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Abstract

The remote associates test (RAT) depends heavily on memory
retrieval and is difficult for humans. A previous model of diffi-
culty on this task accounted for difficulty with a measure incor-
porating fan and association strength. This paper investigates
how the choice of knowledge base and agent strategy impact
difficulty on the task while providing a more comprehensive
account for human difficulty on this task in terms of cognitive
architecture components. The models we created, using the
cognitive architecture Soar, vary by using two distinct meth-
ods of retrieval from semantic memory. The knowledge bases
used in our models vary in that one uses only collocations and
compound words to form word associations while the other is
from a crowd-sourced dataset with unrestricted types of word
association. The model which best matches human difficulty
relies on spreading activation to drive retrieval and uses the
crowd-sourced dataset for its knowledge base.
Keywords: Semantic Memory; Remote Associates Test; Soar;
Association-based Retrieval.

Introduction
This paper investigates computational models for the remote
associates test (RAT) (Mednick, 1962). A single RAT prob-
lem consists of presenting three words and then asking the
test taker to respond with a forth word that is associated with
the three given words. For example, if “Swiss,” “cake,” and
“cottage” are the given words, then “cheese” would be the
correct response. Bowden and Jung-Beeman developed 144
RAT problems and tested human performance on those prob-
lems. To minimize any variance from confounding factors,
they used only compound word or phrase associations. For
example, the association between “deep” and “sleep” is valid
because those two words are often found next to each other.
The association between “deep” and “complex” is not valid
because “deep” and “complex” do not form a compound word
or common phrase even though they are associated through
similar meanings. The problems use common words, to avoid
vocabulary difficulties. To avoid priming effects, solution
words are never repeated or used as problem words. Three
additional example problems are shown in Table 1. The hu-
man study included four time limits: 2 seconds, 7 seconds,
15 seconds, and 30 seconds. The paper provides the mean
time to solution, the standard deviation for time to solution,

Word 1 Word 2 Word 3 Answer
man glue star super
dew comb bee honey
rain test stomach acid

Table 1: Example RAT items. The answer is associated with the
words through collocation or as a compound word.

and the percent of participants that correctly answered each
question in each time limit.

As opposed to generally characterizing word association
memory (Griffiths & Steyvers, 2002), Olteţeanu and Falomir
(2015) created a model intended to provide an account for hu-
man performance on those 144 RAT problems. Their model,
comRAT-C, was created within the CreaCogs architecture
(Olteţeanu, 2014) and was inspired by their account of cre-
ative problem solving which posits two extremes of behavior:
“creative search” and “productive representation construction
processes”. The “creative search” extreme is embodied in
comRAT-C, which uses associational links to search a knowl-
edge base for a representation that affords a solution to a
problem. Their knowledge base, called RAT-KB, builds off
of the most frequent 2-grams from the Corpus of Contem-
porary American English (COCA) (Davies, 2008). Associa-
tional links in RAT-KB are bidirectional.

In their analysis (Olteţeanu & Schultheis, 2017), they state
that the difficulty of this task depends on “(i) the frequency of
a query-answer association, as a form of associative strength
and (ii) the ratio between such an associative strength and the
number of answer associations.” We interpret these factors
as being analogous to how association strength (Anderson &
Pirolli, 1984) and fan (Anderson, 1974) govern retrieval dif-
ficulty. Their results were not in terms of providing a model
with matching timing and correctness. Instead, they show the
correlation between their difficulty estimates for RAT items
and human data, i.e., both human timing data and human cor-
rectness data on the RAT items. We interpret this as charac-
terizing the relative difficulty for humans by the ordering of
human solution time and human correctness.

We use their work as inspiration for our research but de-
viate in hopes of providing a more comprehensive analysis.
First, we note that RAT-KB includes only associational links
for collocations and compound words, and that all links are
bidirectional. Humans know many words and associations
beyond this constraint, and possibly do not have bidirectional
links between these words. Thus, our first step is to use a
larger, more comprehensive knowledge base, where links are
not necessarily bidirectional. We then determine how such
a knowledge base influences task performance, and more
specifically, relative problem difficulty. Second, we wish to
determine whether existing architectural long-term declara-
tive memory retrieval theories, as developed in ACT-R (An-
derson, 2009), are sufficient to accurately model RAT prob-
lem difficulty. In these declarative memory models, retrieval
is determined by base-level activation, association strength



(Anderson & Pirolli, 1984), and fan (Anderson, 1974). To
explore these questions, we develop models in Soar (Laird,
2012) whose long-term declarative memory retrieval mech-
anisms mimic those in ACT-R (Jones, Wandzel, & Laird,
2016). Third, there does not exist a simple, deliberate model
of retrieval that does not primarily rely on association strength
or fan that can be used as a baseline for comparison with the
association-based models. Thus, our third step is to develop
such a model in Soar which uses queries that are not influ-
enced by associate strength or fan except in the case of ties.

