <value> 2) 

          ^lower (- <value> 2)) } 

 

 

Figure 6. Soar example showing elaboration rule. 

 

 

 
Figure 7. Soar example showing a Soar elaboration rule with variables matching 

multiple attributes. A) before the rule is applied. B) After the rule is applied.  

 

Soar Preferences 

 

 During a decision cycle, Soar allows for preference production rules, generated 

by the user, to be employed. These rules help Soar decide which operator to select 

when there are multiple rules that have been proposed. These preferences can either be 

given to the rule when it is proposed, or the preferences can be given to differentiate 

a)  
b) 
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two operators from each other. Figure 8 gives two examples of Soar rules with 

preferences. The first example shows the preference operator when operator <o> (a 

hole that contains a screw) is preferred over operator <o1> (a hole that does not 

contain a screw). The second example shows an operator being proposed that has 

acceptable (+) and best (>) preference. Using preferences, it is possible for operators 

to be rejected (-), be the worst choice (<) where the operator is only selected if nothing 

better is proposed, or be indifferent (=). Indifferent is an important preference (and 

what was used in this dissertation to distinguish between two choices with identical 

preference) because if two operators are proposed and have the same preference level, 

and all of the operator preferences are exhausted; Soar is allowed to choose one of the 

operators at random. If indifferent was not selected, Soar would have a tie impasse 

that occurs, and would have to go into subgoals.  

 #Example with operator preference comparison 

sp {prefer-match-with-a-screw 

   (state <s> ^name smemory 

              ^operator <o> +     

^operator <o1> +) 

   (<o> ^screw yes) 

   (<o1> ^screw no) 

--> 

   (<s> ^operator <o> > <o1>)} 

 

#Example with operator preference in the proposal 

sp {propose-no-match-after-first-query 

   (state <s> ^name smemory 

              ^smem <sm> 

             -^laptop-in-memory 

              ^memory-process <mp>) 

   (<mp> ^laptop.query 1 

        -^memory.status complete) 

      (<sm> ^result.failure <failure>) 

--> 

   (<s> ^operator <o> + >) 

   (<o> ^name failed*query-1)} 

 

Figure 8. Soar example showing operator preferences. 
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Math Operators 

 

 Unlike many programming languages that you may be familiar with, Soar is 

not conducive to performing complex mathematical operations. Soar uses prefix 

notation, which means in order to add two numbers together, they must be prefixed by 

the mathematical operator. For example, to add 4 and 5 together, the syntax would 

look like (+ 4 5). This can be extended to variables so if <v> = 4 and <z> = 5, the 

syntax would look like (+ <v> <z>). A downside to this is that mathematical 

operations can get rather complex rather quickly. A more complicated example is 

shown where an average is updated with a new number. This is shown below with the 

Soar syntax first, and in regular math syntax for clarification. 

 

( * ( + (* <old-Average> <Old-Count>) <new-number> ) ( / (+ 1 <old-count>) ) )   

 

((                     )            )  (
 

           
) 

 

Subgoals 

 

 In Soar, an impasse occurs when Soar cannot make a decision based on the 

current contents of working memory. There are four different types of impasses that 

can occur. The first type of impasse is a tie impasse which is when multiple operators 

tie in preference level when an operator is being selected and no preferences are left to 

distinguish between them. The second type is a conflict impasse which is when two 

operators have conflicting preferences (operator A > operator B and operator B > 

operator A). The third type is a constraint-failure impasse which is when a value or 

operator has both a require and prohibit preference. The fourth type of impasse is a no-

change impasse where a new operator is not selected in the decision cycle. A no 
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change impasse can either be a state no-change impasse where there are no acceptable 

operators or an operator no-change impasse where no productions match during the 

application phase of a decision cycle.  

 In order to solve these impasses, Soar can create new states known as substates 

or subgoals in order to try to resolve them. When Soar is using the different substates 

it will makes use of the ^superstate attribute which is the state it just came from. The 

initial state that Soar started in is known as the top-level state. In the substate, 

operators can be selected and applied with the goal of resolving an impasse and 

returning to the top-level state. It is also possible that this substate will result in a new 

impasse and another substate will be created.  

