Toward Unifying Cognitive Architecture and Neural Task Set Theories

Bryan Stearns (stearns @umich.edu)
University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121 USA

John E. Laird (laird @umich.edu)
University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121 USA

Abstract

PRIMs theory describes a computational foundation for un-
derstanding task-general human learning and transfer using
rule-based cognitive architectures. Integration with ACT-R
has yielded Actransfer, a model that replicates human learn-
ing and transfer across many tasks. However, this model re-
quires task-specific latency scaling parameters from ACT-R
to model different tasks, implying that there is missing com-
putation in the theory. Neuroscience literature has separately
defined the “task set” as the neural encoding that configures
stimulus-response rule behavior in working memory. The pro-
cess of switching between different task sets is often used to
explain human latency costs. This paper introduces an alter-
nate instantiation of PRIMs theory that enacts task set process-
ing to account for the missing computation via a novel memory
structure called a procedure context. Human tasks of varying
complexity are modeled across two experiments. Procedure
contexts model human latencies and interference effects in all
tasks by integrating latency, decision making, task representa-
tion, and learning as aspects of a single unified process. This
approach offers promise for future modeling within cognitive
science by uniting theories from neuroscience and cognitive
architectures.

Keywords: task set; cognitive modeling; cognitive architec-
ture; Soar; PRIMs; PROPs; task switching; learning

Introduction

PRIMs theory (Taatgen, 2013) has been integrated with the
ACT-R cognitive architecture (Ritter, Tehranchi, & Oury,
2019) for a task-general model of learning called Actrans-
fer, which results in transfer profiles similar to those ob-
served in humans. PRIMs theory is based on compos-
ing computationally-primitive condition-action memory op-
erations, or “PRIMs,” through practice, and is associated
with basal ganglia modeling of rule-driven behavior (Taat-
gen, |2019). Actransfer is an architecture, with computational
definitions for decision making, working memory (WM), and
long-term memory that come from ACT-R, including a func-
tion for simulating latency from long-term declarative mem-
ory retrievals (Brasoveanu, |20135)):

Tretrieve = Fy X eiA (1)

F, is the latency factor parameter that varies from model to
model, and A is the activation of the retrieved memory.
Varying F; for different task models is common in the ACT-
R tradition, but this practice implies that some theory for the
computational differences of different tasks is missing. Ac-
transfer results rely on task-specific F; values, varied some-

times by an order of magnitude, to substantiate model sim-
ulations, and this prevents it from being a truly task-general
model of human learning and cognition.

One place to look for understanding task-specific process-
ing differences is task set theory (Sakail |2008). Task set the-
ory describes how neural activity establishes links between
perceived stimuli and task responses. A task set is often
framed in terms of rule-driven behavior, and switching task
sets for different task rule behaviors is thought to significantly
contribute to task-specific latency.

This paper explores the unification of these lines of re-
search in order to achieve a task-general model of learning
that avoids task-specific F, latency values. In this approach,
PRIMs theory is implemented in the Soar cognitive architec-
ture (Laird} |2012), resulting in a model called PROP3. PROP3
uses structures called “procedure contexts” that are theorized
to correspond to task sets, and that provide a task-general ap-
proach to timing. Two modeling experiments are presented
that use both PROP3; and Actransfer to model the same tasks
using identical task definitions and reasoning, and results
from both implementations are compared. PROP3; models
are timed by treating procedure context switches as task set
switches with uniform latency costs, while Actransfer models
use and task-specific values of F,.

Task Sets

A task set is a WM representation of a set of contextually
associated stimulus-response rules, which make behaviors
available to decision making (Oberauer, [2010). Active task
sets are implied in the neural activity that is sustained while
a subject comprehends instructed task behavior, waits to per-
ceive task stimuli, recognizes them, and responds. Studies
indicate a hierarchical organization of task sets across the
pre-frontal cortex and to some degree the anterior cingulate
cortex, distributed according to the abstractness of the repre-
sented procedures (Sakai, [2008).

