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Abstract 
A standard model captures a community consensus over a coherent region of science, serving as a 
cumulative reference point for the field that can provide guidance for both research and applications, 
while also focusing efforts to extend or revise it. Here we propose developing such a model for human-
like minds, computational entities whose structures and processes are substantially similar to those found 
in human cognition. Our hypothesis is that cognitive architectures provide the appropriate computational 
abstraction for defining a standard model, although the standard model is not itself such an architecture. 
The proposed standard model began as an initial consensus at the 2013 AAAI Fall Symposium on 
Integrated Cognition, but is extended here via a synthesis across three existing cognitive architectures: 
ACT-R, Sigma, and Soar.  The resulting standard model spans key aspects of structure and processing, 
memory and content, learning, and perception and motor; highlighting loci of architectural agreement as 
well as disagreement with the consensus while identifying potential areas of remaining incompleteness. 
The hope is that this work will provide an important step towards engaging the broader community in 
further development of the standard model of the mind.   
 
Keywords: Standard model, cognitive architecture, artificial intelligence, cognitive science, robotics, 
neuroscience 
 
1. Introduction 
A mind is a functional entity that can think, and thus support intelligent behavior. Humans possess 
minds, as do many other animals. In natural systems such as these, minds are implemented via brains, 
one particular class of physical device. However, a key foundational hypothesis in artificial intelligence 
is that minds are computational entities of a special sort – that is, cognitive systems – that can be 
implemented via a diversity of physical devices (a concept lately reframed as substrate independence, 
Bostrom 2003), whether natural brains, traditional general-purpose computers, or other sufficiently 
functional forms of hardware or wetware. 
 
Artificial intelligence, cognitive science, neuroscience, and robotics all contribute to our understanding 
of minds, although each draws from a different perspective in directing their research. Artificial 
intelligence concerns building artificial minds, and thus cares most for how systems can be built that 
exhibit intelligent behavior. Cognitive science concerns modeling natural minds, and thus cares most for 
understanding cognitive processes that generate human thought. Neuroscience concerns the structure 
and function of brains, and thus cares most for how minds arise from brains. Robotics concerns building 
and controlling artificial bodies, and thus cares most for how minds control such bodies. 
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Will research across these disciplines ultimately converge on a single understanding of mind, or will the 
result be a large but structured space of possibilities, or even a cacophony of approaches? This is a deep 
scientific question to which there is as yet no answer. However, there must at least be a single answer 
for cognitive science and neuroscience, as they are both investigating the same mind, or narrow class of 
minds, albeit at different levels of abstraction. Biologically/cognitively/psychologically-inspired 
research in artificial intelligence and robotics also may fit within this particular class of minds, 
particularly if the class is slightly abstracted; but so may other work that has no aspiration to such 
inspiration yet still finds itself in the same neighborhood for functional reasons. This broader class 
comprises what can be called human-like minds, with an overall focus more on the bounded rationality 
hypothesized to be central to human cognition (Simon 1957; Anderson 1990) than on the optimality that 
is the focus in much of artificial intelligence and robotics. The class is broader than the more familiar 
one of naturally inspired minds, as it also includes both natural minds and some artificial minds that are 
not necessarily naturally inspired yet functionally related. However, it is narrower in scope than human-
level intelligence, as it excludes minds that are sufficiently inhuman in how they achieve this level of 
intelligence. 
 
The purpose of this article is to begin the process of engaging the international research community in 
developing what can be called a standard model of the mind, where the mind we have in mind here is 
human-like. The notion of a standard model has its roots in physics, where for over more than a half-
century, the international community has developed and tested a standard model that combines much of 
what is known about particles. This model is assumed to be internally consistent, yet still have major 
gaps. Its function is to serve as a cumulative reference point for the field while also driving efforts to 
both extend and break it. 
 
As with physics, developing a standard model of the mind could accelerate work across the relevant 
disciplines by providing a coherent baseline that facilitates shared cumulative progress. For integrative 
researchers concerned with modeling entire minds, a standard model can help focus work on differences 
between particular approaches and the standard model, and on how to both extend and break the model. 
Also, instead of each such researcher needing to describe all the assumptions and constraints of their 
particular approach from scratch, given the standard model they can simply state how their own 
approach differs from it. Tables 1 and 2 in Section 5, for example, specify the standard model developed 
in this article and the standing of three distinct approaches with respect to it.  In this process, the 
standard model itself could serve as something of an interlingua or shared ontology, providing a vehicle 
for mapping the common aspects, and possibly uncommon terminology, of disparate architectures onto a 
common base.	
 
For theoretical and systems researchers who model/build specific components of mind – whether 
learning, memory, reasoning, language, etc. – a standard model can provide guidance when they seek to 
expand to include aspects of other components. For experimental researchers who tease out the details of 
how natural minds and brains work, a standard model can provide top-down guidance in interpreting the 
results, as well as suggesting new experiments that may be worth trying. For all researchers, a standard 
model can serve as a framework around which data that is used in evaluating single components or 
combinations of components may be organized and made available for use by the community; 
potentially growing to yield standard tests and testbeds. A standard model can also provide a sound basis 
for guiding practitioners in constructing a broad range of intelligent applications. 
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The intent, at least for the foreseeable future, is not to develop a single implementation or model of mind 
by which everyone concerned with human-like minds would abide, or even a theory in which all of the 
details are agreed to as correct. What is sought though is a statement of the best consensus given the 
community’s current understanding of the mind, plus a sound basis for further refinement as more is 
learned. Much of the existing work on integrative models of mind focuses on implementations rather 
than theory, with too little interchange or synthesis possible across these implementations. The 
development of a standard model provides an opportunity for the community to work together at a more 
abstract level, where such interchange and synthesis should be more practicable. 
 
