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a b s t r a c t 

The Common Model of Cognition (CMC) is a recently proposed, consensus architecture intended to capture decades of progress in cognitive science on modeling 

human and human-like intelligence. Because of the broad agreement around it and preliminary mappings of its components to specific brain areas, we hypothesized 

that the CMC could be a candidate model of the large-scale functional architecture of the human brain. To test this hypothesis, we analyzed functional MRI data 

from 200 participants and seven different tasks that cover a broad range of cognitive domains. The CMC components were identified with functionally homologous 

brain regions through canonical fMRI analysis, and their communication pathways were translated into predicted patterns of effective connectivity between regions. 

The resulting dynamic linear model was implemented and fitted using Dynamic Causal Modeling, and compared against six alternative brain architectures that had 

been previously proposed in the field of neuroscience (three hierarchical architectures and three hub-and-spoke architectures) using a Bayesian approach. The results 

show that, in all cases, the CMC vastly outperforms all other architectures, both within each domain and across all tasks. These findings suggest that a common set 

of architectural principles that could be used for artificial intelligence also underpins human brain function across multiple cognitive domains. 
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. Introduction 

The fundamental organizational principle of a complex system is of-

en referred to as its “architecture, ” and represents an important concep-

ual tool to make sense of the relationship between a system’s function

nd structure. For instance, the von Neumann architecture describes

he organizing principle of modern digital computers; it can be used

oth to describe a computer at a functional level of abstraction (ignor-

ng the specific wiring of its motherboard and mapping it onto a theory

f computation) and, conversely, to conduct diagnostics on an exceed-

ngly complicated piece of hardware (properly identifying the compo-

ents and pathways on a motherboard and the function of their wiring).

The stunning complexity of the human brain has inspired a search

or a similar “brain architecture ” that, akin to von Neumann’s, could re-

ate its components to its functional properties. Succeeding in this quest

ould lead to a more fundamental understanding of brain function and

ysfunction and, possibly, to new principles that could further the de-

elopment of artificial intelligence ( Hassabis et al., 2017 ). 

Most attempts in this direction have been “bottom-up, ” that is,

riven by the application of dimensionality-reduction and machine-
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earning methods to large amounts of connectivity data, with the goal

f identifying clusters of functionally connected areas ( Cole et al., 2013 ;

orgolewski et al., 2014 ; Huntenburg et al., 2018 ). Although these mod-

ls can be used to predict task-related activity, they rely on large-scale

onnectivity and are fundamentally agnostic (or, at best, make a task-

pecific guess) as to the function of each network node. The results of

uch approaches are also dependent on the type of data and the meth-

ds applied. For instance, one researcher might focus on purely func-

ional measures, such as task-based fMRI and the co-occurrence of ac-

ivity across brain regions and domains; a second researcher, instead,

ight focus on spontaneous, resting-state activity and slow frequency

ime series correlations. 

As recently pointed out ( Jonas and Kording, 2017 ), none of these

ethods is guaranteed to converge and provide a functional explana-

ion from the data. However, the same methods can be successfully used

o test two or more models against the data via a “top-down ” approach

 Jonas and Kording, 2017 ). That is, given a candidate functional model

f the brain, traditional connectivity methods can provide reliable an-

wers as to its degree of fidelity to the empirical data and its perfor-

ance compared to other models. A top-down approach, however, crit-
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Fig. 1. (A) Architecture of the Common Model of Cognition, as described by Laird et al. (2017) . (B) Theoretical mapping between CMC components and homologous 

cortical and subcortical regions, as used in this study’s pipeline to identify the equivalent Regions of Interest (ROIs). (C) Progressive approximation of the ROIs, from 

high-level functional mappings (left) to task-level group results (middle, with group-level centroid coordinated marked by a color circle) to the individual functional 

centroids of the regions in our sample (right; each individual centroid represented by a “+ ” marker; note that hundreds of markers are overlapping in each region). 

Group-level and individual-level data come from the Relational Reasoning task. 
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cally depends on having a likely and theoretically-motivated functional

roposal for a brain architecture. 

.1. The Common Model of Cognition 

A promising candidate proposal is the Common Model of Cognition

CMC) ( Laird et al., 2017 ). As the name implies, the CMC is a common

et of organizing principles that summarize the similarities of multi-

le cognitive architectures that were developed over the course of five

ecades in the fields of cognitive psychology, artificial intelligence, and

obotics. It is an architecture for general intelligence, in the sense that

gents based on its principles should be capable of exhibiting rational

nd adaptive behavior across domains, rather than optimal behavior

n a narrow domain. 1 Because of its generality and consensus, it has

een used as a guideline for designing cognitive agents ( Mohan, n.d. ).

ccording to the CMC, agents exhibiting human-like intelligence share

ve functional components: a feature-based declarative long-term mem-

ry, a buffer-based working memory, a system for the pattern-directed

nvocation of actions represented in procedural memory, and dedicated

erception and action systems. Working memory acts as the hub through

hich all of the other components communicate, with additional con-

ections between perception and action ( Fig. 1 A). The CMC also in-

ludes additional constraints on the mechanisms and representations

hat characterize each component’s functional properties. 
1 Note that this meaning of “general intelligence ”, as often used in artificial in- 

elligence (Goertzel 2014) and cognitive science ( Anderson and Lebiere, 2003 ), 

s different from what psychometricians intend as “general intelligence, ” which 

s a hypothetical factor g explaining the person-level correlations between dif- 

erent tasks ( Hunt, 2010 ). For a review of the relationship between these two 

eanings of “general intelligence, ” as well as other definitions, see Legg & Hut- 

er (2007). 
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2 
The CMC’s components and assumptions distill lessons learned over

he last fifty years in the development of computational cognitive mod-

ls and artificial agents with general human-like abilities. Surprisingly,

hese lessons seem to cut across the specific domains of application.

or instance, the cognitive architecture Soar ( Laird, 2012 ) is predomi-

antly used in designing autonomous artificial agents and robots, while

he cognitive architecture ACT-R ( Anderson, 2007 ) is predominantly

sed to simulate psychological experiments and predict human behav-

or ( Kotseruba and Tsotsos, 2020 ); yet, they separately converged on

any of the CMC assumptions ( Laird et al., 2017 ). Similarly, the SPAUN

arge-scale brain model ( Eliasmith et al., 2012 ) and the Leabra neural

rchitecture ( O’Reilly et al., 2016 ) are independently designed to simu-

ate brain function through artificial neurons; despite making different

ssumptions in terms of neural coding, representation, and learning al-

orithms, they agree on the use of high-level modules (including ones for

orking memory, procedural memory, and long-term memory) that are

imilar to the CMC. Even recent AIs that are made possible by advances

n artificial neural networks employ, at some level, the same compo-

ents. DeepMind’s AlphaGo, for example, includes a Monte-Carlo search

ree component for look-ahead search and planning (working memory)

nd a policy network (procedural memory), in addition to dedicated

ystems for perception and action ( Silver et al., 2016 ). Similarly, the

ifferentiable Neural Computer ( Graves et al., 2016 ) uses supervised

ethods to learn optimal policies (procedural memory) to access an ex-

ernal memory (symbolic long-term memory). 

Because the CMC reflects the general organization of systems explic-

tly designed to achieve human-like flexibility and intelligence, the CMC

hould also apply to the human brain. Therefore, it provides an ideal

andidate for a top-down examination of a possible brain architecture. 

.2. Assessing the CMC as a brain architecture 

Assuming that the CMC is a valid candidate, how can its viability

s a model of the human brain architecture be assessed? Operationally,
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 candidate model should successfully satisfy two criteria. The first is

he generality criterion: the same cognitive architecture should account

or brain activity data across a wide spectrum of domains and tasks.

he second is the comparative superiority criterion: an ideal architecture

hould provide a superior fit to experimental brain data compared to

ompeting architectures of similar complexity and generality. 