Task set neural activity changes when switching tasks, or
when performing different operations within a single task.
Specific operations, such as comparing whether two objects
are the same, have been linked with specific neurons (Sakail
2008). The time required to establish a task set is a domi-
nant component of task switch costs and of WM interference.
By configuring stimulus-response mappings for current goals,
task sets filter the scope of perceived stimuli and available re-

[Long-term Declarative Memory

Oq“find-prompt" ‘
"read-prompt"

/'get-text"
"write-text"
"finish"

"place-cursor" }*

"type-word"

"COPY-slot2-to-output"}- -
"REMOVE-slot1"

Modify Procedural Memory

IF (instructed conditions true)
Learn Y [THEN (propose instructed decision)
IF (COPY decision)
\ THEN (perform described COPY)

.|IF ("read-prompt" decision)
Learned: THEN (COPY-input-to-slot1)

\. J

Propose]

Decision Making

Goal 1: O—)get-text
Goal 2: O—)read-prompt

Goal 3: O—) COPY-input-to-slot1

W "Hello"
/ _ nil)

mi
e

Working Memory

"find-prompt"

"read-prompt"

Figure 1: The PROP; procedure context model in Soar. Conditions are shown in white, actions in gray.

sponses, thereby shielding decision making from irrelevant
information (Dreisbach & Haider, [2008). The cost of switch-
ing to a new task is considered the consequence of successful
shielding during the prior task.

This paper proposes to represent a task set in Soar as
declarative knowledge for describing task rules, or “D-Rules”
here for clarity. These control the selection and firing of pro-
cedural production rules, or “P-Rules.” Note that the declar-
ative/procedural distinction in cognitive architectures is sub-
stantially based on computational aspects of the representa-
tions (such as how they are accessed and modified) in addition
to psychological theory. In ACT-R or Soar, the distinction be-
tween procedural and declarative is effectively the distinction
between P-Rules and what is manipulated by P-Rules. Since
WM defines what knowledge is available for P-Rules to use,
all WM content is called declarative in Soar.

PROP; and Procedure Contexts

The Primitive Operator (“PROP”’) model (Stearns, Assanie,
& Laird, 2017) is a model of human learning and transfer
that follows PRIMs theory. It is a set of P-Rules encoded in
Soar that allow it to learn any task, once it is given a declar-
ative representation of task D-rules. D-Rules are encoded in
procedure contexts via a task-general “assembly language” of
primitive conditions and actions, which are interpreted as in-
structions for task execution by condition and action P-Rules.
Learning and transfer behavior arises during practice as D-
rules are converted to more efficient P-rules. PROP; is a re-
vision of previous models and introduces procedure contexts
as a model of task set theory.

A procedure context is a symbolic representation of a set
of contextually associated D-Rules, which makes behaviors
available to decision making when in WM. Procedure con-
texts are hierarchically organized in Soar’s long-term declar-
ative memory, structured according to the abstractness of

the procedures, following the Soar Problem Space Compu-
tational Model (PSCM) (Laird, [2012). Retrieving a context
into WM corresponds to activating a task set.

shows example procedure contexts for a “Tran-
scribe Text” task, where a subject must copy a prompted line
of text into a computer text editor. Procedure contexts, shown
as triangles, encode a subject’s understanding of task proce-
dures in long-term declarative memory. Each procedure con-
text describes the decision options relevant to the subject for
different task states. Each decision can lead to another con-
text and set of possible decisions and procedures. Here, the
subject must first read the text from the prompt before writing
each word. Reading the prompt requires finding it and read-
ing the text. Writing each word might require placing the edit
cursor at the right location before typing the known word.

/ "get-text" \
"Transcribe Text"

"not-exists"
slot1

"not-equals"

"condition | = \MYPe _ngyictan
et b Aarg1
finish slot1

slot1
Aarg2 N

Figure 2: A procedure context for the “Transcribe Text” goal.

depicts the starting “Transcribe Text” procedure
context in Soar’s graph-based WM. It describes three D-

Rules in terms of conditions for pursuing deeper contexts.
The “write-text” structure describes the D-Rule, IF (slotl
is not equal to "\n" AND slotl exists) THEN
(propose "write-text" as an operation). D-Rule
conditions in a procedure context are evaluated once the
context is retrieved into WM. Soar elaboration P-Rules
evaluate condition structures in parallel, so that any operation
is proposed if and only if its conditions are met. This is
consistent with implications of recent basal ganglia neural
modeling of PRIMs theory (Taatgen, 2019).

