Check for
updates

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Cognitive Systems Research 59 (2020) 179-197

Cognitive Systems
RESEARCH

www.elsevier.com/locate/cogsys

The TROCA Project: An autonomous transportation
robot controlled by a cognitive architecture

Ricardo Gudwin **, Eric Rohmer®, André Paraense “, Eduardo Froes®,
Wandemberg Gibaut®, Ian Oliveira *, Sender Rocha ®, Klaus Raizer ",
Aneta Vulgarakis Feljan®©

& University of Campinas (UNICAMP), Campinas, SP, Brazil
® Ericsson Research Brazil, Ericsson Telecomunicagoes S.A., Indaiatuba, Brazil
€ Ericsson Research, Ericsson AB, Stockholm, Sweden

Received 26 June 2019; accepted 12 September 2019
Available online 17 September 2019

Abstract

Autonomous mobile robots emerged as an important kind of transportation system in warehouses and factories. In this work, we
present the use of MECA cognitive architecture in the development of an artificial mind for an autonomous robot responsible for mul-
tiple tasks, including transportation of packages along a factory floor, environment exploration, warehouse inventory, its internal energy
management, self-monitoring and dealing with human operators and other robots. The present text provides a detailed specification for
the architecture and its software implementation. Future work will present the simulation results under different configurations, together
with a detailed analysis of the architecture performance and its generalization for autonomous robot control.

© 2019 Elsevier B.V. All rights reserved.

Keywords: Cognitive architecture; Transportation robot; Dual-process theory; Dynamic subsumption; MECA

1. Introduction

According to Adinandra, Caarls, Kosti¢, Verriet, and
Nijmeijer (2012), autonomous mobile robots (AMR) have
emerged as a means of transportation system in ware-
houses. AMRs, sometimes also addressed as AGVs (auton-
omous guided vehicles), provide a scalable solution,
providing transportation in a reliable and flexible way. A
large collection of AMRSs can be responsible for the trans-

* Corresponding author.

E-mail addresses: gudwin@dca.fee.unicamp.br (R. Gudwin), eric@dca.
fee.unicamp.br (E. Rohmer), paraense@dca.fee.unicamp.br (A. Paraense),
senderrocha@yahoo.com.br (S. Rocha), klaus.raizer@ericsson.com
(K. Raizer), aneta.vulgarakis@ericsson.com (A. Vulgarakis Feljan).

https://doi.org/10.1016/j.cogsys.2019.09.011
1389-0417/© 2019 Elsevier B.V. All rights reserved.

portation of different kinds of goods within a warehouse,
with robustness and flexibility.

The full transportation system might use a centralized or
decentralized solution, providing lower or higher auton-
omy in the operation of such AMRs. Modern transporta-
tion systems with AMRs are slowly giving more
autonomy to them. As technology evolves, systems are
moving increasingly towards autonomy, perceiving, decid-
ing, learning, etc. often without human engagement.
According to Lacher, Grabowski, and Cook (2014), the
definition of autonomy or an autonomous system is not a
simple matter. Autonomous systems decide for themselves
what to do and when to do it.

The field of Cognitive Robotics emerged as a confluence
of Artificial Intelligence and Robotics (Clark & Grush,

https://doi.org/10.1016/j.cogsys.2019.09.011
mailto:gudwin@dca.fee.unicamp.br
mailto:eric@dca.fee.unicamp.br
mailto:eric@dca.fee.unicamp.br
mailto:paraense@dca.fee.unicamp.br
mailto:senderrocha@yahoo.com.br
mailto:klaus.raizer@ericsson.com
mailto:aneta.vulgarakis@ericsson.com
https://doi.org/10.1016/j.cogsys.2019.09.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogsys.2019.09.011&domain=pdf

180 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

1999; Christaller, 1999) as the study of the knowledge rep-
resentation and reasoning problems faced by an autono-
mous robot (or agent) in a dynamic and incompletely
known world (Levesque & Lakemeyer, 2008). According
to Moreno, Umerez, and Ibanez (1997), cognition is a
major enabler for autonomy in biological systems, which
means that giving cognitive abilities to robots might
improve their capacity for autonomy.

Cognitive Architectures (CAs) have been employed in
many different kinds of applications, from the control of
robots to decision-making processes in intelligent agents.
Cognitive Architectures are general-purpose control sys-
tems’ architectures inspired by scientific theories developed
to explain cognition in animals and humans (Raizer,
Paraense, & Gudwin, 2012).

Usually, a cognitive architecture is decomposed based
on its cognitive capabilities, like perception, attention,
memory, reasoning, learning, behavior generation, etc.
Cognitive Architectures are, at the same time, theoretical
models for how many different cognitive processes interact
with each other in order to sense, reason and act, and also
software frameworks which can be reused through different
applications.

In 2010, Samsonovich (2010) conducted a broad study
resulting in a comparative table, presenting a comprehensive
review of the most important implemented CAs in the liter-
ature. More recently, Kotseruba, Gonzalez, and Tsotsos
(2016) performed a detailed analysis of how this field of
research developed in the last 40 years. Our research group
has recently contributed to the field with the proposition of
MECA - the Multipurpose Enhanced Cognitive Architec-
ture (Gudwin et al., 2017; Gudwin et al., 2018).

According to Kurup and Lebiere (2012), robotics
research has traditionally been focused on finding optimal
solutions via the use of specialized techniques that involve
carefully crafted representations and processes. In contrast,
AT and Cognitive Science are concerned with problems that
are, in many ways, diametrically opposed to robotics,
namely, open-ended tasks that span longer intervals of time
in discrete domains, are knowledge-intensive and make
assumptions about the existence of modules and tools that
simplify interaction with the environment. Examples of
such tasks include high-level planning and scheduling
problems, language understanding, instruction following,
diagnosis, and domain-independent execution monitoring
and recovery. Cognitive architectures capture the underly-
ing commonality between different intelligent agents and
provide a framework from which intelligent behavior
arises. The architectural approach emphasizes the role of
memory in the cognitive process, i.e., cognition is centered
on the notion of rapidly identifying previous experiences
that relate to the current situation, appropriately modify-
ing previous responses and applying this modified response
to the current situation. There are many reports in the lit-
erature promoting the use of cognitive architectures with
robotics (Benjamin, Lyons, & Lonsdale, 2004; Burghart
et al., 2005; Avery, Kelley, & Davani, 2006; Kelley, 2006;

Ziemke & Lowe, 2009; Lemaignan, Ros, Mdsenlechner,
Alami, & Beetz, 2010; Trafton et al., 2013). Particularly,
the use of Cognitive Architectures can be quite powerful
in providing autonomy to robotic systems (Thorisson &
Helgasson, 2012).

In this paper, we propose the use of MECA in order to
build a Transportation Robotic System for a simulated fac-
tory. A simulated environment was constructed with the
aid of the V-REP robotics simulator (Rohmer, Singh, &
Freese, 2013), and MECA was used to build TROCA, an
intelligent agent controlling a transportation robot within
the factory.

2. MECA - The multipurpose enhanced cognitive
architecture

The development of MECA was a first attempt to com-
pose a large generic-purpose cognitive architecture with
many features inspired in popular ones like SOAR
(Laird, 2012), Clarion (Sun, 2003) and LIDA (Franklin,
Madl, D’mello, & Snaider, 2014), using our Cognitive Sys-
tems Toolkit (CST) (Paraense, Raizer, de Paula, Rohmer,
& Gudwin, 2016) as a core.

During the design of MECA, we tried to integrate many
lessons acquired from our study of other cognitive architec-
tures. Among these lessons, the use of codelets (just like in
LIDA) as the building blocks of processing, and a mecha-
nism inspired on Global Workspace Theory (Baars, 1988)
to implement a machine consciousness cognitive capability
(similarly but not exactly equals to the one in LIDA), the
requirement to have both explicit and implicit knowledge
representations (just like in Clarion), considering rule-
based processing (just like in SOAR) as an explicit process-
ing modality, together with a dynamic subsumption-like
processing (Brooks, 1986; Nakashima & Noda, 1998;
Hamadi, Jabbour, & Sais, 2010; Heckel & Youngblood,
2010) as an implicit processing modality, with the potential
to include also neural networks like Hierarchical Temporal
Memory (HTM) (George & Hawkins, 2009) within some of
its modules. We got inspiration from hybrid cognitive
architectures, like SAL (Synthesis of ACT-R and Leabra)
(Jilk, Lebiere, O’Reilly, & Anderson, 2008), which com-
bined both a rule-based architecture (ACT-R) with a neu-
ral network one (Leabra) in order to compose a more
powerful architecture and mostly a strong inspiration on
dual process theory, which recently is being explored under
the context of cognitive architectures (Faghihi, Estey,
McCall, & Franklin, 2015; Lieto, Chella, & Frixione,
2017; Lieto, Radicioni, & Rho, 2017; Augello et al.,
2016). We also relied on important theories regarding
knowledge representation, including Grounded Cognition
(Barsalou, 2010), Conceptual Spaces (Girdenfors, 2014)
and Computational Semiotics (Gudwin, 2015), extending
some recent work (Lieto et al., 2017; Lieto et al., 2017)
indicating the relevance of extended kinds of representa-
tion beyond the traditional symbolic rule-based processing
and multi-layered backpropagation neural networks.

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197 181

According to Dual Process Theory (Osman, 2004), the
human mind can be described by the interaction of two
different systems, named System 1 and System 2, which
assume two functionally distinct roles that integrate with
each other, in order to account for the different facets
of the mind phenomena. The exact characteristics of Sys-
tem 1 and System 2 varies depending on the theory
proposers.