To test the CMC against these two criteria, we conducted a com-

rehensive analysis of task-related neuroimaging data from 200 young

dult participants in the Human Connectome Project (HCP), the largest

xisting repository of high-quality human neuroimaging data. Although

he HCP project contains both fMRI and MEG data, fMRI was chosen

ecause it allows for unambiguous identification of subcortical sources

f brain activity, which is crucial to the CMC and problematic for MEG

nalysis. The HCP includes functional neuroimages collected while par-

icipants performed seven psychological tasks. These tasks were taken

r adapted from previously published influential neuroimaging studies

nd explicitly selected to cover the range of human cognition ( Van Essen

t al., 2013 ), therefore making it an ideal testbed for the generality cri-

erion. Specifically, the tasks examine language processing and mathe-

atical cognition ( Binder et al., 2011 ), working memory, incentive pro-

essing and decision making ( Delgado et al., 2000 ), emotion processing

 Hariri et al., 2002 ), social cognition ( Wheatley et al., 2007 ), and rela-

ional reasoning ( Smith et al., 2007 ). The seven tasks were collected

rom six different paradigms (language processing and mathematical

ognition were tested in the same paradigm). 

To properly translate the CMC into a brain network architecture,

ts five components need to be identified with an equal number of

patially-localized but functionally homologous elements. Depending on

he methods used, the number of anatomically identifiable areas in the

uman brain counts in the hundreds ( Glasser et al., 2016 ; Power et al.,

011 ; Yeo et al., 2011 ), and thus does not provide a reliable starting

oint. The number of functionally distinct circuits, however, is recog-

ized as being at least one order of magnitude smaller, as different brain

reas form interconnected networks ( Cole et al., 2016 ; Power et al.,

011 ; Yeo et al., 2011 ). This study takes, as a reference point, the influ-

ntial estimate given in Yeo et al. (2011) , which counts seven distinct

unctional networks —a number that is comparable to the number of

omponents in the CMC. 

An initial identification can be made between CMC components and

ome of these networks. This initial identification was based on well-

stablished findings in the literature and is also consistent with the

unction-to-structure mappings that had been proposed in other neu-

ocognitive architectures, such as the mappings suggested for ACT-R’s

odule-specific buffers ( Anderson, 2007 ; Borst et al., 2015 ; Borst and

nderson, 2013 ) and the functional components employed in large-scale

odels of the brain ( Eliasmith et al., 2012 ; O’Reilly et al., 2016 ). At this

evel, the working memory (WM) component can be identified with the

ronto-parietal network comprising the dorsolateral prefrontal cortex

PFC) and posterior parietal cortex. The long-term memory (LTM) com-

onent corresponds with regions involved in the encoding of episodic

emories, such as the hippocampus and the surrounding medial tempo-

al lobe regions ( Moscovitch et al., 2005 ; Ranganath and Maureen, 2012 ;

quire, 2004 ), as well as with regions involved in memory retrieval,

uch as the medial frontal cortex and the precuneus; these regions are

eferred to as the default mode network ( Raichle and Snyder, 2007 ;

anganath and Maureen, 2012 ). The action components can be iden-

ified with the sensorimotor network ( Power et al., 2011 ); the proce-

ural knowledge component with the basal ganglia ( Yin and Knowl-

on, 2006 ); and the perception modules with the dorsal and ventral vi-

ual networks, as well as, depending on the task, the auditory networks

 Fig. 1 B). 

To properly characterize each individual component, a processing

ipeline was designed to progressively identify a relevant corresponding

egion of interest (ROI) for each task and, within each task, for each

f the ~200 participants, thus accounting for individual differences in

unctional neuroanatomy ( Fig. 1 C; See Materials & Methods). 
3 
.3. Alternative architectures 

To address our second criterion of comparative superiority , the CMC

onnectivity model was compared against other connectivity models

hat implement alternative brain architectures. Because the space of pos-

ible models is large, we concentrated on six examples that are repre-

entative of theoretical neural architectures previously suggested in the

euroscientific literature ( Fig. 2 ). These six alternatives can be divided

nto two families. In the “Hierarchical ” family, brain connectivity im-

lements hierarchical levels of processing that initiate with Perception

nd culminate with Action. In this family, the brain can be conceptual-

zed as a feedforward neural network model with large-scale gradients

f abstraction ( Huntenburg et al., 2018 ). 

Within this hierarchical structure, each ROI represents a different

evel and projects both forward to the next level’s ROI and backward

o the preceding level’s ROI. A degree of freedom in this architecture

s the specific ordering of the regions within the hierarchy. Since Per-

eption was always constrained to be the input and Action the output,

he relative ordering of the remaining regions was manipulated. Fur-

hermore, WM was considered as having a higher order in the hierarchy

han LTM. With these constraints in place, the only remaining degree

f freedom was the position of the Procedural region between Percep-

ion and Action, which gave rise to three possible hierarchical architec-

ures ( Fig. 2 B), in which the Procedural region falls between Percep-

ion and LTM (Hierarchical 1, as supported by models of the basal gan-

lia in perceptual categorization: Ashby et al., 2007 ; Kotz et al., 2009 ;

eger, 2008 ), or between LTM and WM (Hierarchical 2, reflecting the

ole of basal ganglia in memory retrieval: Scimeca and Badre, 2012 ;

ricomi and Fiez, 2012 ), or between WM and Action (Hierarchical 3,

s supported by models of basal ganglia in motor control Houk et al.,

007 ). 

In the “Hub-and-Spoke ” family ( Fig. 2 C), a single ROI is singled out

s the network’s “Hub ” and receives bidirectional connections from all

he other ROIs (the “Spokes ”). With the exception of the Hub, no ROI

s mutually connected to any other one. Three different Hub-and-Spoke

rchitectures were created by selecting as the Hub one of the regions,

ith the exception of Perception and Action. In the first variant, the role

f the Hub is played by the WM component. Because, in our mapping,

he WM component corresponds to the lateral PFC, captures the view

hat the PFC functions as a flexible hub for control. This view is increas-

ngly popular and well-supported by large-scale analysis of the human

unctional connectome ( Cole et al., 2012 , 2013 ). Interestingly, in terms

f network architecture, this view is also the closest to the CMC, which,

s noted above, is similarly based on a central WM hub, but also includes

idirectional Perception-Action connectivity. In the second variant, the

ole of the Hub is played by the Procedural Memory component, which

eflects the centrality of procedural control in many production-system-

ased cognitive architectures ( Anderson, 2007 ; Kieras and Meyer, 1997 ;

aird, 2012 ). Because, in our mapping, Procedural Memory is identi-

ed with the basal ganglia, this architecture also reflects the centrality

f these nuclei in action selection and in coordinating cortical activity

 Eliasmith et al., 2012 ; Hazy et al., 2007 ; Stocco et al., 2010 ). In the

hird variant, the role of the hub was played by LTM; this architecture

eflects the convergence of cortical representations to form coherent se-

antic and episodic memories to interpret perception and guide action,

nd was the original namesake for “Hub-and-Spoke ” ( Chiou and Lambon

alph, 2016 ; Rogers et al., 2004 ) 

Thus defined, these six alternatives span all of the possible combi-

ations within the Hierarchical and Hub-and-Spoke families, given the

roposed constraints. Like the CMC, these architectures are represen-

ative of how the five components could be organized in a large-scale

onceptual blueprint for the brain architecture; they simply make dif-

erent choices as to which connections between components are more

undamental and better reflect the underlying neural organization. All

f these architectures have been previously suggested in the literature as

lausible plans to interpret the brain’s organization. In addition to rep-
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Fig. 2. The seven architectures tested in this study. (A) The CMC; (B) The hub-and-spoke family of models, with the prefrontal (PFC), basal ganglia (BG), and 

temporal ROIs serving as the hub between the other modules; (C) The hierarchical family of models, representing three different configurations of working memory, 

procedural memory, and long term memory. In (B) and (C), pathways that are common to the CMC are shown in black; pathways that are present in the CMC but 

not included in the alternative models are shown as grey dashed arrows; and pathways that are present in the alternative models but not in the CMC are shown in 

red. 
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esenting plausible alternative architectures, these models differ mini-

ally from the CMC and can be easily generated by replacing at most

ix connections from the CMC architecture (dashed lines and red lines,

ig. 2 B-C). Thus, any resulting differences in fit are unlikely to arise

ecause of differences in network complexity. 