In the remainder of the paper, we proceed through these
steps, one by one. First, we introduce a new crowd-sourced
knowledge base. Second, we describe the two models we
developed in Soar. Third, we evaluate these models on the
new knowledge base as well as on a replica of the original
RAT-KB knowledge base, focusing on how well these models
(and knowledge bases) model human difficulty. The primary
result is that the more comprehensive knowledge base com-
bined with associational retrieval allow us to model human
difficulty with high correlation (R2 = 0.89).

Knowledge Bases

To allow us to compare our new knowledge base to prior
work, we reconstructed RAT-KB, by creating a knowledge
base called COCA-TG based on the steps described in the
original paper. The final number of words and associations
for COCA-TG are shown in Table 2. RAT-KB includes bidi-
rectional associations for all words, as does COCA-TG.

Because COCA-TG leaves out other types of associations
that can indirectly influence retrieval (e.g. through competi-
tion and the fan effect), we created a larger knowledge base
using the Human Brain Cloud (HBC) database. HBC was
crowd-sourced through an online game of word associations
(Gabler, 2013), where the player is presented with a word and
asked to type in any other word that they believe to be closely
related to the given word (if the given word is “bird” the
player might type “feather” or “fly” or “nest”). The website
records the human responses, and creates a dataset that con-
sists of triples in the form of “word1,” “word2,” and weight,
where weight is the number of times “word1” was associated
with “word2”. HBC only includes links entered by a player,
so not all word pairs have bidirectional links (as in COCA-
TG and RAT-KB). As shown in Table 2, HBC contains close
to twice as many words, and over three times as many associ-
ations as contained in COCA-TG.

HBC COCA-TG
words 40,652 20,809
associations 1,298,831 349,196

Table 2: For each knowledge base, the number of unique words, and
associations between words. Bidirectional associations count as two
associations.

Models

Our models are developed in Soar, which features a long-term
semantic memory that can be queried to retrieve information
into working memory (Derbinsky & Laird, 2010). To run a
model, semantic memory is initialized with the contents of a
knowledge base, where nodes in the memory consist of words
and the links are associations. The weights of the associations
are those in the knowledge bases.

Retrieval in Soar returns the most highly-activated element
which satisfies the provided cue. The activation of an item
is the sum of base-level activation and spreading activation.
Base-level activation represents the frequency and recency of
prior retrievals, but for these models we had no prior values.
Instead, we initialized all words in the knowledge base with a
single base-level activation. However, we assume that words
should have some usage history and we return to this issue in
the discussion.

To solve a RAT problem, a model uses the three presented
words to find the associated answer. There are potentially
many strategies for doing this; however, we focused on two
strategies that are directly supported in Soar. In Soar, an
agent can retrieve information from semantic memory, either
by providing a specific cue that is matched against elements
in long-term memory (Cued Retrieval model), or an agent can
use a general cue and leverage spreading activation to retrieve
words based on context as defined by the contents of work-
ing memory (Free Recall model). The Cued Retrieval model
uses queries that include the original words, whereas the Free
Recall model does not include the original words and relies
on spreading activation, which incorporates both association
strength and fan.

Cued Retrieval

As a baseline, we created the Cued Retrieval model, with the
goal of correctly answering as many RAT items as possible
given the knowledge available in long-term memory, while
keeping agent design simple and in accordance with archi-
tectural constraints. This model first retrieves all three given
words into working memory. It then creates a cue that spec-
ifies semantic memory should only return a word that has an
outgoing link to all three of the given words. Semantic mem-
ory then returns either a word that matches the cue (that is
associated to all given words), or it reports a failure if no such
word exists. If semantic memory has multiple possible solu-
tions, spreading activation acts as a tie breaker. If the initial
query failed, the model changes the cue to only require se-
mantic memory to return a word that is associated to two of
the given words. The model will try all combinations of two
words, and report an answer for the first one it finds. If all
of those fail, it tries each given word individually and reports
that answer. Because the model deliberately queries seman-
tic memory for a word with all associations first, it will find
a correct solution if one exists in the database, which is not
guaranteed in the Free Recall model.