System 1 is generally described as a form of universal
cognition shared between humans and animals. It is not
actually just a single system, but a a set of sub-systems
operating with some level of autonomy. System 1 includes
instinctive behaviors that might be innately programmed
and also automatic learned behaviors evolved during the
system interaction with its environment. System 1 processes
are rapid, parallel and automatic in nature: only their final
product is posted in consciousness (Evans, 2003).

System 2 is believed to have evolved much more recently
and is considered by many to be uniquely human. System 2
thinking is slow and sequential in nature, and makes use of
the central working memory system, intensively studied in
psychology. Despite its limited capacity and slower speed
of operation, System 2 permits abstract hypothetical think-
ing that cannot be achieved by System 1, as e.g. decision-
making using past experiences to abstract new behaviors
and the construction of mental models or simulations of
future possibilities, in order to predict future events and
behave accordingly to reach desirable situations or pre-
scribed goals (Evans, 2003).

Despite their intrinsic autonomy, System 1 and System 2
interact with each other in order to build the overall system
behavior. System 1 implements a kind of fast, automatic
reactive behavior which provides a default response to sys-
tem input, aligned with a possible set of general system
goals. System 2 has a kind of inhibitory role in suppressing
this default response, emphasizing specific time-based
goals, which are characteristic of exceptional situations,
generating as a result a complex and refined interleaved
overall behavior.

To implement System 1, we designed a Dynamic Sub-
sumption Architecture, implemented on top of CST. The
inputs to this Dynamic Subsumption Architecture might
come directly from Sensory Memory, but usually there is
some kind of Perception processing in between. The role
of Perception is to generate more elaborate Percepts,
abstractions of sensory data, which are then used as input
to the Behavioral Codelets. These percepts can also be
tracked by Attention Codelets in order to detect special sit-
uations and send information upstream to System 2. These
attention codelets are responsible for generating the Cur-
rent Perception at the Working Memory, where a selected
subset of the Perception Memory is made available for Sys-
tem 2 subsystems in a representation suitable to be pro-
cessed within System 2. Among the behavioral codelets,
there is a special sub-set (Motivational Behavioral Code-
lets) comprising the System 1 Motivational Subsystem,
which is responsible for implementing a kind of instinct

mechanism in the architecture. This Motivational Subsys-
tem also includes some sort of emotional processing.

According to Dual Process Theory, System 2 is respon-
sible for the slow conscious process of deliberative reason-
ing. It is mainly a sequential rule-based process, operating
on symbols, and considering not just the present, like in
System 1, but also the past and the future. This is the place
where imagination and planning occurs. This is also the
place where the many unconscious perceptions performed
at System 1 enter into a process of competition to integrate
the agent’s present experience, where the most important
percepts are payed attention to and other less relevant
are discarded. This leads to the formation of the conscious
perception which is usually called experience by many
philosophers of mind, and which is integrated into epi-
sodes, and then stored in an episodic memory to be recov-
ered later for many purposes.

System 2 Specification in MECA includes the definition
of an Episodic Subsystem, responsible for higher-level per-
ception with the tracking of time along Perceptual Mem-
ory. With the aid of Attention codelets it discover and
detects the formation of episodes, and performs the storage
and recovering of these episodes in the Episodic Memory.
It also includes a Planning Subsystem, responsible for sim-
ulating the future and making plans of action in order to
reach possible Goals. The Planning Subsystem is also
responsible for the process of Imagination, which is used
as an aid for testing possible courses of action and evaluat-
ing the best action to take. MECA’s implementation of
System 2 also includes a High-Level Motivational Subsys-
tem, responsible for generating Goals for the Planning
Subsystem; an Expectation Subsystem which tries to fore-
see the short-term future and learn from the possible incon-
sistencies; and a Consciousness Subsystem, responsible for
filtering the information available for the Planning
Subsystem.

The Planning Subsystem relies on SOAR, a rule-based
Cognitive Architecture developed by John Laird at the
University of Michigan, in USA (Laird, 2012). The deci-
sion to use SOAR for rule-based processing in order to per-
form imagination and planning was aligned with recent
tendencies in the literature. The cognitive architecture
SAL (Synthesis of ACT-R and Leabra) performs a similar
exercise by binding two different cognitive architectures
(ACT-R and Leabra), where ACT-R is a rule-based cogni-
tive architecture, similar to SOAR, and Leabra is a Neural-
network based cognitive architecture. One motivation for
choosing SOAR instead of ACT-R was that there is an
open source implementation of SOAR in Java (ACT-R is
in LISP), which is compatible with our CST toolkit.
Another motivation is the fact that SOAR is a mature tech-
nology, with good documentation and a solid repertoire of
use cases in the community, it therefore appears to be the
right choice. Of course, other rule-based systems and cog-
nitive architectures, e.g. ACT-R, could also be used.

The problem of building a control system for an auton-
omous transportation robot is a specially interesting one

182 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

for exploring MECA’s capability. Due to its intrinsic com-
plexity, the scenario provides good opportunities to explore
MECA’s cognitive abilities, such as perception, planning,
opportunistic behavior, etc.

3. TROCA - A transportation robot controlled by a
cognitive architecture

In order to explore the potential use of a Cognitive
Architecture in robotics, we used the V-REP simulation
framework (Rohmer et al., 2013) to simulate an industrial
environment, where a set of transportation robots are
required to move packages around in an autonomous
way. The overall experiment concerns an industrial scenar-
i0, holding both processing cells, a warechouse, and robots
for providing the transportation of packages from cell to
cell, or from and to the warehouse. The factory floor is split
into different regions: Processing Cells, Warehouses and
Open spaces.

A processing cell is a region of the factory floor where
robots are not allowed to enter (the same happens to the
warehouse'), and some sort of processing is realized. This
processing might be of any type, including receiving mate-
rials from outside of the factory, handling materials and
storing them on packages, assembling or mounting pieces
or devices, performing maintenance, testing or service on
parts, applying some industrial process, like turning,
milling, drilling, molding, painting or other machine oper-
ations and boxing/shipping packages to outside the fac-
tory. The common role of a processing cell is that this
service is performed by either humans or robots, and there
will be particular spots where materials are entering or
leaving the processing cell. Transportation robots are
allowed to run only on open space. Robots might be able,
though, to pick packages from processing cells and from
the warehouse.

Each process cell might have a pickupldelivery spot,
where packages might be put, in order for transportation
robots to pick them and transport them to the appropriate
place. The same spot might be used for either pickup, deliv-
ery, or both. Pick-up/delivery spots are marked with an
AR-Tag for the sake of identification. Also, every package
is marked with an AR-Tag. AR-Tags are Augmented Real-
ity Tags, a special kind of QR-code which uniquely identi-
fies either a pickup-delivery spot or a package. Besides the
normal kind of information available in a QR-code, the
AR Tags design is used to extract a positional reference
frame using a computer vision algorithm. This reference
frame serves to define where to handle a package, or where
a package can be placed or delivered. The use of AR-Tags
makes it easier to develop a perception system for the robot
to pick and deliver packages.

' The warehouse includes only the space where goods are stored.
Corridors next to storage shelves are not considered as being a part of it.

, c [— o — =

Fig. 1. Example of processing cell and warehouse.

Besides processing cells, packages can be stored in the
warehouse. From our technical perspective, a warehouse is
a place inside the factory whose sole purpose is to store
items. Without loss of generality, we represent the ware-
house as a sequence of shelves, where packages can be
delivered and picked-up, either by robots or by human
beings. These shelves are identified by AR-Tags, in a simi-
lar way to those on the picking-delivery spots. The robots
might pick and deliver packages from these shelves, in the
same way they do in the processing cells. One additional
feature expected from the robotic systems working nearby
the warehouse shelves is to manage the inventory of items
currently stored there. Whenever passing through the ware-
house shelves, the robots should check if the packages
expected to be stored in the shelves are really there, as they
may be mistakenly placed in a wrong shelf, or taken by a
human operator. Examples of a Processing Cell and the
Warehouse are illustrated in Fig. 1.

Our configuration for the transportation robot includes
a MiR100 base (from Mobile Industrial Robotics®), with

2 https://www.mobile-industrial-robots.com/en/products/mir100/.

https://www.mobile-industrial-robots.com/en/products/mir100/

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

183

AR CODE

Unit Control

MIR100

Fig. 2. Detail of the robot.

an upper UR5 mechanical arm (from Universal Robots®),
and a set of slots where delivery items can be stored. Other
commercially available solutions could also be used to
build a similar robot configuration. It is, therefore, capable
of picking up many packages while also delivering some of
them, making it possible to explore many routing tech-
niques and thus reach optimal performance through flexi-
ble and adaptive behavior. Fig. 2 provides a better view
of the transportation robot and its parts.