For this to transpire though will depend on researchers within the community being interested in relating 
their own approaches to the standard model and participating in its further evolution.  In the process, it is 
fully expected that they will disagree with some aspects of the standard model presented here, leading 
ideally to efforts to either disprove or improve parts of it. It is also expected that the standard model will 
be incomplete in significant ways, not because those parts that are left out are unimportant, but because 
an adequate consensus on them has not yet been achieved.  Omission from the standard model is thus 
often a statement of where a consensus is needed, rather than a consensus on a lack of either existence or 
importance. 
 
Although the boundary around the class of human-like minds is ill defined, at least at present, we do 
anticipate an evolving dialogue around this, driven by a sequence of challenges from ideas and data that 
conflict in substantive ways with the standard model. For each such challenge, it will be critical to 
determine whether the consensus is ultimately that the standard model should be altered – either 
changed to eliminate the conflict or abstracted to cover both old and new approaches – or that the new 
ideas or data should be deemed insufficiently human-like, and thus outside of the class of interest. These 
will not necessarily be easy decisions, nor will the process as a whole be smooth, but the potential 
rewards for succeeding are real. 
 
This article grew out of the 2013 AAAI Fall Symposium on Integrated Cognition that was initiated by 
two of us to bring together researchers across a set of disparate perspectives and communities concerned 
with an integrated view of human-level cognition (Burns et al. 2014). The full organizing committee 
included representatives from cognitive science, cognitively and biologically inspired artificial 
intelligence, artificial general intelligence, and robotics. The final activity during the symposium was a 
panel on Consensus and Outstanding Issues, at which two of us presented and the third participated. One 
of these presentations led to the startling finding that the wide range of researchers in the room at the 
time agreed that the content of the presentation was an appropriate consensus about the current state of 
the field. Given the field’s history of stark differences between competing approaches, neither of the 
initiators of the symposium had anticipated this as a realistic outcome, and when it occurred, it startled 
those in attendance. It implied that a consensus had implicitly begun to emerge – perhaps signaling the 
dawning maturity of the field – and that an attempt to make it explicit could provide significant value. 
 
This attempt is what fills the remainder of this article. Section 2 covers important background that 
largely predates the 2013 Symposium and this effort, including several notable precursors to the concept 
of a standard model of the mind plus the critical notion of a cognitive architecture – a hypothesis about 
the fixed structure of the mind – which is at the heart of this attempt. Section 3 introduces three 
cognitive architectures on which the effort here focused. Section 4 presents the proposed standard model 
that has been developed. Section 5 summarizes what has been accomplished, including a précis of the 



	 4	

proposed standard model, an analysis of where the same three cognitive architectures sit with respect to 
it, and a discussion of where it will hopefully lead. 
 
2. Background 
This attempt at a standard model of the mind, although originating at the 2013 symposium, did not 
spring there from nothingness; and Allen Newell was at the root of much of what came before. One 
notable precursor from three decades earlier is the model human processor (Card, Moran & Newell 
1983), which defines an abstract model of structural and timing regularities in human perceptual, 
mental, and motor processes. It supports predicting approximate timings of human behavior, but does 
not include any details of the underlying computational processes. 
 
A second, albeit rather different, precursor is Newell’s (1990) analysis of how scale counts in cognition. 
Newell observed that human activity can be classified according to different levels of processing, and 
grouped by timescales at twelve different orders of magnitude, starting with 100 μs and extending up to 
months. While the many disciplines that have studied the nature of the mind have focused on different 
collections of levels, this analysis provides a coherent framework for integrating research into 
phenomena and mechanisms at different time scales. As with the notion of a standard model, this echoes 
the situation in physics, and in fact, all of the physical sciences and beyond, where the core phenomena 
of interest stratify according to time (and length) scales that when combined can yield models of more 
complex multi-scale phenomena. 
 
Newell grouped these levels into four bands: biological, cognitive, rational, and social. The lowest, 
biological, band corresponds to the timescale of processing for individual neurons and synapses, the 
functional building blocks of the human brain that have been the focus of neuroscience research. The 
next two bands up, the cognitive and rational bands span activity from approximately 100 ms to hours, 
covering the levels that have been studied by cognitive science as well as traditional AI research in 
reactive behavior, goal-directed decision making, natural language processing, planning, and so on. The 
highest, social band includes such higher-order capabilities as Theory of Mind, organizational behavior, 
and moral and ethical reasoning (as, for example, discussed from different perspectives in two articles in 
this special issue – Scheutz 2017, and Bello & Bridewell 2017). What this hierarchy suggests, and what 
is borne out in the diversity of research in disciplines such as neuroscience, psychology, AI, economics, 
sociology, and political science, is that there are regularities at multiple time scales that are productive 
for understanding the mind. 
 
