Building Agents Quickly

John E. Laird
Randy Jones, Mike van Lent, and Paul Nielsen
University of Michigan
Soar Workshop 17
June 28, 1997



Motivation

- Large bodies of knowledge are required for high-
fidelity behavior.

- 4,800 rules for FWA/ZIFOR = medium-fidelity.

- Need to quickly add and modify knowledge.
- New tactics, new capabilities, new opponents.

- Current approaches are very labor intensive.

- > 10 person years for TacAir-Soar.

- Also due to uncertainty about requirements,
environment, and interfaces.

- Little prior work on automated procedural
knowledge acquisition.



Proposed Approach

- Extract knowledge from a variety of sources:
- Interviews with expert.
- Observing behavior of expert.
- Instruction and critique from expert.
- Analysis of existing knowledge.

- Use analytical and empirical learning techniques.

- Learn while actively trying to do the task.

- Provides context for interpreting expert behavior &
Instruction. Grounds analysis of existing knowledge.



The Domalin

- AlIr-to-air tactics in TacAlir-Soar.

- Tactics are intermediate operators.

- Used to achieve combination of longer term goals such
as defend a strike package.
- Know the higher level goal.

- Composed of combinations of more primitive operators
such as turn to a heading, shoot missile, adjust radar.

- Don’t need to learn primitive operators for controlling vehicle.

- Need to learn combinations of the more primitive operators
and the parameters for those operators.



Structure of Tactics

| nter cept

N

Achieve
proximity

Employ
Weapons

Execute
Tactic

P a=——

Get Missile Select Sort Get Steering Fire
LAR Missile Group Circle Missile
ZN ZN




Learning by Observation

- Gather detailed behavioral performance data of a
human performing the activity.

- Tap into interface between human and environment
and record available sensory data and actions taken.

- Induce the knowledge that the human is using.

- “Behavioral Cloning” demonstrated by Sammut et al.
for taking-off & landing of a simulated plane.

- Extend by allowing expert to annotate goal/
operator selections and terminations.

- Mike van Lent will discuss this approach in detail.



Behavior Cloning Structure

Sensory Sensory
Information | nformation
[ Expert | ' \ HIP MOdSAF
Actions Actions
- Sensory
Actions
Task _ Information
Annotations
: Operator Proposal
Behavi O_ral Operator Application :
System Operator Termination|  Force
Operator Parameters




Hypothetical Interaction

» Human breaks off racetrack and heads I n
general direction of bogey.

» ‘““‘Starting intercept bogey.”

» Turns a few degrees off of collision.
» “Starting turn to achieve lateral separation.”

» Turns agai n.

» “Achieved the lateral separation. Starting turn to
maintain lateral separation.”

» Turns toward bogey, changes radar nodes.
» “Achieved LAR, attempting to get radar lock.”



Learning by Instruction

- 0000000000 N —
- System attempts the task, but requests instruction
from expert when unsure of what to do.

- Instructor tells system next step to perform.

- System attempts to generalize through self-
explation. Otherwise, learns by rote.

- Demonstrated In Instructo-Soar for simple robot
block manipulation task.

- Supported many types of instruction:
- Operator proposals, selection, application, termination.
- Positive, negatives, hypotheticals, hints on features.




Instruction System Structure

Sensory

| nfformation
SAF ‘ \ MOodSAF

Actions

New|or Gapsin
|mprpved knowlgdge

Observes
Knowledge

Instruction H-2uestions
System Expert ]

| nstruction




Hypothetical Interaction

»

»

>,

£\

How do | do an i ntercept?
First, head toward the bogey.
K.

|’ m headed toward the bogey. Now
what ?

Turn away from the bogey 20 degrees.
Why ?

It will put you in position for a second shot if the
first one misses.

Huh?



Strengths and Weaknesses

- Strengths
- Soar drives interaction based on what it needs to learn.
- Expert needed only when there is a lack of knowledge.
- Can learn most types of knowledge used by agents.

- Weaknesses

- Haven’t used in dynamic domains.
- Can’t learn “opportunistic” operators.
- Situation may change before system can ask a question.

- Doesn’t allow expert to interrupt and critique.
- Assumes prior knowledge is correct.

- Requires language interface for communication.

12



Proposed Extensions

- 0000000000 N —
- Allow expert to interrupt system and critigue.

- Will allow it to learn opportunistic operators.
- “Go beam now!”

- Will allow it to correct overgeneral knowledge.
- “Don’t try to climb above a MiG-29.”

- Give control of simulation to Soar.

- Allow it to stop simulation when it needs extra time for
Instruction or planning.

13



Integration of Approaches

- Allow Soar to stop simulation and ask questions
during learning by observation.

- “Why did you do that instead of X?”

- “Won’t that cause this goal to be violated?”
- “Are we finished trying to achieve LAR?”
- “How did you know LAR was achieved?”

- Allow human to “jump” in during instruction.

- “No, no, you are doing it all wrong and I can’t explain
why. Here is how you do it! Watch me.”

14



System Structure

Sensory

Expert

| nformation
<«—| HIP

Actions

Task

nformation

Actionsl Sensory
Operator

Sensory

|nformation

Actions

ModSAF

Annotations| Behaviora

Questions

| nstruction
and Critique

Analysis

Gapsin

| nstruction
System

knowledge

|mproved Knowledge

Stop/Start
Acti clns

Knowl edgeI

Synthetic
Force
Knowledge

15



Nuggets

- Doesn’t try to have the computer do too much.

- No magic discovery of new knowledge.
- Use human to provide as much knowledge as possible.

- No new, undiscovered learning approaches.
- Doesn’t try to have the humans do too much.

- Computer analyzes detailed data and knowledge
available to it.

- Building on prior successes.
- TacAir-Soar, Instructo-Soar, IMPROV, SCA.

16



Coal

- Language interactions.

- Will probably use a greatly restricted grammar and
artificial language.

- Technigues may not scale to complex, dynamic
domains.

- Must build up initial planning knowledge.
- Very ambitious.

17



Why use Soar?

- Have a task independent framework that defines
what needs to be learned for any task.
- Each operator can be learned independently.
- Don’t need to learn tactic/mission/doctrine all at once.

- Each operator part can be learned independently.

- Can learn proposal from one source and fill in
application and termination from another.

- Each operator part can be learned incrementally.
- Can learn some of the proposals before others.

- Can use prior knowledge when learning.
- Key component of Instructo-Soar, Improv. 8



