
Modeling Instruction Fetch in Procedural Learning
Bryan Stearns (stearns@umich.edu)

John Laird (laird@umich.edu)
University of Michigan, 2260 Hayward Street

Ann Arbor, MI 48109-2121 USA

Abstract
Cognitive architecture agents execute and compile known pro-
cedures to model how humans learn procedural skill knowl-
edge for a given task. It is often assumed that agents have fully
learned how to order and condition that execution before the
task begins. Is this assumption valid, or can it impair human
modeling efforts? We posit that the first of the classic three
phases of skills necessitates learning how to order task execu-
tion and that models should account for this process. We eval-
uate the effects of modeling this process using a general fetch
and execute learning agent in Soar and apply it to modeling
two different human studies. Our agent introduces a proce-
dural chunking method for autonomously learning declarative
memory structures by which spreading activation can guide
task-specific execution order. We demonstrate that modeling
the process of learning how to order task execution can signif-
icantly improve human model results.
Keywords: skill acquisition; control; phases; spreading acti-
vation; cognitive architecture; Soar; primitive elements; PROP.

Introduction
Procedural skill knowledge is considered a fundamental com-
ponent of human cognition. How the human mind learns and
organizes such knowledge has been of scientific interest for
many years. Cognitive architectures, such as Soar and ACT-
R, provide a means to improve our understanding of the mind
through computational simulation of the processes thought to
underly cognition. Some consensus has arisen in the commu-
nity regarding certain qualities of cognition that these systems
both reflect (Laird, Lebiere, & Rosenbloom, 2017).

One theory of skill learning that has been operationalized
in ACT-R is the classic three phases proposed by Fitts and
Posner (1967). In the cognitive phase, the mind learns how
to understand task execution by deliberately reasoning over
each cue, action, and desired outcome. Task responses might
be incorrect while the correct ordering of actions is learned.
The associative phase follows once practical task understand-
ing is achieved. Responses to task cues become increasingly
fluid with practice. In the final autonomous phase, those re-
sponses are automatic and occur by reflex, subject to little
cognitive control or interference, such that unrelated reason-
ing can occur in parallel.

In ACT-R, cognitive phase learning is modeled via proce-
dure compilation (Tenison & Anderson, 2016). Procedures
are represented as rules, and during practice new rules are
created by combining or specializing existing rules for more
efficient task operation. It models associative phase learn-
ing by strengthening declarative memories, such that they
are more readily available after practiced access. An ACT-R
agent reaches the autonomous phase when it has learned task-
specific rules that incorporate declarative knowledge, such
that declarative retrievals are not needed.

Primitive elements theory (Taatgen, 2013) describes how
architecturally primitive procedural knowledge can be com-
piled into useful, transferable skills through practice. This
learning can be applied to any task using a general fetch and
execute cycle. Knowledge of how to practice a skill is fetched
from long-term declarative memory, and the indicated skill is
then practiced and learned. When primitive elements theory
was implemented in the Actransfer architecture, a variant of
ACT-R, it produced good models of both human learning and
transfer in many specific domains (Taatgen, 2013).

Primitive elements theory has also been applied to the Soar
cognitive architecture, leading to the Soar PRimitive OPera-
tor (PROP) model of primitive learning and transfer (Stearns,
Assanie, & Laird, 2017). The PROP model includes an ad-
ditional process of generating working memory addresses as
a primitive skill necessary for instantiating general procedu-
ral knowledge. This inclusion improved power-law learning
behavior to better match human data.

However, all these methods assume that when to fetch
skills is learned before model behavior begins. This assump-
tion is common in cognitive modeling, and underlies designs
that hard-code task conditions into initial procedural knowl-
edge. When to fetch and how to execute are learned sepa-
rately, and fetching is abstracted away from models.

In this paper we consider whether that assumption neglects
an important aspect of cognitive phase learning: learning how
to arrange task execution correctly. How might models that
learn skill fetching alongside execution differ from those that
ignore fetching? Does this assumption impair human model-
ing? To shed light on these questions, we extend the origi-
nal PROP model to learn to fetch during skill execution. We
show that modeling how skills are fetched during task execu-
tion can significantly improve simulations of human behav-
ior. For simplicity, we will refer to the original PROP model
as PROP1, and our model that learns to fetch as PROP2.

Fetch and Execute
PROP2 is defined for Soar, in which procedural knowl-
edge is encoded as if-then rules, and describes how a task-
specific skill can be converted from declarative into proce-
dural knowledge through repeated practice of a task-general
fetch and execute cycle.