.4. Modeling network dynamics 

The link between the network of ROIs and their neural activity was

rovided through Dynamic Causal Modeling (DCM: Friston et al., 2003 ),

 neuronal-mass mathematical modeling technique that approximates

he time-course of brain activity in a set of brain regions as a dynamic

ystem that responds to a series of external drives. Specifically, the time

ourse of the underlying neural activity y of a set of regions is controlled

y the bilinear state change equation: 

 𝑦 ∕ 𝑑 𝑡 = 𝐀 𝑦 + 

∑

𝑖 

𝑥 𝑖 𝐁 

𝑖 𝑦 + 𝐂 𝑥 (1)

here x represents the event vectors (i.e., the equivalent of a design

atrix in traditional GLM analysis), A defines intrinsic connectivity be-

ween ROIs, C defines the ROI-specific effects of task events, and B de-
4 
nes the modulatory effects that task conditions have on the connectiv-

ty between regions. For simplicity, the modulatory effects in B were set

o zero, reducing the equation to the form A y + C x . A predicted time

ourse of BOLD signal was then generated by applying a biologically-

lausible model (the balloon model: Buxton et al., 1998 ; Friston et al.,

000 ) of neurovascular coupling to the simulated neural activity y . 

Our preference for this technique was motivated by the existence of

n integrated framework to design, fit, and evaluate models; by its abil-

ty to estimate the directional effects within a network (as opposed to

raditional functional connectivity analysis); and by its underlying dis-

inction between the modeling of network dynamics and the modeling

f recorded imaging signals (as opposed to Granger causality), which

akes it possible to apply the same neural models to different modali-

ies (e.g., M/EEG data) in future work. 

. Materials and methods 

The study presented herein consists of an extensive analysis of a

arge sample ( N = 200) of neuroimaging data from the Human Connec-

ome Project, the largest existing repository of young adult neuroimag-
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Table 1 

Overview of the seven task-fMRI paradigms used in the HCP dataset. Italics indicate tasks and conditions that were not included in our analysis; bold typeface 

marks experimental conditions that were selected as “Critical ” (as opposed to “Baseline ”) in the design of the experimental matrices (see below, “DCM-specific GLM 

analysis ” section). 

Task (Representative Reference) Relevant Conditions (for GLM analysis) Included in DCM analysis? 

Motor Mapping ( Buckner et al., 2011 ) Hand, arm, foot, leg, voice responses No 

Emotion Processing (Hariri et al., 2002) Neutral shapes vs. Fearful and angry faces . Yes 

Incentive Processing (Delgado et al., 2000) “Winning ” vs. “Losing ” blocks of choices Yes 

Language and Mathematical Processing (Binder et al., 2011) Listening vs. Answering questions (in both Language and Math blocks) Yes 

Relational Reasoning (Smith et al., 2007) Control Arrays vs. Relational arrays Yes 

Social Cognition (Wheatley et al., 2007) Randomly moving shapes vs. Socially interacting shapes Yes 

Working Memory 0-Back vs. 2-Back blocks of faces, places, tools, and body parts. Yes 
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ng data. The analysis was restricted to the task fMRI subset, thus ex-

luding both the resting state fMRI data, the diffusion imaging data, and

ll of the M/EEG data. The task fMRI data consisted of two sessions of

ach of seven paradigms, designed to span different domains. All subject

ecruitment procedures and informed consent forms were approved by

he Washington University in St. Louis’ Institutional Review Board. The

resent study met criteria for exemption at the University of Washing-

on’s Institutional Review Board. 

.1. Tasks fMRI data 

The HCP task-fMRI data encompasses seven different paradigms

esigned to capture a wide range of cognitive capabilities. Of these

aradigms, six were included in our analysis; the Motor Mapping task

as not included because it would have required the creation of mul-

iple ROIs in the motor cortex, one for each effector (arm, leg, voice),

hus making this model intrinsically different from the others. A full de-

cription of these tasks and the rationale for their selection can be found

n the original HCP papers ( Barch et al., 2013 ; Van Essen et al., 2013 ).

his section provides a brief description of the paradigms, while Table 1

rovides an overview. 

Emotion Processing Task . Participants are presented with 12 blocks of

ix consecutive trials. During each trial, they are asked to decide which

f two visual stimuli presented on the bottom of the screen match the

timulus at the top of the screen. In six of the blocks, all of the visual

timuli are emotional faces, with either angry or fearful expressions.

n the remaining six blocks, all of the stimuli are neutral shapes. Each

timulus is presented for 2 s, with a 1 s inter-trial interval (ITI). Each

lock is preceded by a 3 s task cue ( “shape ” or “face ”), so that each block

s 21 s including the cue. 

Incentive Processing Task . The task consists of four blocks of eight con-

ecutive decision-making trials. During each trial, participants are asked

o guess whether the number underneath a “mystery card ” (visually rep-

esented by the question mark symbol “? ”) is larger or smaller than 5

y pressing one of two buttons on the response box within the allotted

ime. After each choice, the number is revealed; participants receive a

onetary reward ( + $1.00) for correctly guessed trials; a monetary loss

 − $0.50) for incorrectly guessed trials; and receive no money if the num-

er is exactly 5. Unbeknownst to participants, blocks are pre-designed

o lead to either high rewards (6 reward trials, 2 neutral trials) or high

osses (6 loss trials, 2 neutral trials), independent of their actual choices.

wo blocks are designated as high-reward, and two as high-loss blocks.

ach stimulus has a duration of up to 1.5 s, followed by a 1 s feedback,

ith a 1 s ITI, so that each block lasts 27 s. 

Language and Mathematical Processing Task . The task consists of 4

story ” blocks interleaved with 4 “math ” blocks. The two types of blocks

re matched for duration and adhere to the same internal structure

n which a verbal stimulus is first presented auditorily, and a two-

lternative question is subsequently presented. Participants need to re-

pond to the question by pressing one of two buttons with the right hand.

n the story blocks, the stimuli are brief, adapted Aesop stories (between
 t

5 
 and 9 sentences), and the question concerns the story’s topic (e.g.,

Was the story about revenge or reciprocity ? ”). In the math blocks, stimuli

re addition or subtraction problems (e.g., “Fourteen plus twelve ”) and

he question provides two possible alternative answers (e.g., “Twenty-

ine or twenty-six ? ”). The math task is adaptive to maintain a similar

evel of difficulty across the participants. 

Relational Processing Task . The task consists of six “Relational ” blocks

lternated with six “Control ” blocks. In relational blocks, stimuli con-

ist of two pairs of figures, one displayed horizontally at the top of the

creen and one pair displayed at the bottom. Figures consist of one of

ix possible shapes filled with one of six possible textures, for a total

f 36 possible figures. Both pairs of figures differ along one dimension,

ither shape or texture; participants are asked to indicate through a but-

on press if the top figures differ on the same dimension as the bottom

gures (e.g., they both differ in shape). In the control blocks, the stim-

li consist of one pair of figures displayed horizontally at the top of the

creen, a third figure displayed centrally at the bottom of the screen, and

 word displayed at the center of the screen. The central word specifies

 stimulus dimension (either “shape ” or “texture ”) and participants are

sked to indicate whether the bottom figure matches either of the two

op figures along the dimension specified by the word. Both relational

nd control blocks have a total duration of 16 s, but they vary in the

umber of stimuli. Specifically, relational blocks contain four stimuli,

resented for 3.5 s with a 500 ms ITI, while control blocks contain five

timuli presented for 2.8 s with a 400 ms ITI. 

Social Cognition Task . The task consists of 10 videoclips of moving

hapes (circles, squares, and triangles). The clips were either obtained

r modified from previously published studies ( Castelli et al., 2000 ;

heatley et al., 2007 ). In five of the clips, the shapes are moving ran-

omly, while in the other five the shapes’ movement reflects a form

f social interaction. After viewing each clip, participants press one of

hree buttons to indicate whether they believed the shapes were inter-

cting, not interacting, or whether they were unsure. All clips have a

xed duration of 20 s with an ITI of 15 s. 