Once operations are proposed for all D-Rules with match-
ing conditions, Soar decision making selects one to pursue
as a subgoal. Soar maintains a stack of active goals in WM,
as shown in As in the figure, if “Transcribe Text”
was first retrieved into WM, Soar could select the “get-text”
operation if its conditions were satisfied, which would result
in retrieving the “get-text” procedure context as a subgoal
for more detailed decision making. Similarly, if the “read-
prompt” operation was then selected, the corresponding con-
text would be retrieved as a deeper subgoal. All context hier-
archies terminate in action operations, as shown in gray in the
figure. Procedure contexts describe actions with structures
comparable to the condition structures in Once an
action D-Rule is retrieved, P-Rules execute the memory oper-
ation. Once actions are complete, or if the task state changes
so that a different action is preferred, the irrelevant portion of
the WM stack is removed and new goals are pursued.

Soar automatically learns new P-Rules that summarize
subgoal actions, through a process called chunking. Learned
P-rules can execute actions without the need for a subgoal.
In[Figure 1| a new P-Rule has just been learned from execut-
ing the “read-prompt” operation, so that the “read-prompt”
procedure context does not need to be retrieved in future.
PROP; uses a gradual version of Soar’s chunking mechanism
(Stearns & Laird, [2018)).

get-text write-text

Goal 1: @_’:’__A:E

retrieve read-
Goal 2: context promp} - éﬁi:g(
Goal 3:

[
After Chunking
get-text N/ write-text
Goal 1: A r
@tt::A'i____________ ___:EI __________

Goal 2:

Figure 3: Soar chunking.

depicts the Soar chunking process. Boxed letters
represent a WM state at different points in time, and arrows

represent operations that modify WM. Dashed boxes repre-
sent where the selected change to WM requires subgoal deci-
sion making. The figure shows what the decision making in
[Figure T|would look like in the future after learning.

When D-Rules entail multiple actions together (such as the
“finish” context in[Figure T), these are composed in a hierar-
chy similar to conditions, in pairs, according to PRIMs the-
ory for composing transferable P-Rules (Taatgen, [2013)). For
each iteration of practice, only the lowest subgoal is chunked,
but eventually all actions will be chunked together. All exe-
cuted D-Rule actions (those in gray in[Figure T) are gradually
chunked into single P-Rules in this way, so that they can then
fire in place of deliberate subgoals, but Soar does not learn
chunks that replace condition-based procedure contexts such
as those shown in white in[Figure 1] These describe decision
choices, not parallel actions for applying one decision.

In modeling human behavior with PROP3, each decision
corresponds to S0 msec. In modeling task sets with procedure
contexts, time is required to add contexts to WM. Creating a
subgoal requires one cycle, while retrieving knowledge from
long-term declarative memory requires two. This leads to the
following function for the latency of retrieving contexts:

Tcontext:FgXG‘FFcXC 2

where G is the number of times a subgoal is created, F, is a
goal latency factor (50 msec for one cycle), C is the number
of times procedure contexts are retrieved, and F, is a context
latency factor parameter (100 msec for two retrieval cycles).
C and G increase or decrease according to the number of sub-
goal branches in a task’s PSCM structure.

Chunks speed up task performance by reducing G and C
for task actions. But more procedure contexts for a task’s
decision making increases G and C. Thus, this model predicts
greater latency for tasks that require more complex decisions.

In summary, PROP3 models the latency of task set switch-
ing as the time required for switching procedure contexts,
which depends on both the hierarchical structure of task de-
cision making and on learning task actions.