Completing the full simulation architecture, the General
Manager is a software agent, also controlled by a cognitive
architecture, which does not have a physical instance, like
the transportation agents, but is a software-only kind of
agent. The General Manager has full access to a database,
where there is a common registry of all known packages in
the factory, and their contents, all known pickup-delivery
spots in all processing cells, all known storage spots in all
warehouse locations. The General Manager is reachable
by all transportation robots by means of network sockets,
and they can exchange information this way. The General
Manager is also reachable by human employees by means
of smartphone applications, where they are able to grab
information about the common registry, introduce new
information in this registry, as new packages are intro-
duced in the system, and delete information in the registry,
as packages are dismantled or re-organized within process-
ing cells. As soon as a package is elaborated in a processing
cell, a human operator is supposed to contact the General
Manager, by means of his/her smartphone application and
point out what is the destination of the package, which

3 https://www.universal-robots.com/products/ur5-robot/.

might be a storage spot in a warehouse or a pickup-
delivery spot in another processing cell. In the same way,
as soon as a package is collected in a processing cell, a
human employee is supposed to acknowledge the package
input to the processing cell, registering that information
in the common register with the General Manager.
Transportation agents are able to communicate with the
General Manager, and with each other, always using net-
work sockets for this communication. Human operators
are also able to communicate both to the General Manager
and to the Transportation Agents, using their smartphone
application. The General Manager is also able to start a
communication to either Transportation Agents or to
human employees. Human employees are uniquely identi-
fied by their smartphone application. Each employee has
a unique pair user/password, which is used to log-in into
the smartphone application. As soon as it logs intp the
application, the General Manager becomes aware that they
are available within the factory. If the General Manager,
for some reason, must contact a given employee, it might
generate a notification in the smartphone application
where the employee is logged. The smartphone application
is constantly “pinging” the General Manager, to indicate
they are available in factory space. If, for some reason, this
“pinging” does not succeed (as e.g. the employee goes out
of the factory, or runs out of battery), the General Man-
ager assumes the employee is not available, and awaits
for a new pinging event to assume that the employee is
back to service. The contact from the General Manager
might be to give orders or instructions or to ask for advice
in some decision-making situations it cannot solve by itself.
Transportation agents might need to communicate with
other transportation agents. For example, we might

https://www.universal-robots.com/products/ur5-robot/

184 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

conceive a situation where one transportation agent is
blocking the way for another transportation agent to pass.
In this case, the one which is intending to pass should con-
tact the other and let it know that they are blocking the
way. In this case, some sort of negotiation should go on
in order to solve the situation.

The following general tasks are specified to be per-
formed by our transportation agent:

e Package Transportation
— Pick-up of packages in processing cells and its trans-
portation to their final destination, which can be
another pick-up-delivery slot or a warehouse shelf

e Environment Exploration
— Generation/update of maps, including human beings,
obstacles, pick-up/delivery slots and packages (met-
ric, topological and semantic SLAM).

e Warehouse Inventory
— Identification of slots in warehouse shelves
— Situation/occupation of warehouse shelves

e Energy Management
— Verify energy (battery) level, recharging when it is
necessary

e Dealing with Human Operators

— Humans cross the same environment as the robots,
and pick packages from the warehouse — safety con-
siderations should be respected.

— Communication with human operators in order to
solve problems (using smartphone application).

— Visual robot-human interface in order to express
information for humans without a smartphone
interface.

e Dealing with other robots
— Robots should be able to communicate with each
other in order to solve deadlocks, e.g. dispute for pas-
sageway, and perform local coordination of activities.

e Self-Monitoring and Benchmarking
— Different means of benchmarking (min/ average/max
time to attend requests, distance-to-identification of
AR-Tags, etc).

4. TROCA agent cognitive model

We designed a cognitive agent to control the transporta-
tion robot, assigning to it multiple responsibilities, which
might be attended in an autonomous way. This agent
was constructed using the MECA Cognitive Architecture.

Differently from other cognitive architectures like
SOAR or LIDA, to be effectively used in an application,
MECA requires a process of instantiation, i.e. the MECA

user might need to define and implement a set of different
codelets and memory objects in order to use the cognitive
architecture. So, in order to use MECA to control the
transportation robot, it is necessary, first, to specify the dif-
ferent kinds of codelets prescribed for the task of control-
ling the robot. A customization of MECA, designed to
control our agent is shown in Fig. 3.

Following the directives from dual process theories, the
main architecture is split in two major sub-systems: System
1, in the bottom and System 2 in the top of the figure. Sys-
tem 1 is designed to accommodate the major automatic
behaviors, tracking a chain of processes starting in sensors
and delivering commands to actuators. The main sensors in
TROCA are ROS (Robot Operating System) topics
(Joseph, 2015) being written by the Transportation Robot
into the ROS system and sockets from the Operational Sys-
tem. Also, the actuators are ROS topics being written by
TROCA, and ROS services, as we describe in Section 4.1.3
and also sockets from the Operational Systems. Sockets are
used for network communication among the many
TROCA agents and also to and from the General Man-
ager, also an agent, responsible for providing general infor-
mation about transportation requests and other
information. This means that for TROCA, it doesn’t mat-
ter if the Transportation Robot is being simulated using V-
REP (as we will be doing in our experiments) or is a real
robot using ROS (Joseph, 2015).

System 2 was designed to generate plans, multi-step
sequences of actions allowing the decrease of drives in
the motivational sub-system after their conclusion. The
idea is that System 2 and System I should work in an inte-
grated way. In some situations, described in Section 4.1.6,
System I requests that a new plan for obtaining a certain
goal should be developed. In this case, this request is deliv-
ered to System 2, which should elaborate the plan and send
it back to System 1 to be used in its behaviors. The next
two sections provide an overall description of System 1
and System 2.

4.1. The System 1 specification

System I can be seen at the bottom part of Fig. 3. On the
left, we can see in dark green the sensory codelets feeding
the Sensory Memory. This Sensory Memory is then inte-
grated into a single Percept by the Perceptual Codelet. This
Percept is then distributed to the many Motivational Code-
lets, Behavioral Codelets, the Activity Tracking Codelet
(on the top right of the diagram), and up to System 2.

Next, in the diagram, we can find the many Motiva-
tional Codelets, in light green, responsible for modeling
the many needs associated to the MECA motivational
sub-system. For each Motivational Codelet, there is a cor-
responding drive in the Drives Memory. According to
MECA’s principles, needs are the main source of motiva-
tion for our agent. In MECA’s motivational system, drives
measure the degree of dissatisfaction of a need, which are
computed by a corresponding Motivational Codelet. The

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197 185

Map Updater Codelet

m [=

Planning Codelet

e b

Saliency Attention

\\ Codelet

j / ‘, System 2

Consciousness
Codelet

&) J
I 0

Plan Request

/
Attention Codelet /

|y ——

System 1

Camera

ﬁ%*i/'

Codelet
Laser Range Finder ' proc()
odelet + d

Danger Avoidance
Motivational Codelet

Transportation
Motivational Codelet

ROS

Socket
Codelet

Curiosi

ity
Motivational Codelet

Battery
Codelet

Consistency
Motivational Codelef

SLAM
Codelet

Operational
System

Human Care
Motivational Codelet

Feedback
Codelet

Communication
Motivational Codele

Self-Criticism
Motivational Codelet

Go To Energy
Spot Codelet Activity
Tracking
Codelet

Provide
Transportation
Codelet

= &)
=

MIR100 Motor
Codelet

o [z
A o f

URS Motor
Codelet

of =1

& [z

Socket Motor
Codelet

e =

@ o]

Display Motor
Codelet

Exploration
Codelet

Move to Location
Codelet

P P

Operational
System

Communication
Codelet

Display Writing
Codelet

Fig. 3. Cognitive model of the TROCA Agent.

many needs attributed to our Cognitive Agent are related
to the many assignments which are expected to be accom-
plished by the Cognitive Agent.

Next in the diagram we can see the many Behavioral
Codelets, in dark blue, which are responsible for behavior
generation in the TROCA Cognitive Agent. The Behav-
ioral Codelets are split into two sub-groups, a smaller
one on the top, with 4 codelets, and a larger one on the bot-
tom, with 5 codelets. This division of Behavioral Codelets
in two groups, is one of the innovations developed during
the development of TROCA, which required an enhance-
ment of MECA'’s specification. The original MECA speci-
fication (Gudwin, 2016; Gudwin et al., 2017) was extended
to allow the execution of sequences of actions by System 1.
Also, the Behavioral Codelets are feeding two different
kinds of memory: Imagination Memory and Motor Mem-
ory. In the Imagination Memory, the Multi-step Behavior

Codelets generate plans and plan requests. In the Motor
Memory, the Action Behavior Codelets generate actuation
signals, which will be later collected from the Motor Code-
lets to transform these signals into actions.

Finally, on the right, we can see the Motor Codelets,
which are responsible for collecting actuation signals from
Motor Memory and transforming these into actions. In our
case, we do this by using ROS topics, ROS services and
writing to network sockets.

In the next sections, we describe the many codelets nec-
essary for fulfilling these specifications.

4.1.1. The Sensory Codelets

The Sensory Codelets are those responsible for collect-
ing data from environment, in order to start the causal
chain which might result in the fulfilling of the system’s
goals. In our case, most of these systems will be collected

186 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

from ROS, because even though we are running a simu-
lated experiment, we are connecting the simulated environ-
ment with ROS topics and services. This means that, in the
future, we might replace the simulated environment with
real transportation robots and we expect the system to
require just a minimum adaptation in order to operate.
Besides ROS, we are also using sockets from the opera-
tional system to implement network communication. The
transportation robots are expected to communicate among
each other, and with the General Manager, a central repos-
itory of information with a collective knowledge about all
transportation requests in the factory, the localization of
all known packages, a map of the environment, with the
localization of known shelves and processing cells and all
the identified AR-Tags and their meaning.

The following Codelets are specified to collect the neces-
sary information from the environment:

e Camera Codelet

e Laser Range Finder Codelet
e Socket Codelet

e Battery Codelet

e SLAM Codelet

e Feedback Codelet

A detailed view of the Sensory Codelets and its connec-
tions to environment and Sensory Memory is available in
Fig. 4.