Working Memory Task . The task consists of eight 2-back blocks and

ight 0-back blocks, with each block containing 10 trials. Each trial

resents the picture of a single object, centered on the screen, and par-

icipants have to press one of two buttons to indicate whether the object

s a target or not. In the 2-back blocks, a target is defined as the same

bject that had been seen two trials before, so that participants have

o maintain and update a “moving window ” of the past two objects to

erform the task correctly. In the 0-back blocks, a target is defined as

 specific object, presented at the very beginning of the block so that

articipants have to only maintain a single object in working mem-

ry throughout the block. The stimuli belong to one of four possible

ategories: faces, places, tools, and body parts. The category of the ob-

ects being used as stimuli changes from block to block, but is consistent

ithin one block, so that there is an even number of face, place, tool,

nd body part blocks for each condition. Each block begins with a 2.5 s

ue that informs the participant about the upcoming block type (2-back

r 0-back). Each stimulus is presented for 2 s with a 500 ms ITI, for a

otal duration of 27.5 s per block. 

https://paperpile.com/c/vDpWym/ceEXM
https://paperpile.com/c/vDpWym/UNNLT
https://paperpile.com/c/vDpWym/UWJJo
https://paperpile.com/c/vDpWym/I7y2q
https://paperpile.com/c/vDpWym/hPdHY
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Fig. 3. Difference between the design matrices used for canonical GLM (A) and for DCM analysis (B). In all of the network models, the Baseline condition drives 

neural activity in perceptual areas, while the Critical condition drives neural activity in the Working Memory component (C). 
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.2. Data processing and analysis 

Imaging Acquisition Parameters As reported in Barch et al. (2013) ,

unctional neuroimages were acquired with a 32-channel head coil on

 3T Siemens Skyra with TR = 720 ms, TE = 33.1 ms, FA = 52°,

OV = 208 × 180 mm. Each image consisted of 72 2.0 mm oblique

lices with 0-mm gap in-between. Each slice had an in-plane resolution

f 2.0 × 2.0 mm. Images were acquired with a multi-band acceleration

actor of 8X. 

Image Preprocessing Images were acquired in the “minimally prepro-

essed ” format (Van Essen et al., 2013) , which includes unwarping to

orrect for magnetic field distortion, motion realignment, and normal-

zation to the MNI template. The images were then smoothed with an

sotropic 8.0 mm FWHM Gaussian kernel. 

Canonical GLM Analysis Canonical GLM analysis was conducted on

he smoothed minimally preprocessed data using a mass-univariate ap-

roach, as implemented in the SPM12 software package ( Penny et al.,

011 ). First-level (i.e., individual-level) models were created for each

articipant. The model regressors were obtained by convolving a de-

ign matrix with a hemodynamic response function; the design matrix

eplicated the analysis of Barch et al. (2013) , and included regressors

or the specific conditions of interest described in Table 1 . Second-level

i.e., group-level) models were created using the brain-wise parametric

mages generated for each participant as input. 

DCM-specific GLM Analysis In parallel with the canonical GLM anal-

sis, a second GLM analysis was carried out as part of the DCM analysis

ipeline. The purpose of this analysis was two-fold. First, it defined the

vent matrix x that is used in the DCM equation ( Eq. (1) ) to measure the

arameter matrix C . Second, it provided a way to define the omnibus

 -test that is used in the ROI definition (see below). Because these mod-

ls are not used to perform data analysis, the experimental events and

onditions are allowed to be collinear. 

Like most cognitive neuroscience paradigms, each of our tasks in-

ludes at least two different conditions, under which stimuli must be

rocessed in different ways. In all cases, the difference between condi-

ions can be framed in terms of a more demanding, “critical ” condition

nd an easier, “control ” condition, with the more demanding events as-

ociated with greater mental elaboration of the stimuli. The critical con-

ition of each task is emphasized in boldface in Table 1 . 

As is common in DCM analysis, these two task conditions were mod-

led in a layered rather than orthogonal fashion. The difference is illus-

rated in Fig. 3: While, in traditional GLM analysis, the two conditions

re modeled as non-overlapping events in the design matrix, in the DCM-

pecific definition of the matrix all trials belong to the same “baseline ”

ondition, which represents the basic processing of the stimulus across

ll trials. Stimuli from the critical condition form a subset of all stimuli

resented in the baseline condition. The critical condition is therefore
 n  

6 
ppended to the baseline condition in the design matrix to model the

dditional processes that are specifically related to it. 

In DCM, each condition can affect one or more ROIs independently.

n our analysis, the association between conditions and ROIs was kept

onstant across all tasks. Specifically, the baseline conditions selectively

ffected the perceptual ROI, while the critical condition selectively af-

ected the WM ROI. This choice reflects the greater mental effort that

s common to all critical conditions and is confirmed by the greater

FC activity found in all of the GLM analyses of the critical conditions

 Barch et al., 2013 ). 

.3. Regions-of-Interest definition 

To objectively define the Regions-of-Interest (ROIs) for each task and

articipant, a processing pipeline was set up. The starting point of the

ipeline was an a priori , theoretical identification of each CMC compo-

ent with large-scale neuroanatomical distinctions. As noted in the main

ext, this initial identification was based on well established findings in

he literature as well as the function-to-structure mappings proposed

n other large-scale neurocognitive architectures ( Anderson, 2007 ;

orst et al., 2015 ; Borst and Anderson, 2013 ; Eliasmith et al., 2012 ;

’Reilly et al., 2016 ). Specifically, working memory (WM) was identi-

ed with the fronto-parietal network comprising the dorsolateral pre-

rontal cortex (PFC) and posterior parietal cortex; long-term memory

LTM) with regions in the middle, anterior, and superior temporal lobe;

he procedural knowledge component with the basal ganglia; the action

omponent with the premotor and primary motor cortex; and percep-

ion with sensory regions, including the primary and secondary sensory

nd auditory cortices, and the entire ventral visual pathway ( Fig. 1 B). 

Beginning with these macro-level associations, the pipeline progres-

ively refined the exact ROI for each component through two consecu-

ive approximations. Fig 1 C provides a visual illustration of this proce-

ure using the data from the relational reasoning task. 

The first approximation was designed to account for group-level vari-

bility due to the different tasks and stimuli used in the four datasets.

his was necessary because, for example, the different stimulus modali-

ies determine which sensory area (e.g., auditory vs. visual areas) would

e engaged and different task requirements would recruit different por-

ions of the PFC. These differences were accounted for by conducting

 separate group-level GLM analysis for each dataset, and identifying

he coordinates of three points that have the highest statistical response

ithin the anatomical boundaries of the visual areas (limited to the oc-

ipital lobe and the ventral portion of the temporal lobe), the dorso-

ateral PFC, and the basal ganglia (limited to the striatum). 

The second approximation was designed to account for individual-

evel variability in functional neuroanatomy. The group-level coordi-

ates of each component, derived from the previous step, were then

https://paperpile.com/c/vDpWym/b70tf
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Fig. 4. Lateral view of the distribution of the ROI centroids across individual participants and tasks. Each “+ ” marker represents the centroid of an ROI for one 

participant. Colors represent the components, following the conventions of Fig 1 A-C. The background represents the statistical parametric map (in greyscale) of the 

corresponding group-level analysis used to identify the seed coordinates for each ROI (Step 2 in Fig. 1 C). 
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sed as the starting point to search in 3D space for the closest active

eak within the individual statistical parameter maps obtained from

LM models of each participant (see Fig. 1 C, right panel). For maximal

ensitivity, the map was derived from an omnibus F -test that included

ll the experimental conditions. In practice, this F -test was designed to

apture any voxel that responded to any experimental condition. The

ame F -contrast was also used to adjust (i.e., mean-correct) each ROI’s

ime series ( Ashburner et al., 2016 ; Penny et al., 2011 ). 