Free Recall
The Free Recall model incorporates association strength and
fan via spreading activation (Jones et al., 2016). The agent
first retrieves the three given words into its working mem-
ory from semantic memory. Having these words in working
memory causes activation to spread to words linked to those
words in semantic memory. Each given word acts as a source
for an equal amount of activation, which is then divided pro-
portionally among the outgoing links based on association
strength. Association strengths from a given source are nor-
malized to sum to one. Activation decays with the distance of
spread, but in this model, for simplicity, spreading is limited
to a depth of 1.

Consider an example where there is a source word s and
recipient word r with a pre-normalized association strength
from s to r of as→r. Assume a set, R, of all recipients. The
contribution of spread from the source to the recipient in this
case is as→r

∑
k∈R

as→k
. Therefore, an item with a stronger association

from the source word will get more activation than one with
a weaker association. In addition, the more links or fan the
source has, the less activation will spread to its recipients.

To retrieve a word, the model initiates a retrieval from se-
mantic memory with the only constraint being that the word
is not one of the three given words. Semantic memory then
returns the word with the highest activation. A high activation
is no guarantee that the retrieved word is associated with all
three words because words can be retrieved that have strong
associations to only one or two of the original words, espe-
cially if they have low fan. Once a word is retrieved from se-
mantic memory, the model tests how many of the three initial
words relate to it by testing if there are links between it and
those initial words. If it is related to all three words, the model
uses the word as its solution. If the retrieved word is related
to two or fewer of the given words, the model queries again
and retrieves a new word from semantic memory, inhibiting
any it has previously retrieved. The number of attempts it will
make is a parameter, which we vary in the evaluation. If the
model runs out of attempts, it chooses one of the retrieved
words that has the most relations with the given words.

This model incorporates the findings from Olteţeanu and
Schultheis’s research in terms of the two factors (association
strength and fan) that influence the difficulty of RAT items for
humans. Their findings indicated that those factors influence
whether humans can solve a RAT problem and the time it
takes for them to find a solution. Words that have stronger
associations are more likely to be retrieved by this model, as
well as words from low fan sources.

Evaluation
We tested both the Cued Retrieval and the Free Recall models
using both the HBC and the COCA-TG databases, giving four
model configurations. Our results compare the models’ tim-
ing and correctness to human timing and human correctness
on the task, focusing on correctness. ComRAT-C provided a
probability value that they consider an estimate of the proba-

bility that a word is an answer. Their results were that for a
RAT item with a given correct answer, comRAT-C’s estimate
of the probability that the correct answer was correct corre-
lates positively with the number of humans who answered
correctly and correlated negatively with human mean time to
solution. However, Soar models retrieval as competitive, so
only a single element is selected. The significance of this is
that the activation of the correct answer does not completely
determine if it will be the model’s answer. An activation can
be high, but if it is not the highest with respect to words that
compete for retrieval, then it will not be retrieved. For this
reason, our results are not directly comparable with those of
comRAT-C. We instead adopt an approach where we compare
the correctness of the answers produced by our models to the
correctness of the human answers.

Overall Difficulty
First, we consider overall task difficulty as it relates to model-
ing difficulty on the RAT. Figure 1 shows two diagrams, one
for each knowledge base. These diagrams include the num-
ber of RAT items that were answered correctly for different
model configurations, as well as the average number of cor-
rect responses made by humans. These averages are for when
humans have only 15 seconds and 7 seconds to generate an
answer, and as is obvious, this is a difficult task for humans.
The x-axis is the number of attempts (1-20) for the Free Re-
call model. The models for humans (light and dark green) and
Cued Retrieval (dots) have only a single attempt. We show
them as straight lines for ease of comparison with the Free
Recall model. We also include the number of items where all
the given words and the answer exist in the database.

The top figure shows results from using COCA-TG for
both models. The Cued Retrieval model with COCA-TG gets
65 RAT items correct. The Free Recall model initially im-
proves as more attempts are made, and achieves better per-
formance than the Cued Retrieval model from 3 attempts on.
The best it achieves is 78 correct at ten, eleven, and fourteen
attempts. This improvement is possible because this model
makes guesses for problems where it cannot find an exact an-
swer, and sometimes those guesses are correct. As the figure
shows, the COCA-TG models outperform humans except in
the case where the Free Recall model makes a single attempt.