Comparison with Actransfer

As a PRIMs model, Actransfer learns tasks by converting D-
Rules to P-Rules, but there are several differences in compar-
ison to PROP;3. First, Actransfer D-Rules are self-contained
bundles of conditions and memory actions without the PROP3
hierarchy. Only one D-Rule is in WM at a time, whereas
PROP; allows one D-Rule hierarchy branch at a time. Ac-
transfer retrieves the D-Rule with the highest activation.
Additionally, Actransfer models latency for retrieving D-

Rules using [Equation 1} and its F, can vary significantly be-
tween tasks, whereas Fy and F; in [Equation 2| are the same

across tasks. Actransfer matches PROP3 in using 50 msec
per decision, but it will use more decisions per D-Rule than
PROP3, because it evaluates D-Rule conditions deliberately
via decision making rather than in the background in parallel.

Another difference is that Actransfer shields decision mak-
ing from irrelevant procedures by conditioning rule logic on

explicit goal names in WM, as is standard in ACT-R, Soar,
and other architectures. PROP; shields decision making via
the context-specific set of available D-Rules, without the need
for explicit goal names. Further, Actransfer goal names are
like any other WM value, and can change in parallel with

other WM operations without adding latency as in[Equation 2}

The most significant difference is that, where
adds latency that is not otherwise part of the model, [Equa-

tial transfer. There is similar transfer to EMACS on day five.
(EMACS-only users required 80 sec on day 1, not shown.)

Simple Task: Arithmetic

Elio’s (1986) mental arithmetic task involved calculating hy-
pothetical pollution rates based on water samples. Subjects
repeatedly performed mental calculations such as shown in
[Table 1] using given input values. Human subjects were

merely describes the computational cost of using pro-
cedure contexts in Soar.

The following experiments compare PROP3 with Actrans-
fer to test the implications of these differences. To avoid tai-
loring tasks or procedure context structures for PROP;3 re-
sults, the experiment tasks are chosen from those previously
modeled by|Taatgen|(2013) using Actransfer, and the D-Rules
of those models are imported into PROP3 as procedure con-
texts. In order to define the procedure context hierarchy struc-
ture, all Actransfer D-Rules that condition on the same goal
name are grouped into a single procedure context, and each
change in goal name is replaced with a procedure context
switch. Otherwise, the D-Rules are unchanged.

Experiment 1: Within-task switching

The first experiment uses two human tasks of different com-
plexity to compare the PROP; and Actransfer timing mod-
els for within-task goal switch costs. The complex task
is the text editors task from (Singley & Anderson| |1985),
which required a deep hierarchy of task actions such as “edit-
document,” “edit-line,” “find-cursor,” and so on. In this task,
humans took 20 to 120+ seconds to complete each assigned
operation. The simple task is the mental arithmetic task from
(Elio} [1986)), which had a shallow hierarchy of operations for
sequential mathematical routines, and in which humans took
2 to 12 seconds to complete the calculations.

The hypothesis is that latency from switching procedure
contexts (as task sets) can model both time scales, according
to the different amount of switching needed for each task. Be-
low, each task is described before model results are presented.

Complex Task: Editors

In the editors task (Singley & Andersonl |1985)), typists mod-
ified documents according to written edit directions, such as
replacing one word with another or deleting a sentence. Three
keyboard-only editors were used with which participants had
no prior experience: ED, EDT, and EMACS. These each re-
quire different keyboard commands, with ED and EDT also
differing from EMAC:s as single-line editors.

The |1985/ experiment took place over six days. To test
transfer, some participants switched editors after two days. If
a participant spent two days each on ED, EDT, and EMACS
in that order, this is called ED-EDT-EMACS. shows
human data for transfer from ED to EDT-EMACS. Other con-
figurations were tested, but are omitted here because results
were similar. EDT performance after two days of ED is al-
most as fast as after two days of EDT, indicating substan-

trained in a calculation sequence until they performed it on
input data with perfect recall. They were then tasked with
performing it 50 times on various inputs. Following training,
subjects were assigned 50 trials using a different sequence of
operations than the one memorized. Subjects were assigned
one of three types of new procedures: transferred integrative,
transferred component, and a control. Transferred integrative
procedures shared with the memorized procedure all steps
that required remembering intermediate results from previ-
ous steps. Transferred component procedures instead shared
steps that required only checking input values directly. No
steps were shared in the control.