PROP2 progresses through the three phases of skill learn-
ing. In the cognitive phase, the agent knows rules for the
process of fetching and executing instructions, but does not
know rules for when specific instructions should be fetched
and applied. Until it learns to fetch, a process we describe
later, fetching is random and can retrieve non-applicable in-



structions. After the agent gains enough experience to always
fetch applicable instructions, it is in the associative phase.
In this phase, it learns increasingly task-specific rules that
reduce instruction execution latency. Eventually the agent
learns rules to perform a task automatically without fetching,
and is then in the autonomous phase.

We assume that instructions are stored in long-term declar-
ative memory by some prior learning process. Interactive task
learning (Laird, Gluck, et al., 2017) is one means by which an
instructor can teach instructions to an agent.

Instructions include three components: conditions, actions,
and any literal values used within them. Conditions and ac-
tions describe primitive assembly-like operations supported
by the architecture, and these are uniquely identified by the
working memory elements they use. For example, instruc-
tions might load the string “hello” (a literal value) into mem-
ory element A, test equality of values in elements A and B (a
condition), and then copy the value from B to C (an action).

After fetching, the agent executes an instruction by first
evaluating the instruction conditions. Initially this is done
with innate primitive rules. One rule fires to test the first con-
dition, another tests the second condition, and so on. If all are
true, additional rules execute the actions. If any are false, the
agent returns to fetching to attempt different instructions.

When the agent executes a sequence of instructed opera-
tions, it automatically learns rules that combine those opera-
tions together, as pictured in Figure 1. This process drives the
bulk of learning during the associative phase.1 Sequentially
associated rules are combined into new rules, which fire to
execute instructions in fewer steps than required by primitive
rules. These rules are general and can transfer to execute any
instructions that invoke the same architectural operations, but
their structure is specific to experienced task operations.

Figure 1: Hierarchical clustering of primitive memory operations,
adapted from (Taatgen, 2013). The architecture iteratively combines
seven primitive task-general operations through practice into a sin-
gle task-specific rule. In this example, actions query for the next
item in a sequence, while printing the current value.

Taatgen (2013) showed that hierarchical learning of prim-
itive memory operations provides a good model for human
skill learning and transfer in many domains. For good trans-
fer, it is important that rules are built gradually over itera-

1In agreement with ACT-R, our model also considers declarative
strengthening to be associative phase learning.

Figure 2: Soar chunking. Goal 2 is created as a subgoal of Goal 1.
Goal 2 decision making eventually derives a result that allows Goal
1 to continue. Chunking learns this result as a rule that recreates the
solution (step3-4) the next time the scenario arises.

tions of execution. A new rule only takes effect after multiple
learning attempts so that only rule combinations that appear
often across instructions are used within the skill hierarchy.

Associative rule composition eventually builds a single
task-specific rule equivalent to the complete fetched instruc-
tion set. Once learned, this rule will execute the instructed
conditions and actions by reflex without the need for reason-
ing over fetched instructions. An agent that primarily per-
forms a task by using such rules is in the autonomous phase.

This process defines how task rules are learned, and ignores
how the agent knows what to fetch and execute at a given
moment. But, as we will show, the same methods can be used
for learning what to fetch. In the next section, we describe
gradual procedural learning in Soar, the mechanism we use
for hierarchical associative learning and for learning to fetch.

Gradual Procedural Learning in Soar
ACT-R learns procedural knowledge by a hierarchical com-
pilation process similar to Figure 1. In contrast, Soar learns
procedural knowledge by summarizing problem solving.

Soar manages a stack of agent goals and corresponding
working memory partitions. Newer subgoals in the stack rep-
resent subproblems of earlier goals. As shown in Figure 2,
whenever agent reasoning connects declarative knowledge
from a subgoal’s memory to a higher goal’s memory (“returns
a result”), the architecture summarizes subgoal decision mak-
ing by creating a new rule that recreates that result whenever
the situation that led to the subgoal arises again. This learn-
ing is called chunking in Soar, and learned skills are called
chunks.2 Chunking is normally one-shot, and once a result
is returned, the corresponding chunk will preempt future sub-
goal problem solving. To implement our model, we extended
Soar to include gradual chunking.

