Building Agents Quickly

John E. Laird Randy Jones, Mike van Lent, and Paul Nielsen University of Michigan Soar Workshop 17 June 28, 1997

Motivation

- Large bodies of knowledge are required for high-fidelity behavior.
 - 4,800 rules for FWA/IFOR = medium-fidelity.
- Need to quickly add and modify knowledge.
 - New tactics, new capabilities, new opponents.
- Current approaches are very labor intensive.
 - > 10 person years for TacAir-Soar.
 - Also due to uncertainty about requirements, environment, and interfaces.
- Little prior work on automated procedural knowledge acquisition.

Proposed Approach

- Extract knowledge from a variety of sources:
 - Interviews with expert.
 - Observing behavior of expert.
 - Instruction and critique from expert.
 - Analysis of existing knowledge.
- Use analytical and empirical learning techniques.
- Learn while actively trying to do the task.
 - Provides context for interpreting expert behavior & instruction. Grounds analysis of existing knowledge.

The Domain

- Air-to-air tactics in TacAir-Soar.
- Tactics are intermediate operators.
 - Used to achieve combination of longer term goals such as defend a strike package.
 - Know the higher level goal.
 - Composed of combinations of more primitive operators such as turn to a heading, shoot missile, adjust radar.
 - Don't need to learn primitive operators for controlling vehicle.
 - Need to learn combinations of the more primitive operators and the parameters for those operators.

Structure of Tactics

Learning by Observation

- Gather detailed behavioral performance data of a human performing the activity.
 - Tap into interface between human and environment and record available sensory data and actions taken.
- Induce the knowledge that the human is using.
 - "Behavioral Cloning" demonstrated by Sammut et al. for taking-off & landing of a simulated plane.
- Extend by allowing expert to annotate goal/ operator selections and terminations.
 - Mike van Lent will discuss this approach in detail.

Behavior Cloning Structure

Hypothetical Interaction

- » Human breaks off racetrack and heads in general direction of bogey.
- » "Starting intercept bogey."
- » Turns a few degrees off of collision.
- » "Starting turn to achieve lateral separation."
- » Turns again.
- » "Achieved the lateral separation. Starting turn to maintain lateral separation."
- » Turns toward bogey, changes radar modes.
- » "Achieved LAR, attempting to get radar lock."

Learning by Instruction

- System attempts the task, but requests instruction from expert when unsure of what to do.
- Instructor tells system next step to perform.
- System attempts to generalize through selfexplation. Otherwise, learns by rote.
- Demonstrated in Instructo-Soar for simple robot block manipulation task.
- Supported many types of instruction:
 - Operator proposals, selection, application, termination.
 - Positive, negatives, hypotheticals, hints on features.

Instruction System Structure

Hypothetical Interaction

- How do I do an intercept?
- » First, head toward the bogey.
- OK.
- I'm headed toward the bogey. Now what?
- » Turn away from the bogey 20 degrees.
- Why?
- » It will put you in position for a second shot if the first one misses.
- Huh?

Strengths and Weaknesses

- Strengths
 - Soar drives interaction based on what it needs to learn.
 - Expert needed only when there is a lack of knowledge.
 - Can learn most types of knowledge used by agents.
- Weaknesses
 - Haven't used in dynamic domains.
 - Can't learn "opportunistic" operators.
 - Situation may change before system can ask a question.
 - Doesn't allow expert to interrupt and critique.
 - Assumes prior knowledge is correct.
 - Requires language interface for communication.

Proposed Extensions

- Allow expert to interrupt system and critique.
 - Will allow it to learn opportunistic operators.
 - "Go beam now!"
 - Will allow it to correct overgeneral knowledge.
 - "Don't try to climb above a MiG-29."
- Give control of simulation to Soar.
 - Allow it to stop simulation when it needs extra time for instruction or planning.

Integration of Approaches

- Allow Soar to stop simulation and ask questions during learning by observation.
 - "Why did you do that instead of X?"
 - "Won't that cause this goal to be violated?"
 - "Are we finished trying to achieve LAR?"
 - "How did you know LAR was achieved?"
- Allow human to "jump" in during instruction.
 - "No, no, you are doing it all wrong and I can't explain why. Here is how you do it! Watch me."

Nuggets

- Doesn't try to have the computer do too much.
 - No magic discovery of new knowledge.
 - Use human to provide as much knowledge as possible.
 - No new, undiscovered learning approaches.
- Doesn't try to have the humans do too much.
 - Computer analyzes detailed data and knowledge available to it.
- Building on prior successes.
 - TacAir-Soar, Instructo-Soar, IMPROV, SCA.

Coal

- Language interactions.
 - Will probably use a greatly restricted grammar and artificial language.
- Techniques may not scale to complex, dynamic domains.
 - Must build up initial planning knowledge.
- Very ambitious.

Why use Soar?

- Have a task independent framework that defines what needs to be learned for any task.
- Each operator can be learned independently.
 - Don't need to learn tactic/mission/doctrine all at once.
- Each operator part can be learned independently.
 - Can learn proposal from one source and fill in application and termination from another.
- Each operator part can be learned incrementally.
 - Can learn some of the proposals before others.
- Can use prior knowledge when learning.
 - Key component of Instructo-Soar, Improv.