 The Soar agent used for this dissertation was designed to only run in the top-

level state and did not use subgoals. However in the future work section of the 

conclusion, a process was proposed on how to extend the use of Soar in disassembly 

operations in which the use of subgoals would need to be implemented. 

 

Semantic Memory 

 

Semantic memory is part of the long term memory module in Soar and is 

where previous knowledge about the workspace is stored. This allows Soar to move 

through these snapshots in an attempt to find the best match. In Soar, the „@‟ sign 

symbolizes a long-term identifier (LTI) indicating that the specified identifier resides 

in the long term memory module. 

 

In order to use Soar‟s semantic memory, the file named _firstload.soar needs to be 

modified with the following commands: 
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smem --init       #initializes the database clears semantic memory 

smem --set database file      #Tells Soar to use a file for semantic memory 

smem --set path C:\Python27\Scripts\smem.db #Path of the SQLite database 

smem --set lazy-commit off     #Tells when Soar can write to SQLite database 

smem --set learning on    #Turns on semantic learning 
 

Some notes about the above code: 

 Semantic memory can be maintained in the computer‟s memory or on a disk. 

The contents of semantic memory will only persist between trial runs when 

semantic memory was maintained on a disk and the database was set to file.  

  Lazy-commit was set to off when using Python and Idle, as changes made 

when Soar was run were not recorded in semantic memory when this was set 

to on. When C++ was used, Lazy-commit did not have to be set to off.  

 The path command doesn‟t always work properly, however, it consistently 

places the database in the main directory where the Soar agent is. If this 

parameter is not set, then the database (which is saved as a SQLite database) 

will go to some other location on the computer that can be hard to locate. 

 To retrieve information from long term memory, the semantic memory 

database has to be queried (This dissertation only used the cue-based-retrieval method 

as it allowed the base query to be modified with a math-query). In order to perform a 

query, you need to use the command <s> smem.command.query.<attribute> <value>. 

The smem.command.query memory links are built-in to Soar. If you are interested in 

performing mathematical comparison on the query, the query command must be 

augmented with a math-query. An example of a math-query is shown in Figure 9 
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where there is a query that will match any name but the math query restricts the results 

to being greater than <length-lower> and less than <length-higher>. A math-query 

supports conditions like greater-or-equal and less-or-equal natively and a list of all of 

conditions can be found in the Soar manual. 

 

 #Example query and math-query 

sp {apply-check-database 

     (state <s> ^name smemory     

                      ^smem <sm>   

        ^operator <o> 

      (<sm> ^command <cmd>) 

      (<o> ^name check-database 

               ^length <length-bounds>)  

      (<length-bounds> ^upper <length-upper>  

                                    ^lower <length-lower>) 

--> 

     (<cmd>  ^query.name <any-name> 

                     ^math-query <mq>    ) 

      (<mq> ^length <mql>   

      (<mql> ^less-or-equal <length-upper>   

                   ^greater-or-equal <length-lower>)} 
 

 

Figure 9. Soar example showing a query and math query with the semantic 

memory database 

 

 In order to check the results, the memory structure (state <s> ^smem.result 

<r>) is created by Soar. The state <r> is modified based on the results of the query. 

When the database is queried, there are three main outcomes. The first is that the 

query is successful and the LTI that you want is retrieved from memory. In this case, 

the result state is shown below where the LTI that is found is under the retrieved 

attribute: 

   (state <s> ^smem.result <r>) 

  (<r> ^success <val> 

          ^retrieved <LTI>) 

 

The second is that the query is successful but there is no LTI that matches in working 

memory: 

  (state <s> ^smem.result <r>) 

  (<r> ^failure <val>) 
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The third is that the command of the query is not a valid command: 

 

  (state <s> ^smem.result <r>) 

  (<r> ^bad-cmd <cmd>) 

 

It should be noted that semantic memory will only return ONE long-term identifier 

that matches the parameters of the query (based on the largest bias value) even if more 

satisfy the requirements. If this is the case, more parameters need to be added to the 

query to pare down the results that match. 