The individual coordinates, thus defined, were then visually in-

pected; when the coordinates were outside the predefined anatomical

oundaries, they were manually re-adjusted. Across over 1200 coordi-

ates examined, only 2 required manual adjustment (~ 0.2%). Fig. 4

llustrates the distribution of the individual coordinates of each region

or each task, overlaid over a corresponding group-level statistical map

f task-related activity. Each individual coordinate is represented by a

rossmark; the ~200 crossmarks form a cloud that captures the spatial

ariability in the distribution of coordinates. 

Finally, the individualized ROI coordinates were then used as the

enter of a spherical ROI. All voxels within the sphere whose response

as significant at a minimal threshold of p < 0.50 were included as part

f the ROI. For each ROI of every participant in every task, a represen-

ative time course of neural activity was extracted as the first principal

omponent of the time series of all of the voxels within the sphere. 

All the ROIs thus obtained were located in the left hemisphere: this

implifying approach was preferred to possible alternatives, such as in-

luding homologous regions in the right hemisphere (which would have

equired introducing additional assumptions about inter-hemispheric

onnectivity) or creating bi-lateral ROIs (which would have reduced

he amount of variance captured in each ROI). Because all tasks show

tronger activation in the left hemisphere than in the right, our results

re still representative of brain activity in these domains. 

.4. Model fitting 

Once the time-series for each ROI was extracted, different networks

ere created by connecting all of the individually-defined ROIs accord-

ng to the specifications of each architecture ( Fig. 2 ). It should be noted

hat synaptic pathways exist that connect every pair of components;

hus, this network model is designed to capture the fundamental layout
7 
f a brain architecture in terms of functionally necessary connections,

ather than anatomical details. 

The predicted time course of the neural response for each network

odel was then generated by using Eq. (1) to simulate network activity

s it unfolded over the course of the task. The predicted time course

f BOLD signal was then generated by applying a biologically-plausible

odel (the balloon model: Buxton et al., 1998 ; Friston et al., 2000 ) of

eurovascular coupling to the simulated neural activity y of each node

n the network. The parameters of the full DCM, which include both

he network connectivity parameters and the physiological parameters

f the neurovascular coupling model, were estimated by applying the

xpectation-maximization procedure ( Friston et al., 2003 ) to reduce the

ifference between the predicted and observed time course of the BOLD

ignal in each ROI. 

. Results 

Once the seven DCM models were separately fitted to the functional

euroimaging data, they were compared against each other using a

ayesian random-effects procedure ( Stephan et al., 2009 ). Like many

ther model comparison procedures, this approach provides a way to

alance the complexity of a model (as the number of free parameters)

ersus its capacity to fit the data. Compared to popular log-likelihood-

ased measures (e.g., Akaike’s information criterion: Akaike, 1974 ), this

rocedure is more robust in the face of outlier subjects, and thus bet-

er suited for studies that, like the present one, include a large number

f participants and deal with considerable inter-individual variability

 Stephan et al., 2010 , 2009 ). 

Fig. 5 , inspired by Stephan et al. (2009) , provides a graphical illustra-

ion of the procedure. Specifically, the probability r k that an architecture

 would fit a random individual in a sample of participants is drawn from

 Dirichlet distribution Dir( 𝛼1 , 𝛼2 ,… 𝛼K ). This approach yields a poste-

ior distribution of the probabilities r k for each model; the distributions

f probabilities of architectures 1, 2,… k across n individuals are then

rawn from multinomial distributions m k,n (see Fig. 5 A). Because of the

roperties of the Dirichlet distribution, the distributions r k will jointly

um up to one. Intuitively, these distributions can be thought of as the

robability densities that a random participant will be best explained by

 given architecture, and they must sum up to one because the space of
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Fig. 5. (A) Visual representation of the hierarchical Bayesian modeling procedure. (B) Visual representation of two architectures’ probability distributions r k , shown 

as the two thick grey and black curves. The red dashed line represents the expected probability of the winning architecture; (C) Visual representation of the winning 

architecture’s exceedance probability, that is, the proportion of a probability distribution that is greater than any other. In the case of two possible models ( k = 2), 

the exceedance probability reduces to the area to the right of r k = 0.5. Modified from Stephan et al. (2009) . 
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rchitectures in a given comparison is finite and each participant must

e best fit by one. Fig. 5 B-C illustrates a simple case with two hypotheti-

al architectures, identified by the black and the grey lines, respectively.

he figure depicts a case in which there is a high probability, centered

t around r BLACK = 0.8, that any participant will be best fit by the first

rchitecture (the black distribution). A second probability distribution

in grey), centered at around r GREY = 0.2, represents the probability

hat any participant will be fit by the alternative architecture. These

wo probability distributions can then be compared in terms of their

elative expected and exceedance probabilities. The expected probability

red line in Fig. 5 B) is simply the mean of a distribution; again, the prop-

rties of the Dirichlet distribution guarantee that the sum of the means

f all distributions is 1. In the example of Fig. 5 B, the mean for the black

istribution is 0.74. The exceedance probability is the probability that

he r k for a given architecture k is larger than the corresponding value

f any competing models ( Fig. 5 C). In the case of two possible archi-

ectures ( k = 2), the exceedance probability can be easily calculated as

he area of each distribution to the right of r k = 0.5. When more than

wo architectures are compared ( k > 2), however, there are no straight-

orward closed-form solutions to derive the corresponding distributions’

xceedance probabilities. In this case, exceedance probabilities are cal-

ulated numerically by simulating 10,000 times the outcomes of sam-

ling from the original distributions and computing the proportion of

imes each given architecture has the highest probability. 

The model posterior distributions are visualized for each task in

ig. 6 A-F. The expected probabilities are represented as the colored ver-

ical lines, while the exceedance probabilities are summarized as col-

red bars in Fig. 6 H. Table 2 provides a detailed list of model compar-

son metrics, including the ones derived from the hierarchical Bayesian

rocedure used in this study (Dirichlet’s 𝛼, expected, and exceedance

robabilities) as well as the group-level log-likelihood of each model. 

Both types of metrics provide evidence in favor of the CMC. As shown

n Fig. 6 A-F and Table 2 , the CMC provides a better fit to the data than

ny alternative architecture, and its exceedance probabilities range from

.99 to 1.0 ( Fig. 6 H). Thus, the CMC uniquely satisfies both the gener-

lity and comparative superiority criteria. By contrast, all of the other

rchitectures are consistently outperformed by the CMC in every domain

violating comparative superiority) and their relative rankings change

rom task to task (violating generality). 

The only tasks in which another model comes close to the CMC in

erms of fit were the Language and Mathematical cognition and the Re-

ational Reasoning paradigms, in which the Hierarchical 2 model and

he Hub Temporal model, respectively, reached an expected probabil-

ty of 0.15 and 0.28 against the CMC ( Fig. 6 H). Both paradigms stand
8 
ut from the others for posing unusual demands in terms of switching

etween strategy or rules (Relational Reasoning) or between two en-

irely different tasks of comparable difficulty. This peculiarity raises a

otential concern that the CMC’s superiority could be an artifact of mod-

ling each task in isolation, and that in conditions where multiple tasks

ere modeled simultaneously, a different model could potentially pro-

ide a superior fit. To examine this possibility, a second analysis was

arried out, which included only the 168 participants for whom data

or all seven tasks was available. In this analysis, the data from each

f the six paradigms performed by the same individual is modeled as

 different run from a “meta-task ” performed by that individual. When

uch an analysis was performed, the CMC maintained its superiority, all

ther models having a combined exceedance probability < 1.0 × 10 − 10 

 Fig. 6 G-H, Table 2 ). 