Table 1: Example calculation sequence for the arithmetic
task. Intermediate calculation values are marked with italics.

Step Calculation Op Type
1: Particulate rating Solid X (lime4 — lime;) Component
2: Mineral rating ~ greater of (algea/2)(solid/3) Component

3: Index 1 Particulate + Mineral Integrative
4: Marine hazard (toxinmax + toXinmy;n) /2 Component
5: Index 2 Index 1/Marine Integrative
6: Overall quality Index 2 - Mineral Integrative

Human performance is shown in Trials 1-

50 show the reported power-law fit to training performance.
Trials 51-100 show performance in the transfer conditions.
Elio’s reported transfer data show the mean from the first
and last 25 trials per subject In the original study, results
for component and integrative training calculations were re-
ported separately. Only performance on component steps is
shown here for brevity, as integrative results are comparable.

Transfer in the transferred component and transferred inte-
grative conditions is evident by the faster initial performance
for these cases, as expected due to the shared calculation
steps. More interesting is the transfer to the control condition,
which has no shared calculations. This indicates that calcula-
tion sequences share more than the specific operations.

Actransfer models

The Actransfer models of both tasks arrange D-Rules so that
similar operations, such as “ctrl-k”” in EMACS or “d” in ED,
which both delete the current line, or “algea /2" and “Index1
/2”, which both divide, use similar primitive conditions and
actions. This similarity allows transfer of P-Rules learned
during practice, providing the results shown in and
Results match the general human transfer trends.

IThe original 1986 human data is not available - only the data
shown (R. Elio, personal communication, May 18, 2018).

Editors - Human

Editors - Actransfer

Editors - Actransfer, no retrievals

Editors - PROP3

c o c o c o c o
sV \ S =7 S = S =7
® \\ X — edt-edt-emacs © X —%— edt-edt-emacs ® — edt-edt-emacs © =% edt-edt-emacs
o S \ -%- ed-edt-emacs o 84x -%- ed-edt-emacs o S -%- ed-edt-emacs o 8- -%- ed-edt-emacs
g ' g g §
= o] \ X - o N = o] = o]
S = 5 X~ S 5 =~ =
8 % *~ 8 ¢ \;s;,._x\ 8 % 8 ¢ Rt FEU N
) % 2 x 3 ¥om= Y= X ——— X 8
2 g4 c & c &1 X x c &
9 S Q S
3 o 5 o 3 o 5 o
@« T T T T T @ T T T T T T 0 T T T T T T @ T T T T T
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 3 4 5 6
Day Day Day Day
(a) Human task results from (b) Actransfer model (c) Actransfer model, (d) PROP3 model
(Singley & Anderson, |1985). without declarative retrieval time
Figure 4: Editors task, human and model performance.
Arithemtic - Human Arithemtic - Actransfer Arithemtic - Actransfer, no retrievals Arithemtic - PROP3
o o o o
x | Training == Human x |7 Human == Human
ol —e— Control o] —*— Training ol —%— Training o] —— Training
- —A— Transferred integrative - —e— Control - —e— Control - —e— Control
—— Transferred component —&— Transferred integrative —&— Transferred integrative —&— Transferred integrative
0] - —+— Transferred component 0] —+— Transferred component - —+— Transferred component
2 x) . 2 2
2 of o\ ° 2 o Vg © o x\ © o >\
£ % A £ X % 8, £ X £ %
= \ + = (e = x5 = \
<~ xx < xxxx ~- xX;E;(~- x';{ 2\
% X X -3 b3
XXxx 2 X +\¢ X%y x +§¢ §§§§ s
o o o o
o o o o
T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Trial Trial Trial Trial
(a) Human task results from (b) Actransfer model (¢) Actransfer model, (d) PROP3 model

(Elio, |1986).

without declarative retrieval time

Figure 5: Arithmetic task, human and model performance.

