

Update on TacAir-Soar

John Laird, Karen Coulter, Randy Jones, Patrick Kenny, Frank Koss, Paul Nielsen

Project Goals

- Create synthetic pilots whose behavior is comparable to humans for theater-level fixed wing aircraft missions.
- Embed synthetic pilots in a system that supports training using realistic command and control.
 - Missions are generated using standard military software systems.
 - Communication with commanders during missions obey standard doctrine.
 - Results of missions (BackTel) are reported through appropriate channels.

Overall System Layout

Components

- Automated Wing Operations Center
 - Picks up mission data from air tasking order.
 - Placeholder for automated mission planning.
 - Collects and forwards BackTelfrom planes.
- Exercise Editor
 - Allows SME's to refine mission data.
 - Forces SME's to plan missions.
- Together these help embed TacAir-Soar in existing command structure.

Agent Overview

- Covers all theater-level FWA missions.
 - Defensive counter air, offensive counter air, close air support, strategic attack, suppression of enemy air defense, escorts, forward air controllers, airborne early warning, tankers, intelligence.
- Covers all aspects of missions.
 - Planning, takeoff, fueling, communication, landing, ...
- Involves large number of planes flying together.
 - Up to thirty planes for some missions.
- Grown from 3,700 rules to 4,800 rules in last year.
 - New missions, communications, sensors, and weapons.
 - > 1,500 sets of additions and modifications.
- Code rewritten to improve efficiency, flexibility, ...

- Maintained same structure:
 - Hierarchical decomposition of missions and tasks into suboperators.
 - Over 400 operators.
 - Opportunistic operators jump in as necessary.
 - Communication, situational awareness, ...
- Significant efficiency improvements through architectural restrictions:
 - Removed all chunking and justification overhead.
 - Restricted to only o-supported results, fast o-support: Doug P.
 - Required few changes (< 5 rules modified).

Agent Data

- Average run: 1-2 hours.
- # of agents can run on one machine at a time:
 - 24 on a P6 (Pentium Pro 200 MHz with 256M b)
 - Averaging 4 decisions/seconds for route flying.
 - Not recommended in general probably 10-12.
- # of agents in the air at a time.
 - Have had over 20 machines with > 80 total agents.

Agent Data: Benign

- Take-off, route-flying, racetrack
 - 20 Soar planes running on one machine:
 - ~25 minutes elapsed real time
 - Data for one agent:
 - 44 sec. kernal time, 70 sec. total cpu time
 - 8,000 Decisions: 5.5 msec/decision
 - 2,693 Elaboration cycles
 - 8,405 Production firings: 5.2 msec/pf
 - 76,4936 WM changes: .044 msec/wm change
 - During one 2000 decision stretch of route flying, only fired 1 production.

Agent Data: Hostile

- Take-off, route-flying, intercept:
 - 3 Soar planes + 1 ModSAF
 - ~25 minutes elapsed real time
 - Data for lead Soar plane:
 - 50 sec. kernal time, 60 sec. total cpu time
 - 20,000 Decisions: 2.5 msec/decision
 - 3,623 Elaboration cycles
 - 7,317 Production firings
 - 354,333 WM changes

Demonstrations, Tests, Etc.

- Participated in many tests (CT1-4, FST-1).
 - These evaluate behavior, connectivity, ease of use.
 - To date, we have never had a "failed" test.
 - ! At most recent test, SME's defined and ran all missions.
- Remaining tests:
 - Full-System-Test 2-4.
 - One test a month through September
 - STOW-97: October, 1997.
 - Very big deal. Involves simulations of all services.
 - 200 aircraft in flight at a time.
 - Combined with United Endeavor-98, a real training exercise.

Coal and Nuggets

- Coal
 - Development is very labor intensive.
 - We've emphasized development over research.
- Nuggets
 - Still on track -- Soar has proven itself for a real-world, real-time, complex application.
 - No longer need to defend this approach.
 - Accepted in DOD simulation community as highest-fidelity.
 - Pilots continue to say that they are "very impressed".
 - Embedded in existing command and control structure.
 - Lots of future research and applications.

Future Work

- Follow on support of STOW-97.
- Training of AWACS Crew: Warrior Flag.
- Expanded missions: Joint Search and Rescue.
- Fielding for training in USAF.
 - Using manned simulators at all USAF bases. >\$100M.
- Cognitive Modeling
 - Modeling effects of fatigue on performance.
 - Modeling time to perform subparts of total missions.
- Enough future applied work to warrant the creation of Soar Technology, Inc.