For humans, the deliberate act level, at 100 ms, is roughly at the time scale of a simple reaction, 
although the roughness here obscures the fact that even simple reactions involve multiple internal 
processes, including perception, cognition, and action. More broadly, the deliberate act level is where 
elementary operations are selected and applied. Fundamental to this level and all levels above, is the 
assumption that computational capabilities similar to a physical symbol system are available. 
The physical symbol systems hypothesis states, “A physical symbol system has the necessary and 
sufficient means for general intelligent action.” (Newell & Simon 1976). However, in a break with 
tradition, the standard model does not assume that computation at the deliberate act level is purely or 
perfectly symbolic. We know from the computational universality of symbol systems that 
they are logically sufficient; however, considerable evidence suggests that many types of reasoning that 
must be directly available at the deliberate act level, such as statistical and spatial, are best realized there 
via non-symbolic processing. 
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In the standard model, the critical feature of symbols is that they are the primitive elements over 
which relations can be defined, and where their use across multiple relations enables the creation of 
complex symbol structures, including (but not limited to) structures such as semantic networks, 
ontologies, and taxonomies. This use mirrors the binding problem in cognitive neuroscience, which is 
concerned with how multiple elements can be associated in a structured manner (Treisman 1996). 
However, the model is agnostic as to whether symbols are uninterpreted labels, such as in Lisp, Soar 
(Laird 2012), and ACT-R (Anderson 2007), or whether they are patterns over vectors of distributed 
elements, such as semantic pointers in Spaun (Eliasmith et al. 2012) and holographic vectors in HDM 
(Kelly et al. 2015), or whether both are available, such as in Clarion (Sun 2016) and Sigma  
(Rosenbloom, Demski, & Ustun 2016a). What is important is that they provide the necessary 
functionality to represent and manipulate relational structures. 
 
In the standard model, non-symbolic (i.e., numeric) information has two roles. One is to represent 
explicitly quantitative task information, such as distances in spatial reasoning or times in temporal 
reasoning. The second is to annotate the representations of task information (symbolic and 
nonsymbolic) in service of modulating how it is processed.  This second type of numeric information 
takes the form of (quantitative) metadata; that is, (numerical) data about data.  
 
The mind then clearly comprises at least everything from the deliberate act level up; that is, the top three 
bands in Newell’s hierarchy. Many conceptions of the mind, however, also include some portion of the 
biological band as well, whether in terms of an abstract neural model, or a close cousin such as a 
graphical model (Koller & Friedman 2009). Whether or not a portion of the biological band is included 
in the conceptualization, a model of the fixed structure at the deliberate act level, that defines a symbol 
system and more, is called a cognitive architecture. While models of the mind can be defined at 
different levels, we have situated ours at the deliberate act level because we believe that it represents a 
critical juncture between the neural processes that underlie it and the (boundedly) rational computations 
that it gives rise to. The standard model we are striving for here amounts to a consensus on what must be 
in a cognitive architecture in order to provide a human-like mind. 
 
In a significant break from much of the early work on cognitive architectures, this standard model 
involves a hybrid combination of symbolic and statistical processing to match the need introduced 
earlier for statistical processing in the architecture, rather than retaining a purely symbolic model of 
processing. In consequence, it also embodies forms of statistical learning, including Bayesian and 
reinforcement learning. It furthermore embraces significant amounts of parallelism both within modules 
and across them, while still retaining a serial bottleneck, rather than being strictly serial. Further 
explanations of these shifts, along with the remaining assumptions that define the standard model, can 
be found in Section 4.  
 
Typical research efforts on cognitive architectures (Langley, Laird, & Rogers 2009) are concerned with 
much more than just the architectural level – and thus may be more appropriately thought of as 
developing more comprehensive cognitive systems – although none has yet spanned the entire hierarchy. 
Often they start with one level, or a few, but over time expand, becoming multi-year – or even multi-
decade – research programmes (Lakatos 1970) that span larger and larger sequences of levels. However, 
the standard model will not come anywhere near to providing a direct model of the entire mind. If we 
again look to the situation in physics, the standard model there is also not a direct model of the entire 
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physical world, focusing as it does only on the relatively low level of particles. Still it provides a critical 
foundation for the levels above it, up to and including the full universe (or multiverse), while being 
firmly grounded in, and constrained by, the levels below it. The standard model of the mind likewise 
directly concerns only one level, but in so doing provides a critical foundation for the higher levels of 
the mind, while being firmly grounded in, and constrained by, the levels below. 
 
With respect to the higher levels of the mind, there is an ancillary hypothesis to the standard model that 
they are defined purely by the knowledge and skills that are acquired and processed by the architecture. 
In simple terms, the hypothesis is that intelligent behavior arises from a combination of an 
implementation of a cognitive architecture plus knowledge and skills. Processing at the higher levels 
then amounts to sequences of these interactions over time. Even complex cognitive capabilities – such as 
natural language processing (as, for example, discussed in another article in this special issue – 
McShane 2017) and planning – are hypothesized to be constructed in such a fashion, rather than existing 
as distinct modules at higher levels. Specific mechanisms can sometimes be decomposed at multiple 
levels: for example, Forbus and Hinrichs’ (2017, this issue) analogy process can be decomposed into a 
SME mechanism located at least partly at the deliberate act level, together with attendant search 
processes such as MAC/FAC and SAGE that operate at higher levels and could be decomposed into 
primitive acts. 
 