The Camera Codelet is responsible for capturing infor-
mation from the robot’s cameras. The transportation robot
has two RGB cameras, each one pointed to a different side

&

ROS

’ Sensory
Memory

Camera
Codelet

Laser Range Finder
Codelet

Socket
Codelet

®

D
&)
&)

)

Battery
Codelet

SLAM
Operational Codelet
System
Feedback
Codelet

Fig. 4. A detail of the Sensory Codelets.

Fig. 5. A detail of the transportation robot cameras.

of the robot (see Fig. 5). The purpose of these cameras is to
feed a module using the ARUCO library®, such that it is
able to detect the AR-Tags to extract their ID and refer-
ence frame’s pose and posture in the environment. The
Camera Codelet is not reading the image of these cameras,
though.

The pipeline in Fig. 6 details the flow of information
until the Camera Codelet can process its information.
The images from both left and right cameras of each Trans-
portation Robot is captured by V-REP in each simulation
cycle, and grabbed by the Simulation Manager (see Sec-
tion 5), using the V-REP RemoteAPI. The Simulation
Manager then publishes these images as ROS nodes. The
ARUCO library collects both images and detects all the
AR-Tags appearing in those images. It then publish new
ROS topics, with a list of detected AR-Tags in both of
its sides. The output of ARUCO is a String ROS topic,
with a JSON® array containing two lists: the list of detected
AR-Tags in the left side and the list of AR-Tags in the right
side. Each AR-Tag is represented by a Pose object and a
numeric identifier (id) decoded from the AR-Tag. A Pose
is a 7-tuple array, containing 3 float values representing
the position (x,y,z) of the tag, in coordinates relative to
the camera position, plus 4 more float values with the
quaternion describing the rotation of the AR-Tag relative
to the camera position. So, each Pose is a 7-tuple of float-
ing point numbers describing the position and orientation

4 The ARUCO library is a package within OpenCV, an open source
library of programming functions mainly aimed at real-time computer
vision.

5 JSON (JavaScript Object Notation) is a lightweight data-interchange
format.

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197 187

S

S
&
Transportation RemoteAP! Simulation
Right Camera H';bot V-REP Manager

Left Camera

ROS

ARUCO

Fig. 6. The pipeline of information for the Camera Codelet.

of a detected AR-Tag. Each numeric id is unique to a dif-
ferent object in the whole system. We have numeric ids for
every important object in the environment which needs to
be identified: packages, shelves, processing stations, charg-
ing stations and robots.

This JSON string is the input for the Camera Codelet.
The output of the Camera Codelet is then a proper Java
representation of this list of poses and tag ids.

The Laser Range Finder Codelet is responsible for cap-
turing information from the robot’s laser scanners. The
transportation robot counts with two Sick S300 laser scan-
ners, one on the front of robot and other on the back.
These range finders are positioned at 45° on the corners
of the MIR100 and are able to scan 270° around. A sche-
matic view of the sensor reading can be seen in Fig. 7.

The input of the Laser Range Finder codelet is a repre-
sentation in ROS with the measurings from each laser scan-
ner. Each laser scanner receives a vector with 541 elements,
where each element represents the distance between the
laser scanner and an obstacle at the environment, in a
sweeping interval of 0.5° between each measuring. The
maximum measurable distance is 30 meters.

All the important objects are expected to be detected
with the Camera Codelet. The goal of the Laser Range Fin-
der Codelet is to provide additional information allowing
the detection of objects which do not have assigned AR-
Tags, like obstacles in the environment, human beings,
and possibly important object where the AR-Tag is not vis-
ible, as e.g. shelves or robots in particular positions where
their AR-Tags are occluded or partially occluded, avoiding
their decoding.

Fig. 7. Schematic of the laser range finder readings in the transportation
robot.

The goal of the Socket Codelet is to provide communi-
cation between the transportation robot and the General
Manager, and also among the transportation robots. There
is also a Socket Motor Codelet, with the same purpose. The
idea is to be able to send requests to the General Manager
or to other robots, and be able to receive the response to
these requests, or either to receive requests from the Gen-
eral Manager or from other robots.

The Battery Codelet captures from ROS messages the
current level of the batteries, in terms of a percentage value.

The SLAM Codelet is responsible for providing a map
of the known environment and the current robot position.
It relies on ROS SLAM packages which, based on the
Laser Range Finder information and odometry informa-
tion, returns an environment map and a position, in terms
of (x,y,0) which is supposed to be the current robot posi-
tion in 2D absolute coordinates. In a real robot, the odom-
etry data comes from motion sensor (encoders and Inertial
Measurement Unit), to estimate the change in position
over time. In our simulation, we are able to get the robot
position directly from V-REP. The real process of odome-
try is sensitive to errors due to the integration of velocity
measurements over time to give position estimates. Rapid
and accurate data collection, instrument calibration, and
processing are required in most cases for odometry to be
used effectively. Additional methods might use landmarks
at the environment and the aid of laser range-finder data
and vision from cameras. Because in this study our goal
is not to focus on these problems, we are making a simpli-
fication and just using the V-REP position as if we already
have a precise enough system of odometry.

The Feedback Codelet is another codelet which needs
to be understood together with some of the Motor Code-
lets. The whole idea is that some of the commands sent
through motor codelets might require some time to be
processed. For example, the MIR100 Motor Codelet
might command the robot to move to a given position,
or the URS5 Motor Codelet might command the robot
to pick a package at a given location. The Feedback
Codelet is responsible for providing the feedback after
these commands are concluded. This information is stored
in ROS Messages, which are decoded by the Feedback
Codelet and made available for the architecture. The fol-
lowing feedback is available:

e pickCommand concluded

e placeCommand concluded

e moveToPosition concluded

e Internal Slots Occupation: for each robot internal slot,
the codelet returns the package occupying it. If the slot
is free, a null package is said to be occupying the slot.

4.1.2. The Perception Codelet

The Perception Codelet unifies all the sensory informa-
tion, abstracting part of this information and deriving
high-level concepts, unified into a single object, called the

188 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

Percept. The Percept is then used as a source of infor-
mation in many codelets in System I and System 2.

4.1.3. The Motor Codelets

The Motor Codelets are the codelets responsible for
commanding action at the environment. The following
codelets are available:

e The MIR100 Codelet

e The URS5 Codelet

e The Socket Motor Codelet
e The Display Motor Codelet

A detailed view of the Motor codelets can be seen in
Fig. 8.

The MIR100 Motor Codelet uses a ROS service avail-
able in the ROS system, to command the movement of
the robot to a given pose (x,y,0). The codelet simply exe-
cutes the moveToPosition ROS service. The ROS ser-
vice is responsible for controlling the MIR100 velocity on
both wheels until the robot reaches the assigned position.
As soon as the robot reaches the position, the ROS service
sends a moveToPosition concluded ROS message,
which is captured by the Feedback Codelet.

The URS Motor Codelet uses two ROS services available
in the ROS system:

e The pickCommand (pose,slot) command
e The placeCommand (pose,slot) command

The pickCommand service tries to pick a package at the
pose location, and store the package internally at its inter-
nal slot number slot. The placeCommand service tries
to pick the package at the internal slot number slot and
place it at the pose location. The location pose is defined
relatively to the robot position, and not in world coordi-
nates. This position usually will be provided by the AR-
Tag of a package perceived by the robot.

Motor Memory

[o]

MIR100 Motor
Codelet

[<1 ROS
proc()

URS5 Motor
Codelet

o
)

Socket Motor
Codelet

o

' Display Motor
' Codelet

MIR100
Command

7

URS
Command

0
7

Operational
System

Fig. 8. A detail of the Motor Codelets.

The Socket Motor Codelet is the dual of the Sensory
Socket Codelet, for providing socket communication
between the robot and the General Manager, or to other
robots.

The Display Motor Codelet is previewed for communica-
tion with human users. The idea is to have a display on the
top of the robot where general information regarding the
robot is made available for information purposes. Among
the information we have:

e The current destination

e The list of future destinations already scheduled

e The list of packages being handled

e The current motivation affecting the robot

e The name of the robot, if the human user wants to com-
municate with the robot using its smart application

4.1.4. The Motivational Codelets

The Motivational Codelets are the main source of moti-
vational behavior in the system. Each motivational codelet
corresponds to one of the needs assigned to the system. The
needs are related to the different tasks which can be
assigned to the robot, and are expected to be weighted in
order to generate the final behavior to be executed by the
robot. The robot have autonomy to decide what to do at
each given instant, and this autonomy is essentially
attached to how much these needs are satisfied or not,
depending on the current situation. The measure of the dis-
satisfaction of each need is said to be a drive. Each motiva-
tional codelet is responsible for generating this drive, based
on the robots perception of the situation. A detailed view
of all the motivational codelets can be seen in Fig. 9.

The Energy Motivational Codelet is responsible for eval-
uating if the need of energy of the robot is under a satisfy-
ing level. If the energy level is enough for the robot to
provide service, the calculated drive is low. If the energy
level is too low for providing service, the drive starts to
increase. If this drive is too high, the robot might opt to
stop everything and move to an energy docker to recharge
its batteries.