.1. The role of perception-action connectivity 

One other possibility is that the superiority of the CMC originates

rom some peculiarity of its network connectivity that was missing in the

ther architectures. The one notable difference, in this sense, is the pres-

nce of a direct link between the Perception and Action ROIs, which are

ilaterally connected in the CMC but unconnected in the six other rival

rchitectures ( Fig. 2 ). To examine the role of a direct perception-action

ink in fitting the data, the six alternative architectures were augmented

ith bilateral Perception-Action connectivity and a new Bayesian model

omparison was run. Notice that, after the addition of the Perception-

ction links, the Hub Prefrontal architecture becomes virtually indistin-

uishable from the CMC, differing only for the direction of one single

onnection (from the Working Memory to Action: Fig. 2 ). Because, in

 Bayesian model comparison, models compete against each other, two

lmost-identical models run the risk of evenly dividing the proportion

f participants best explained, possibly leading to misleading low re-

ults. For this reason, we combined the two architectures into a single

family ”, treating them as an identical model ( Penny et al., 2010 ). 

The results of these follow-up analyses are presented in Fig. 7 and in

able 3 (for completeness, Table 3 reports the CMC and Hub-and-Spoke

FC entries separately). Overall, the addition of the direct Perception-

ction connectivity improves the fit of the alternative models. This im-

rovement is shown in two ways. First, across all six tasks, the log-

ikelihoods of the alternative architectures have increased, on average,

y 6,211; a fixed-effects ANOVA, using Task and Connectivity (with vs.

ithout Perception-Action links) as factors, showed that the main effect

f connectivity was significant [ F (1, 60) = 6.411, p = 0.014], suggest-

ng that their absolute fit to the data has grown reliably. Second, and
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Fig. 6. Results of the Bayesian model comparisons. In all plots, different colors represent different architectures. (A-G) Probability distributions that each of the seven 

architectures is true, given the data within each task and across all tasks combined. Vertical dotted lines represent the mean of each distribution, i.e. the expected 

probability of each model. (H) Corresponding exceedance probabilities, represented as stacked bars for each task. 

m  

t  

t  

fi  

6  

s  

t  

b  

s  

a  

r  

a  

p  

r  

T  

r  

C  

r  

a  

a  

f  

r  

d  

s  

(

3

 

m  

e  

e  

d  

c  

n  

f  

r  

t  

t

 

e  

a  

m  

t  

P  

e  

c  

b

 

c  

i  

R  

i  

f  

b  

fi  

t  

b  

t  
ore importantly, the expected probability of the alternative architec-

ures has risen from r = 0.060 to r = 0.133, implying that their dis-

ributions have shifted rightwards. Once more, a Task-by-Connectivity

xed-effects ANOVA showed that this increase was significant [ F (1,

0) = 12.42, p = 0.0008]. Because the expected probabilities need to

um to one, the growth of the alternative models must have occurred at

he expense of the CMC, thus implying that the alternative models have

ecome more competitive. This improvement notwithstanding, the re-

ults of the Bayesian model selection essentially replicates the previous

nalysis, showing that the CMC/Hub Prefrontal family provides a supe-

ior fit across tasks. Once more, the only exceptions are the Language

nd Math paradigm, where the Hierarchical 2 and 3 architectures also

rovide a reasonable fit (expected probabilities r = 0.20 and r = 0.23,

espectively, against the CMC/Hub Prefrontal’s r = 0.32; Fig. 7 C and

able 3 ), and the Relational Reasoning task, where the Hub Tempo-

al model provides, this time, a slightly better fit than the combined

MC/Hub Prefrontal architecture (expected probability of r = 0.30 vs

 = 0.27; Fig. 7 D and Table 3 ). As in the previous case, a follow-up

nalysis was carried out by combining all tasks into a single paradigm

nd, thus, rule out the possibility that the combined CMC/Hub Pre-

rontal architecture would be underperforming under conditions that

equire integrating or switching between sources of information. Un-

er this combined condition, the combined CMC/Hub Prefrontal family

howed, once more, its superiority, dominating over all other models

expected probability r = 0.96; Fig. 7 G). 

.1.1. Differences between CMC and augmented Hub Prefrontal 

It has been notedthat, once the Hub Prefrontal architecture is aug-

ented with bi-directional Perception-Action connectivity, it becomes
9 
ssentially indistinguishable from the CMC. This is because the differ-

nce between the two architectures reduces to the presence of one ad-

itional feedback connection (from the Action component to the WM

omponent) in the Hub Prefrontal architecture; the absence of such con-

ection, however, is not a central tenet of the CMC. Thus, while the dif-

erences between the remaining architectures are large, structural, and

epresentative of different conceptual views of the brain’s organization,

his difference is comparatively minor. It remains interesting, however,

o consider whether it has functional implications. 

In addition to reporting the data in which the two models are consid-

red as a single family, Table 3 separately reports the relevant expected

nd exceedance probabilities and log-likelihoods for the CMC and aug-

ented Hub Prefrontal. It is worth pointing out two relevant features in

he data. The first is that, as expected, every time the joint CMC/Hub

refrontal Family was selected as the best architecture, it was due to

ither one of its two resulting architectures. This is relevant because it

ould be argued that, by encompassing two different architectures (al-

eit very similar ones), this family was given an unfair advantage. 

The second is that there is no consistent winner between the two ar-

hitectures. Although the augmented Hub Prefrontal wins over the CMC

n five out of six tasks (Emotion, Incentive Processing, Language + Math,

elational Reasoning, and Social Reasoning), the CMC vastly surpasses

t in the Working Memory task. The degree by which the CMC outper-

orms in the Working Memory task is such that, when all tasks are com-

ined together, the CMC again comes out as the best model. This is con-

rmed by an analysis of the two architectures’ log-likelihoods across

ask paradigms ( Table 3 ). Unlike the exceedance and expected proba-

ilities, which are constrained to sum up to one and thus depend on

he other architectures in the comparison set, log-likelihoods are char-
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Table 2 

Results of Bayesian model comparison across tasks and models. For each task, the winning model is marked in bold. 