To chunk gradually, the architecture tracks the number of
times a specific chunk is submitted for creation and only adds
that chunk to procedural memory if that number passes a pa-
rameterized threshold.3 Setting the threshold to 1 is equiva-
lent to standard one-shot chunking. A threshold of 2 would

2Not to be confused with ACT-R declarative chunks.
3Other methods can easily be used in place of creation counts,

but this is sufficient for our purposes here.



require a subgoal to be solved twice, and so on.
To build the skill hierarchy shown in Figure 1, the PROP2

model includes innate rules that explicitly combine pairs of
invoked operations together as results for chunking after they
are executed. These combined operations can then be used to
apply instructions in future iterations of execution.

Learning to Fetch in Soar
An agent might have many instructions in long-term declar-
ative memory that it could fetch at any time. When it needs
to execute and learn a new skill, how does it know what to
retrieve? Instructions will not be applicable unless their de-
scribed conditions are true, but how can the agent know if
the conditions for specific instructions are true until after it
fetches and evaluates them? Without a method for biasing
memory retrievals toward instructions that are likely to have
matching conditions, all of declarative memory might have
to be searched before usable instructions are found. While
the order of operations can be hard-coded into rules, we ar-
gue that learning what to retrieve is an important aspect of
cognitive phase learning.

The Actransfer architecture controls fetching by precalcu-
lating which conditions were true for each instruction that
might be retrieved, and boosting the activation for instruc-
tions with satisfied conditions (Taatgen, 2013). The agent
then fetches instructions with the highest activation value.

PROP1 implemented instruction fetching by deliberately
controlling the fetch sequence. Declarative knowledge of the
correct instruction sequence for a given task (e.g. “Skill1 →
Skill45 → Skill2 → Done”) was provided to an agent at the
same time as those instructions. The agent then iteratively
fetched each element of that sequence to perform a task. This
method required the agent to constantly track its current po-
sition in that sequence. A problem with that approach is that
the agent loses track of its position in the sequence if it en-
ters the autonomous phase. The task-specific rules that drive
behavior in that phase act by reflex outside fetching and the
agent lacks meta-knowledge of what rules it fires. Thus, the
agent will not know to update its sequence position. When
it does need to fetch, it will resume where it last left off in
the declarative sequence, and will sequentially fetch and un-
successfully evaluate all operations that were just performed
autonomously until it catches up to the actual state of the task.
Deliberate fetching becomes a performance bottleneck by re-
quiring cognitive control over selecting each task step, even
when that step has already been performed.

Neither of these approaches explains how skill fetching is
learned. Rather than assuming activation boosts as in Ac-
transfer or relying on a fixed fetching sequence as in PROP1,
we create a more comprehensive model that learns how to
fetch instructions. We implement this by using Soar chunk-
ing to learn connections for spreading activation.

Primitive elements theory proposed using spreading acti-
vation to guide instruction fetching, though this was not im-
plemented in Actransfer (Taatgen, 2013). By this method,

when a query to long-term declarative memory has multi-
ple possible results, the memory with the highest activation
is retrieved. Spreading activation increases the activations
of memories associated with the current working memory
context. Working memory elements connected to long-term
memory elements boost the activations of those memories
according to connection weights. If those long-term mem-
ories are connected to other long-term memories, that boost
spreads, with some decay, to also increase their activations,
and so on to other memories.

Inspired by primitive elements theory, and the recent addi-
tion of spreading activation in Soar (Jones, Wandzel, & Laird,
2016), we developed a novel model for learning to fetch. This
model follows three constraints of Soar theory: First, only
working memories that also exist in long-term memory can
be sources of spreading activation. Second, Soar models a
fan-effect by normalizing a memory’s spread over the num-
ber of its descendants in the long-term memory graph. Third,
such working memories are either created through long-term
memory retrievals or through chunks.4

To learn spreading, PROP2 learns to create or remove
long-term memory elements within working memory, caus-
ing spread according to the first constraint. Each spread
source corresponds to an individual condition described by an
instruction, and spreads to that instruction. The agent learns
to create a spread source whenever the corresponding condi-
tion is true and remove it when it is false. Thus, instructions
with the most true conditions are favored for retrieval.

Figure 3: Declarative structures for skill fetching in Soar. Nodes in
bold are present in working memory. Spread from these is normal-
ized over the number of a rule’s conditions. Since condition C4 is
false, I1 receives 3/4 spread while I2 receives 2/2. I2 is then fetched.