The lower levels of the mind – in the biological band or its artificial equivalent – both implement and 
constrain the cognitive architecture. As the hierarchy shows, the concept of a cognitive architecture, and 
thus a standard model, need not be incompatible with neural modeling. Moreover, there is potential not 
only for compatibility, but also for useful complementarity. Aspects of neural processing, such as 
generalization from distributed representations, have been captured in cognitive architectures in the form 
of subsymbolic statistical mechanisms. Conversely, the standard model can define an architectural 
structure that can be beneficial in organizing and supplementing mechanisms such as deep learning 
when, for example, the need is recognized to move beyond the simple memory capabilities provided by 
feedforward or recurrent neural networks (e.g., Vinokurov et al. 2012). Furthermore, the traditional 
notion of a fixed cognitive architecture has always been tempered by the idea that it is fixed only relative 
to the time scale of normal reasoning processes, leaving open the possibility that a symbol system could 
emerge or change during development rather than necessarily being in place at birth.  
 
The concept of cognitive architecture originated in Newell’s even earlier criticism of task-specific 
models that induce a fragmented approach to cognitive science and the consequent difficulty of making 
cumulative progress (Newell 1973). As a solution, he advanced the concept of an integrated model of 
human cognition on top of which models of specific tasks could be developed in terms of a common set 
of mechanisms and representations, with the ultimate goal of achieving Unified Theories of Cognition 
(Newell 1990). Like a computer architecture, a cognitive architecture defines a general purpose 
computational device capable of running programs on data. The key differences are that: (1) the kinds of 
programs and data to be supported in cognitive architectures are limited to those appropriate for human-
like intelligent behavior; and (2) the programs and data are ultimately intended to be acquired 
automatically from experience – that is, learned – rather than programmed, aside from possibly a limited 
set of innate programs. Cognitive architectures thus induce languages, just as do computer architectures, 
but they are languages geared towards yielding learnable intelligent behavior, in the form of knowledge 
and skills. This is what distinguishes a cognitive architecture from an arbitrary – yet potentially quite 
useful – programming language. 
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From this common origin, the concept of cognitive architecture took form in multiple subfields, each 
focused on different goals. In cognitive psychology, architectures such as ACT-R, Clarion, and LIDA 
(Franklin & Patterson 2006) attempt to account for detailed behavioral data from controlled experiments 
involving memory, problem-solving and perceptual-motor interaction. In artificial intelligence, 
architectures such as Soar and Sigma focus on developing functional capabilities and applying them to 
tasks such as natural language processing, control of intelligent agents in simulations, virtual humans, 
and embodied robots. In neuroscience, architectures such as Leabra (O'Reilly, Hazy, & Herd 2016) and 
Spaun (Eliasmith 2013) adopt mechanisms and organizations compatible with the human brain, but 
primarily apply them to simple memory and decision-making tasks. In robotics, architectures such as 
4D/RCS (Albus 2002) and DIARC (Schermerhorn et al. 2006) concern themselves with real-time 
control of physical robots. 
 
However, there has historically been little agreement either across or within specialties as to the overall 
nature and shape of this architecture. The lack of such a consensus has hindered comparison and 
collaboration across architectures, prevented the integration of constraints across disciplines, and limited 
the guidance that could aid research on individual aspects of the mind. There is not even an agreed upon 
term for what is being built. In addition to cognitive architectures – a term that stems from cognitive 
science – relevant work also proceeds on architectures for intelligent agents, intelligent/cognitive robots, 
virtual humans, and artificial general intelligence. All these terms carry significantly different goals and 
requirements that span interaction with and control of, respectively, online resources, artificial physical 
bodies, and artificial virtual bodies, plus generality across domains. To the extent that the human-like 
components of these divergent threads can (re)converge under combined behavioral, functional, and 
neural constraints, it yields a strong indication that a standard model is possible. 
 
One recent attempt to bring several of these threads back together was work on a “generic architecture 
for human-like cognition” (Goertzel, Pennachin & Geisweiller 2014a), which conceptually amalgamated 
key ideas from the CogPrime (Goertzel, Pennachin & Geisweiller 2014b), CogAff (Sloman 2001), 
LIDA, MicroPsi (Bach 2009), and 4D/RCS architectures, plus a form of deep learning (Arel, Rose & 
Coop 2009).  A number of the goals of that effort were similar to those identified for the standard model; 
however, the result was more of a pastiche than a consensus – assembling disparate pieces from across 
these architectures rather than identifying what is common among them – with a bias thus also more 
towards completeness than concord. 
 