The bottom figure shows results using HBC. HBC contains
more correct answers than COCA-TG (105 vs. 55), invari-
ably because of its larger size (see Table 2). Once again,
through guessing, the Free Recall model achieves perfor-
mance better than one might expect. With HBC, Free Recall
achieves the 7 seconds human performance when it uses two
attempts and the 15 seconds human performance with three
attempts. We hypothesize that more attempts are required to
achieve the same performance in the HBC database, because,
on average, HBC words have higher fan (32 vs. 17).

Relative Difficulty
Next, we compare the results to human data provided by
Bowden and Jung-Beeman. We are interested in which



Figure 1: The number of RAT items each model with each database
got correct out of the 144 possible items. Note the Free Recall model
results are shown as 20 separate points.

configuration best matches human behavior. While our
models generally perform better on the RAT than humans,
we can separately characterize behavior by relative difficulty.

Timing Comparison In measuring timing, our goal is to
see if our models are in the ballpark of human response times.
A Soar model’s timing can be roughly compared to human
times. For Soar models, we consider a single decision cycle
as corresponding to 50ms of human behavior. However, we
consider retrieval as requiring roughly 300ms. Using those
parameters, the Free Recall model using HBC and given 2
and 3 attempts took an average time of 2.02 and 2.20 seconds
respectively to find a solution and the Cued Retrieval model
took an average time of 2.27 seconds. The subjects in the
study took on average 4.87 seconds when given 7 seconds to
solve the problem and 7.26 seconds when given 15 seconds.
Thus, the time taken for our models to solve a RAT item is
similar in magnitude to how long it took the subjects. This
rough similarity in timing suggests that our models are using
approximately the same number of steps and retrievals as is
found in human behavior.

Correctness Comparison In this section, we evaluate
whether the RAT questions that are difficult for humans are
also difficult for the models. For human difficulty, we focus
on correctness and we use the percentage of people who got
the correct answer as the metric of difficulty. For our models,
we use whether the model produces the correct answer for a
given item.

In order to compare these two metrics, we binned the 144
RAT items into 12 groups of 12 based on correctness in hu-
mans. The first group being the most difficult for humans
(the lowest percentage of people got them correct), the last
being the easiest (the highest percentage of people got them
correct). We did this for both the 7 seconds and 15 seconds
human results, as they had times closest to those predicted by
our model. From the 12 questions in each bin, we calculated
the mean percentage of people who got the questions correct.
We then compare the average RAT items correct for humans
to the number of items our models got correct for each 12
question bin. We did this comparison for the Cued Retrieval
and the 1-20 guesses Free Recall models for each knowledge
base. The correlations between the number of items correctly
answered by humans and the number of items correctly an-
swered by our models are shown in Figure 2.

Figure 2: The correlations of model difficulty with human difficulty
is displayed. The Free Recall model has a varying number of at-
tempts displayed on the x axis.



The models using COCA-TG are shown in the top diagram
and they have low correlations with human difficulty. Using
COCA-TG, the highest correlated model is Free Recall with
1 attempt: 0.23. The models using HBC are shown in the bot-
tom diagram, and all Free Recall model correlations are better
using HBC. The highest correlated model is Free Recall with
4 attempts for the 15 second human data: 0.89. The Cued
Retrieval model has low correlation for both databases. This
suggests that HBC is a better model for the knowledge hu-
mans use to perform this task, and that the Free Recall model
with 4 attempts is an excellent model of human difficulty.

Figure 3: Agent performance is displayed with respect to human
performance. The human data refers to the average number correct
within a difficulty bin, for 12 bins. The best fit line is shown for both
the Free Recall and the Cued Retrieval model data.

In Figure 3 we further investigate the most highly-
correlating model configuration (Free Recall, 4 attempts)
with a comparison to the Cued Retrieval model (both us-
ing HBC). This figure shows the number of RAT items each
model got correct for each of the 12 groupings of items, or-
dered by difficulty, correlated with the expected number that
humans got correct for each of those groups. The best fitting
line has a slope of 1.074 and an y-intercept of 0.289 making
it a close one-to-one relationship between the human’s rela-
tive difficulty and the model’s relative difficulty. To further
verify our claim that the Free Recall model relates better to
human data than the Cued Retrieval model, we ran a logistic
regression test with the null hypothesis that the model’s cor-
rect versus incorrect output for RAT items does not relate to
the percentage of humans that got the RAT items correct. For
the Free Recall model given 4 attempts, we reject the null hy-
pothesis with a p-value of 2.86e-07. For the Cued Retrieval
model we do not reject the null hypothesis, given a p-value of
0.184.