[Figure 4c|and |Figure S¢|show the same models, but when
omitting latency due to The number of retrievals
in these models decreases with practice, as the model learns
P-Rules to execute the tasks more automatically and less by
instruction, but the amount of simulated latency per retrieval
also decreases as activation of retrieved memories increases
with use. The figures show that decreasing latency per re-
trieval contributes significantly to the overall learning perfor-
mance, especially in

In the editors Actransfer model, F, = 1.5, whereas in the
arithmetic model, F, = 0.15. The average latency per declar-
ative retrieval in the editors task thus decreased from about
0.95 to 0.3 sec over days 1 to 6, whereas for the arithmetic
model it decreased from about 0.07 to 0.03 seconds over the
course of that task. This accounts for most of the difference
in time scale between these two models, though the editors
task also requires more decision making to complete.

PROP3; models

The PROP3 models use the differences in goal hierarchy
structure to account for time scale differences in these tasks.
Results are in [Figure 4d| and [Figure 5d| Consistent with the
hypothesis, the latency of switching contexts results in per-
formance time scales comparable to both original Actransfer
models, without requiring a task-specific scaling parameter.
In the arithmetic task, there is more transfer than exhibited

by humans or the Actransfer model. This reflects how the
model design treats identical calculation operations as identi-
cal subgoals, which are more fully transferred in PROP;3. This
might indicate that humans do not mentally represent opera-
tions in quite so modular a fashion. This is consistent with
Elio’s (1986) findings, in which changes to integrative struc-
ture reduced component step transfer. A smoother power-law
learning curve is also evident.

For the editors task, neither Actransfer nor PROP3; models
achieve human latency scaling in days 1-2. An early PROP
model of this task explained this missing latency by modeling
the learning of D-Rule structure during task trials (Stearns &
Laird, |2018)). PRIMs does not include a theory of the origin
or modification of D-Rules in declarative memory, and Ac-
transfer models do not include such behavior.

Experiment 2: Across-task switching

The second experiment tests the use of procedure contexts to
model task switch costs by modeling the WM training exper-
iment of |Chein and Morrison| (2010). Human subjects were
trained for 20 days on a complex WM task. Subjects were
sequentially shown single letters on a screen, and then asked
to report the sequence. Between each letter was a distractor
task of identifying if a word (e.g. “blick”) was real.

Subjects were given a battery of cognitive assessments be-

fore and after training. Control subjects were assessed before
and after 20 days of no training. One surprising result was
from the Stroop task assessment, in which words describing
colors (e.g. “red”) were shown in fonts of a potentially dif-
ferent colors (e.g. blue), and subjects were asked to report
the color of the font. Short pauses separated each trial word.
WM interference was measured as the difference in average
response time between when text and font colors were incon-
gruent (e.g. “red” in blue font) and congruent (e.g. “red” in
red font). The results are shown in[Figure 6al The horizontal
axis shows the change in interference before and after the 20
day WM training period. Results showed surprisingly signifi-
cant transfer from training toward reducing WM interference.
The hypothesis for Experiment 2 is that the
model of task set switching can also account for the described
Stroop interference effects. Each model is now presented.

Actransfer model

The Actransfer model uses transferred decision-making to ex-
plain this result. During pauses in the training task, the model
prepares by rehearsing known letters. During pauses in the
Stroop task, the model can either be idle or prepare to per-
ceive font color. The practice of preparing during training
biases the model to prepare in the Stroop task, since the pre-
pare decisions in both tasks are composed of many of the
same primitive operations, and both declarative instructions
increase in activation during practice.

Interference is modeled via declarative retrieval latency,
based on If there are conflicting stimuli in the
model’s visual WM buffer (the written color word and the
font color), activation for declarative knowledge of each is di-
luted. But if the model chooses to prepare, only the presented
font color enters its visual buffer. In that case, only that font
color’s memory is activated, and the undiluted higher activa-
tion leads to a faster retrieval time according to

Results in show substantial reduction in interfer-
ence with training. Transfer is more extreme than that seen in
human data, but the model demonstrates a working model of
transferring decision making via practice.