But the agent should ideally retrieve instructions with fully
satisfied conditions. If all else is equal, instructions with only
six of seven conditions met should receive less total activation
than those with two of two conditions met. Therefore, accord-
ing to the second constraint, we structure long-term memory
so that spread normalizes over the number of conditions in a
set of instructions, as shown in Figure 3. In the figure, three

4Creating such memories through chunks is a feature of Soar 9.6,
developed by Mazin Assanie.



of four conditions are known to be satisfied for Skill1, and
two of two conditions for Skill2. The execution knowledge
for Skill1 thus receives 3/4 normalized spread while that for
Skill2 receives 2/2 spread. Skill2 is therefore fetched.

To satisfy the third constraint, we use chunking to learn
when to create knowledge of satisfied conditions. When eval-
uating the conditions from fetched instructions, if the agent
finds a true condition, it returns declarative knowledge of that
result. After instructions have been fetched and evaluated
enough times over the course of a task to satisfy the chunking
threshold, Soar automatically chunks a rule that recreates this
result whenever the condition is met. As soon as that condi-
tion is no longer met, the chunk no longer matches, and the
spread source is removed from working memory.

For simplicity, we provide long-term declarative knowl-
edge of conditions at the same time as instructions, struc-
tured in the format shown in Figure 3. Our evaluation is con-
cerned with learning to create knowledge of matched condi-
tions within working memory.

Our agent begins each fetch with an open query for instruc-
tions that can be biased by spreading. Results will be random
at first before conditions are learned. If our agent finds that
it retrieved non-applicable instructions, it reverts to cognitive
control for fetching by retrieving and following the explicit
declarative fetch sequence. As the agent learns conditions
through experience, spread provides sufficient bias such that
controlled fetching becomes unnecessary.

Parameters for Skill Fetching
We have described our task-general design for learning skill
fetching and execution. Our aim is to evaluate the importance
of modeling the fetch process. We define two boolean pa-
rameters for modeling fetching, which in the PROP2 model
determine what kinds of rules an agent learns.

The first parameter is either LEARNED or KNOWN, and
determines whether an agent learns fetch order during task
execution. If fetching is LEARNED, the PROP2 agent will
learn rules for spreading during execution. If fetching is
KNOWN, the agent will always fetch through cognitive con-
trol by following a declaratively known fetch sequence.

The second parameter is either AUTO or DELIBERATE.
If set to AUTO, the agent eventually learns a single rule that
will perform task operations by reflex (the top-most composi-
tion depicted in Figure 1), bypassing declarative instructions
and cognitive control. If set to DELIBERATE, this final com-
position step is prevented, so that execution must always be
deliberate and fetching cannot be bypassed.

Evaluation
We evaluate these parameters against human behavior using
two human domains: a text-editors task Singley and Ander-
son (1985) and a mental arithmetic task (Elio, 1986). The ed-
itors task examines transfer, while the arithmetic task focuses
on the learning curve. These have already been modeled in
Actransfer, allowing us to compare our PROP2 model results

with those from the alternate fetch/execute paradigm. Ac-
transfer is a KNOWN-AUTO model, since it assumes fetch-
ing order (by hard-coding activation behavior) and allows
task rules to be fully learned, so ideally our model should
be similar to Actransfer when using KNOWN-AUTO.

We implement the same Actransfer agent designs, using
supplementary materials from (Taatgen, 2013), including the
same declarative instructions and the same simulated timing
for memory retrievals and vision/motor latencies. We also
model time using the same 50 msec per decision as is com-
mon in Soar and ACT-R.5

To select the gradual chunking threshold, we performed a
threshold sweep (not shown) to find the value that provides
the closest fit to the Actransfer model for comparison. Match-
ing differences in Actransfer model learning rates, we use a
threshold of 48 for editors task models, and 10 for arithmetic
task models. We also match Actransfer by averaging perfor-
mance over 12 trials for the editors task and 8 trials for the
arithmetic task. These models are fairly deterministic, and
variance is low.

We compare our results with average human performance
rather than that of individuals. Taking the average abstracts
away any individual differences among humans that would
arise from lifelong learning experiences that preceded partic-
ipation in the studies. Modeling average human performance
is our first step, and modeling individual differences is be-
yond the scope of the current study, although we plan to study
it in the future.