The Danger Avoidance Motivational Codelet is responsi-
ble for calculating the danger avoidance drive. The purpose
of this drive is to provide some aid to the “Avoid Coli-
sions” Behavioral Codelet, such that it can integrate with
all the other behaviors involving the robot’s motion around
the environment. This policy is necessary, because all the
other drives involving the robot’s motion are blind regard-
ing possible collisions with objects from environment. This
drive, together with the “Avoid Colisions” Behavioral
Codelet, provides means for making small changes in the
trajectory of the robot, whatever is this trajectory, to main-
tain a necessary distance from possible obstacles at the
environment. The drive value is computed based on the
information from the laser rangefinder and the current
velocity vector. If the distance, in the direction of the veloc-
ity vector is beyond a given threshold, the drive value is

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197 189

Energy Motivational
Codelet

: Drives Memory
= Proc() . L

%
%

Q

@

Danger Avoidance
Motivational Codelet

Transportation
Motivational Codelet

@@

Curiosity
Motivational Codelet

Consistency
Motivational Codele

: o1
e proc() &

Human Care
Motivational Codelet

: proc()

Communication
Motivational Codele

Self-Criticism
Motivational Codelet

Fig. 9. A detail of the Motivational Codelets.

low. Its value starts increasing while this distance starts to
become smaller and is maximum when an imminent colli-
sion is detected.

The Transportation Motivational Codelet provides the
main source of motivation in the system. The main need
expected for the robot is to provide package transporta-
tion. But because the robot might have also other duties,
as environment exploration, warehouse inventory, energy
management, dealing with human operators and self-
monitoring and benchmarking, the transportation drive is
calculated based on the number of open requests for trans-
portation reported by the General Manager. If the number
of open requests is low, then this drive is low. As soon as
this number starts to increase, the transportation drive also
starts to increase.

The Curiosity Motivational Codelet is related to the
robot’s need to explore the environment. This need is basi-
cally set up by two different reasons. The first reason is due
to a still incomplete map of the environment. The second
reason is due to a long time since the robot visited partic-
ular areas of the factory. The Curiosity Motivational Code-
let basically defines the curiosity drive, which will feed the
Exploration Codelet, making the robot to go to regions of
the factory where it has never been, or regions where there

is a long time since its last visit to it. The rationale for this
second reason for curiosity is to make the robot to visit
regions of the factory, where the storage of packages might
have been changed since its last visit. This provides support
for the Warehouse Inventory task, in collaboration with
the Consistency Motivational Codelet below. Basically,
going to these regions, there is a greater chance to detect
changes in the package storage, feeding the Communica-
tion Behavioral codelet to report these changes to the Gen-
eral Manager.

The Consistency Motivational Codelet is responsible for
generating the Consistency Drive. This drive is associated
to the warehouse inventory task, which should be per-
formed all along other tasks. This means that, while travel-
ing around the factory, the robot should be alert to things
which are not where they were supposed to be. The consis-
tency drive measures if things are as expected. This drive is
calculated while the robot detects AR-Tags of both Loca-
tions and Packages and verifies if the Packages are stored
in the correct Locations, as informed from the General
Manager, or empty. Particularly the codelet tries to detect
the following situations:

e A Location which should be occupied by a package is
empty

e A Location which should be occupied by a given pack-
age is occupied by another package

e A Location which should be empty is occupied by a
package

If any of these situations occur, the consistency drive
raises its level, signalizing the Communication Behavioral
Codelet the necessity to send a message to the General
Manager informing the situation.

The Human Care Motivational Codelet is a second level
security measure to the danger avoidance mechanism. The
Danger Avoidance Motivational Codelet is measuring the
distance between the robot and any possible obstacle.
The Human Care Motivational Codelet estimates if this
obstacle is due to a human being. If the robot detects the
presence of human beings which could be harmed due to
the robot’s action, this drive should increase, following
the distance detected to the closest human presence. Differ-
ently from the case with the Danger Avoidance drive, the
expected behavior to the human care drive is for the robot
to stop and wait until the distance to human beings goes
beyond a security limit.

The Communication Motivational Codelet is responsible
for the Communication Drive, i.e., the drive to respond
to particular messages received by the Socket Sensor Code-
let. If a received message requires the robot to provide a
response, then this drive will be increased, being equal to
0 if there is no need to communicate.

The Self-Criticism Motivational Codelet is responsible
for generating the self-criticism drive, which is responsible
for the behavior necessary to fulfill the Self-Monitoring
and Benchmarking task. This drive will basically motivate

190 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

the Display Writing Codelet to elaborate performance
statistics and send them to the robot display.

4.1.5. The Behavioral Codelets

The Behavioral Codelets are responsible for generating
the behavior performed by the transportation robot. An
overview of all the Behavioral Codelets can be seen in
Fig. 10. In the TROCA behavioral system, we are introduc-
ing a new contribution to the MECA architecture. In the
original MECA architecture (see (Gudwin et al., 2017)),
all the behavioral codelets were feeding Memory Contain-
ers in the Motor Memory. This means that two or more
behavioral codelets feeding the same Memory Container,
would be competing for generating their prescribed action,
using a dynamic subsumption scheme (Nakashima &
Noda, 1998; Hamadi et al., 2010; Heckel & Youngblood,
2010).

Using the old scheme in MECA, the possible sequences
of different behaviors are always due to a change in activa-
tion of a given behavior. As soon as the activation of a
behavior becomes the highest one, this behavior wins the
competition, and the behavior is changed to the new one.
This process is always dynamic and unpredictable in nat-
ure, does not allowing the creation of habitual sequences

Go To Energy
Spot Codelet

Providle //
Transportation
Codelet

Motor Memory

Exploration
Codelet

MIR100
Command

Command
Move to Location
Codelet

béTransmitted |

Communication
Codelet

Display Writing
Codelet

Fig. 10. A detail of the Behavioral Codelets.

of behavior which repeats itself, or which are coordinated
in order to achieve a desirable state. With the current
scheme, we introduced the possibility of having automatic
sequences of behavior, which might be executed in a pre-
dictable way, leading the system to a desired situation. This
is equivalent of having high level behaviors, which might be
decomposed into a sequence of low level behaviors. These
high-level behaviors might compete among them, in order
to drive the final behavior of the robot.

Thus, our new contribution to MECA splits the behav-
ioral codelets into two different categories:

e Multistep Behaviors
e Action Behaviors

The difference between multi-step behaviors and actions
is that multi-step behaviors do not directly feed actuators
in the Motor Memory. Instead, they feed objects in an
Imagination Memory, which can then be used to trigger
further Action Behaviors. Action Behaviors, from their
side, work just like the old Behavioral Codelets in MECA,
directly generating commands to actuators in the Motor
Memory.

4.1.6. Multistep behaviors

The multi-step behaviors in the TROCA architecture
can be seen in detail in Fig. 11.

The overall scheme for multistep behaviors requires two
different Memory Container as output: the PlanRequest
and the Plan. The idea is that each multi-step behavior is
composed of a sequence of Action Behaviors. This
sequence is represented into a Plan. We have then two dif-
ferent possible strategies for generating these Plans. These
plans might be static, i.e. they might be defined ““a priori”,
and inserted in the code of the Multi-step behavioral code-
lets. Alternatively, they might be dynamic. In this case, we
might require the collaboration of System 2 to generate the
plans. At the beginning, the multi-step behavioral codelets
do not have yet a plan. In this case, it generates a PlanRe-
quest, which will be sent to System 2, requesting that it gen-
erates a plan for the multi-step behavior. System 2 will

(& [

Activity
Tracking
Codelet

Go To Energy
L Spot Codelet

Provide
Transportation
Codelet

= B]

Exploration
Codelet MIR100 Motor

MIR100 Codelet

Command

—

Fig. 11. A detail of the multistep Behavioral Codelets.

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197 191

generate this plan, and would send it through the Global
Workspace, being received by the multi-step behavioral
codelet in its Global Input port. As soon as the multi-
step behavior has a plan, it is now able to deliver the plan
to the Plan Container. The many Plans, provided by all the
multi-step behavioral codelets, will compete to each other,
and the output of Plan Container will be the Plan with the
highest activity level, being the local winner. The winner
Plan will feed the Action Behavior codelets, making them
act on the final Motor codelets, finally affecting the system.

The structure of a Plan can be seen in detail in Fig. 12.
As can be seen in Fig. 12, a Plan is a sequence of Plan-
Steps, and each PlanStep is defined by a Behav-
iorName and a set of BehaviorParameters. A Plan
also have a CurrentStep, which controls the execution
of the P1an. The execution of the selected P1lan is tracked
by the Activity Tracking Codelet (see Fig. 11), which based
on the information given by the Percept, defines if the
terminationCondition of a given step already con-
cluded, and if the preCondition of the next step is
already valid, increments the CurrentStep, marking
the next step in the plan as the current one, as suggested
in the bottom of Fig. 12. The Plan, together with its Cur-
rentStep which defines the current PlanStep, will be
now the input of the many Action Behavior Codelets being
commanded by the Plan. These Action Behavior Codelets
will identify which is the current P1anStep and will check
if the BehaviorName is their own. In the case there is a
match, they will use the available BehaviorParameters
for the PlanStep and provide a command in the Motor
Memory.

In TROCA, we have 4 Multistep Behavioral Codelets,
which compete to each other in order to command the
robot:

e The Go To Energy Spot Codelet
e The Avoid Colision Codelet

e The Provide Transportation Codelet
e The Exploration Codelet

The Go To Energy Spot Codelet is responsible for creat-
ing a plan of actions moving the robot from its current
position to the nearest reachable Recharging Station and
staying there until the batteries are recharged. The Plan
generated by this codelet is basically a sequence of poses
(x,y, 8) which will be parameters for the Move To Location
Codelet, remembering that the Move To Location Codelet
is blind regarding possible obstacles, and providing the
robot moving to the indicated pose in a straight line.
Depending on the activity value of the energy drive, the
activity level for this P1lan should be higher or lower. In
the case the battery level is too low, the activity level of this
Plan should be high, and possibly this plan will be the
winner.