 

To store a values as a LTI and save them in semantic memory, the command that 

needs to be used is ^smem.command.store <LTI>. The <LTI> will then need to be 

expanded so any attribute that needs to be saved is connected to it. An example is 

shown in Figure 10 where a laptop is added to semantic memory with name, length, 

width, height, template, and count attributes. 

 #Example store identifier 

sp {apply-add-laptop-to-memory 

   (state <s> ^name smemory 

              ^operator.name add-new-laptop-to-memory 

              ^io.input-link.laptop <ill> 

              ^smem.command <cmd>) 

   (<ill> ^dimensions <d> 

             ^filenames <fn>) 

   (<fn> ^template <t>) 

   (<d> ^height <h> 

            ^length <l>  

           ^width <w>) 

--> 

   (<cmd> ^store <laptop>) 

   (<laptop> ^name (make-constant-symbol <laptop>) 

             ^length <l>  

             ^width <w> 

             ^height <h> 

             ^template <t> 

             ^count 1) 

   (<s> ^stored-laptop <laptop>)} 

 

Figure 10. Soar example to store an identifier in semantic memory 
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Writing and Debugging 

 

 Soar comes with a couple of tools that make writing and debugging Soar 

agents easier. One of these tools is called Visual Soar which is a text editor that 

natively supports writing Soar agents. It allows you to check Soar syntax as you are 

writing code and is a good way to keep your project organized. Another program that 

comes with all releases of Soar is the Soar Java debugger. This debugger allows you to 

step through a Soar agent and see how the contents of working memory change as the 

agent makes decisions. This is a good way to debug code and make sure that working 

memory is changing how you think it should be changing. Finally, it is possible to 

insert write statements that can help with debugging variables or the logic flow. A 

write statement in Soar has the syntax (write (crlf)|Hello World|) where the (crlf) 

stands for carriage return line feed.  

 

Soar Markup Language (SML) 

 

 Soar is able to communicate with various programming languages by using the 

Soar Markup Language (SML). This dissertation was written using SML to 

communicate in Python and this section of the Appendix will cover different SML 

commands that were used in this dissertation using Python code. Before the SML can 

be used, it must first be compiled for the language that you want to use. A SML guide 

is located at http://soar.eecs.umich.edu/articles/articles/soar-markup-language-sml 

(last accessed October 21, 2016). This guide shows how to compile the SML in 

various languages and has a quick start guide that deals with showing how to use the 

SML using C++. The guide located online contains more methods and functions that 
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may be helpful for different applications but were not used in this project. In Python 

the first thing you must do is append your system path to point to wherever Soar is 

located on your computer. After the path has been appended, you can import the 

Python_sml_ClientInterface 

 
sys.path.append('C:/Soar/SoarSuite_9.4.0-Windows_32bit/bin') 

import Python_sml_ClientInterface as sml 

 

Next, you need to create the kernel and the agent for Soar to run as well as load the 

production that you have written. 

k = sml.Kernel.CreateKernelInNewThread() 

a = k.CreateAgent('disassembly') 

lP = a.LoadProductions("disassembly.soar") 

 

Registering for Print Events  

 

It is a good idea setup your code to be able to register for print events from Soar. This 

allows you to display statements that are generated by Soar which is invaluable 

especially during the debugging process.  

 
               trace = "" 

callbackp = a.RegisterForPrintEvent(sml.smlEVENT_PRINT, callback_print_message, trace) 

 

Underneath your main function you will need two more functions to finish setting up 

to register for the print events. 

 
def register_print_callback(kernel, agent, function, user_data=None): 

 agent.RegisterForPrintEvent(sml.smlEVENT_PRINT, function, user_data)   

 

def callback_print_message(mid, user_data, agent, message): 

    print(message.strip()) 

 

Now whenever you want to print out the trace message, all you have to do is use 

print(trace). It is also possible to tell Soar to execute a „command line‟ command. A 

couple examples have been shown below. These commands will print what is 
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connected to state 7, print what is connected to state S1 for 100 levels of a tree 

structure, and print semantic memory respectively. 

 
print a.ExecuteCommandLine('print s7')  

print a.ExecuteCommandLine('p -d 100 s1') 

print a.ExecuteCommandLine('smem --print') 

 

Connecting to the Input Link 

 