The standard model developed in this article is grounded in three other architectures and their associated 
research programs: ACT-R, Soar, and Sigma. The first two are the most complete, long-standing, and 
widely applied architectures in existence. ACT-R originated within cognitive science, although it has 
reached out to artificial intelligence as well (e.g., Sanner et al. 2000), been mapped onto regions of the 
human brain (Anderson 2007) – enabling it to be integrated with the Leabra neural architecture (Jilk et 
al. 2008) – and been used to control robots (e.g., Kennedy et al. 2007). Soar originated within artificial 
intelligence, although it has reached out to cognitive science (Newell 1990), and been used to control 
robots (Laird & Rosenbloom 1990; Laird et al. 2012). Sigma is a more recent development, based partly 
on lessons learned from the two others. It also originated within artificial intelligence, but has begun to 
reach out to cognitive science (e.g., Rosenbloom 2014), is based on a generalized notion of graphical 
models that has recently been extended to include neural networks (Rosenbloom, Demski, & Ustun 
2016b), and been used to control virtual humans (Ustun & Rosenbloom 2016). 
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We selected these three architectures because we know them well. The ultimate goal is to ground the 
standard model in many more architectures and research programs, but in our experience, unless an 
expert on the architecture/program is directly involved in such a process, the results can be more 
problematic than useful, so our decision was to hold off on analyzing additional architectures until we 
can involve others, possibly through a focused symposium or workshop, and hopefully then follow up 
with a longer and more comprehensive article. Nevertheless, between these three architectures there is 
significant presence across artificial intelligence and cognitive science, plus extensions into 
neuroscience and robotics (& virtual humans), although it should be clear that none of the three 
architectures actually originated within either of the latter two disciplines. 
 
3. Three Cognitive Architectures 
The previous section introduced the general notion of a cognitive architecture. Here we introduce the 
three particular architectures we have focused on in extending the standard model beyond the initial 
synthesis at the Symposium. Each architecture is described in its own terms, along with a figure that 
provides a standard characterization of its structure. No attempt has been made to alter these figures to 
draw out their commonalities – for example, the Soar figure explicitly shows learning mechanisms while 
the other two don’t – other than to use a common color scheme for the components: brown for working 
memory, red for declarative memory, blue for procedural memory, yellow for perception, and green for 
motor. The core work of identifying commonalities is left to the standard model, as described in the next 
section. 
 
ACT-R is constructed as a set of modules that run asynchronously and in parallel around a central rule-
based procedural module that provides global control (Figure 1). Processing is often highly parallel 
within modules, but each yields only a single result per operation, which is placed in a module-specific 
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Figure 1. ACT-R cognitive architecture. 
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working memory buffer, where it can be tested as a condition by the procedural module and transferred 
to other buffers to trigger further activity in the corresponding modules.  
 
Soar is also comprised of a set of asynchronous internally parallel modules, including a rule-based 
procedural memory. Soar is organized around a broader-based global working memory (Figure 2). It 
includes separate episodic and semantic declarative memories, in addition to visuospatial modules and a 
motor module that controls robotic or virtual effectors. 
 
Sigma is a newer architecture that blends lessons from existing architectures such as ACT-R and Soar 
with what has been learned separately about graphical models (Koller and Friedman 2009). It is less 
modular architecturally, providing just a single long-term memory, which along with the working 
memory and perceptual and motor components is grounded in graphical models. It instead seeks to yield 
the distinct functionalities provided by the other two’s modules by specialization and aggregation above 
the architecture (Figure 3). Sigma’s long-term memory, for example, subsumes a variety of both 
procedural and declarative functionalities, while also extending to core perceptual aspects and 
visuospatial imagery.  
 
All three architectures structure behavior around a cognitive cycle that is driven by procedural memory, 
with complex behavior arising as sequences of such cycles. In each cycle, procedural memory tests the 
contents of working memory and selects an action that modifies working memory. These modifications 
can lead to further actions retrieved from procedural memory, or they can initiate operations in other 
modules, such as motor action, memory retrieval, or perceptual acquisition, whose results will in turn be 
deposited back in working memory. 
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Figure 2. Soar cognitive architecture. 
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4. Standard Model 
In this section, we present the standard model, decomposed into structure and processing; memory and 
content; learning; and perception and motor (or, to use a robotics term, action). This model represents 
our understanding of the consensus that was introduced skeletally at the AAAI symposium, as fleshed 
out based on our understanding of the three architectures of concern in this article. While individuals, 
including the three of us, might disagree with specific aspects of what is presented here – consensus 
after all does not require unanimity – it is our attempt at providing a coherent summary along with a 
broadly shared set of assumptions held in the field. Specific areas of disagreement plus open issues are 
discussed in the final section.  
 
4.1 Structure and Processing 
The structure of a cognitive architecture defines how information and processing are organized into 
components, and how information flows between components. The standard model posits that the mind 
is not an undifferentiated pool of information and processing, but is built of independent modules that 
have distinct functionalities. Figure 4 shows the core components of the standard model, which include 
perception and motor, working memory, declarative long-term memory, and procedural long-term 
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Figure 4. The structure of the standard model. 
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memory. At this granularity, not a great deal of progress can be seen compared to what might have 
appeared in a Standard Model several decades ago, aside from the distinction here between procedural 
and declarative long-term memory. However, as will be seen in the rest of this section and summarized 
in Table 1 (Section 5), there is substantial further progress when one looks deeper. 
 