Stroop - Human

Tl ‘sam i

Stroop - Actransfer Stroop - PROP3

g 2 2
.
= 84 = 84 = 84 aT—u0
o = + o = o -)
o [$) o
= = c
9] 5] 5}
o o o
L Q2 L
s 9o c o o 2o
£ + £° £°
A -3
—e— No training —e— No training —e— No training
o—- —&— WM training o- —&— WM training o—- —&— WM training
T T T T T T
Pre Post Pre Post Pre Post

(a) Humans (Chein &| (b) Actransfer model
Morrison, [2010) (Taatgenl [2013))

(c) PROP3 model

Figure 6: Stroop test results, before/after WM training.

PROP; model

The PROP3 model represents WM interference as a failure
to prospectively retrieve the correct procedure context before
a trial prompt appears, consistent with the task set theory of
building up a task set in preparation for stimuli (Sakail [2008).
A default Stroop response of reporting the written text is
made available in the top-level procedure context, but report-
ing the font color requires retrieving a more detailed context
as a subgoal. If the model prepares by retrieving the subgoal
context before the prompt appears, performing this process
does not delay the response once the prompt is shown.

As in the Actransfer model, between Stroop trials, the
PROP3 model has a choice between preparing or being idle.
WM training teaches the model to prefer preparation. This
is done using Soar’s built-in Reinforcement Learning (RL)
(Laird, 2012). An internal reward is given whenever a correct
response is made, discounted over time. The faster a correct
response, the greater the effect of the reward, and the more
likely the choice is to be repeated.

Results are shown in The model replicates hu-
man transfer trends, consistent with the hypothesis, though
again, behavior is not an exact fit. It is clear, however, that
the procedure context approach can achieve comparable be-
haviors to Actransfer by enacting task set-like computation.

Discussion and Conclusions

Though PROP3; models replicate Actransfer behavior in both
experiments without depending on long-term memory acti-

vation, has a long history of successful human

modeling. There are two potential interpretations of these re-
sults. One is that procedure contexts and are two
different computational explanations for the same phenom-
ena, at different levels of abstraction. A second is that pro-

cedure contexts and [Equation T|explain different phenomena,
where procedure contexts model latency related to procedural

processes, and models more classical declarative
processes. The tasks examined here primarily test procedure
control and require few declarative fact recalls.

The idea of D-Rules as “declarative” knowledge comes
from PRIMs theory as applied in Actransfer (Taatgenl|[2013),
but it is unclear whether D-Rules ought to be considered
declarative in the psychological sense. It is important that D-
Rules are accessible to the central executive in WM, as short-
term structures that guide decision making. In the computa-
tional theories of ACT-R or Soar, any symbolic knowledge in
WM has the form of “declarative” knowledge. However, in
psychological theory, the term declarative usually refers to se-
mantic or episodic knowledge that references facts or events
in the outside world, not task procedures (Kump, Moskaliuk,
Cress, & Kimmerlel 2015). |Oberauer| (2010) describes task
sets as WM structures with procedural function, and calls
them a form of procedural knowledge, although with a com-
putational structure similar to that of declarative WM knowl-
edge. This view of task sets as procedural WM knowledge
is consistent with the idea that procedure contexts and

model different processes. Regardless, results suggest
need not account for as much of task latency as
previously assumed in cognitive modeling, particularly with
respect to procedural control tasks.

The PROP3; models in this paper do not add substantial la-
tency for retrieving declarative memories that are not proce-
dure contexts, such as textual or mathematical facts relevant
for tasks. The slightly faster time scale of PROP; results for
the editors task might reflect the lack of fact retrieval latency
in the model. The time scale for the arithmetic task model is
not exceedingly fast, however. It is difficult to make definite
conclusions without a more thorough investigation of how
declarative fact knowledge should be represented and used in
these models. Future work should explore whether procedure
contexts imply any particular integration with more overtly
declarative memory processes. |Oberauer| (2010) describes
the theoretical declarative counterpart to task sets, “memory
sets,” which similarly mediate access to declarative knowl-
edge in WM. The procedure context structure might be used
in similar fashion to support memory set behavior. Future
work might also explore on-line modification of procedure
context structures as a model of subjects learning more accu-
rate or efficient task set strategies.