Task Model Dirichlet Expected Probability Exceedance Probability Log-likelihood 

All Tasks Combined Common Model 154.04 0.8802 1.0000 − 3766,837.6 

Hub-and-Spoke PFC 0.99 0.0057 0.0000 − 4300,912.0 

Hub-and-Spoke 

BG 

15.98 0.0913 0.0000 − 4250,392.0 

Hub-and-Spoke Temp 0.99 0.0057 0.0000 − 4319,925.9 

Hierarchical 1 0.99 0.0056 0.0000 − 4350,757.7 

Hierarchical 2 1.01 0.0058 0.0000 − 4334,435.3 

Hierarchical 3 1.00 0.0057 0.0000 − 4323,617.8 

Emotion Processing Common Model 96.91 0.5021 1.0000 − 858,283.0 

Hub-and-Spoke PFC 9.86 0.0511 0.0000 − 861,878.6 

Hub-and-Spoke 

BG 

26.37 0.1366 0.0000 − 861,523.5 

Hub-and-Spoke Temp 12.39 0.0642 0.0000 − 864,280.8 

Hierarchical 1 20.61 0.1068 0.0000 − 865,658.5 

Hierarchical 2 16.52 0.0856 0.0000 − 864,810.6 

Hierarchical 3 10.34 0.0536 0.0000 − 863,274.9 

Incentive Processing Common Model 142.47 0.7018 1.0000 − 857,045.6 

Hub-and-Spoke PFC 2.29 0.0113 0.0000 − 862,786.1 

Hub-and-Spoke 

BG 

18.22 0.0898 0.0000 − 865,497.7 

Hub-and-Spoke Temp 13.04 0.0642 0.0000 − 866,911.2 

Hierarchical 1 4.88 0.0240 0.0000 − 870,353.0 

Hierarchical 2 11.49 0.0566 0.0000 − 869,460.1 

Hierarchical 3 10.60 0.0522 0.0000 − 868,591.6 

Language & Math Common Model 97.37 0.5045 1.0000 − 894,992.9 

Hub-and-Spoke PFC 5.63 0.0292 0.0000 − 902,568.4 

Hub-and-Spoke 

BG 

13.19 0.0683 0.0000 − 918,300.9 

Hub-and-Spoke Temp 10.88 0.0564 0.0000 − 906,920.6 

Hierarchical 1 6.36 0.0330 0.0000 − 918,356.7 

Hierarchical 2 29.24 0.1515 0.0000 − 905,494.7 

Hierarchical 3 30.33 0.1571 0.0000 − 904,860.3 

Relational Reasoning Common Model 81.47 0.4265 0.9920 − 746,544.4 

Hub-and-Spoke PFC 2.70 0.0141 0.0000 − 750,719.3 

Hub-and-Spoke 

BG 

33.63 0.1761 0.0000 − 672,161.8 

Hub-and-Spoke Temp 53.48 0.2800 0.0080 − 748,884.4 

Hierarchical 1 1.05 0.0055 0.0000 − 760,118.0 

Hierarchical 2 9.78 0.0512 0.0000 − 756,409.0 

Hierarchical 3 8.90 0.0466 0.0000 − 754,017.1 

Social Cognition Common Model 140.08 0.7221 1.0000 − 712,975.6 

Hub-and-Spoke PFC 3.84 0.0198 0.0000 − 715,828.7 

Hub-and-Spoke 

BG 

15.69 0.0809 0.0000 − 719,374.2 

Hub-and-Spoke Temp 4.66 0.0240 0.0000 − 723,105.1 

Hierarchical 1 6.01 0.0310 0.0000 − 724,568.5 

Hierarchical 2 3.78 0.0195 0.0000 − 725,094.2 

Hierarchical 3 19.93 0.1027 0.0000 − 720,446.2 

Working Memory Common Model 187.37 0.9658 1.0000 − 113,247.6 

Hub-and-Spoke PFC 1.00 0.0052 0.0000 − 679,145.2 

Hub-and-Spoke 

BG 

1.62 0.0083 0.0000 − 680,396.4 

Hub-and-Spoke Temp 1.00 0.0052 0.0000 − 683,402.0 

Hierarchical 1 1.01 0.0052 0.0000 − 687,543.1 

Hierarchical 2 1.00 0.0052 0.0000 − 688,720.4 

Hierarchical 3 0.99 0.0051 0.0000 − 687,175.6 
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cteristic for each architecture. As the data in Table 3 indicates, the

ifference in log-likelihoods between the CMC and the augmented Hub

refrontal is minimal across the five tasks in which the Hub architecture

verperforms (mean difference = 1,382), but is massive in the Working

emory task (difference = 558,121), providing the decisive advantage

hen all tasks are combined. 

.2. Analysis of CMC connectivity 

As noted earlier, although the competing architectures were chosen

o represent current alternative views, we cannot entirely rule out the

xistence of alternative architectures that explain the data better than

he CMC. It is possible, however, to decide whether all of the connections

n the CMC are necessary, or whether a simpler model could potentially
10 
t the data equally well. This is particularly important because, as noted

n the previous section, the difference between the CMC, as outlined in

he original paper ( Laird et al., 2017 ) and the modified Hub Prefrontal

rchitecture (augmented with bilateral Perception-Action connections)

oils down to a single, directed link. 

To this end, a Bayesian parameter averaging procedure ( Kasess et al.,

010 ) was conducted to generate the posterior distributions of the in-

rinsic connectivity parameter values (corresponding to matrix A in

q. (1) ) across participants for each task. Fig. 8 visually depicts the six

ask-specific connectivity matrices, indicating both the mean value (as

he matrix cell color) and the associated posterior probability (as the

verlaid number) for each CMC connection in each task. As the figure

hows, the parameter values change significantly from task to task, im-

lying that the CMC architecture is adaptively leveraged to meet the
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Fig. 7. Follow-up Bayesian model comparisons, after the six alternative architectures have been augmented with bilateral Perception-Action connections. In all 

plots, different colors represent different architectures. (A-G) Probability distributions that each of the seven architectures is true, given the data within each task and 

across all tasks combined. Vertical dotted lines represent the mean of each distribution, i.e. the expected probability of each model. (H) Corresponding exceedance 

probabilities represented as stacked bars for each task. 
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pecific requirements of each paradigm. Nonetheless, virtually all pa-

ameters have a posterior probability p ≈ 1.0 of being different than

ero (with just two out of 84 parameters having smaller posterior prob-

bilities of p = 0.75 and p = 0.98), suggesting that all the components

nd their functional connections remain necessary across all domains. 

. Discussion 

In this study, a comparative analysis was performed on the rela-

ive ability of seven theoretical architectures to account for brain ac-

ivity across seven different domains. These results provide overwhelm-

ng and converging evidence in favor of the Common Model of Cogni-

ion (CMC), a consensus architecture derived from the analysis of both

uman and artificial intelligent systems. Specifically, a CMC-inspired

etwork model of the brain consistentlyoutperforms other architectures

cross all of the domains, thus jointly satisfying the two a priori crite-

ia of generality and superiority . Even when the six alternative architec-

ures were augmented with the CMC-specific bidirectional Perception-

ction connectivity, either the CMC or a close variant remained domi-

ant across both criteria. Thus, the CMC emerges as a viable high-level

lueprint of the human brain’s architecture, potentially providing the

issing unifying framework to relate brain structure and function for

esearch and clinical purposes. 

.1. Limitations 

Although surprisingly robust and based on a large set of data, these

esults should be considered in light of four potential limitations. First,
 d  

11 
ur conclusions are based on an analysis of task-related brain activity.

espite being established in the literature, the HCP tasks remain arti-

cial and laboratory-based, and their ecological validity is, therefore,

nknown. In contrast, many prominent studies have focused on task-

ree, resting-state paradigms ( Cole et al., 2013 , 2016 ; Fox et al., 2005 ;

ower et al., 2011 ; Yeo et al., 2011 ; ( Shehzad et al., 2009 )). Thus, al-

hough the use of the task-related activity provides the most natural

est for the generality criterion, the extent to which the CMC applies to

esting-state fMRI remains to be explored. 

Second, although this paper has argued that the CMC components

an be mapped to a small set of large-scale networks in the human brain

as identified in the works of Power et al., 2011 ; and Yeo et al., 2011 ),

he identification between functional networks and components is not

erfect; some components match with multiple networks and some net-

orks have no clear mapping to the CMC. Thus, in the future, more

heoretical work would need to be done to elucidate the connections

etween the large scale network organization of the human brain and

he CMC. 

Third, as noted above, our selection of alternative architectures was

epresentative but not exhaustive. Although most of the distinct archi-

ectures that can be generated using just the five CMC components

re likely to be unreasonable from a functional standpoint, some of

hem could, potentially, outperform the CMC. Furthermore, small varia-

ions remain possible within each architecture, and their functional role

hould be further explored. 

Finally, it can be argued that our approach does not take full advan-

age of the possibilities of DCM, which makes it possible to accommo-

ate non-linear, modulatory effects in the dynamic model. For example,
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Table 3 

Results of Bayesian model comparison across tasks and models with added Perception-Action connection; the results of the Common Model of Cognition and 

the Hub-and-Spoke PFC architecture are presented separately. For each task, the winning model is marked in bold. 

Task Model Dirichlet 𝛼 Expected Probability Exceedance Probability Log-likelihood 