The Avoid Collision Codelet is responsible for creating
small corrections in the route when Plans coming from
the Go To Energy Spot, Provide Transportation and
Exploration Codelets puts the robot, for some reason, in
a route of a possible collision. Usually a P1lan created by
this codelet is made of a single PlanStep, moving the
robot to a slightly different position in order to avoid a pos-
sible collision. Whenever a plan created by this codelet is
created, it usually have the highest activity level, in order
to subsume all other plans, and avoid an imminent
collision.

The Provide Transportation Codelet is responsible for
creating plans suitable to provide the transportation of a
package, attending a transportation request. These plans
are the most complex among all other plans, because they
involve moving the robot to the pick station, picking the
package, storing the package internally within the robot,
moving to the destination station, picking the package
from its internal location within the robot and placing
the package in its destination slot.

CurrentStep

Plan

i BehaviorParameter

PlanStep

+ preCondition(): boolean

+ terminationCondition(): boolean

BehaviorName

A
p: Plan d: Drive po: Plan
r: PlanRequest
Multistep
Behavioral
Codelet
+ index: int
Ty
A B C

q all B [|c

Step Tracking

Fig. 12. The structure of a plan in a multistep Behavioral Codelet.

192 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

The Exploration Codelet is responsible for creating plans
moving the robot to different locations in the factory, with
the purpose of either exploring parts of the factory which
are still unknown, or going to parts of the factory where
there is a long time since the last visit. In this last case,
the purpose is to perform warehouse inventory, allowing
the discovery of packages stored in wrong locations or
missing packages. The Exploration Codelet usually creates
simple Plans, usually only moving the robot to specific
locations, using a sequence of Move To Location actions.

4.1.7. Action behaviors

Differently from the Multistep Behavioral Codelets,
Action Behavioral Codelets are responsible for controlling
motor variables in the Motor Memory. Action behaviors
corresponds directly to the older Behavior Codelets speci-
fied in the MECA Cognitive Architecture. Differently from
the old MECA configuration, though, Action Behaviors
might have as inputs not only drives from the Drives Mem-
ory, but also Plans stored in the Imagination Memory. A
detail of the Action Behaviors used in the TROCA archi-
tecture can be seen in Fig. 13.

It is interesting to notice that all Action Behaviors
receive as input the Plan coming from the Multi-step
Behavioral Codelets. More than that, the Move to Loca-
tion, Pick and Place Action Codelets do not receive any
input from drives. Only the Communication Codelet and
the Display Writing Codelet receive inputs from drives.
All the Action Behavioral Codelets are described in the
sequence.

The Move To Location Codelet is responsible for deter-
mining the commands to be sent to the MIR100 compo-

frrre e a——————

Codelet

Motor Memory

Exploration
Codelet

MIR100
Command

Move to Location
Codelet

Communication
Codelet

Display Writing
Codelet

Fig. 13. A detail of the action Behavioral Codelets.

nent of our Transportation Robot. This codelet uses as
input the Plan output from the Multi-step Behavioral
Codelets, and if some BehaviorStep has as a Behav-
iorName a symbol specifically addressing the Move To
Location codelet, than it collect the BehaviorParame-
ters identifying the location to move the robot to, and
creates a request for the moveToPosition ROS service
to be delivered by the MIR100 Motor Codelet.

The Pick Codelet, similarly, receives as input the Plan
output from the Multi-step Behavioral Codelets, and if
some BehaviorStep has as a BehaviorName a symbol
specifically addressing the Pick codelet, than it collects the
BehaviorParameters identifying both the pose from
which a package should be picked up and the internal slot
where the package should be stored, creating a request for
the pickCommand (pose,slot) ROS service to be deliv-
ered to the URS5 Motor Codelet.

Also, the Place Codelet, receives as input the P1lan out-
put from the Multi-step Behavioral Codelets, and if some
BehaviorStep has as a BehaviorName a symbol
specifically addressing the Place codelet, than it collects
the BehaviorParameters identifying the internal slot
where the package should be picked and the pose to which
a package should be placed, and creates a request for the
placeCommand (pose,slot) ROS service to be deliv-
ered to the URS Motor Codelet.

The Communication Codelet is responsible for delivering
messages through sockets for other robots and for the Gen-
eral Manager. It uses both the drives computed by the
Consistency Motivational Codelet and the Communication
Motivational Codelet for preparing and sending these
messages.

Finally, the Display Writing Codelet receives the drive
created by the Self-Criticism Motivational Codelet and
uses it to send messages to be printed in the Robot Display.

4.2. The System 2 specification

In the current version of the Cognitive Agent, System 2
is dedicated to generating plans to fulfill requests coming
from System I. An overview of System 2 can be seen in
Fig. 14. Basically, these requests come from an Attention
Codelet on the right side of the diagram, creating a goal
in the Goal Memory. From the left bottom, another

System 2
{~F
Map Updater Codelet
of o of —
g Pl B 2 aj
Consciousness
Planning Codelet {!
o o
| 2 proc()

Plan Request

Saliency Attention
Codelet Attention Codelet

Fig. 14. A detail of the System 2 Subsystem.

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197 193

Attention Codelet creates a Current Perception at the Cur-
rent Perception Memory. Then, the Planning Codelet is
able to create a plan and store it in the Plan Memory. After
that, the Consciousness Codelet picks this plan and broad-
casts it back to System 1.

It is important for the reader to compare TROCA’s Sys-
tem 2 with the System 2 available in MECA (see (Gudwin
et al., 2017)). We are not using here many of the resources
available in MECA, like the Episodic Memory and the
Expectation subsystems. We intend to use these, in future
versions of TROCA, though. They are not being included
here, because the first version of TROCA is meant to be
simpler, attending the specifications. Further enhance-
ments will extend the current architecture to include these
features.

Even though System 2 processes are completely inde-
pendent of System I processes, they are connected in a
symbiotic way, in which System I provides the information
for System 2 to start working, and System 2 provides the
information required for System I to continue its opera-
tion. In the sequence, we detail the overall process, by
describing the performance of each of the System 2
codelets.

The Saliency Attention Codelet is one of the input ports
to System 2, selecting from the Percept generated by the
Perception Codelet, the information necessary for the Plan-
ning Codelet to effectively generate its plans. A detail of the
Saliency Attention Codelet can be seen in Fig. 15.

The second input port to System 2 is the Plan Request
Attention Codelet. A detail of this codelet can be seen in
Fig. 16. As described previously, whenever one of the Mul-
tistep Behavior Codelets has an invalid or outdated plan, it
generates a plan request in the Imagination Memory,
which is detected by the Plan Request Attention Codelet.

Planning Codelet

/" Current Perception | (
: Memory

[

I

Saliency Attention
Codelet

Fig. 15. A detail of the saliency Attention Codelet Codelet.

5
Consciousness
Codelet

o

Plan Request
Attention Codelet

Global Workspace

/

Fig. 16. A detail of the plan request Attention Codelet Codelet.

proc)

Map Updater Codelet @

I5]
proc() 5 ‘ ‘

Planning Codelet P

! Current Perception |,
Memory

!

proc() [

Fig. 17. A detail of the map updater and Planning Codelets.

From the PlanRequest, the Plan Request Attention
Codelet identifies the Goal to be reached, which is neces-
sarily different, depending on the Multistep Behavior
Codelet it originates from. For example, for the Go To
Energy Spot Codelet, the Goal is to have the robot’s bat-
tery level completely replenished. For the Avoid Collision
Codelet, the Goal is to be sufficiently far from the identi-
fied collision object, such that a collision is avoided. For
the Provide Transportation Codelet, the Goal is to have
the identified package located in its destination Location.
And for the Exploration Codelet, the Goal is to be located
in a defined position of the factory.

The Plan Request Attention Codelet then represent this
Goal in a way it can be used for the planning system and
stores it in the Goal Memory.

A detail of the Map Updater Codelet can be seen in
Fig. 17.

The Map Updater Codelet is responsible for picking up
the SLAM material available in the Current Perception
Memory, which provides a part of World Map (as Per-
ceived by the Perception Codelet and made available in
System 2 by the Saliency Attention Codelet), and updating
the known Environment Map in the Visuo-Spatial Mem-
ory. This Map is a list of all known objects at the environ-
ment, defined by their type, position and pose. The Map is
important for the Planning Codelet to generate its plans.

The Planning Codelet is responsible for generating the
Plans requested by the Multistep Behavioral Codelets.
A detail of the Planning Codelet can be seen in Fig. 17.
This Plan is constructed using SOAR (Laird, 2012), as
the standard planning strategy in MECA (Gudwin et al.,
2017). Before calling SOAR, though, the Planning Codelet
first grabs the information coming from the Current Per-
ception Memory, the Visuo-Spatial Memory and the Goal
Memory, transforming all of them in WMEs®, such that
they can be inserted in SOAR’s input link. After SOAR
halts, the Planning Codelet incorporates SOAR’s output
link information in order to build a Plan object, which
is inserted in the Plan Memory.

¢ WMEs, or Working Memory Elements, are the canonical representa-
tion structure used within SOAR.

194 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

lemory

M H
@ Goal Memory

©)

Consciousness
Codelet

(c]

Plan Request
Attention Codelet

1 to All Global Inputs

Fig. 18. A detail of the Consciousness Codelet.