Editors Task
In the editors task, typists modified documents according to
written edit directions. Example directions are to replace one
word with another or to delete a sentence. Three keyboard-
only editors were used with which participants had no prior
experience: ED, EDT, and EMACS. These use different key-
board commands, and ED and EDT also differ from EMACS
by being simpler single-line editors. The experiment took
place over six days, with some participants switching editors
after two days to test transfer. If a participant spent two days
each on ED, EDT, and EMACS in that order, we call this case
ED-EDT-EMACS. If initial performance in EDT was faster
after using ED than when using EDT on day one, this indi-
cated transfer to EDT. We focus on transfer of ED to EDT-
EMACS, but other editor permutations show similar results.

Figure 4a shows results from the human experiment. Per-
formance on EDT after two days of ED is almost as good
as after two days of EDT, indicating substantial transfer.
There is similarly significant transfer to EMACS on day five.
(EMACS users required about 80 sec on day 1, not shown).
Figure 4b shows the Actransfer model. Model performance is
fast during days 1-2, but transfer trends are the same. Figure 5
shows the parameterized PROP2 models. Transfer is similar
among all models in Figures 4 and 5.

5Soar uses decisions to carry out retrievals, and we replace the
50 msec from those decisions with retrieval time.



(a) Human performance (b) Actransfer model

Figure 4: Human data from (Singley & Anderson, 1985) and the
Actransfer model from (Taatgen, 2013), demonstrating transfer be-
tween editors.

Figure 5: PROP2 models of editors, varying over LEARNED (left
column), KNOWN (right column), AUTO (top row), and DELIB-
ERATE (bottom row).

In Figure 5, observe that there is a significant difference
between LEARNED (left column) and KNOWN (right col-
umn) results, primarily in slower LEARNED performance on
days 1-3. These are cases when non-controlled fetching re-
trieves mostly random instructions. Interestingly, after fetch
learning, LEARNED models are not far behind the KNOWN
models in performance, demonstrating that LEARNED mod-
els learn fetching and execution simultaneously.

Also notice that AUTO models (top row) achieve super-
human performance by day 6, at under 20 sec. Human
and Actransfer models, by contrast, end near 30 sec, as
do our DELIBERATE models (bottom row). The Actrans-
fer KNOWN-AUTO model uses precalculated activation to
fetch, and does not exhibit this phenomenon. But we surmise
that Actransfer is slower than our AUTO on day 6 due to acti-
vation noise, a part of that model that can also cause incorrect
fetching.

Overall, we see that LEARNED-DELIBERATE (bottom
left) most closely matches humans by accounting for slower
performance during the first days (due to LEARNED), while
finishing at the correct performance on the last day (due to
DELIBERATE). Performance on days 1-3 is too fast for EDT
but slightly slow for ED, implying the instructions for EDT

should be more complex and those for ED slightly less so.

Arithmetic Task
In the arithmetic task, human subjects memorized a mental
arithmetic algorithm and applied it to provided inputs for 50
trials. For brevity we omit transfer details and focus on the
learning curve.

(a) Humans & Actransfer (b) DELIBERATE models

(c) AUTO models (d) Best human model

Figure 6: Models of the (Elio, 1986) arithmetic experiment.

Figure 6a shows results for humans and the Actransfer
model. Only the power-law fit to human performance was
available from the original study, and this is what is shown as
the human model.

Figure 6b shows our LEARNED- and KNOWN-
DELIBERATE models. We first note the power-law perfor-
mance of PROP2, which is from having to learn how to access
working memory for tasks, inherited from PROP1 (Stearns et
al., 2017). We also see clearly how the LEARNED model
catches up to the KNOWN model after 15 trials. It does not
catch up entirely, due to the fuzzy nature of using activation.

Figure 6c shows our LEARNED-AUTO and KNOWN-
AUTO models. As with the editors task, the AUTO pa-
rameter results in eventual super-human performance. The
KNOWN-AUTO learning curve is not smooth, due to times
when autonomous task-specific rules invalidate the controlled
fetch sequence, which must then be stepped through to catch
up to the task state. But we observe that after trial 20 the
LEARNED-AUTO agent acquires enough fetch experience
to not require further deliberate fetch control.

We also observed that while model time incorporates many
factors, such as retrievals and motor latency, the amount by



which KNOWN-DELIBERATE behavior differs from human
performance is a multiple of decision cycle time. Setting de-
cision cycle time to 37 msec results in almost an exact fit to
the human curve, as shown in Figure 6d.6 While not a stan-
dard timing, this fits neural modeling that predicts cycle times
of approximately 40 msec for simple actions (Stewart, Choo,
& Eliasmith, 2010). Table 1 shows the mean-squared-errors
of various timing models compared with the human model.