One could attempt to encode hierarchical declarative struc-
tures in ACT-R comparable to procedure context structures.
However, their use would seem problematic. First, ACT-R
restricts WM buffers to hold only one declarative “chunk”
at once, making sets of D-Rules difficult to represent con-
currently in WM. Second, firing an individual ACT-R P-
Rule corresponds to a decision, so that testing D-Rule con-
ditions would require individual sequential decisions that up-
date each set item every time the WM state changed. The ex-
tra processing would likely lead to unrealistic response times.
Alternatively, in ACT-R one might plausibly replicate the net
results of the procedure context model by treating goal name
changes as a separate source of latency. This would effec-
tively mean using in ACT-R as an extra equation
that adds latency rather than describes existing computation.

The PROP;3 use of procedure contexts corresponds to rep-
resenting procedural knowledge in WM, in the sense de-
scribed by (Oberauer| (2010), demonstrating that it is possible
to implement that approach to task sets in Soar. Moreover,
this work demonstrates that the procedure context approach
provides a single computational representation that generates
human temporal profiles for procedural learning, transfer, and
task switching, for a variety of tasks. This suggests a fruitful
path of future research that might build upon the theory of
procedure contexts to unify the fields of neuroscience, cogni-
tive architectures, or beyond.

Acknowledgments

The work described here was supported in part by the ONR
under Grant Number F048875-093099, and the AFOSR un-
der Grant Number F050045-094301. The views and conclu-
sions contained in this document are those of the authors and

should not be interpreted as representing the official policies,
either expressly or implied, of ONR, AFOSR, or the U.S.
Government.

References

Brasoveanu, A. (2015). Intro to the ACT-R sub-
symbolic level for declarative memory. Re-
trieved from |https://people.ucsc.edu/~abrsvn/
ACT-R_subsymbolic_3.pdf

Chein, J. M., & Morrison, A. B. (2010). Expanding the
mind’s workspace: Training and transfer effects with
a complex working memory span task. Psychonomic
Bulletin & Review, 17(2), 193-199.

Dreisbach, G., & Haider, H. (2008). That’s what task sets are
for: shielding against irrelevant information. Psycho-
logical Research, 72(4), 355-361.

Elio, R. (1986). Representation of similar well-learned cog-
nitive procedures. Cognitive Science, 10(1), 41-73.

Kump, B., Moskaliuk, J., Cress, U., & Kimmerle, J. (2015).
Cognitive foundations of organizational learning: re-
introducing the distinction between declarative and
non-declarative knowledge. Frontiers in Psychology,
6(1489), 1-12.

Laird, J. E. (2012). The Soar cognitive architecture. Cam-
bridge, MA: MIT Press.

Oberauer, K. (2010). Declarative and procedural working
memory: Common principles, common capacity lim-
its? Psychologica Belgica, 50(3-4), 277-308.

Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A
cognitive architecture for modeling cognition. Wiley
Interdisciplinary Reviews: Cognitive Science, 10(3),
e1488.

Sakai, K. (2008). Task set and prefrontal cortex. Annual
Review of Neuroscience, 31(1), 219-245.

Singley, M. K., & Anderson, J. R. (1985). The transfer
of text-editing skill. International Journal of Man-
Machine Studies, 22(4), 403 - 423.

Stearns, B., Assanie, M., & Laird, J. E. (2017). Apply-
ing primitive elements theory for procedural transfer in
soar. In Proceedings of the 15th international confer-
ence on cognitive modeling.

Stearns, B., & Laird, J. E. (2018). Modeling instruction fetch
in procedural learning. In Proceedings of the 16th in-
ternational conference on cognitive modeling.

Taatgen, N. A. (2013). The nature and transfer of cognitive
skills. Psychological Review, 120(3), 439-471.

Taatgen, N. A. (2019). A spiking neural architecture that
learns tasks. In Proceedings of the 17th international
conference on cognitive modeling.

https://people.ucsc.edu/~abrsvn/ACT-R_subsymbolic_3.pdf
https://people.ucsc.edu/~abrsvn/ACT-R_subsymbolic_3.pdf