Fan and Association Strength Influence on Relative Dif-
ficulty Given a model and knowledge base which correlate
with human relative difficulty, we next attempt to character-
ize the effects of association strength and fan on model dif-
ficulty. We selectively lesion the effects of fan and associ-

Figure 4: For our model configuration with the highest correlation
to human relative difficulty, we also display models corresponding
to the removal of association strength (weights) and fan.

ation strength on retrieval to show how the correlation with
human difficulty changes as a result. Lesioning of fan leads
to a model of spread where only association strength governs
spread, and where there is no normalization with respect the
number of outgoing links from the source. Lesioning of asso-
ciation strength leads to a model of spread where all associa-
tion strengths from a given node are equal. These additional
models are plotted with lines of best fit alongside our best
matching model in Figure 4, where we again present model
correctness compared to human correctness.

We expect that lacking association strength and only us-
ing fan should give better results in terms of absolute number
correct because a single strong association can dominate dur-
ing retrieval, whereas with equal strength for all associations,
only those items that have associations with all given words
will be retrieved. We confirm that the lesioned HBC with 4
attempts gets 72 RAT items correct versus the original HBC
with 4 attempts which gets only 51 correct. Additionally, we
expect that lesioning either fan or association weights should
led to worse match to human difficulty. This is the case for
removing weights, with the correlation dropping to 0.679, but
removing fan improves the correlation to 0.921, suggesting a
mismatch between the associations in our database and those
in humans.

Conclusion
We created models that perform the remote associates test by
employing two distinct methods. While a previous model for
difficulty on this task did find association strength and fan to
govern retrieval difficulty, our work provides a better account
of how such influences impact difficulty by using a more real-
istic knowledge base and implementing our models as agents
that complete the task, getting answers which can be directly
compared to human answers. The Cued Retrieval model does
a cued query to semantic memory to find the solution, if it
exists. If a solution was not found, the model makes a plau-



sible guess. The Free Recall model iteratively uses spreading
activation to retrieve a potential solution until it finds a solu-
tion or until it hits a threshold. The semantic memory knowl-
edge bases only contained word associations. This is lim-
ited in comparison to a human’s semantic memory. However,
the use of spreading activation and the associations found in
HBC’s memory network give results surprisingly consistent
in terms of relative difficulty for answering RAT problems
with human performance. While we replicated the RAT-KB
knowledge base associated with the previous work’s model
with our COCA-TG knowledge base, we found that despite it
only consisting of the relevant type of associations for the 144
RAT problems, it performed worse than the HBC knowledge
base in terms of modeling human difficulty. Our hypothe-
sis is that a combination of inclusion of bidirectional links in
COCA-TG leads the model astray by allowing it to find asso-
ciations that are either missing or have very low association
strength in humans.

From the results, we find that the Free Recall model with
4 attempts is an excellent match to relative problem difficulty
in human behavior for when humans have 15 seconds for the
task, although it is also highly correlated for a range of num-
ber of attempts. While the Cued Retrieval model can retrieve
more answers (depending on the choice of attempt parameter
for the Free Recall model), the Free Recall model using the
HBC database has higher correlation with human results than
the Cued Retrieval model with the same knowledge. This is
seen with both the 7 and 15 seconds binned human data.

In attempting to characterize the role of fan and associa-
tion strength in these results, we found that a better match
to human difficulty is achieved when association strength but
not fan influences spreading activation. One possible expla-
nation is that there are artifacts in the HBC knowledge base
in terms of missing items and their connectivity that do not
reflect human semantic memory. We already know that they
do not contain all the relevant knowledge for the RAT ques-
tions. Thus, we plan to expand the HBC database by adding
other databases that include more of the relevant words and
associations, while still being representative of human word
associations, such as the University of South Florida Free As-
sociation Norms (Nelson, McEvoy, & Schreiber, 1998).

Another shortcoming of our databases is that they have no
information about the recency and frequency of the words
they include, and thus there is no contribution of base-
level activation to our model (Anderson, Bothell, Lebiere, &
Matessa, 1998). A reasonable extension would be to initial-
ize our databases with usage information derived from other
databases, such as COCA (Davies, 2008).
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