Each of the modules in Figure 4 can be seen as unitary or further decomposed into multiple modules or 
sub-modules, such as multiple perceptual and motor modalities, multiple working memory buffers, 
semantic vs. episodic declarative memory, and various stages of procedural matching, selection and 
execution. Outside of direct connections between the perception and motor modules, working memory 
acts as the inter-component communication buffer for components. It can be considered as unitary, or 
consist of separate modality-specific memories (e.g., verbal, visual, etc.) that together constitute an 
aggregate working memory. Long-term declarative memory, perception, and motor modules are all 
restricted to accessing and modifying their associated working memory buffers, whereas procedural 
memory has access to all of working memory (but no direct access to the contents of long-term 
declarative memory or itself). All long-term memories have one or more associated learning 
mechanisms that automatically store, modify, or tune information based on the architecture’s processing. 
 
The heart of the standard model is the cognitive cycle. Procedural memory induces the processing 
required to select a single deliberate act per cycle. Each action can perform multiple modifications to 
working memory. Changes to working memory can correspond to a step in abstract reasoning or the 
internal simulation of an external action, but they can also initiate the retrieval of knowledge from long-
term declarative memory, initiate motor actions in an external environment, or provide top-down 
influence to perception. Complex behavior, both external and internal, arises from sequences of such 
cycles. In mapping to human behavior, cognitive cycles operate at roughly 50 ms, corresponding to the 
deliberate-act level in Newell’s hierarchy, although the activities that they trigger can take significantly 
longer to execute. 
 
The restriction to selecting a single deliberate act per cycle yields a serial bottleneck in performance, 
although significant parallelism can occur during procedural memory’s internal processing. Significant 
parallelism can also occur across components, each of which has its own time course and runs 
independently once initiated. The details of the internal processing of these components are not specified 
as part of the standard model, although they usually involve significant parallelism. The cognitive cycle 
that arises from procedural memory’s interaction with working memory provides the seriality necessary 
for coherent thought in the face of the rampant parallelism within and across components. 
 
Although the expectation is that for a given system there can be additional perceptual and motor 
modules as part of an agent’s embodiment, and additional memory modules, such as an episodic 
memory, there is a strong commitment that no additional specialized architectural modules are necessary 
for performing complex cognitive activities such as planning, language processing and Theory of Mind, 
although architectural primitives specific to those activities (e.g., visuospatial imagery for planning, or 
the phonological loop for language processing) can be included. All such activities arise from the 
composition of primitive acts; that is, through sequences of cognitive cycles. The existence of a 
cognitive cycle, along with an appropriate procedural memory to drive it, has become definitional for a 
cognitive architecture.  
 
 



	 12	

4.2 Memory and Content 
The memory components store, maintain, and retrieve content to support their specific functionalities. 
The core of this content is represented as relations over symbols. However, supplementing these 
relational structures is quantitative metadata that annotates instances of symbols and relations for the 
purpose of modulating decision making as well as the storage, retrieval, and learning of symbols and 
relations. Frequency information is a pervasive form of metadata, yielding a statistical aspect to the 
knowledge representation (e.g., Anderson & Schooler 1991). Other examples of metadata include 
recency, co-occurrence, similarity, utility, and more general notions of activation. The inclusion of 
quantitative metadata, resulting in tightly integrated hybrid symbolic-subsymbolic representations and 
processing, is perhaps the most dramatic evolution from the early days of (purely) symbolic cognitive 
architectures (Newell, Rosenbloom, & Laird 1989). There is a strict distinction between domain data – 
symbols and relations – and such metadata. The metadata only exists in support of the symbolic 
representations, and relations cannot be defined over quantitative metadata. The set of available 
metadata for symbols and relations and the associated mechanisms are fixed within the architecture. In a 
reflective architecture, there may be symbolic relations at a metalevel that can be used to reason about 
the domain relations, but that is quite different from the architecturally maintained metadata described 
here, and is not part of the current standard model. A brief summary of each of the three memory 
components follows. 
 
Working memory provides a temporary global space within which symbol structures can be dynamically 
composed from the outputs of perception and long-term memories. It includes buffers for initiating 
retrievals from declarative memory and motor actions, as well as buffers for maintaining the results of 
perception and declarative memory retrieval. It also includes temporary information necessary for 
behavior production and problem solving, such as information about goals, intermediate results of a 
problem, and models of a task. All of working memory is available for inspection and modification by 
procedural memory. 
 
Procedural memory contains knowledge about actions, whether internal or external. This includes both 
how to select actions and how to cue (for external actions) or execute (for internal actions) them, 
yielding what can be characterized as skills and procedures. Arbitrary programs can be thought of 
generically as a form of procedural memory, but they provide a rigid control structure for determining 
what to do next that is difficult to interrupt, acquire, and modify. In the standard model, procedural 
memory is instead based on pattern-directed invocation of actions, typically cast in the form of rules 
with conditions and actions. Rule conditions specify symbolic patterns over the contents of working 
memory and rule actions modify working memory, including the buffers used for cuing declarative 
memory and motor actions. There is variation in how the knowledge from multiple matching rules is 
integrated together, but agreement that a single deliberate act is the result, with metadata influencing the 
selection. 
 