 First, you must create a connection using the SML to the input link by using 

GetInputLink. After this connection has been made, you can create working memory 

structures to suit your application. When you are creating these structures, if you are 

creating identifiers that only link to other identifiers, you need to use the 

CreateIdWME method which takes two arguments. One is the identifier that you are 

linking to and the other is the name of the attribute that links them. Currently, integers, 

floats, and string WMEs are supported when creating terminal nodes and will use 

CreateIntWME, CreateFloatWME, or CreateStringWME respectively. Each of these 

methods takes three arguments. One is the identifier it links to, one is the attribute that 

links the identifier to the value, and the last argument is the value or constant. 

 
    pInputLink = a.GetInputLink() 

    pIDScrewdriver = a.CreateIdWME(pInputLink, "screwdriver") 

    pWME0 = a.CreateStringWME(pIDScrewdriver,"screw-present", "na") 

    pWMEHoleSensitivity = a.CreateFloatWME(pIDScrewdriver,"sensitivity", 0.75) 

    pWMEHoleBrightness = a.CreateIntWME(pIDScrewdriver,"brightness", 0) 

 

 It is also possible to update a WME that is on the input link instead of just 

creating it. This method takes two arguments. The first is the identifier that you are 

trying to change and the second is the value that you want to change it to. It is 

important to make sure that the value that you are trying to put on the input-link is of 
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the same variable type that it has been declared as (ie. You CANNOT put an integer 

on a WME that has been designated as a string) or the program will crash. 

 
   a.Update(pWMEHoleBrightness, 125) 

 

 

Decision Cycle 

 

 There are a couple of different ways to control Soar‟s decision cycle. The work 

in this dissertation used a flag called endSoar that was used as a condition on a while 

loop. Once a goal state was reached in Soar, this flag was changed to True and Soar 

would end. Every time the loop was repeated, the decision cycle ran one time. A 

counter called SoarCounter was also used as protection to make sure that if an 

impasse occurred Soar would not run forever. This counter number was adjusted as 

necessary and chosen to be high to ensure it would not interfere and end the program 

prematurely when Soar was running and making decision.  

 
while endSoar != True: 

            a.RunSelf(1) 

            SoarCounter = SoarCounter + 1 

            if SoarCounter == 1000: 

                    endSoar = True 

 

 

Output Link 

 

 During every loop of the decision cycle, the output link needs to be checked to 

see if any new commands were generated and put on it. If new commands were put on 

the output link, the attribute name and value need to be retrieved in order to be 

processed. The output link needs to be in the form (<O3> ^<attribute-name> <A1>) 

(<A1> ^<command> value) so it can be checked easily.  

  numberCommands = a.GetNumberCommands() 

            for i in range(numberCommands): 
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                pCommand = a.GetCommand(i) 

                attribute = pCommand.GetCommandName() 

                value = pCommand.GetParameterValue("cmd") 

                 

 

After the output link has been checked, a flag ^status complete was added to command 

identifier on the output link to mark the command as completed. In this project, this 

was used to verify with Soar that the information had been retrieved from the output 

link that information could be removed from the output link.  

 
                       a.CreateStringWME(pCommand, "status", "complete") 
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APPENDIX B – Wiring diagrams and location of code  

All of the Code written for this dissertation is located on the computer connected to 

the EnCore 2s robot in the mechatronics/robotics lab as well as on file with Dr. Musa 

Jouaneh. Below is the wiring diagrams and schematics for the various hardware that is 

connected to the EnCore 2s robot. 

Galil DMC 2143 and AMP-20540  

 

Galil Breakout board 
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Galil Breakout Board Schematic 

 

Power Circuits 

  

Amplifier Circuit 
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I/O Circuit 

 

Homing Circuit 
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Arduino Controlling Screwdriver 

 

Arduino Screwdriver Schematic 

Amplifier  
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Set Reset 

 

555 Timer 

 

Electromagnet 
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Plug 

 

Arduino Clamp 

 

Arduino Clamp Schematic 

Lights 
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FSR Amplification 

 

Feedback Filtering 
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APPENDIX C – Procedure for lens calibration to remove lens distortion 

 

This appendix will detail lens distortion and the procedure for removing it 

using Matlab‟s built-in calibration app. This section summarizes the Matlab help 

pages on distortion found at: https://www.mathworks.com/help/vision/ug/single-

camera-calibrator-app.html. There is another camera calibration app for Matlab 

created by Jean-Yves Bouget, however, this section will not discuss how to use that 

software. Lens distortion is important to remove from a camera when trying to make 

precise measurements as the distortion could lead to significant errors. The highest 

amount of distortion will occur near the edges of an image and there will be little to no 

distortion in the middle of an image. 