All Tasks 

Combined 

Common Model /Hub 

PFC 

Family 168.01 0.9601 1.0000 

CMC 167.00 0.9543 1.0000 − 3766,837.6 

Hub PFC 1.01 0.0058 0.0000 − 4265,704.7 

Hub-and-Spoke BG 2.01 0.0115 0.0000 − 4297,225.5 

Hub-and-Spoke Temp 1,00 0.0057 0.0000 − 4287,518.1 

Hierarchical 1 1.99 0.0114 0.0000 − 4287,569.1 

Hierarchical 2 1.00 0.0057 0.0000 − 4272,764.1 

Hierarchical 3 0.99 0.0056 0.0000 − 4274,887.3 

Emotion Processing Common Model /Hub 

PFC 

Family 77.94 0.4000 1.0000 

CMC 22.80 0.1182 0.0022 − 858,283.0 

Hub PFC 55.14 0.2857 0.9773 − 857,833.4 

Hub-and-Spoke BG 24.72 0.1281 0.0002 − 859,985.1 

Hub-and-Spoke Temp 10.35 0.0536 0.0000 − 862,050.9 

Hierarchical 1 33.61 0.1741 0.0189 − 859,314.4 

Hierarchical 2 26.96 0.1397 0.0014 − 859,975.7 

Hierarchical 3 19.43 0.1007 0.0000 − 859,211.7 

Incentive 

Processing 

Common Model /Hub 

PFC 

Family 82.08 0.4023 1.00 

CMC 7.96 0.0392 0.0000 − 857,045.6 

Hub PFC 74.12 0.3651 0.9988 − 855,018.9 

Hub-and-Spoke BG 21.43 0.1056 0.0000 − 858,162.0 

Hub-and-Spoke Temp 8.13 0.0400 0.0000 − 859,742.0 

Hierarchical 1 39.39 0.1940 0.0010 − 855,268.9 

Hierarchical 2 32.57 0.1604 0.0002 − 855,964.4 

Hierarchical 3 19.41 0.0956 0.0000 − 858,211.8 

Language & Math Common Model /Hub 

PFC 

Family 63.30 0.3250 0.9440 

CMC 5.05 0.0262 0.0000 − 894,992.9 

Hub PFC 58.25 0.3018 0.8789 − 894,287.1 

Hub-and-Spoke BG 19.422 0.1006 0.0000 − 912,345.1 

Hub-and-Spoke Temp 16.12 0.0835 0.0000 − 901,464.7 

Hierarchical 1 11.35 0.0588 0.0000 − 908,420.7 

Hierarchical 2 38.17 0.1978 0.0195 − 897,894.4 

Hierarchical 3 44.65 0.2313 0.1016 − 897,488.9 

Relational 

Reasoning 

Common Model /Hub 

PFC 

Family 53.09 0.2740 0.3270 

CMC 1.67 0.0088 0.0000 − 746,544.4 

Hub PFC 51.42 0.2692 0.3036 − 743,529.8 

Hub-and-Spoke BG 5.96 0.0312 0.0000 − 747,865.8 

Hub-and-Spoke Temp 56.49 0.2958 0.6677 − 739,334.9 

Hierarchical 1 8.25 0.0432 0.0000 − 745,921.0 

Hierarchical 2 40.07 0.2098 0.0284 − 738,619.2 

Hierarchical 3 27.14 0.1421 0.0003 − 739,493.4 

Social Cognition Common Model /Hub 

PFC 

Family 109.39 0.5639 1.0000 

CMC 8.15 0.0420 0.0000 − 712,975.6 

Hub PFC 101.24 0.5219 1.0000 − 712,243.3 

Hub-and-Spoke BG 23.60 0.1216 0.0000 − 715,714.6 

Hub-and-Spoke Temp 3.23 0.0166 0.0000 − 719,399.4 

Hierarchical 1 14.26 0.0735 0.0000 − 715,774.2 

Hierarchical 2 16.98 0.0875 0.0000 − 715,839.3 

Hierarchical 3 26.54 0.1368 0.0000 − 714,923.9 

Working Memory Common Model /Hub 

PFC 

Family 187.03 0.9640 1.0000 

CMC 186.03 0.9589 1.0000 − 113,247.6 

Hub PFC 1.00 0.0052 0.0000 − 671,369.3 

Hub-and-Spoke BG 1.97 0.0101 0.0000 − 671,926.9 

Hub-and-Spoke Temp 1.99 0.0102 0.0000 − 674,689.8 

Hierarchical 1 1.01 0.0052 0.0000 − 670,352.3 

Hierarchical 2 1.01 0.0052 0.0000 − 671,517.9 

Hierarchical 3 1.00 0.0052 0.0000 − 673,886.6 

t  

t  

g  

(  

e  

l  

a  

i  

t  

d  

2

4

 

b  

c  

t  

t  

c  

t  

b  

t  
he strategic role of procedural knowledge in the CMC (Assumption B3 of

he original paper) is compatible with a “modulatory ” view of the basal

anglia, which has also been argued for from a theoretical standpoint

 Stocco et al., 2010 ) and empirically observed in at least one study using

ffective connectivity analysis ( Prat et al., 2016 ). In this study, modu-

atory connections were deliberately not included, so to level the field

nd make the seven possible architectures more similar to each other

n terms of overall complexity. Preliminary evidence, however, suggests

hat modulatory versions of the CMC might even outperform the stan-

ard version discussed herein ( Steine-Hanson et al., 2019 ; Stocco et al.,

018 ). 
12 
.2. Consideration on the nature of the CMC 

These limitations notwithstanding, it is worth examining the possi-

le implications of the CMC’s ability to account for neural data across

ognitive domains. Our set of analyses suggests that the superiority of

he CMC across cognitive domains stems from two key characteristics:

he “Hub-and-Spoke ” nature of its connectivity, with a central hub lo-

ated in the prefrontal cortex, and the presence of a direct Perception-

o-Action route. Neither of these two elements, in isolation, are responsi-

le for the success of the CMC in explaining human neuroimaging data;

he Hub-and-Spoke architecture alone, for instance, is outmatched not
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Fig. 8. Estimated DCM intrinsic connectivity parameters for the CMC model. Each plot represents the intrinsic connectivity matrix (matrix A in Eq. (1) ); the cell 

color indicates the parameter value, and the white text indicates the posterior probability that the parameter value is significantly different from zero. White matrix 

cells indicate connections that are not present in the CMC (see Fig. 1 A). 
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nly by the CMC but by other architectures as well ( Fig. 6 ). By con-

rast, while the Perception-to-Action connectivity improves the relative

ompetitiveness of all architectures, it does not change the superior-

ty of the CMC ( Fig. 7 ). Thus, it is reasonable to conclude that both

lements jointly concur in determining the success of the CMC. A pos-

ible functional explanation for this duality is that the two elements

rovide different and complementary routes for control. The hub-like

ature of the PFC has been speculated upon for more than a century

 Bianchi, 1922 ; Luria, 2012 ), and has been confirmed empirically by

unctional connectivity studies ( Cole et al., 2012 , 2013 ; Zanto and Gaz-

aley, 2013 ); computationally, it has been postulated that its existence

reates a “global workspace ” ( Dehaene et al., 1998 ) in which informa-

ion across different modalities can be integrated and shared, thus allow-

ng effortful but advanced and flexible control over behavior —and, pos-

ibly, even consciousness ( Dehaene and Naccache, 2001 ). Conversely,

irect bi-directional links between Perception and Action systems in the

uman brain ( Craighero et al., 1999 ; Fuster, 2004 ) are believed to sup-

ort fast and automatic online monitoring and correction of motor be-

avior. 

.3. Broader implications 

The results outlined here also have further implications. The first is

hat they highlight the fact that a greater degree of translation is pos-

ible, at the systems level, between the results of the cognitive sciences

nd those of the neuroscience and neuroimaging communities. Specif-

cally, they show that constraints developed at the levels of cognitive

heories could be successfully translated into constraints at the level

f the brain’s functional organization. Furthermore, it was shown that

ystems-level principles from the cognitive sciences are, in fact, compat-

ble with an increasingly popular view about the hub-like nature of PFC

n humans. 

Our results also suggest that a different, top-down approach to the

nalysis of functional connectivity in the brain could be implemented.
13 
his approach could be extended in the future and integrated with the

ore common bottom-up approaches to the analysis of functional con-

ectivity. 

Finally, the fact that the CMC, which draws inspiration from high-

evel models of human cognition and artificial intelligent systems, ac-

ounts for the neural activity of the human brain, which is a low-level

iological intelligent system, is also worthy of further consideration. In

rinciple, solutions designed for artificial systems do not need to apply

or biological systems, or vice versa. A mundane explanation is that this

onvergence simply reflects the fact that principles of brain organiza-

ion have indirectly guided the development of cognitive architectures

or human and machine intelligence (for instance, through the mediat-

ng influence of cognitive science). A more radical explanation is that

he architectural space for general (or, at least, human-like) intelligence

s inherently constrained and possibly independent of its physical real-

zation, whether organic or artificial. In this sense, the CMC could be a

odel for any intelligent system, or at least for a large class of them, at

ifferent levels of organization. Both hypotheses are worth exploring in

uture research. 
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