Declarative memory is a long-term store for facts and concepts. It is structured as a persistent graph of 
symbolic relations, with metadata reflecting attributes such as recency and frequency of (co-)occurrence 
that are used in learning and retrieval. Retrieval is initiated by the creation of a cue in the designated 
buffer in working memory, with the result being deposited in that buffer. In addition to facts, declarative 
memory can also be a repository of the system’s direct experiences, in the form of episodic knowledge. 
There is not yet a consensus concerning whether there is a single uniform declarative memory or 
whether there are two memories, one semantic and the other episodic. The distinction between those 
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terms roughly maps to semantically abstract facts versus contextualized experiential knowledge, 
respectively, but its precise meaning is the subject of current debate. 
 
4.3 Learning 
Learning involves the automatic creation of new symbol structures, plus the tuning of metadata, in long-
term – procedural and declarative – memories. It also involves adaptation of non-symbolic content in the 
perception and motor systems. The standard model assumes that all types of long-term knowledge are 
learnable, including both symbol structures and associated metadata. All learning is incremental, and 
takes place online over the experiences that arise during system behavior. What is learned is typically 
based on some form of a backward flow of information through internal representations of these 
experiences. Learning over longer time scales is assumed to arise from the accumulation of learning 
over short-term experiences. These longer time scales can include explicit deliberation over past 
experiences. Learning mechanisms exist for long-term memory, and although they are not yet fully 
implemented in current architectures, they are also assumed to exist for the perception and motor 
modules. 
 
There are at least two independent learning mechanisms for procedural memory: one that creates new 
rules from the composition of rule firings in some form, and one that tunes the selection between 
competing deliberative acts via reinforcement learning. Declarative memory also involves at least two 
learning mechanisms: one to create new relations and one to tune the associated metadata. 
 
4.4 Perception and Motor 
Perception converts external signals into symbols and relations, with associated metadata, and places the 
results in specific buffers within working memory. There can be many different perception modules, 
each with input from a different modality – vision, audition, etc. – and each with its own perceptual 
buffer. The standard model assumes an attentional bottleneck that constrains the amount of information 
that becomes available in working memory, but does not embody any commitments as to the internal 
representation (or processing) of information within perceptual modules, although it is assumed to be 
predominantly non-symbolic in nature, and to include learning. Information flow from working memory 
to perception is possible, providing expectations or possible hypotheses that can be used to influence 
perceptual classification and learning. 
 
Motor converts the symbol structures and their metadata that have been stored in their buffers into 
external action through control of whatever effectors are a part of the body of the system. As with 
perception, there can be multiple motor modules (arms, legs, etc.). Much is known about motor control 
from the robotics and neuroscience literature, but there is at present no consensus as to the form this 
should take in the standard model, largely due to a relative lack of focus on it in human-like 
architectures. 
	
5. Summary 
Table 1 summarizes the key assumptions that underlie the standard model of human-like minds 
proposed in this article. It is derived from the 2013 Symposium session plus an extensive post hoc 
discussion among the authors of this article centered around ACT-R, Soar, and Sigma. In the table, the 
standard model has been decomposed into A. structure and processing, B. memory and content, C. 
learning, and D. perception and motor systems. 
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A. Structure and Processing 

1. The purpose of architectural processing is to support bounded rationality, not optimality 
2. Processing is based on a small number of task-independent modules 
3. There is significant parallelism in architectural processing 

a. Processing is parallel across modules  
i. ACT-R & Soar: asynchronous; Sigma: synchronous 

b. Processing is parallel within modules  
i. ACT-R: rule match, Sigma: graph solution, Soar: rule firings 

4. Behavior is driven by sequential action selection via a cognitive cycle that runs at ~50 ms per cycle in human 
cognition	

5. Complex behavior arises from a sequence of independent cognitive cycles that operate in their local context, without 
a separate architectural module for global optimization (or planning). 

 
B. Memory and Content 

1. Declarative and procedural long-term memories contain symbol structures and associated quantitative metadata 
a. ACT-R: chunks with activations and rules with utilities; Sigma: predicates and conditionals with functions; 

Soar: triples with activations and rules with utilities 
2. Global communication is provided by a short-term working memory across all cognitive, perceptual, and motor 

modules 
3. Global control is provided by procedural long-term memory 

a. Composed of rule-like conditions and actions 
b. Exerts control by altering contents of working memory 

4. Factual knowledge is provided by declarative long-term memory 
a. ACT-R: single declarative memory; Sigma: unifies with procedural memory; Soar: semantic and episodic 

memories 
 
C. Learning 

1. All forms of long-term memory content, whether symbol structures or quantitative metadata, are learnable 
2. Learning occurs online and incrementally, as a side effect of performance and is often based on an inversion of the 

flow of information from performance 
3. Procedural learning involves at least reinforcement learning and procedural composition 

a. Reinforcement learning yields weights over action selection 
b. Procedural composition yields behavioral automatization 

i. ACT-R: rule composition; Sigma: under development; Soar: chunking 
4. Declarative learning involves the acquisition of facts and tuning of their metadata 
5. More complex forms of learning involve combinations of the fixed set of simpler forms of learning	

 
D. Perception and Motor 

1. Perception yields symbol structures with associated metadata in specific working memory buffers 
a. There can be many different such perception modules, each with input from a different modality and its 

own buffer 
b. Perceptual learning acquires new patterns and tunes existing ones 
c. An attentional bottleneck constrains the amount of information that becomes available in working memory  
d. Perception can be influenced by top-down information provided from working memory 