 Matlab has the Camera Calibration app which is included with the Computer 

Vision System Toolbox that helps find the intrinsic parameters of the camera you are 

using to remove lens distortion. The two types of distortion that Matlab can correct for 

are radial distortion and tangential distortion. Radial distortion can either be negative 

(pincushion) or positive (barrel). Tangential distortion occurs when the camera sensor 

is not completely parallel with the camera lens. These three types of distortion are 

shown in Figure 1. 

 

Figure 1. Types of lens distortions 
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Procedure to Remove Lens Distortion 

1. First a checkerboard pattern must be created and the lengths of the squares must be 

known. The checkerboard should be mounted on a rigid surface and be perfectly 

flat. This research used a 7x10 square checkerboard with 8.5mm squares mounted 

on Plexiglass. This size checkerboard allowed for one side of the corners to be 

black squares and the other side be white squares. The checkerboard was printed 

on acid free paper and 3M super 77 adhesive was used to mount the checkerboard 

to the Plexiglass.  

2. Next move the checkerboard around the workspace making sure to rotate it and 

take images with the camera you are trying to calibrate. It is important that the 

camera can always see all of the squares and, when taking the image, the 

checkerboard remains completely still. The Calibrator App requires at least three 

images to work, and Matlab suggests that 10-20 images work best. This research 

used 50 images since 20 images still produced significant errors. The tradeoff of 

using more images is the calibration takes longer. It is important to make sure that 

images are taken throughout the workspace especially near the edges. 
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3. After the images have been obtained, start the Calibrator app by typing 

„cameraCalibrator‟ in the Matlab command line.  

4. Click „Add Images‟ and select the images that you have just taken. 

 

5. Input the size of the checkerboard square. It is important that this is an accurate 

value since the calibration is dependent on it. After you hit enter, Matlab will 

automatically try to identify the checkerboard in each of the images. Some of 

the images will be discarded if checkerboard could not be found. It is also 

important to note that Matlab automatically defines the origin of each of the 

checkerboards at a black square (shown below) which is why it is important to 

have white squares on one side of the checkerboard and black on the other. 
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6. After all of the images have been checked to make sure that the checkerboard 

was correctly found, choose the radial coefficients that you want to correct for 

(2 or 3) and choose if you want to compute the skew and the tangential 

distortion. It is generally recommended to start with the default setting. If the 

results are not accurate adjust the settings and try to recalibrate. When you are 

done choosing what coefficients, hit calculate. The calibration used for this 

dissertation used 3 values for radial distortion and did not compute the 

tangential distortion. This calibrator app adjusts for radial distortion using 

Equation (1) and tangential distortion using Equation (2). 
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7. After the images have been calibrated, it is possible to look at the mean error 

of all the images by looking at the bar graph in the upper right corner. This 

error shows the re-projection error, or how far off the calculated corners of the 

checkerboard are from the actual corners. If a re-projection error of a certain 

image is very high, then that image should be discarded and the calibration 

should be run again. The extrinsic map shows an overview of where the 

checkerboard has been re-projected into the workspace. The camera is located 

at position Xc, Yc
 
and this is a good way to check that a checkerboard has been 

placed in most of the locations of the workspace. 
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8. When the results are satisfactory, you can save the session and export the 

camera parameters to Matlab. You can then access the intrinsic matrix by 

cameraParams.IntrinsicMatrix. It should be noted that the Matlab inverts this 

matrix compared to other sources in the literature. You will need this matrix 

when using the extrinsic function in Matlab which is used to obtain the rotation 

and translation vectors that describe how the world is transformed relative to 

the camera. 

 

 

 

 