Actransfer 50 msec 40 msec 37 msec
MSE 1.270 1.695 0.177 0.0382

Table 1: Mean Squared Errors for Actransfer and KNOWN-
DELIBERATE models with varying simulated times for decisions.

Discussion
The above parameters reflect Fitts and Posner’s (1967) three
stages of skill learning in our model. The cognitive phase is
represented when fetch LEARNING is enabled. Hierarchical
compilation of instruction execution demonstrates the asso-
ciative phase, and allowing AUTO task-rules to be compiled
leads to the autonomous phase.

We model cognitive phase learning with a novel use of
Soar chunking by which chunks create or retract sources of
spreading activation. This general learning method could be
applied whenever there is an occasion for learning context-
appropriate retrievals, not just fetch modeling.

In the editors task, LEARNED fetching accounts for initial
human behavior in ways KNOWN fetching could not. How-
ever, in the arithmetic task, KNOWN models were most accu-
rate. We believe this reflects the natures of the tasks. Human
subjects performed the arithmetic task after being trained in
the algorithms, while editors subjects memorized only an ed-
itor’s individual keyboard commands prior to experimenta-
tion. Subjects performing the arithmetic experiment should
therefore have already mostly completed the cognitive phase,
which is not the case for subjects in the editors experiment.

Though AUTO allows faster execution, we notice that DE-
LIBERATE achieves the closest human performance in both
experiments. Within our model this implies that humans do
not perform these tasks entirely by reflex after training, but
continue to reason over each step. This might imply that the
autonomous phase is more appropriate for modeling motor
skills, as Fitts and Posner were evaluating, rather than domi-
nantly cognitive skills.

Our arithmetic task model is almost identical to the human
model when decision cycle time is just under 40 msec. By
contrast, changing cycle times has little effect on the editors
model, since it performs at the scale of 100 sec, largely due to
memory retrieval times. Editors agents also employ a higher
chunking threshold than used by arithmetic agents, implying
that human processing is more complex for the editors task
than for the arithmetic task compared to our models, which

6This would not be achieved by changing the chunking threshold,
as that alters the learning curve shape in addition to scale.

also makes sense given the different time scales. The appro-
priate complexity of task models and the validity of 40 msec
cycles for primitive skills are beyond the scope of this paper.
However, they present intriguing avenues of study.

We therefore conclude that consideration for the stages of
learning and these fetching parameters is critical for human
modeling. Whether an agent learns fetching or assumes it to
be already learned should reflect the task being modeled. The
fetch process of choosing what to execute is one by which the
human mind controls its own behavior. Learning that con-
trol can be important for even simple modeling, as we have
demonstrated, but understanding the theory of that learning
could play an important role in unraveling the mysteries of
human cognition.

Acknowledgments
The work described here was supported in part by the Office
of Naval Research under Grant Number N00014-18-1-2010.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressly or implied, of
the ONR or the U.S. Government.

References
Elio, R. (1986). Representation of similar well-learned cog-

nitive procedures. Cognitive Science, 10(1), 41 - 73.
Fitts, P., & Posner, M. (1967). Human performance. Bel-

mont, CA: Brooks/Cole Pub. Co.
Jones, S. J. M., Wandzel, A. R., & Laird, J. E. (2016). Effi-

cient computation of spreading activation using lazy evalu-
ation. In International conference on cognitive modeling.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins,
O. C., Lebiere, C., . . . Kirk, J. R. (2017). Interactive task
learning. IEEE Intelligent Systems, 32(4), 6-21.

Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A stan-
dard model of the mind: Toward a common computational
framework across artificial intelligence, cognitive science,
neuroscience, and robotics. AI Magazine, 38(4), 13-26.

Singley, M. K., & Anderson, J. R. (1985). The transfer of
text-editing skill. International Journal of Man-Machine
Studies, 22(4), 403 - 423.

Stearns, B., Assanie, M., & Laird, J. E. (2017). Applying
primitive elements theory for procedural transfer in soar.
In International conference on cognitive modeling.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dy-
namic behaviour of a spiking model of action selection in
the basal ganglia. In International conference on cognitive
modeling (pp. 235–40).

Taatgen, N. A. (2013). The nature and transfer of cognitive
skills. Psychological Review, 120(3), 439–471.

Tenison, C., & Anderson, J. R. (2016). Modeling the distinct
phases of skill acquisition. Journal of experimental psy-
chology. Learning, memory, and cognition, 42 5, 749-67.