The Consciousness Codelet is responsible for scanning all
the Working Memory and finding suitable information to
be broadcasted to the Global Workspace, and from there
to all Global Inputs of all Codelets in the system, following
the consciousness mechanism provided in Baar’s Global
Workspace Theory (Baars, 1988). A detail of the Con-
sciousness Codelet can be seen in Fig. 18.

Most of the times, the Consciousness Codelet will be
selecting Plans from the Plan Memory and broadcasting
it such that the requester Multistep Behavioral Codelet is
able to identify a response to its request, picking the plan
and preparing it for execution.

5. The software implementation

In Section 4 we developed a detailed specification for the
TROCA Cognitive Agent, controlled by an instance of the
MECA Cognitive Architecture. In order to run our exper-
iments, binding our TROCA agent to the simulated Trans-
portation Robots in V-REP, we had to develop a quite
sophisticated software implementation, in order to attend
the multiple specifications provided in Sections 3 and 4.
In this section, we detail the software infrastructure we
had to develop in order to run the simulations.

Fig. 19 shows how the different components of the archi-
tecture should communicate to each other. All the Trans-
portation Robots should communicate to the General
Manager, and also to each other. From the other side, all
the Human Operators should communicate to the General
Manager.

Using only this perspective, the overall distributed sys-
tem should contain, at least, the following software
components:

e The General Manager
e The TROCA Agent
e The Smartphone Application

But there were many other specifications that had to be
considered. First, we were not running a real robotic sce-

([
H1: HumanOperator ’

A
GM: GeneralManager ‘
\ ’

H2: HumanOperator

TR1: TransportationRobot U

/

TR2: TransportationRobot

TRn: TransportationRobot Hn: HumanOperator

Fig. 19. The general architecture.

nario, but a simulated one, using the V-REP simulator.
Because our factory scenario is rather complex, we envi-
sioned that a single V-REP instance would not have
enough computational power to simulate the whole fac-
tory. With this in mind, we envisioned a distributed simu-
lation configuration, where multiple V-REP instances
should be running in different machines. For managing
these multiple V-REP instances, we decided to create a
Simulation Manager software, responsible for integrating
all V-REP instances into a unified scenario. Besides that,
we had the specification to use ROS (Robot Operating Sys-
tem) to communicate between the TROCA Agent con-
troller and its hardware (real or simulated). By using
ROS, we were anticipating a future possibility of having
the TROCA Agent controlling real versions of the robot,
with a minimum refactoring of the code. But the use of
ROS comes with a cost. Even though, in principle ROS
should be available for multiple kinds of operational sys-
tems, in reality the versions of ROS are very much tied
to Linux Ubuntu specific versions. The version of ROS
we decided to use (Melodic Morenia) is particularly tied
to Ubuntu 18.04 version. In order to not be tied to this
operational system, we decided to use the Docker tool.
Docker is a software solution where you package software
into standardized units, called containers, for development,
shipment and deployment, embedding into them every-
thing the software needs to be run, including the opera-
tional system. Differently from a virtual machine, where a
whole machine is virtualized, with a corresponding opera-
tional system, a Docker container image is a lightweight,
standalone, executable package of software that includes
only the software needed to run an application: code, run-
time, system tools, system libraries and settings. Depending
on the host operational system, a Docker container might
have or not some sort of virtualization, but it is transparent
to the user.

The final simulation arrangement took the configuration
pictured in Fig. 20.

5.1. Simulation manager

The Simulation Manager (SM) is responsible for many
different tasks regarding the simulation. It was built using
a Python stack encapsulated in a Docker container,
together with ROS and all its required environment.

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197 195

General Manager

S
\

SimulationManager

Remote API

- o E Em Em mm mm o mm Em my

=) (=) (=

Fig. 20. The software packages architecture.

Besides coordinating the simulation in all V-REP instances,
the Simulation Manager is also responsible for the creation
and management of the simulation scenario, positioning
the many items available within the factory:

e Shelfs (static, not created or moved during simulation);

e Processing units (static, not created or moved during
simulation);

e Charging stations (static, not created or moved during
simulation);

e Packages (dynamic, created and moved during
simulation);
e Robots (dynamic, created and moved during
simulation).

Besides that, the Simulation Manager can also be used
to randomly generate different patterns of package trans-
portation requests, allowing the configuration of different
simulations, with different levels of transportation
demands.

After initiating a simulation, with a factory configura-
tion and a prescribed traffic of packages demand, the Sim-
ulation Manager starts many different processes
responsible for running the experiment (see Fig. 21). The
Simulation Manager starts the ROS Manager process,

PublisherProxy
"~ subscriberProxy

ros_config.ini

SimulationManager

VREPsManager

Fig. 21. The simulation manager framework.

responsible for managing ROSProxy, capable of publishing
and subscribing to ROS topics, and also managing ROS
services. Moreover, the Simulation Manager starts all V-
REP instances, in a different set of machines, and starts
controlling them.

5.2. General Manager

The General Manager (GM) is a global database, shared
by all the transportation robots, and responsible for
managing and storing all the objects perceived and
reported by the transportation robots, during its execution.
The General Manager was implemented using a Node.js
+ MongoDB stack, so that information is persistent and
can be used to generate statistic reports as an outcome of
the simulation. Fig. 22 shows the knowledge base of the
General Manager. Among the many concepts held by the
GM, the most important ones are the relations between
AR-Tags and packages, such that any agent, human or
robot, can at any time retrieve from the GM the ID and
location of a given package related to some AR-Tag, and
also a model of the human (Person) users, their roles and
contacts.

<<enumeration>>
‘TaggableObject

Package
ShelfPackageSiot
ShelfRow

u

Fig. 22. The general manager knowledge base.

196 R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197

5.3. TROCA Agent

The TROCA Agent software embeds the Cognitive
Architecture controlling each transportation robot in the
scene. It was built in Java, using the CST and MECA
libraries, also developed in Java. We also use the ROSJava
library, which provides TROCA with the access to the
ROS Topics and Services, controlled by the Simulation
Manager. Each robot runs its own instance of TROCA.

5.4. Human operators and the smartphone application

In the original specifications, human operators were
supposed to interact with the system, by walking in the
factory floor and communicating with the system using
Smartphone Applications. They were included because
human-robot interaction is a very important topic to be
addressed in an automatized factory with autonomous
robots. Nevertheless, for our simulation purposes, these
human operators are also simulated within V-REP, cross-
ing the way of the transportation robots and eventually
picking and moving packages, activities which must be
detected and discovered by the warehouse inventory task
of the robots. We didn’t really developed a Smartphone
Application for this purpose, but in a future implementa-
tion this is the way to go to introduce the interaction with
real humans in a real environment.

6. Conclusion

In this paper, we presented the development of a trans-
portation agent, using the MECA Cognitive Architecture
as a background, responsible for multiple assignments in
a factory floor. The experiment was constructed using the
V-REP robotic simulator, where a factory scenario was
built, using ROS as a background infrastructure for con-
trolling the robots. The TROCA cognitive agent was built
using the MECA Cognitive Architecture in Java language,
and the CST Cognitive Systems Toolkit. In this paper, we
focused in the description of our study case and in the
details of the cognitive architecture developed to control
the transportation robots. In a future publication, we pre-
tend to explore different simulation scenarios, with a
detailed analysis on the performance of the current archi-
tecture, under different demands, and describe the many
parameters which must be tuned in order for the architec-
ture to have different emphasis regarding the many simul-
tancous needs being addressed and how these needs
interrelate to each other in order to build a characteristic
behavior for our autonomous robot.

Acknowledgments

The authors thank Ericsson Research Brazil, Ericsson
Telecomunicagoes S.A. Brazil (Proc. FUNCAMP 4881.7)
and CEPID/BRAINN (Proc. FAPESP 2013/07559-3) for
supporting this research.

References

Adinandra, S., Caarls, J., Kosti¢, D., Verriet, J., & Nijmeijer, H. (2012).
Flexible transportation in warehouses. In Automation in Warehouse
Development (pp. 191-207). Springer.

Augello, A., Infantino, 1., Lieto, A., Pilato, G., Rizzo, R., & Vella, F.
(2016). Artwork creation by a cognitive architecture integrating
computational creativity and dual process approaches. Biologically
Inspired Cognitive Architectures, 15, 74-86.

Avery, E., Kelley, T., & Davani, D. (2006). Using cognitive architectures
to improve robot control: Integrating production systems, semantic
networks, and sub-symbolic processing. In 15th Annual conference on
behavioral representation in modeling and simulation (BRIMS). .

Baars, B. J. (1988). A4 cognitive theory of consciousness. Cambridge
University Press.

Barsalou, L. W. (2010). Grounded cognition: Past, present, and future.
Topics in cognitive science, 2(4), 716-724.

Benjamin, D. P., Lyons, D. M., & Lonsdale, D. W. (2004). Adapt: A
cognitive architecture for robotics. In /JCCM (pp. 337-338).

Brooks, R. A. (1986). A robust layered control system for a mobile robot.
IEEE Journal on Robotics and Automation, 2(1), 14-23.

Burghart, C., Mikut, R., Stiefelhagen, R., Asfour, T., Holzapfel, H.,
Steinhaus, P., & Dillmann, R. (2005). A cognitive architecture for a
humanoid robot: A first approach. In 5th IEEE-RAS International
conference on humanoid robots, 2005 (pp. 357-362). IEEE.

Christaller, T. (1999). Cognitive robotics: A new approach to artificial
intelligence. Artificial Life and Robotics, 3(4), 221-224.

Clark, A., & Grush, R. (1999). Towards a cognitive robotics. Adaptive
Behavior, 7(1), 5-16.