2. Motor control converts symbolic relational structures in its buffers into external actions 
a. As with perception, there can be multiple such motor modules  
b. Motor learning acquires new action patterns and tunes existing ones 

	
	

 
Table 1: Standard model architectural assumptions 
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Table 2 provides an analysis, tabulated by the assumptions in Table 1, of the extent ACT-R, Soar, and 
Sigma agree in theory with the standard model and implement the corresponding capabilities. Versions 
of ACT-R and Soar from the early-90s have been included to show the evolution of those architectures 
in relation to the standard model. The convergence is striking. Although there was significant 
disagreement (or lack of theory, especially in the case of perception and motor) in the early-90s for both 
ACT-R and Soar, their current versions are in total agreement in terms of theory and only substantially 
differ in the extent to which they implement perception and motor systems. Sigma is also in agreement 
on most of these assumptions as well. However, because it defines some of the standard model’s 
capabilities not via specialized architectural modules but via combinations of more primitive 
architectural mechanisms plus specialized forms of knowledge and skills, three cells are colored blue to 
indicate a partial disagreement in particular with the strong architectural distinction between procedural 
and declarative memories, and the complete architectural nature of reinforcement learning. 
 

 

This standard model reflects a very real consensus over the assumptions it includes, but it remains 
incomplete in a number of ways. It is silent, for example, concerning metacognition, emotion, mental 
imagery, direct communication and learning across modules, the distinction between semantic and 
episodic memory, and mechanisms necessary for social cognition. However, even with these gaps, the 
standard model captures much more than did precursors such as the model human processor, and much 
more than could have been agreed upon even ten years ago. It thus reflects a significant point of 
convergence, consensus, and progress.  
 
The hope is that the presented model will yield a sound beginning upon which the field can build by 
folding into the mix additional lessons from a broader set of architectures. Such an effort ideally should 
focus on architectures that: (1) are under active (or recent) development and use; (2) have strong 
architectural commitments that yield a coherence of assumptions rather than being just a toolkit for 
construction of intelligent systems; (3) are concerned with human-like intelligence; and (4) have been 
applied across diverse domains of human endeavor. Architectures worth considering for this include, but 
are not limited to, CHREST (Gobet & Lane 2010), Clarion (Sun 2016), Companions (Forbus & Hinrichs 
2006), EPIC (Kieras & Meyer 1997), ICARUS (Langley & Choi 2006), Leabra (O’Reilly et al. 2016), 
LIDA (Franklin & Patterson 2006), MicroPsi (Bach 2009), MIDCA (Cox et al. 2013), and Spaun 
(Eliasmith 2013). 
 
Newell’s (1973) warning about trying to approach full intelligence via a pastiche of task-specific models 
applies not only to cognitive science – and, in particular, psychology and AI – but also to any other 
discipline that ultimately seeks or depends on such comprehensive models of intelligent behavior, 
including notably neuroscience and robotics. A comprehensive standard model of the human mind could 

A1 A2 A3a A3b A4 A5 B1 B2 B3a B3b B4 C1 C2 C3a C3b C4 C5 D1a D1b D1c D1d D2a D2b
ACT-R 1993
SOAR  1993
SIGMA 2016
ACT-R 2016
SOAR  2016

Disagree((or(unspecified(by(theory)
Agree(but(not(implemented
Agree(but(partially(implemented
Agree(and(implemented
Agree(partially((some(key(aspects(are(above(architecture),(implemented

Table 2: Analysis of Soar, ACT-R and Sigma with respect to the standard model. 
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provide a blueprint for the development of robotic architectures that could act as true human 
companions and teammates as well as a high-level structure for efforts to build a biologically detailed 
computational reconstruction of the workings of the brain, such as the Blue Brain project. The standard 
model could play an integrative role to guide research in related disciplines – for example, ACT-R is 
already being applied to modeling collections of brain regions and being integrated with neural models, 
and both ACT-R and Soar have been used in robotics (and Soar and Sigma in the sister discipline of 
virtual humans) – but the existence of a standard model can enable more generalizable results and 
guidance. Conversely, those disciplines can provide additional insights and constraints on the standard 
model, leading to further progress and convergence. In addition, the standard model potentially provides 
a platform for the integration of theoretical ideas without requiring realization in complete cognitive 
architectures.  
 
It is hoped that this attempt at a standard model, based as it is on extending the initial sketch from the 
Symposium via a focus on three human-like architectures, will grow over time to cover more data, 
applications, architectures, and researchers. This is partially a scientific process and partially a social 
process. The scientific side is driven by what is learned about human-like minds from studying both 
human minds and human-like artificial minds. The social side needs to be driven by spanning more and 
more of the community concerned with human-like cognitive architectures, and possibly even beyond 
this to other communities with related interests. This could happen incrementally, by expanding to a 
single new architecture and proponent at a time, or in bursts, via symposia or workshops at which 
multiple such come together to see what new consensus can be found. Community-wide surveys are also 
possible, but it is our sense that by sidestepping the hard part of working out differences interactively, 
this would likely not yield what is desired. Rather, it is our hope that the shared benefits of a standard 
model of the mind will lead to a virtuous cycle of community contributions and incremental refinements. 
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