Evans, J. S. B. (2003). In two minds: Dual-process accounts of reasoning.
Trends in Cognitive Sciences, 7(10), 454-459.

Faghihi, U., Estey, C., McCall, R., & Franklin, S. (2015). A cognitive
model fleshes out kahneman’s fast and slow systems. Biologically
Inspired Cognitive Architectures, 11, 38-52.

Franklin, S., Madl, T., D’'mello, S., & Snaider, J. (2014). Lida: A systems-
level architecture for cognition, emotion, and learning. /EEE Trans-
actions on Autonomous Mental Development, 6(1), 19-41.

Girdenfors, P. (2014). The geometry of meaning: Semantics based on
conceptual spaces. MIT Press.

George, D., & Hawkins, J. (2009). Towards a mathematical theory of
cortical ~micro-circuits. PLOS Computational ~ Biology, 5(10),
€1000532.

Gudwin, R., Paraense, A., de Paula, S. M., Froes, E., Gibaut, W., Castro,
E., Figueiredo, V., & Raizer, K. (2017). The multipurpose enhanced
cognitive architecture (meca). Biologically Inspired Cognitive Architec-
tures, 22, 20-34.

Gudwin, R., Paraense, A., de Paula, S. M., Froes, E., Gibaut, W., Castro,
E., Figueiredo, V., & Raizer, K. (2018). An urban traffic controller
using the meca cognitive architecture. Biologically Inspired Cognitive
Architectures, 26, 41-54.

Gudwin, R. R. (2015). Computational semiotics: The background
infrastructure to new kinds of intelligent systems. APA Newsletter —
Philosophy and Computers, 15(1), 27-38, URL<http://www.apaonline.
org/resource/collection/EADESD52-8D02-4136-9A2A-
729368501E43/ComputersV15n1.pdf>.

Gudwin, R. R. (2016). Urban traffic simulation with SUMO - A Roadmap
for the beginners, Technical Report D3. Campinas-SP, Brazil: Univer-
sity of Campinas.

Hamadi, Y., Jabbour, S., & Sais, L. (2010). Learning for dynamic
subsumption. International Journal on Artificial Intelligence Tools, 19
(04), 511-529.

Heckel, F. W., & Youngblood, G. M. (2010). Multi-agent coordination
using dynamic behavior-based subsumption. In Sixth artificial intel-
ligence and interactive digital entertainment conference - AIIDE. .

Jilk, D. J., Lebiere, C., O’Reilly, R. C., & Anderson, J. R. (2008). Sal: An
explicitly pluralistic cognitive architecture. Journal of Experimental and
Theoretical Artificial Intelligence, 20(3), 197-218.

http://refhub.elsevier.com/S1389-0417(19)30477-2/h0005
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0005
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0005
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0005
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0010
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0010
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0010
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0010
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0010
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0015
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0015
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0015
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0015
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0015
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0020
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0020
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0020
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0025
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0025
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0025
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0030
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0030
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0030
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0035
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0035
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0035
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0040
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0040
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0040
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0040
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0040
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0045
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0045
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0045
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0050
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0050
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0050
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0055
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0055
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0055
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0060
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0060
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0060
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0060
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0065
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0065
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0065
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0065
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0070
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0070
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0070
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0075
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0075
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0075
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0075
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0080
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0080
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0080
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0080
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0080
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0085
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0085
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0085
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0085
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0085
http://www.apaonline.org/resource/collection/EADE8D52-8D02-4136-9A2A-729368501E43/ComputersV15n1.pdf
http://www.apaonline.org/resource/collection/EADE8D52-8D02-4136-9A2A-729368501E43/ComputersV15n1.pdf
http://www.apaonline.org/resource/collection/EADE8D52-8D02-4136-9A2A-729368501E43/ComputersV15n1.pdf
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0095
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0095
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0095
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0095
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0100
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0100
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0100
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0100
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0105
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0105
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0105
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0105
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0110
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0110
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0110
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0110

R. Gudwin et al. | Cognitive Systems Research 59 (2020) 179-197 197

Joseph, L. (2015). Mastering ROS for robotics programming. Packt
Publishing Ltd..

Kelley, T. D. (2006). Developing a psychologically inspired cognitive
architecture for robotic control: The symbolic and subsymbolic robotic
intelligence control system (ss-rics). International Journal of Advanced
Robotic Systems, 3(3), 32.

Kotseruba, 1., Gonzalez, O. J. A., & Tsotsos, J. K. (2016). A review of 40
years of cognitive architecture research: Focus on perception, atten-
tion, learning and applications’, arXiv preprint arXiv:1610.08602.

Kurup, U., & Lebiere, C. (2012). What can cognitive architectures do for
robotics? Biologically Inspired Cognitive Architectures, 2, 88-99.

Lacher, A., Grabowski, R., & Cook, S. (2014). Autonomy, trust, and
transportation. In 2014 AAAI Spring Symposium Series. .

Laird, J. E. (2012). The Soar cognitive architecture. MIT Press.

Lemaignan, S., Ros, R., Mosenlechner, L., Alami, R., & Beetz, M. (2010).
Oro, a knowledge management platform for cognitive architectures in
robotics. In 2010 IEEE/RSJ International conference on intelligent
robots and systems (pp. 3548-3553).

Levesque, H., & Lakemeyer, G. (2008). Cognitive robotics. Foundations of
Artificial Intelligence, 3, 869—-886.

Lieto, A., Chella, A., & Frixione, M. (2017). Conceptual spaces for
cognitive architectures: A lingua franca for different levels of repre-
sentation. Biologically Inspired Cognitive Architectures, 19, 1-9.

Lieto, A., Radicioni, D. P., & Rho, V. (2017). Dual peccs: a cognitive
system for conceptual representation and categorization. Journal of
Experimental & Theoretical Artificial Intelligence, 29(2), 433-452.

Moreno, A., Umerez, J., & Ibanez, J. (1997). Cognition and life: The
autonomy of cognition. Brain and Cognition, 34(1), 107-129.

Nakashima, H., & Noda, 1. (1998). Dynamic subsumption architecture for
programming intelligent agents. In Proceedings of the 3rd international

conference on multi agent systems - ICMAS (pp. 190-197). 1IEEE
Computer Society.

Osman, M. (2004). An evaluation of dual-process theories of reasoning.
Psychonomic Bulletin & Review, 11(6), 988—1010.

Paraense, A. L. O., Raizer, K., de Paula, S. M., Rohmer, E., & Gudwin,
R. R. (2016). The cognitive systems toolkit and the cst reference
cognitive architecture. Biologically Inspired Cognitive Architectures, 17,
32-48.

Raizer, K., Paraense, A. L. O., & Gudwin, R. R. (2012). A cognitive
architecture with incremental levels of machine consciousness inspired
by cognitive neuroscience. International Journal of Machine Conscious-
ness, 04(02), 335-352, URL<http://www.worldscientific.com/doi/abs/
10.1142/S1793843012400197>.

Rohmer, E., Singh, S. P., & Freese, M. (2013). V-rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
conference on intelligent robots and systems (IROS) (pp. 1321-1326).
1IEEE.

Samsonovich, A. V. (2010). Toward a unified catalog of implemented
cognitive architectures. BICA, 221, 195-244.

Sun, R. (2003). A tutorial on clarion 5.0’, Unpublished manuscript.

Thérisson, K., & Helgasson, H. (2012). Cognitive architectures and
autonomy: A comparative review. Journal of Artificial General
Intelligence, 3(2), 1-30.

Trafton, J. G., Hiatt, L. M., Harrison, A. M., Tamborello, F. P., II,
Khemlani, S. S., & Schultz, A. C. (2013). Act-r/e: An embodied
cognitive architecture for human-robot interaction. Journal of Human-
Robot Interaction, 2(1), 30-55.

Ziemke, T., & Lowe, R. (2009). On the role of emotion in embodied
cognitive architectures: From organisms to robots. Cognitive Compu-
tation, 1(1), 104-117.

http://refhub.elsevier.com/S1389-0417(19)30477-2/h0115
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0115
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0115
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0120
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0120
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0120
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0120
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0120
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0130
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0130
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0130
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0135
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0135
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0135
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0140
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0140
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0145
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0145
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0145
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0145
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0145
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0150
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0150
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0150
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0155
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0155
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0155
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0155
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0160
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0160
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0160
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0160
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0165
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0165
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0165
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0170
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0170
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0170
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0170
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0170
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0175
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0175
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0175
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0180
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0180
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0180
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0180
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0180
http://www.worldscientific.com/doi/abs/10.1142/S1793843012400197
http://www.worldscientific.com/doi/abs/10.1142/S1793843012400197
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0190
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0190
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0190
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0190
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0190
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0195
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0195
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0195
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0205
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0205
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0205
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0205
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0210
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0210
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0210
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0210
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0210
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0215
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0215
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0215
http://refhub.elsevier.com/S1389-0417(19)30477-2/h0215

	The TROCA Project: An autonomous transportation�robot controlled by a cognitive architecture
	Introduction
	MECA – The multipurpose enhanced cognitive architecture
	TROCA – A transportation robot controlled by a cognitive architecture
	TROCA agent cognitive model
	The System 1 specification
	The Sensory Codelets
	The Perception Codelet
	The Motor Codelets
	The Motivational Codelets
	The Behavioral Codelets
	Multistep behaviors
	Action behaviors

	The System 2 specification

	The software implementation
	Simulation manager
	General Manager
	TROCA Agent
	Human operators and the smartphone application

	Conclusion
	Acknowledgments
	References

